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Dust acoustic solitons with variable particle charge: Role of the ion distribution
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Dust-acoustic solitons of large amplitude with variable particle charge are studied using the Sagdeev qua-
sipotential analysis. Two limiting cases of ion distribution are considered separately: Boltzmann and highly
energetic cold ions. It is shown that in both cases only compregdaresity solitons are possible. The charge
variation is not important in rarefied particle clouds, but becomes crucial if the particle number density is
sufficiently high. Analytical expressions for the range of Mach numbers where solitons might exist are ob-
tained. It is found that solitons are allowed in the supersonic regime, and that in dense clouds the width of the
Mach number range remains finite for the Boltzmann ions, but tends to zero for highly energetic ions.
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Wave motion of charged micron-sized particles in aeffects caused by the particle-wave interacfitfl], and use
plasma—the so-called dust-acoustibA) mode [1]—has the fluid equations for the particle component,
been studied extensively. Most of the work was focused on

the investigation of small-amplitude waves exploring the in- ‘9_” ‘92:

fluence of various parameters on properties of the wave dis- a oz '

persion relation. Large-amplitud@onlineaj stationary DA D
waves might also exist in complelusty plasmas: Similar o, v _Zedp

to the ion-acousti¢lA) waves, nonlinear corrections to the ot Vaz m az’

DA phase velocity makes the wave front steeper, whereas the . N
dispersion at short wavelengths has the opposite effct wherem andn are the particle mass and number densitis

Therefore, a balance between these two mechanisms is pd§€ particle velocity, andp is the electric potential in the
sible, leading to stationary nonlinear DA waves. wave which is described by the Poisson equation,

One of the most interesting types of nonlinear waves are 2
solitary waves. DA solitons of large amplitude have been —(,f=—47re(ni—ne—Zn). )
studied in a number of papers, using the Sagdeev quasi- 9z
potentials[1,3—9. It was shown that particular ion distribu- ) N
tions are required for the existence of both compressive and€'€ Ne andn; are the electron and ion rlgmber densities.
rarefactive solitong6], as well as for double layefg,6]. It ~ The time scale of DA wave i wpi ~1—-10"° s, so that it
was also emphasized that the self-consistent variation of th§ reasonable to suppose that the Maxwellization time for
particle charge in the wave might be importddt-9], and electrons is much smaller. Thus, we can use the Boltzmann

distinguishes the DA solitons qualitatively from the IA soli- distribution for electrons,

tons.
In this paper we study the Sagdeev quasi-potential for DA Ne=Ngo ex;{ (:_—d’) . ®)
solitons with variable particle charge, and we consider sepa- e

rately two limiting cases of the ion distribution: Boltzmann Note that the smallness of the thermal particle velocity al-
and highly energetic cold ions. This allows us to understanqiowS us to neglect the bulk viscosity terfdue to interpar-
qualitatively how the soliton solution depends on the posyiqie collisiong in the momentum equatiofi). The friction
sible plasma parameters in a dischafigelk plasma, sheath  {erm due to collisions with atoms of neutral gas is omitted as
In particular, we show that the charge variation is not imporye||. The applicability of this approach is discussed later.
tant_ in rarefied parthle plouds, .but bepomes cruugl if the  The particle charge variation in the wave is governed by
particle number density is sufficiently high. We obtain ana-ihe kinetic charging equation. However, for real experimen-
lytical expressions for the range of Mach numbers whergy conditions we do not need to solve this equation, because
solltons mlght_ exist, and the correspondlng _values of thepe typical charging time of particles; 10 6—10°2 s, is
electric potential in the wave. The derived scaling dependens, ,ch smaller than the time scale of the wave. Therefore, we
cies could be useful for comparison with experimental meag gy, expect that the charge is always close to the equilibrium

surements. , _ _value given by the balance of the electron and ion fluxes on
We assume that the thermal velocity of the particles ispe particle surface

much smaller than the phase velocity of DA waves. This is

valid when the the ratio of the particle kinetic temperature to Jo—J;=0. 4

the ion temperature is much less than the particle charge

number: T/T;<Z (usually, T/T;<10 and Z~10*-10%).  The fluxes depend on the charge numBeand the local
Then we can neglect both the particle pressure and kinetiplasma density. In turn, the latter is determined by the local
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potentialg, i.e., Eq.(4) is an implicit relation betwee# and 2 ( D2 )
istri i n=ng| 1+ — | P+ : 11
[¢1.1]The electron flux for the Maxwell distributed electrons is 0 M2 2(1+ 70) 1D
I($.2)=2\2man vy e¥e 7 (5) Where M3 =mu*/Z,T,. Then, substituting Egs(3), (7),

(10), and(11) in the Poisson equatioi?) and integrating, we

wherea is the particle radiusys = \Te/m, is the electron derive the “energy integral

thermal velocity ® (¢) =e¢/ T, is the dimensionless electric IN2 (b1)2=E—U(D) (12)
potential andy(Z) =e?Z/aT, is the normalized charge num- e ’

ber. Note that the value of depends on the type of gas in where \p. is the electron Debye length,\p2
the discharge, as well as on the discharge conditions, butis , > /eT and€ is the “total energy of the osci’IIaItjgr”
always of the order of a fel2]. In the absence of waves, with the %)agaéev pseudopotential

the (undisturbedl densities and the charge number should

obey the quasineutrality condition, —U(D)=(1+P) 7 e ™ —1)+eP—1
(13

Nig=Ngy+ZgNg.
i0 e0 0''0 T(I)Z

2 e —
PM; 2(1+ 7o)

o+

2
1+ —
In a nonlinear stationary wave all the variables depend on \/ M2
the self-similar combination

=z—ut, 6 . .

¢=z-u ©) HereP=Zyny/ngg is the Havnes parameter which is a mea-
whereu is the wave velocity. As mentioned before, we con-SUre of the volume particle charge.
sider two limiting cases for the ion distribution function: the  The pseudopotentidl3) tends to zero ab—0. Then the
Boltzmann distribution, which is reasonable for an isotropiclocalized soliton solution of E¢12) can exist fore=0 if (i)
bulk plasmawhere the rapid Maxwellization is provided by Y'le-0=0, (i) U(®) is a potentla! well, and(iii)
ion-neutral collisions and highly energetic ions with flow Y(Pma)=0 for some finite® p,, [but U’ (P p,)#0]. The
velocity much higher than the IA velocitywhich corre- first condition is satisfied identically. The second one re-
sponds to a region inside the plasma shedfor a particle  9uiresU”|q-o<0. Expanding Eq(13) we find that condi-
cloud suspended in the pre-sheath region we would presuntion (ii) is satisfied ifM>1, whereM =u/Cp, is the Mach
ably have some “intermediate” situation. number(note thatM , «M) normalized to the phase velocity

Boltzmann-distributed ionghe ion density obeys the re- Of the DA waves with variable particle charge3],

lation
1+, \/ ZoP T;
Cpa= —, (14
ed DA P V1i+Pm
ni:nioeX[{__). (7) Jl_}.,yo_’_

Ti 1+P

The corresponding flux on the particle surfacé¢lig]

Ji(¢,2)=2v2ma’ngur,e” (1+1y), ®)

[when the particle fraction is smalR<1, or the charge is
large, yo>1, the influence of the charge variation on the
phase velocity vanishes—the first factor in Et4) tends to
unity]. Thus we get the natural result that the DA solitons
can exist only in the supersonic regime. The requirerfient
(which is the sufficient condition for solitons to existeter-
mines the maximum value of the potentia,,,,, in the

_ wave. For weakly supersonic solitonsgs® —1<1, we ob-
Y= Yot In(y/yo)=7P. ©) tain from Eq.(13) the single rood ,,(M),

This is a transcendental equation with respecg,tbut it can op

be solved approximately assuming that the relative variation — D~ ——(M—1),

of the charge is sufficiently smalbr v/ y, close to 1, we will ¥ 1+P

return to this later Then, expanding In{yy)=(y— vo)/ ¥ In

Eq. (9) we obtain (1 y5 1) (y— yo)=17®, or for the charge which means that foM =1 there only compressive density

number solitons exist[see Eq.(11)]. The absolute value of .
increases monotonically as the Mach number grows until the
argument of the square root in E(L3) equals zero. The

: (100 corresponding critical value of the potentiab,,, is the
smaller root of the quadratic equation

where 7=T./T;~30—100 for typical discharge conditions.
Substituting Eqs(5) and(8) in Eq. (4) and neglecting terms
O(7~ 1) we obtain the relation betweeh and vy,

T®

1+
1+ Yo

Z(P)=Z,

Using Eq.(10), we can integrate Ed1) for the self-similar . 5 5
variable(6) and obtain the density (1+7y0) H(7]®g)*—27| D[+ 7ML =0, (15
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and the corresponding critical value of the Mach number is 1.56

M=M (D). Above M, there is no solution. Physically

this limit arises because the travelling potential barrier, eer

Z(P)®P, becomes too high—the particles cannot get across =

it and are reflected by the wave front. The reflected precurser 1.48¢

flux upstream of the soliton leads to the formation of a shock

wave[2]. [Note that if TM2 > (1+ y,) then Eq.(15) has no 1.44¢

real roots and the argument of the square root in(E8). is 1 2 3 4 5 6

always positive, because the charge decreases too fast, see Yo

51?5 ((::L;))S.Q;However, equation) (P mg,) =0 has no solutions in FIG. 1. The upper Mach number limiL8) for the soliton solu-

tion, M, in a dense patrticle cloudPt>1) versus the dimension-

In order to determine the critical valud, (and®,) let !
less particle chargey,.

us assume thatb | <1 [below we show tha®,~O(7 1)],
so that one can expand®&1+® in Eqg. (13). Then

U(d,)=0 yields the limit yp—, thenM=1.58 for P>1. This coincides
° with the value obtained if5]). We see that the variable
7@+ PTM2=(1+P) (el - 1), charge narrows the range of Mach numbadg,— 1, where

solitons can exist.
SubstitutingM 2 (®,) from Eq. (15) we obtain the equation Highly energetic ionsNow we consider the case when
for @, the ion drift velocity,V;, exceeds the velocity of IA waves,
2 V;>+/T./m;, and when the spread of the velocity distribu-
ﬂﬂ@ |- Mzer\%\_l (16) tion is much less thaV;. Since the scale of the potential
1+P 7 (14+P)(1+ ) ' variation in the wave i® <1, the corresponding variation of
the drift velocity should be relatively small. Hence, we can

Equation(16) can be solved approximately in the limits of ;oo me homogeneous ion density

rarefied P<1) and denseR>1) particle clouds,

P<1l: 7dy|=2P, N;="Nio, (19
24y 17) which implies that ions do not participate in collective pro-

0 cessegscreening, waves, ejcln this limit the cross section
for ion absorption on a particle is approximateha?, and
the ion flux is

P>1: T|¢Cr|2m,

wheree=2.71 ... [relative error of solution(17) for P>1

is =5%]. Using Eq.(10) we see that for reasonable condi-
tions (yp=2) the maximum possible value of the relative
charge variation is<0.3, i.e., the linear expansion of the
logarithm in Eq.(9) is justified. Substituting Eq.17) in Eq.
(15 we determineM, (®,), and using the relation

Ji($,Z2)=ma’n,pV,. (20)

Substituting Eq(20) together with Eq(5) in Eq. (4) we have
v=17y,+®, or for the charge number,

1 1+p Z($)=Zo(1+ 7o '®). (21)
2= 1T + P TMi ,
Yo Using Eqs(19) and(21), we derive from Eqs(1) and(2) the
we finally obtain the critical Mach number, Sagdeev potential,
P<1l: Mg=2, —U(®)=—(1+P)D>+e®—1

P>1: 18 2 ®?
(18 +PM2 \/1+—2 <1>+—)—1 . (22

Mi 20

cr

2+ 'y0> V2(e—2)y5+(4e—5)y,+2(e—1)
1+, (e—=2)ypte ' The conditionU”|4-,<0 requiresM>1, where the Mach

numberM =u/Cpa now is normalized to the DA phase ve-
locity without ion screening,

Thus in rarefied clouds the variation of the potential) is
weak (due to the small particle volume chajg#l =2 and
does not depend ofy, in fact it equals the value obtained

without charge variations. In the opposite case of dense c :;, /7 pE
. . : L DA o -
clouds,M¢, is a function ofy,, i.e., the charge variation is V1+P/y, m

important. Figure 1 shows the dependencé/iof on vy, for

P>1. For realistic conditions, the value of varies from  Hence only compressive supersonic solitons are possible for
=1.5to=6 [12]. (Note that if we neglect the charge varia- the pseudo-potential22). This is similar to the case of
tion in the above calculations, which formally corresponds toBoltzmann ions. The upper Mach number lim,.,, of the
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solution is determined by the argument of the square root itharge variation is taken into account, it provides an addi-
Eq. (22). The critical potential is given by the smaller root of tional correction to the particle densitgecreasing )t and

the quadratic equation thus the ion term in Eg22) can be balanced at rather small
M only.
Yo | ®?—2| D]+ M2 =0, (23 Note that even if we would suppose that there is a weak

dependence of the ion density dninstead of Eq(19), say
and M =M (®) [the argument of the square root in Eq. nj=n;y(1+ e®) (Wheree~T./m;V?<1), it does not quali-
(22) is always positive itM2 > o, but thenU(®,,)=0 has tatively change the final expressions for the critical potential
no solutior]. In order to find the critical Mach number we (25) and the Mach numbg®6). Such a linear variation in;

start by determiningb.,. EquationU(®,)=0 yields yields an additional quadratic terra(1+ P)e|®.|?, in Eq.
(24), and if|e|5y51, the equation is not changed function-
(1+P)| @y —PMZ=1—e" [P, ally and Eqs(25) and(26) are still valid for anyP.
Discussion and conclusionQualitatively, the soliton so-
SubstitutingMi(CDCr) from Eq. (23) we get for®,, lution for the DA waves with variable particle charge is simi-
lar to that for usual IA waves in the absence of particles. The
(1= P)| D] + 5 1P| D |2=1—e Pl (24)  physical mechanism of the steady-state nonlinear wave for-

mation is a balance between the nonlinear increase of the
One can derive an approximate solution of E24), which ~ phase velocity and the dispersion effects which slow down
has correct asymptotics for both rarefied and dense particline wave steepening. The soliton solution is possible in the
clouds(when vy, is finite), supersonic regime only, but there exists an upper limit of

possible Mach numbers<IM<M(,. Above M, the poten-

-1 tial of the wave becomes too high and particles remain in the
| P~ % + op) (25 frame of the wave, braking the soliton. If the particle fraction
is low, the variable charge does not affect the characteristics
Using the relation betweelM andM, |, of the DA soliton. The influence of the charge variation on
the upper limit of the Mach numbers becomes crucial for
1 1 sufficiently dense particle clouds, decreasing the value of
M?= %+ B Mi M. It is noteworthy that the width of the “allowed” Mach

number rangeM.— 1, depends on the ion distribution: The
range remains finite for Boltzmann ions, but tends to zero for
highly energetic streaming ions. Especially remarkable is
that in the absence of charge variation the model of highly
(26)  energetic streaming ions does not have an upper limit of
Mach numbers and solitons are allowed for avy-1.
Symmetrical “pure” solitons are impossible in real ex-

For P<1 we get®.=2P andM=2. Hence, for rarefied periments because of dissipatif2]. Along with the usual
cloudsMy is the same as that in the case of Boltzmann ionsclisiona) mechanisms of ~dissipation—particle-neutral

whereasb., is r times greatefsince ions do not participate friction, viscosity, etc., there could also be a so-called “col-
in the screening The charge variation is not important. For isionless dissipation”: Particles have some finite spread in
dense cloudsVl, tends asymptotically to unity a8—=.  thermal energy and thus even for allowed Mach numbers
This is very different from the case of Boltzmann ions, there exist some fraction of particles which are reflected up-
where the range M, [remains finite for any. Thus, for  stream by the potential barrier of the wayEhis is similar to

the energetic streaming ion modske Eq(19)] the soliton  cosmic ray shock acceleratighs]). Formally it implies that
solution is practically forbidden in sufficiently dense clouds.he “total energy of oscillator’€ in Eq. (12) is no longer
This strong difference between the two ion mod@$ P conserved14], i.e., the oscillator has lost energy. All these
>1) is solely due to the charge variation effect. Indeed, ifmechanisms should result in shock wave formation, with an
we consider particles with constant chatgemally, we take  gscillatory structure behind the front due to oscillations
¥o—) with the ion distribution of Eq(19), then from Eq.  around the minimum of the Sagdeev pseudo-potefigil

(22 we have|®q|=MZ/2. In this case equatiot (|®mad)  However, dissipation might be sufficiently weak in experi-
=0 has a solutior(single rool |®,|<|®.| for any M2 ments where the neutral gas pressure is low. For example,
(M2>1), if P>1. Hence, folP>1 solitons without charge the neutral damping coefficient for10 wm particles at
variation are allowed for arbitraril >1 [this can be seen pressures-1 PaisB~0.1-0.3 s 1. Atypical value of the
directly also from Eq.(24) which has no solution aty,  soliton velocity isu=Cpa~3-10 cm/s. Therefore, consid-
—oo, if P>1]. Physically this is because the ion dengit9) erable loss of soliton energy occurs over a scale length
remains constant inside a solitginstead of the exponential Cps/B8~10-30 cm(or more, which is somewhat larger
increase in the case of the Boltzmann distributidnerefore  than the maximum possible size of typical particle clouds in
the term corresponding to the particle dengéijuare root in  experiments. Hence, we can expect that the transition of a
Eg. (22)] can compensate the ion term for arbitrary lakde  soliton into a shock wave due to neutral gas friction is rather
if a particle cloud is sufficiently densé(>1). But when the slow for low pressures. The role of the particle thermal

we obtain the critical Mach number from E@3),

Ma=1% 1 2P0y
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spread might also be weak. For reasonable estimates of tlable for these conditions. Possible experiments under micro-
thermal velocityp7,<0.3 cmis, the fraction of the reflected grﬁVityhmigh} be perforrr&etlj.in “tf)\ea”y" iSOthprin plasmaisr,h
: : N2 2\ a2 when the Boltzmann model is a better approach for ions. The

partlcle§ is very small=exp( CDA/de) 10 N _role of charge variation is determined by the shape and size

And finally, a few general remarks regarding the applica-of the particle cloud. If the cloud occupies a considerable
bility of the obtained results: In experiments under gravityyolume (much larger than the Debye lengtithen the de-
the particle cloud is normally suspended in the vicinity of thescribed charge variation effects should be crucial. However,
sheath edge, or below itespecially, for large particlgs  for thin “two-dimensional” clouds the contribution due to
Therefore the model of highly energetic ions is more reasonvariable charge might be rather weak.
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