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Stimulated transitions between the self-trapped states of the nonlinear Schdinger equation
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We investigate a particle confined within a double-well potential, its behavior described by a one-
dimensional nonlinear Schidinger equation. Transitions between the two lowest self-trapped states of this
system are studied, in the two-mode approximation, under the influence of the external time-dependent per-
turbation. If the perturbation is harmonic in time, with the frequenagythen transitions between the states
become possible if the amplitude of the perturbatirexceeds some threshold val&g(w); above this
threshold motion of the system becomes chaotic. If the perturbation is broadband noise, then transitions
between the states are possible at arbitrarily simalhd occur in the process of the system’s energy diffusion.
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[. INTRODUCTION solutions(2) with broken symmetry®(x) # = d(—x) ap-
pear. These solutions describe the states of the particle that
The nonlinear Schitinger equatior(NLS), are self-trapped in one of the wells of the permanent poten-
tial. For A <O the corresponding enerdy is lower than that
oY h? R ) of any symmetric modgg].
'ﬁﬁz N ﬁA'/’“LU(r)'pH‘W' &, (1) Our main concern will be the following question: if the

initial state of the system is one of these self-trapped states,

serves as a tool for the account of many physical phenomen#en how will the system evolve under the influence of the
The stationary version of this equation was introduced bylonstationary perturbation? In particular, can the perturba-
Deigen and Pekar to describe the self-trapfsdolocalizegl  tion transfer the system completely into the opposite self-
states of electrons in deformable crystal lattt#, see also trapped state? . _
[2]). Gross[3] and Pitayevskii[4] derived Eq.(1) as the There is a favorable circumstance that allows us to sim-
mean-field approximation for the macroscopic wavefunctiorPlify the problem. It happens that at moderate A even
1//(F ,t) of the Bose-Einstein condensate of a nonideal Boséhe sglf-trappgd modes O.f h'gh asymmetry can be accuratgly
gas at vanishing temperatufgee alsd5]). The third avatar described by linear combination of the two lowest symmetric
of the NLS came in the realm of nonlinear optics, WheremOde_S’ the evel,(x) and the Odd_bl(x) [9). Therefore n

~ . .studying the problem we can restrict ourselves by analysis of
Y(r.0) represents the envelope of a qugsmonochromat%e evolution of the two-level system. In Sec. Il we derive
e!ectromagnetlc wave. The exact solution of the oneype pagjc equations for this model. In Sec. Il we study the
dimensional homogeneousJ(r)=0) NLS found by Za- influence of the external perturbation that harmonically de-
kharov and Shab46] formed the modern paradigm of soli- pends on time. The evolution of the system under the influ-

ton theory[7]. . . ence of broadband noise is studied in Sec. IV. Section V
Although the solutions of the NLS were extenSIVer Stud'contains the Conc|uding discussion.

ied, it seems that comparatively little is known about their
properties in the case of time-dependent potentials. In this
paper we address a specific problem of this class. We shall
consider the one-dimensional E@.) with a potential that For future use we introduce the following quantities re-
consists of two parts: a permanent poterltlgk) that has the lated to the(supposedly real eigenfunctions®y(x) and
form of symmetric double well, and some time-dependentd,(x):

potential V(x,t) that will be called the perturbation. In the

Il. THE BASIC EQUATIONS

absence of a perturbation the properties of the stationary so- N I P
lutions of Eq.(1), that have the form Joo= _mqjodx’ Jor= _wq>0q>l dx,
E ()
w(x,t)=<1>(x)exp(—igt), 2 Ji= f, dFdx.

depend essentially on the nonlinear coefficienft smallX | et us represent the wave function of the system by the su-
there is an infinite set of mode®) that have symmetric perposition of the two lowest symmetric modes,
wave functions—odd or everp(x)=*=d(—x). As A\ in-

creases above some threshold valye a pair of stationary P(x,1)=bg(t)Dy(x)e Pot+ b, (1) P (x)e P, (4)

whereB,=#"Y(E;+\J;;). By substitution of Eq(4) in Eq.
*Email address: pve@astra.phys.msu.su (1), consequent multiplication byb;(x), and integration
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over the coordinatex we get the following system of two 1.0 =
equations for the complex amplitudbs: “
¢ 0.5+
_dbg e c
L —Nbg|bo|2Jog— 2\ bg| bg[*Jgy g
_ £ 0.0
— b b2J,e'2Po~ At hoVy(t) < 5
+b;Voy(t)e!Po~Au)t, g 05 @ @
(5 o
% 10 " . :
~dby 5 ) P 2n 3n 4n 5n
'hﬁz_kbﬂbﬂ J11— 2\by|bg|*Joy Phase, ®
—\b2b* Jn,e~12(Bo— Bt FIG. 1. Phase trajectories of the systém in the absence of
oriror perturbations on the plank— ® for different values of energy: A-
+ blvll(t) + boVOl(t)eii(ﬁoiﬁl)t, E= *3.7, BE= Es: *3487, CEZO, D-E=5.
where the matrix elements of the perturbation are given by
i 2
the integrals Hi(t)=G(H) A—F(t)y1-A cos> . 9)

Vi ()= fi‘bi(X)\?(x,t)CDJ-(x)dx. 6)

In what follows we refer to the value of the functidty as

the (dimensionlessenergyE of the system. In the absence of
The system(5) conserves the norm of the staté€x,t) (the  perturbation the systert¥) has two trivial stationary solu-
sum of probabilities|bg|?+|b,|2=1), and the common tions,A=+1 and® arbitrary, that correspond to the sym-
phase of the wave functiotid) is physically irrelevant. metric eigenstates, and ®; respectively, and two non-
Therefore we can describe the evolution of the system byrivial fixed pointsAg=—-Q/2(A+B), ®=0, or ® =2,

just two real variables. The complex amplitudes could bethat correspond to the pair of self-trapped states that we call
cast in the formb, = \/n; exp(=i9;), wheren, and9; are real the stationary states. These states are divided from the bulk
time-dependent variables. Let us introduce the populationf the phase space by a separatsige Fig. 1. The frequency
difference A=ng—n; and the phase®=2(dy—3J,) Q, of small oscillations ofA and ® around the stationary
+2(Bo— B1)t. Then the systen() turns into equations values is determined by the expressiﬂ§= B[4(A+B)?

—02?])/2(A+B).
A= —B(1—A2)sin® + F(t V1A% 9 For future numerical calculations we need to specify the
- ( )sin ) 2 sm2, parameters of the unperturbed Hamiltonieg8). We have

@ chosen the following set of value$)=5.388, A=1.902,
and B=2.022. With this choice the stationary states which
) A are located ah o= —0.686 correspond to the minimal energy
0=—-Q+2AA+2BA cos® — F(t)\/=2 cos5+G(b), of the systenE _ = —3.871, the separatrix coincides with the
1-4 isoenergetic lineEE=E¢= —3.486, and the maximal energy

where the following notations have been introduced:E+:7'290 corresponds to the line=1.

O=2(B1~Bo)+ )\fll_l(Jn_Joo), 71A: M~ H(4d01= Joo

—J19/2, B=Ni""Jo1, F(t)=4A"Voy(t) and G(t) Ill. THE HARMONIC PERTURBATION

=2 Vgo(t) —V4(t)]. All these quantities have the same ) o
dimensionality, namely that of the frequency. By fixing the We shall assume that the evédtiagonal perturbation is
unit of the frequency through linking it to one of these pa-absentG(t)=0, and the oddnondiagondl has the form
rameters(e.g., (1), in the following we consider them as

Qimensionless quantities. If the nonlint_aarity parameter van- F(t)=Fsin(ot+ ¢). (10)
ishes,\ =0, then Eqgs.(7) become equivalent to the well-

known Bloch equation§10]. ) ] ] ]

The nonlinear Bloch equatior(@) can be considered as a Numerical S|mulat|o_ns_ _show, that for given valges of the
pair of canonical equations for the conjugated variahlg® frequencyw and the initial phas@ of the' perturbation there
of the nonautonomous system with one degree of freedorf§ @ threshold valu& (w, ¢) of its amplitude such that for
with the Hamiltonian functionH=Hy+H,(t), where the F<F. the phase trajectory of the system remains indefinitely

unperturbed Hamiltonian is within one loop of the separatrix, while fér>F . the phase
trajectory crosses the separatrix many times and may come
Ho=0QA+AA%2—B(1-A?)cos0O, (8) close to the opposite stable point. The dependence of
F.(w,¢) on the initial phase is weak: the relative variations
and the perturbation is of the thresholds due to the change of the initial phase have
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FIG. 2. Dependence of threshold amplitudes of the nondi-

agonal harmonic perturbatiqiiO) on the relative frequencp/Q FIG. 3. Dependence of threshold amplitudgsof the perturba-
for the nonlinear Bloch equatior(3) with the initial phasep=0. tion on the frequencw for the Duffing oscillator(11). The dashed
line—the zeroth(linean approximation,O—estimates found from
the order of a few percent. Hence for the time being weEgs.(14) (solid line is an eyeguide @ —results of the numerical
ignore this dependence and shall consider only the depegxperiment.
denceF () (see Fig. 2
The abrupt change in the character of motion at a certain Now we improve this estimate by taking into account the
threshold value of the perturbation magnitude strongly indi-nonlinearity. Let us represent the motion of the oscillator in
cates the onset of global stochasticity that comes from théhe form x(t)=A coswt+¢), where A and ¢ are slowly
overlap of resonancefl1,17 and the destruction of the varying functions of time. The lawl2) corresponds to the
noble tori[12,13. This is indeed the case: by taking some e€quations of motion for the slow amplitude and phase,
phase point at the separatrix for the initial conditions, one
can see that at the same threshold vakigsv) the stochas- Ae — ECOS(p o=— f
tic layer around the separatrix explodes and covers the vicin- 2 ' 2’
ity of the stable states. However, even at rather small ex-
cesses of over the threshold the crossing of the separatrixwith the initial conditionsA(0)=0, ¢(0)=. Let us now
comes fast, after about ten periods of the field. At these timegeplace the eigenfrequency of the oscillateg=1 in the
the chaotic nature of the system’s dynamics remains con:h.s. of the second of Eg€lL3) by the eigenfrequency of the
cealed: the motion seems regular and rather simple. Ther@onlinear oscillator(Q2(A) that depends on the amplitude.
fore we can try to explain the behavior of the dependenc&hen for the model11), for small A, we have((A)=1
F.(w) in the frame of regular dynamics. —3A2?/16. Consequently the evolution of the system could
Specific features of the perturbing terms in Eq3.create  be described by the system of equations
technical complications that are irrelevant to the nature of the
phenomenon. The main qualitative features of the separatrix . F : 6 3
crossing under the influence of the harmonic field could be A=—5C0Sp, ¢=—5—35A% (14)
explained with a toy model—the one-dimensional Duffing
oscillator with the equation of motion with the same initial conditions &43). The threshold of the
separatrix crossing could be found from the condition that
X+X—x3=F sinwt (11) oscillations may reach the saddle points: ix=1. From
the second of Eqg14) it is seen, that i©5>0, then the phase
shift decreases monotonically, thus decreasing the rate of the
has a stable point, surrounded by a separatrix. amp".t“de growth. Ifo< ._3/16: __0'188' the_n the phase
shift increases monotonically while the amplitude stays be-

We assume the frequency detunifg  —1 to be small, low its critical value, A<1; and again the rate of the ampli-
|8|<1. If the perturbatiorf is weak, then the nonlinearity of tude arowth decreases with timeg But in the baﬂ6/16=p
the oscillator could be neglected, at least in the lowest a 0 1g8< 5<0 the oh hift tf' i th h
proximation. Then the solution of Eq11) has the approxi- » € phase shitt at irst grows, then reaches a

maximum and starts to decrease, passing the zero value at

(13

and the initial condition(0)=0,x(0)=0. This model also

mate form . .
some later timet,. Consequently, there are two moments in
E s s which the amplitude growth rate is maximak0 andt
X(t)~— —sin=t cos| wt— —t} (12  =to. Thus one may expect that the dependefigo) will
6 2 2 have a minimum somewhere in the range 13/D831< o

<1. The numerical solution of Eq$14) shows that this is
From this law of motion, assuming that the oscillator couldtrue: the minimum ofF .(w) is reached forw=0.87, about
be linearized in all the rand&|<1, we find a crude estimate the middle of this bandsee Fig. 3.
for the threshold of the separatrix crossing, namély To find the condition for the separatrix crossing, Ed¢)
=|4|. should be solved on a finite interval of time, while the phase
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shift reaches the valug /2. This could be done in a num-
ber of ways that will produce analytical estimates for the
threshold values. In the exact resonariaé §=0) in the
zeroth approximation the amplitude dependence on time is
linear, Ag=Ft/2. By substitution of this expression in the
r.h.s. of the second of Eq&l4), we have in the first approxi-
mation

Distribution, w

)
\
)
M

1
(pl(t):W_ 1_28F2t3' (15) 0 T T T T
E- -3.8 -3.6 Eg-34 -3.2 -3.0

The timet,, when the amplitudé\(t) reaches the maximum Energy, E

is found from the conditionp,(ty,) =m/2. Hence from the FIG. 4. Distributionw of system’s values of energy under the

ﬂr:St c;]f EQS. |(14)’ flnhthe fIrStbapprO).(lmﬁtlon’ we have the. influence of the over-threshold harmonic perturbation with Q0
threshold value of the perturbation in the exact resonance: _, ggq and-=2F_.=0.2. Dashed line—theoretical distribution Eq.

_3 (18), solid line—results of the numerical experiment.
=0.0666. (16)

27

2
FC(1)=1—6“ 6?2 cosodo

0

obtained in the numerical simulations is shown in Fig. 4. The

general agreement is clearly present, in spite of rather large

This agrees with the result of the numerical solution of they5j,e of the perturbation magnitude. The discrepancy be-
system(14) with an accuracy of about 6%, but differs from yyeen the distributions for the energy values around and
the value obtained in the numerical simulations by a factor;, e E.+AE is due to the borderline resonances of the
about 1.5. _ stochastic layer and could be anticipated.

The studied mode(11) shares with the syster¥) the If we define the vicinity of the stable state by the condi-

“soft” character of the nonlinearity of oscillations around i, e<E  then the average fraction of time spent in this
the stable points: the eigenfrequency of oscillations deyomain is

creases with the growth of their amplitude. This common
feature is responsible for the similar behaviorFf(w) in _
. E. dE (E,—E_)
the two modelgcompare Figs. 2 and)3-namely, the pres- (E, )= ~
ar MEIZT I aE) 7T a
ence of a nonzero minimum at a frequency somewhat lower E- 0
than that of the small oscillation§).

Now we return to the case of the chaotic motion of theand the average transition time from vicinity of one of the
system above the threshold. For the system with the Hamilself-trapped states to vicinity of the other is about
tonianH=Hy(A,0®)+V(A,0)sinwt, with a small perturba-
tion V the energy half-width of the stochastic layer is given T

(19

by the Melnikov-Arnold integral T~ w(E,)’ (20
. Jx ﬂA‘F ﬂ)sinwt dt, (177  Wherer is the energy relaxation time. For the over-threshold
—w\JAT 90 perturbation amplitude the latter has value of about the pe-

riod of the harmonic field.
whereA(t) and ©(t) are taken for the unperturbed motion
on the separatrikl 1]. Thus we can expect that the motion in
phase space will persist inside the domain limited by the
isoenergetic lineE=Es+AE. Since for the Hamiltonian The threshold character of the separatrix crossing in the
systems the phase volume is conserved, we may expect th@rmonic field stems from the termination of the resonant
invariant density in the phase space to be uniform. This leadenergy absorption before the vallg is achieved. If the
to the invariant distribution of the energy value¢E) of the  perturbation is broadband noise, then the energy absorption
form can go on indefinitely at arbitrarily small field amplitude.
The problem of energy absorption from the external noise
has been studied extensively as a part of the theory of dissi-

IV. THE BROADBAND PERTURBATION

W(E)= 779(E) (E-<E<E), pative systems in contact with the heat batd—16. The
(18) averaged evolution of the system can be described as a pro-
cess of diffusion on the energy axis. The equation that gov-
erns this process could be derived from the Fokker-Planck
w(E)= TQ(E) (BEs<E<Es+AE), equation[14,15. It is inconvenient, however, to adjust the

known results to our case since our Hamilton{@h (8) has
where is the normalization constant, and the factor “2” in a rather unusual structure. Instead we derive the equation for
the first line accounts for the double degeneracy of the enthe energy diffusion considering the systdarmally as a
ergy states. The comparison of this distribution with the onequantum one, starting from quantum kinetic equations and
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going to the classical limit.—0 to obtain our resultgcf. E- E:
[16,17). 5
Let us consider a quantum system with the unperturbed e_ 4-
Hamiltonianﬂo with one degree of freedom and a discrete §
energy spectrum under the perturbatié&(t) whereV de- £ 34
pends on the dynamical variables of the system gnjlis a 3
stationary weak broadband noise specified by its spectral S 21
densityS(w). The state of the system could be described by 3 14
the probabilitiesp,, of finding it in the quantum statén). 5
The evolution of these probabilities obeys the system of mas- 045 . ' . . .
ter equations Eg -2 0 2 4 6
. . Energy, E
dpn . . e . L
T —pnk;n Wn’n+k+k:2—n Pn+kWhikn- (2D FIG. 5. Dependence of the energy diffusion coefficibrnder
the influence of the white noise of unit spectral density on the
energyE.

The rates of transition\i&lnﬂ(,n are determined by the pertur-
bation theory formula * 1 r2a19/dV)\ 2
D(E)=27Q(E) >, k®VXE)= —J —) t

. 27 ) k=1 2)o dt
Wn,n+k:?|vn,n+k| S(_wn,nJrk)r (22) (27

whereV,, ., are the matrix elements of the perturbation andThe energy dependence Of the diffusion coef_fchBrfbr the
S(— wn ns1) i the spectral density of noise at the frequencyNPEMurbed system) with the perturbationV(A,0)
of transition. Let us take the probabilities to be functions not— Y1 ~A” €os@/2) is shown in Fig. 5. We note a disconti-
on the level numben, but on its energyp,— p(E,,). Inthe ~ NUity of D(E) at the separatrix value of energp(Es+0)
quasiclassical case the energy spectrum of the system coufd2P(Es—0). This jump is not a direct consequence of the
be related to the frequency of its classical motion at a givePrésence of the separatrix, but reflects both the global struc-
energyQ (E): f[ure of thg phase space and the beh{;\wor of the perturb¥dtion
in the neighborhood of the separatrix.
Since the classical distribution in energy(E) is con-
: (23)  nected to the probability densip(E) by the relationw(E)
=p(E)[#Q(E)]", we have the equation for the(E) in
and the matrix elements of the perturbatip,, could be the form
replaced by the Fourier components of the unperturbed mo-

hQ
E,.k=E, = Q| E,= kT

tion of the dynamical variable that corresponds to the opera- o7_w - i( D(E) i(WQ)> (28)
tor V: if gt ok JE '
o The stationary solution of Eq28) has the form given by
V()= D, Ve ket (24) Eq. (18), but the second line holds now in all the rangg
k=—o <E<E, . If the system was initially in one of the stable
states, then in course of the energy diffusion it has the op-
then portunity to migrate to the vicinity of the opposite stable
50 state. The characteristic time of the average transfer is deter-
Vi nak— Vil Eq+ k—) _ (25  mined by the relaxation time of the distribution to its station-
’ 2 ary value; from Eq(26) it can be estimated as
We assumep(E) to be a smooth function, and expand its (EL.—E_)?
value to the terms of the second orderiirand the values of T~ (29)

X . o Qb))
En+k andVy . to the first order ifi. After the substitution (D)

of these expansions into E€R1) and going to the limith
—0 we obtain a purely classical equation. At this point we
restrict our consideration to the case of white noise with the
constant spectral densif§(w)=1. For this case we have

where the angular brackets denote averaging over the energy.

V. CONCLUSIONS

The main question addressed by this paper is: If the sys-

D(E)ﬁ_P} (26) tem, that is described by the one-dimensional nonlinear
E Scralinger equation with the potential of the symmetric
double well, is initially in one of the lowest asymmetric

where the energy diffusion coefficieBX(E) is given by the (self-trapped states, then can the time-dependent perturba-

expression tion transfer the system completely to the opposite asymmet-

ap J

- YE
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ric mode? The answer is yes, but almost completely and onlthe harmonic perturbation of moderate amplitude the system
by chance. stays locked within the narrow energy domasee Fig. 4,

For the harmonic perturbation with amplituffethat ex-  and the addition of contributions of modés with i=2, that
ceeds the threshold (w), the system’s motion is captured Will lead to the extension of the energy space of the system,
in the stochastic layer that embraces both domains of vibrawill have little influence. .
tion around the stable states and a strip around the separatrix. The situation may be different for broadband noise, where
When moving in this domain, the system can come arbi{he system can reach any point in the phase space. However
trarily close to the opposite asymmetric state. However, thdhe main contribution to the energy diffusion coefficient

nature of this process is purely chaotic and, hence, unpredicomes from frequencies that are lower tiiagt in particular,
able. There is no way to create in the nonlinear system th t the separatrix they contribute about 0.66 of the total value.

w ” d ; hus if the spectrum of noise has high-frequency cutoff just
m-pulse” [10] that will transfer the system unambiguously o

from one of the stable states to another. Finally we note th bovg th&oﬁ.ﬂ;]eg tge e_nSrgyfdlffusmn ce?ses at the “gnergy

the threshold magnitude of the perturbation is only numeri-_h> s at whichQ(Ep) =€), (for our set of parametery,

cally small in comparison with the depth of the self-trapping = —0.356) and the system stays locked within the restricted

wells: to make the transfer possible, the system must be pe =nergy domain. Then, in parallel to the case of the harmonic

turbed stronal ield, we can conclude the unimportance of the extension of
gly. o .
For the system under the influence of the white nése the energy space by addition of higher modes.
generally speaking, any sufficiently broadband npide
process of energy diffusion eventually spreads the probabil-
ity density over all phase space of the systdm In this case The authors are grateful to Professor R. Sammut and Dr.
the system can occasionally come close to the opposite stabkeV. Buryak for an introduction to the field and to Professor
state. We note, however, that the probability of finding theYu. M. Romanovsky for specifying the studied problem. The
system within one of the self-trapping wells is rather small;permanent informational support of this work by Dr. E.A.
with our standard set of parameters it is only about few perOstrovskaya and Dr. D. G. Luchinsky and discussions with
cent. them were invaluable. The assistance of N. Robins in im-
The main approximation of our calculations consisted inproving the language of the paper is acknowledged. This
the truncation of the expansion of the wave function to justwork was financially supported by the Education and Sci-
two modegsee Eq.(4)]. It was justified by the high quality ence Center “Fundamental Optics and Spectroscajoythe
of this approximation in representing the unperturbed selfframe of the program “Integration’ and by the Russian
trapped state§9]. Whether this accuracy will hold for the Federal Grant No. 96-15-96476 for the support of outstand-
seriously perturbed system is quite a different question. Foing scientific schools.
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