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Stopping power of strongly coupled electronic plasmas: Sum rules and asymptotic forms
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The stopping power of coupled electronic plasmas is investigated. Within the dielectric formalism and
employing the method of frequency moments for the dielectric function we obtain a general formula describing
the linear stopping power of a coupled plasma. Analytical results for the low- and high-projectile-velocity
asymptotic forms are obtained. A sum rule for the plasma heavy ions linear stopping power projectile velocity
distribution is established to be related to the dielectric permeability “negative” frequency moment. This
permits for a simple interpretation of stopping power data.
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I. INTRODUCTION In 1954 Lindhard 9] found fordE/dx, i.e., for the polar-
izational part of the losses, a formula which involved the
Though the works on a fusion reactor with magnetic con-medium dielectric function:
finement of hot plasma have decelerated lately, there is an
unabated attention to the phenomena related to the interac-
tion of particles(atoms, molecules, ions electrons, neutjons
with plasma and condensed matfér3]. The first vacuum
wall of the fusion reactor will be bombarded by strong fluxes
of particle radiation. This will change the physical and me-  Since then, the theory of energy losses has been related to
chanical properties of the walls, and the wall materials willemployment of the dielectric formalism.
contaminate the plasma. The ions moving within condensed matter lose their en-
The phenomena of particle interactions with condense@rgy due to various interactions with atoms, ions, and elec-
matter and plasmas have been widely studied using the mettrons. The losses caused by elastic Coulomb collisions are
ods of diagnostics of experimental, model, and space plasalled “cold.” A part of the energy is spent to ionize and

rm 2 o2 j‘”dk “ dowin| ——|. @
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mas. excite atomgionization losses
In addition, beams of heavy fast ions are considered as a There is a third type of ions energy losses in plasmas—the
perspective driver for the inertial fusion. (linearn polarization losses. The process of ions dragging in a

Although the interaction of particles with condensed mat-plasma in this case can roughly be described in the following
ter has been investigated for more than 90 yé¢scattering  way. An ion in a plasma is surrounded by charges of oppo-
of a particles in matter was discovered in 1906ur knowl-  site sign in a way that at distances of the order of the Debye
edge in the field is still quite scant. radius the potential of the ion penetrating into the plasma

Stopping power is one of the effects which characterizebecomes “dressed” by opposite sign charges. Since the time
the interaction of charged particles with condensed matter. of transfer of the electromagnetic interaction is finite, the

Bohr suggested in 191p4] a formula for the stopping center of gravity of the “dress” differs from that of the ion.
power based on the assumption that the atoms of the impedk dipole is thus created with the moment directed against the
ing matter are classical oscillators. In the case of highionic movement, and retarding it. The contribution of the
velocity projectiles Bethe[5] carried out a consistent polarizational losses obviously grows with increasing speed.
guantum-mechanical study, and obtained for the energy loss In addition there are also nonlinear polarization effects
over a unit length the following classical expression: which can be visualized by noting that a longitudinal wave,

generated in the plasma by a projectile, especially by a
heavily charged ion, modulates the charge density there,

d_E_ Zpewy 2 2meM p02 1 which, hence, becomes dependent on the projectile’s electric
dx | v r](m0+ Mpfw' (1) field (e.g., the Barkas effedtlO]; see[11] and references
therein.

The nonlinear effects which can be characterized by the
wherev, Zye, and M, are the projectile velocity, charge, proportionality of the stopping power &g with a«>2 (in
and mass, and, is the atom(ion) mass,» being the elec- the Barkas effectv=3) were studied in a number of recent
tron’s eigenfrequency in an atom. In the case of free elecpublications, e.g.[12—-14,11,3 and [1]. In the latter work
trons, i.e., when ions transpire a plasmmg, is to be replaced the range of importance of nonlinear effects is estimated in
by the electron mass1 and w should be substituted by the detail, and some semianalytical results are obtained and sup-
plasma frequencybp=47rne2/m (n being the number den- ported by extensive simulations carried out by the authors.
sity of electrong [6]. The theory of the condensed matter  An important new direction in stopping, especially in the
stopping power was developed further[if] and[8]. sense of enhancing the losses in inertial fusion devices, is the
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correlation effect of the projectiles; s¢2] and references where iw=E(p’)—E(p) and ik=p’—p are the energy

therein, and alsg15]. and momentum transfer, ar&lk w) is the dynamical struc-

l.t should be stresseq th"?‘t E@) is valid only i.f the inter- t¥re factorcharge-chargeof the plasma. The structure factor
action between the projectile and the plasma is so weak th
Is connected with the dielectric funcnoa(k w) of the

it can be considered as a linear efféely., the projectiles are
fast enough The coupling within the plasma system may be plasma via the fluctuation-dissipation theorédT)
arbitrarily strong(while the system is still a plasma, not a

crystallized Coulomb systemThe aim of this work is to . k2 -1
study the influence of the plasma coupling on the energy loss S(k,w)= Fna(w)|m< « )) : (4)
T e(k,w

of an ion moving through a quantum plasma. The nonlinear

coupling between the projectile and the plasma is beyond the

scope of this paper. with the Bose factomg(w)=[1—exp(Bhw)] %, V is the
Nowadays there is no coherent general and quantitativplasma volume8~1=kgT, andkg is the Boltzmann con-

theory of charged particle stopping by a layer of matter, everstant.

when nonlinear effects can be neglectedy, when the pro- The energy-loss rate then reads

jectiles are fast protonsA number of empirical formulas are

suggested, describing the stopping power of different sub-

stances. Usually these formulas are of a limited applicability d_E:f vdp' hor(K,w)

domain. In particular, to describe the plasma stopping power, dt (27h)3

various approximate expressions are employed for the .

plasma dielectric functioa (k,w). The works by Arista and [Zpe\? [ dk -1

Brandt [16,17, Maynard and Deutschl8], and Ichimaru 7)) e 5 @ne(w)Im —— s(kw)| o ®)

et al. [19] must be noted in this respect, where the dynamic
dielectric function in the random-phase approximation
(RPA) was used to calculate the polarizational losses. Thén the case of a heavy projectile one can omit the second
results of these papers are restricted to the weak-couplingrm in the energy transfef w=17k- v+fz2k2/2M After
limit within plasma. some transformations and using the property of the Bose
In order to describe the stopping power of a stronglyfactor,ng(w)+ng(—w)=1, one arrives at Eq2) [16].
coupled plasma one must go beyond the RPA. The coupling Usually electrons provide the main contribution to the
of the target plasma may be described by introducing thetopping power process. Therefore we consider only the
local field correction(LFC) [20,21]. The expression for the electronic subsystem of the plasma. There is no principal
energy loss obtained from a dielectric function with LFC is problem with the inclusion of the plasma ions in our consid-
often quite complicated and restricted to certain plasma paerations, e.g., using the plasma dielectric function with the
rameters. Thus the zero-temperature case has been treateddns, possibly of various species, included. However, this
Refs.[22—-24,12. Another way to go beyond the RPA is the would complicate our formulas even more.
application of the method of frequency moments described Various limiting cases of plasma characteristics are usu-
here, Sec. Il. Besides the enlargement of the validity regiorally considered in the works on plasma energy losses to sim-
there is another advantage of the presented approach. glify the medium dielectric function expression. The cases of
guantitative evaluation of the energy losses can usually bhigh- and low-energy projectiles are normally distinguished,
achieved only numerically, depriving us of theoretical in-along with the classical and quantal approximations. In ad-
sight. The “moments method” described here will perhapsdition, each single approximation is applicable in a given
significantly simplify the interpretation of the stopping range of density and temperature. The necessity to employ
power experimental data and their comparison with the thedifferent approximate expressions to evaluate the stopping
oretical predictions. In Sec. Ill we study various asymptoticpower is due also to the fact that in a majority of experiments
properties of the electronic polarizational linear stoppingneither the equation of state nor the dielectric function is
power, which are to complement the experimental data nednown.
essary to apply the results of Sec. IV to diagnose the plasma. The method of momen{®25-3(Q allows us to determine

the dielectric functions(E,w) from the first known fre-
Il DIELECTRIC FORMALISM quency moments or sum rules. The frequency moments of
the imaginary part of the inverse dielectric functi@¥) are
Consider a particle of madd, and charge€,e moving  defined by
through a plasma system with initial velocity If the inter-
action between the projectile and the plasma is sufficiently 1 (e
weak, the inelastic scattering rate for the projectile is given C,(k)=— —f
by the golden Fermi rulgl6] m

®” tim sil(lz,w)dw, v=0,1,....

— o0

(6)
- 4nZ,e 277 . . . .
r(K,w)= K o), 3) Due to the parity of the imaginary part of the inverse DF,
k? v all even-frequency moments vanish. The odd-frequency mo-
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ments are given in terms of the static properties of the elec- 2

> w
tron subsystem. After a straightforward calculation one ob- Im e Kk w)= 5 ;p[a(w— wy(K))+ S(w+ wy(k))].
tains[20,25,28,29 (16)
— -1/
Co(k)=1-¢""(k0), () In the case of a strongly coupled plasiiz 1 we have in
5 the fourth moment thalt (k)>K (k) and the above expres-
Cao(k)=wp, @  sion, Eg. (16), coincides with that obtained within the
4 quasilocalized charge approach of Kalman and Go[@dh
Cu(k) = wp[1+K (k) +L(K)], 9 To go beyond the simple approximatigr=0 one might
where put the functiong(k,w) equal to its static valug25],
DK [ 7 \2K a(k,2)=q(k.0)=ih(k), (17
K=—"7"*l55 =2 (10) )
@p @p whereh(k) is connected to the static value of the dynamic

is the kinetic contribution of the fourth frequency moment Structure factoS(k,0) [32]:

involving quantum correctiongp?) is the average value of ,
the plasma electrons velocity, square. (k)= k_ Co(k) [(w,/wy)2—1] (18)
The correlation contribution K sko o7 '

1 * It stems from the Nevanlinna formula and the FDT that
— 2 _
L(k)= 3172nf0 PLS(p)—1]f(p.k)dp, (11) the loss function read£8,29,33

with Ime Y(Kw) h(K[03(k) — wi(k)]

B 5 3p2 3(k2—p2)2 (p+ k) - w - [wZ(wZ_w§)2+h2(k’)(w2_wi)2](llg)
f(p,k)—g—@'f' 16pk3 In K/’ (12

Equation (19) interpolates between the exact low-
is expressed through the static struct®(g) factor of the frequency behavior characterized by magnitu@ggk) and
electron subsystem. _ S(k,0) and the exact high-frequency behavior given by the

The Nevanlinna formula of the classical theory of mo-gm rylesC,(k) andC,(k). One expects therefore that Eq.
ments expresses the dielectric function which satisfies thglg) represents a good description of the whole shape of the

known sum rulesC, to C4 [25,27,28, loss function. We suggest that the validity of H49) be
2(74+q) checked against the experimental d@te] 34] for a prelimi-
. wi(z
e YK 2)=1+ p q (13) nary result.

2(2°~ w3) +q(Z2~ )’
. ASYMPTOTIC FORMS
in terms of a functionq:q(lz,z). Here q is an arbitrary
function, being analytic in the upper complex half-plane
Imz>0 and having a positive imaginary part there. It also

should satisfy the limiting condition(k,z)/z—0, asz—=  pq\er as a function of the heavy projectile veloaitat both
within the sectorz‘}<ar;q(z)<7r—i9 (0<"3<_77)' _ v—0 andv—c. In addition to being generally important,
The frequencies (k) andw,(k) are defined via the mo-  these results can serve to determine the power moments of

Let us now study certain limiting cases of the plasma
stopping power. We derive analytic results for the
asymptotic behavior of the plasma polarizational stopping

mentsC,(K): the experimental velocity dependence of the plasma stopping
power which cannot be measured at very low and very high
wi=C,/Co=wi[1-e X(k0)] Y, (14)  projectile speeds.
05=C,/C,= w,23[1+ K(k)+L(k)]. (19 A. Fast projectiles

¢ At projectile velocities much higher than the thermal ve-

We have no phenomenological basis for the choice of thaI i L
functionq(k,z) which would lead to the exact expression for ocity of plasma electrongp), the polarizational losses are
L ' described by the Bethe formuld) quite well[35,36]. Notice
e (ko). _ that this classical result can be easily reproduced within the
In the limit of small wave vectork one might neglect the  dielectric formalism. It just suffices to substitute the final
function q(k,w), since the damping is smdlR8]. In this  width function Inf — 1/e(k,w)] with maxima at the plasma
case one arrives at the inverse dielectric function with axcitation frequencies- w, by two infinitesimally narrow
simple §-function peak at the frequeney,(k): peaks at the same characteristic frequencies:
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7wa23
o w0+ dw+w)]. (20

Im

)

Consider first a weakly coupled plasma with a Brueckner

parameter r = (4m)"*mée?/(3n)*%<1, n being the

PHYSICAL REVIEW E63 026403

the collective excitation frequency to be,= w,(k). At
small wave numbers we can expah(k) into powers ofk.
Then we have

21,2
int

21,2
voke v
*‘S‘E%r“‘

2 _ 2 4
plasma electron number density. In this region the RPA dis- 0z(K)=wp 1 2 g O, (29
persion law which neglects the correlational contributions
into the plasma excitation frequency is applicable: where
1/2
(k> [ |2k o__4En
W= wp| 1+ > 2m w_; (21) Vint” T 15 m (30
At very high projectile velocities plasma oscillations and 'Slag;f::ed by the interaction energy densBf, of the
one-particle excitations can be considered separately; i.ep, o .
) . Alternatively, at large wave numbers we get instead
one uses the dispersion law
_ A2k (vdK? 1
k= p 2 Wk =w? (ﬁ —+ 5+ 1= Shed0)+O(k ?) |,
w w
for small wave vector& (collective excitationsand P P (31)
o :ﬁ_kz (23) with the partial electron-electron correlation function at zero
k™ 2m distanceh.(0) being involved.

for large values of the wave vectdsingle-particle excita-
tions).

Substituting Eqs(21) and(20) into the Lindhardt formula
(2), we recover Eq(1).

Further terms of the high-velocity expansion for the po-

larizational losses can be easily obtained if one accounts for

the other terms of the dispersion law, Eg1) [18]:

dE]PY [(Zpew,\?l 2mu? v
i = A -4
dx ( v ) fiwy, A002+O(v at
(24)
3 s
Ao=5 07 F 1), (25)
0=D"'=(BEp) " (26)

being the plasma degeneration parameter and

h2k2

- fike
== ke

-
Fm

Er ke=(3m?n)"?,

are the energy, wave number, and velocity of Fermi. We (U§>:_

have introduced in Eq24) the ordery Fermi integral

o0

Fuw=|

n= Bu being the dimensionless chemical potential to be de
termined from the normalization condition

x’dx

Trex )’ "

2
Fian)= 3 D32 (28

Consider now a plasma with arbitrary coupling. The
method of moments in its simplest form, E{.6), predicts

Using Egs.(2), (15), (16), (29), and(31) one obtains the
following energy loss rate of a fast projectile transpiring a
coupled plasma:

dE]P?' (Z,ew,\? 2mu? v2
bl B e hied ™ A OF —4
[dx} ( 5 ) In Fon ACUZ+O(U ),
(32
where
2(v2)—v?
C: < e>2 int (33)
2U|:

describes the coupled plasma correction to the leading
coupling-independent Bethe term. Notice that in a quantum
coupled plasma the average velocity SC]L(@@ differs from

its value in an ideal gas. In a coupled system both magni-
tudes(v2) and v2, can be obtained from the plasma free
Helmholtz energy by differentiation with respect to the elec-
tron massm and the squared electron charge, respectively
(N=nV being the number of plasma electr@ins

| E

(34

Notice that at very high projectile velocities we still re-
cover the classical Bethe asymptotic form at any plasma cou-
pling rate, which is not the case [87]. On the other hand,
an expression similar to E¢32) for the stopping power was
found in Ref.[22]. Tanaka and Ichimaru also found the lead-
ing Bethe asymptotic form and a correction decreasing as
v~ 2. However, their proportionality coefficiel¥, contains
the RPA kinetic energy ternw?2)gpa=3v2/5 (Tanaka and
Ichimaru consider an electron at zero temperature )ainky
stead of the correct valu@?) of the interacting electron

2

N

JF

am

) 4 €?
Uint™ 7 15N m

JF
9e?

T,V,n
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system[see Eq(34)]. In addition the expression of R¢R22] 2 . . I - I . .

contains a contribution from the low-frequency part of the

dielectric function, whereas our expressidgg) and(33) are

given in terms of the high-frequency expansion of the dielec- 1.5

tric function only. As a result in our approach the correction

to the Bethe result can be obtained from the free energy of _

the plasma via Eq€34). A —
For the cases of zero temperature and classical plasme«®

these equations simplify.

0.5 —
1. Low-temperature limit
At zero temperature all relevant magnitudes may be ex- |
pressed in terms of the Brueckner paramegerThe average o | | , , , , , | ,
kinetic energy and the correlation energy defined by the ve- 0 20 40 60 80 100
locities (v2) andv?2, may be expressed through the correla- L

tion energys per electron in Rydbergs: FIG. 1. Dependence of the high-velocity stopping power param-

2 eter A, of a degenerate plasm@neasured in units of the RPA
<v2>= e_ 2'21_8 —r & paramete;) on the Brueckner parametey.
e f rg ¢ s ﬂrs '
with the excess internal energy in the case of a classical
) 2 e 0.916 de. plasma may be represented by the fitting formula of
e T r_5+28°+ rsor.|" (39 Chabrier and Potekhif40]:
On the basis of the quantum Monte Carlo data for the corre- Ein A As
lation function of Ref.[38] Vosko et al. derived a fitting M =k TI¥ ——+ , (37)
formula[39] n VA +T  1+D
2
Bl{m x*_, 2B o arcta B2Xo where A,=-0.9052, A,=0.6322, and A;=—3/2
X(x ) 5X+ B, X(Xo) —A;/\A,. On the basis of Eqs37), (30), and (33) one
(X—%g)2  2(By+Xo) B calculates the coefficiend. of a classical one-component
x| n 0 2" 70 retan—2z plasma. The ratié. /A, for a classical plasma is provided in
X(x) B4 2x+B, Fig. 2, which demonstrates a monotonic behavior—almost a

(36) linear dependence—. /Ay on the plasma parametér.

From the figure one also observes that coupling effects en-
where x=.r,, B;=0.0621814, B,=3.72744, B, hance the stopping power rate of a classical coupled plasma
:12_9352,54:1/453_327, Xo=—0.104 98, anqx(x)z)(? in comparison with the rate in an ideal plasma. At plasma
+B,x+B;. One may use Eq$35) and(36) to calculate the parameterd™>26.6 the coefficienf; becomes negative and
parametergv?) andv2, in Eq. (33). The valueA /A, cal-  the fast p.TOJeCtI|e stopping power rate will be greater than the
culated from Eqs(25), (33), (35), and(36) is shown in Fig. asymptotic Bethe value.

1. One observes that at moderate Brueckner parameters typi-

cal for metal densities the correction parameter of the 1.00
coupled plasma\; is slightly greater than 1 and the high-

velocity stopping power is slightly smaller than the corre-
sponding RPA magnitudes. Only at the Brueckner parameter 0.50- T
r<=50.5 does the valud, become smaller than the RPA

valueAg and atrs=97.1 it becomes even negative. For these 2
values of the Brueckner parameter the stopping power of the =, 0-00
coupled plasma exceeds the RPA stopping power.

2. High-temperature limit -0.50

For a classical plasm@.e., if #>1) all magnitudes may
be expressed in terms of the plasma parameler 1 R T T R
=e?/dkgT, d=(3/47n)'" being the Wigner-Seitz radius. In ®oo"H000 2000 5000 4000  50.00
contrast to the quantum case the kinetic energy is not influ- r
enced by coupling effects and rea@g) =3k T/m. The ve- FIG. 2. Dependence of the high-velocity stopping power param-
locity v2, is expressible in terms of the interaction energy aseterA, of a classical plasméneasured in units of the RPA param-
given by Eq.(30). The interaction energgwhich coincides eteer) on the coupling parametédt.
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B. Slow projectiles sion[41]. The low-velocity linear stopping power of an elec-
— s : tron liquid at metallic densities has been studied in Refs.
The case of slow projectiles was first studied by Fermi > > .
and Teller[8] . Their result is valid for degenerate plasmasE)Ar'f’tzhze_ﬁghHﬁ:affgﬁgggrngepg%ﬁrwgslOgglezeilgvggggeg'eodn in
with the characteristic linear dependencef d&/dx]™™ on Ref.[12]. Instead of using the rather complex but neverthe-

the projectile veloc_;|ty. .Th|s linear dependence of the eNer9¥ess not sufficiently accurate LFC’s employed in these papers
loss of a slow particle is a consequence of the heavy-particle

limit M—oo, considered in this paper. It is a general resultand applicable at zero temperature only, we propose a simple

and is not restricted either to the RPA or to the linear- P e>>10n for a static LFC V.Vh'Ch satlsf|¢s the asymptotic
— S , . - behaviors at short and long distances. This allows us to ob-

projectile-target approximation. To find an expression valid, _: . | vtical : for the | loci
in a plasma of any degree of degeneracy and to take thtaIn simple analytical expressions for the low-velocity stop-
ing power in linear response approximation and for arbi-

electron plasma coupl_lng Into gcc_mﬂlmtut restrlctlng our- trary temperature. These analytical formulas may be used to
selves to the case of linear projectile-target couplitet us . : ) .
estimate the linear coupling part of the total low-velocity

carry out the estimate beyond the RPA dielectric function: stopping power. The LFC in a finite-temperature plasma can
H(K) T gpa(k, @) be cast a$43] (see the Appendjx

eloer= it dlollico) =1+ 1= oW G0 sl G(k) =K2(ake +bK*) T, (39)

while in a Coulomb gas al=0 a similar interpolation must
where ¢ (k) =4me’/k?* and I1(k,®) is the system polariza- also incorporate the correct short-range asymptotic form of
tion function, while  TIgpa(k,w)=IIgpA(k,®)  Holas [44]; see also[21] or [45]. The loss function then
+iTllgpa(k,w) is its random-phase approximation expres-becomes

B(K)1gpak,@)

Im[ — /e (k,w)]= , (40
et [1- (K H(K)zpa(k,©) 12+ [ S(K)H (k) TTzpa(k,@)]?
|
whereH(k)=G(k)—1. In the long-time(slow projectile _
limiting case we can approximate E@0) as Eo(§)=In(1+&)— 1+¢&
) _ d(RTEpk ) et
Im[ — 1/e(k, ®)] = PR K ) (42) El(x)zfdet (44)

and use for the real and imaginary parts of the electronigs the integral exponent functiong=DT/(1272)3, &
RPA [H(k) = —1] dielectric function the limiting forms of = 7agke, andag is the Bohr's radius. Notice that
[41].

Thus we find the low-velocity limiting form for the polar- Ag(6—0)=—=(1+y+Ins+8(1-2y—21In$),
izational energy losses:

dE
dx

2
pol S (émo)=Iné—1+ =,
—Cu, (42) o(é—>)=In§ +§

with y=0.577 216 being Euler's number.
with the proportionality coefficient depending on the degen-

eracy and coupling in the system. In a weakly coupled 1. High-temperature limit
plasma of any degenera¢41,34, in the RPA we havéfor

details see below In a classical plasméa>1, we have thus

2 Im[ — /e (k,w)]=n\m(27B)¥%e?*kw
one I G A0 PR gy X[k + 2 2K akE + DR?) 1]
3w =48, D>1, x exf] — Bh2k2/8m], (45)
where where[41]
Ao(8)=[(1+ ) exp S)E(5)—1], ke=kp= V4mne?B, 6>1. (46)
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o4l T ' ' T pling parameted’. From the figure it is ensured that the

account of the local-field correction increases the low-

0.121- . velocity stopping power in comparison with the RPA stop-
] ] ing power.
0.10} - ping p
. 008 2. Low-temperature limit
© 0.06 In degenerate ideal plasmag<1yr,—0),
2,2
0.04 2m“e“kw k=2k,
0.02 Im[—1/e(k,w)]={ #3(k*+k2)?’ (50)
| O y k> 2kF y
0.0 10.0 20.0 30.0 40.0 50.0
r with [41]
FIG. 3. The low-velocity dimensionless stopping power coeffi- Ke=krp= ﬁmwp/ﬁkp , (51)
cientCp=37%3C/2(Z,e?m)? of a classical plasma)<1) versus
the coupling parametdt. The solid curves show the result with the so that
LFC (39); the dashed lines represent the corresponding result with
neglect of the LFC. The upper curves are for parameter of degen- 2(Zpe2m)2
eracyD=0.1, the lower curves fob =0.05. RPA= 3 Eo(é), D>1, (52
T
The integral, Eq(2), can be done in this case analytically, h
and we obtain, for the coefficier@ in a coupled classical where
lasma D<1),
p o Eo(é) ?_avat In(1+¢ ‘ (53
=4 = —————=In ——.
2(Z,6°m)? [ 4D%? 0 0 (t2+4/£)2 1+¢
e e P L 47
. & Notice that to calculate a similar integral in a coupled degen-
where erate plasma, we need an approximation for the LFC only at
k=2kg. In this case, as was observed[#b], we can sub-
o s+ug 2 stitute the electronic liquid LFC by its long-range asymptotic
A(5)=f se S|l ————— [21]
0 (s+up)(s+uy) ’
—_ 2
=U3A(Uy) +2uUguad(Uy,Up) + UsAG(Uy).  (48) G(k—0)=yo(kike)%, (54)
Here without taking the Holas short-range result into consider-

aD D , ,
Uo=7p Up=711"9e(0)+u’]
1\/[Frge(o)+u/]2_4urrr},
r_ I r_ a
- (12772)1/3’ _4_b’
_Up—Uy a4
u3_u2_u11 u4_1 u31
U(uy) —U(u

U= U

U(u) =exp(up) UTE; (uy). (49
Notice that in a classical syster® &1) we can consider
0.(0)=1 [53]. In the case of an ideal classical systeb (
<1 andI’—0) we recover expressiod3). The dimension-
less stopping power proportionality coefficienCp

=3mh3Ce/2(Z,€°m)? is plotted in Fig. 3 versus the cou-

ation. The compressibility sum rule connects the coefficient
vo With the thermodynamic properties as

1 7wa BdZsc(rS)_ ,dec(ry)

= re———-—2r ,
7074 24| g2 s drg

(59

wheree(r) refers to the correlation energy per electron in
rydbergs, which can be readily calculated from an accurate
parametrizatiori39] of the equation of state of the uniform
electron ga$38|:

; dSC(rS) _ bo(1+ blx) (56)
®odrs  14byx+byx24baxd’

with x=r, by=0.0621814 b,;=9.81379,b,=2.822 24,
and b;=0.736411. We used these expressions to estimate
the variation of the coefficierf46]

 2(Z,e’m)?

c
33

E(ry), D>1, (57)

where
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20 ) . 2Iné-1
\ —— present Ey(rs—0)=In §_1+T-
‘\ N ——— small r_expansion
157 Expressiong24) and (42) can be employed to comple-
ment the experimental data on energy losses of heavy pro-
o 10 jectiles (fast and slow, respectivelyn plasmas.
o L
IV. NEGATIVE VELOCITY MOMENT
05 We are going to show in this section that in order to check
the applicability of different approximations for the plasma
0.0 , . . , , dielectric functione (k, w) it suffices to calculate the integral
00 10 20 30 40 50 6.0

1 0
¢ K,lzi(zpe)zj kdK1—e 1(k,0)], (59
FIG. 4. The low-velocity dimensionless stopping power coeffi- 0
cient Cp=37#3C/2(Z,6’m)? of a degenerate plasm®d& 1) is
shown versus the Brueckner parameter The solid line represent

the present result with the LF&7), the long dashed linésmallr . . Lo
expansionthat without the LFQthe second equation of Eq4.3)], is necessary to measure the stopping powearization

the dot-dashed lin@NLG) is the result of Naget al.[23] using the contributior) de_penden_ce on the projectile speedn th_e
static LFC of Lanttoet al.[47], the dashed lin€VS) represents the bro_adest domain possible and to calculate the negative ve-
calculation of DabrowskKi24] using the static LFC of Vashishta and locity moment
Singwi [48], and the dotted lingTl) shows the calculations of

with the static dielectric functiofSDP), £(k,0), only.
To find the experimental estimate for the quanKty,, it

pol
Tanaka and Ichimaru using a static LIFZ2]. K eXPt — vmaxdv d_E (60)
-1 dx|
Umin v
-2
E(ro)= ( 1— ﬁ) Eo(E—4y0). (58) v.vherevmax aanmin are the maximum and minimum projec-
& tile speed registered experimentally, respectively. The selec-

tion of estimates for the values of,,, and v, will cer-
We observed that due to the inclusion of the approximatiort@inly produce discrepancies between the experimental and
(54) for the LFC, the coefficien€ increases 1.5—3 times for theoretical evaluations for the momeKt ;. To diminish
the values ofrse[2,6]; see Fig. 4. The reason for the en- these inconsistencies, one might use the limiting forms for
hancement of the stopping power is the correct calculation oihe stopping powefdE/dx]°' suggested in Sec. Il in the
the screening length by taking into account the static LFGNtervals[v may,®) and[0.v min-
satisfying the compressibility sum rule. The RPA screening To prove the relation between Eq§0) and (59), notice
length is smaller than the correct one. For a coupled plasm#éat we can construct a finite “negative velocity moment” of
with r¢>1 the RPA screening length becomes even unphysithe plasma Lindhardt polarizational stopping power of heavy
cal since it is smaller than the interparticle distance. OuProjectiles, Eq(2) [51]:
simple LFC corrects this failure of the RPA. We have com-
pared our results with the linear stopping power calculated K .= fxd_v
by using other static LF{22—-24. The comparison is shown v
in Fig. 4. We see that the static LFC’s shovipresent and . ) .
that of Refs.[22,47,48) _res_ult in the same qualitative and_ =[2(Zpe)2/w]f kdkf sdsf v~ dv
almost the same quantitative behavior as the slow-velocity 0 0 0
stopping power. Still higher results for the stopping power as .
shown in Fig. 4 have been obtainE2¥] with the LFC’s of XIm[—&~*(k,kvs)]. (61)
Devreeseet al.[49] and of Utsumi and Ichimar[b0] which
have a very large peak aroun&z2 However, the LFC’s of
Devreeseet al. and of Utsumi and Ichimaru do not satisfy
some important limiting conditions of the LFC. Therefore it 1 e im—e Y ko')]
is dublous whether a static _LFQ may produce much higher _f ' do’'=1-Res Y(k,w), (62
stopping power than shown in Fig. 4. Nevertheless, there are 7
two important effects which may lead to a further enhance-
ment of the slow-velocity stopping poweii) the effect of and immediately obtain Eq59).
dynamic LFC[22-24,12 and (ii) the effect of nonlinear As we have already mentioned, and since the moment
stopping power(see the discussion in the Introduction K_; can be “measured,” Eq(59) can be used to diagnose
However, both effects are beyond the scope of the presemonideal plasmas within a certain model for its SEk,0).
paper. Notice that the asymptotic properties of the electronic polar-

Notice that, in Eq(58), é=m/(ar) and that izational linear stopping power studied in Sec. Ill can be

dE|P

dx

This last equation can be simplified using the Kramers-
Kronig relation

—oo o' —w
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used to complement the experimental data necessary to ob- K2
tain the value of the moment_;. e(k,0)=1+ — 2 > (63
In addition it may be utilized to carry out a simple pre- k“+ nkpk

liminary interpretation of the stopping power experimental
data to diagnose the plasma under study.

The asymptotic behavior of the electronic plasma SDFwhere u*=1#2/(16mne’m), so that 2.°k3=%Bw,. If we
e(k,0) ask—0 andk—o can be described by a simple accept this last expressidn63) for the SDF, the moment
interpolation[52] K_, takes the form

[(hBwp)?— 1] Y2arctaf (i fw,)?— 1] "2 fifw,>1,

1 a2
K_1:§(Zpeko)2 [1-(fiBwyp)?] ™2 In1+ :Lfiﬁ(jpr) . hBwp=<1, (64)
1, fL,Bwp=1.

Notice that under the thermodynamic conditions pointed o{2]jithe parametet Sw, ranges between 5:910 2 and 3.7.
The plasma electronic density was found[B6] from the energy losses of fast protong,& 1) using the Bethe-Larkin
formula

dE

i (65

| 2 2
po _ ( Zpewp) n 2mu

hop ’

but the plasma temperature had to be measured independently. In case the velocity dependence of polarizational losses is
known, we suggest to avoid this measurement employing the value of the m&mentndeed, one may consider a dimen-
sionless stopping

2 dE pol

dx

ap
Z,e

(66)

for which the negative moment depends exclusively on the param@iey, and the dimensionless temperatugR(y) *:

[(fiBwy)?—1] Y2arctaf(f fw,)?— 1] Y2, #hfw,>1,

(hBwy)? 1+ VJ1—(hBw,)?
Slz% [1=(hBwp)*] ¥2In fiB(wp:B S hBop<l, (67)
1, hBw,=1.

On the other hand, at very high velocities the asymptotidoeen obtained within the dielectric formalism. The dielectric
dimensionless stopping depends on these convenient parafonction has been considered beyond the RPA within the
eters only as well: method of moments and using the local field corrections.

5 We have derived analytic results in the limit of high and

| 2mov low patrticle velocities. The high-velocity result has been ob-

oIn——— . . .

fiw, fiwy tained on the basis of a sum-rule analysis only, whereas the
S = vRy om ' (68) low-velocity result depends on the model which has been

chosen to calculate the low-frequency local-field correction.

otherwise, the above correctiofSec. 1ll) can be involved. In our paper we have used a static local-field correction

We lack modern experimental data which could permit us tovhich satisfies the asymptotic limiting forms at short and
test this simple diagnostics approach. long distances. It has been found that at high velocities the

plasma coupling has only a small influence on the stopping
power, while at low velocities the coupling effects enhance
the stopping power substantially.

In this paper we have mainly considered the stopping Furthermore, a sum rule for the plasma heavy ions linear
power of a coupled electronic plasma at arbitrary temperastopping power projectile velocity distribution has
ture. We have considered the influence of the plasma coueen established to be related to the dielectric permeability
pling on the energy loss of a test particle. All results have‘negative” frequency moment. Reliable experimental data

V. CONCLUSIONS
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in a wider interval of projectile speed are needed to check the 1

applicability of themoments methodutlined here and, in 9e(0)= §[2/|1(Z)]2- (A4)
particular, to check the dielectric function interpolation ex-
pression(63) we used in our estimates.

These data could also be used to verify the asymptoti
forms for the strongly coupled plasma stopping power out
lined in Sec. lll, in particular the fast- and slow-projectile
limiting forms [Eqgs.(32), (47), and(57)] and dependence of
polarizational losses on the plasma coupling.

Not less important is the verification of our approach to
the calculation of polarizational losses in strongly coupled
plasmas using the loss function due to the classical meth
of moments, Eq(19).

wherez=4(ar¢/w)Y?andl(z) is the modified Bessel func-

fion of the first kind and first order. One may use E@s4)
‘and(A2) to obtain the short-range behavior of the LF&L)
at zero temperature. Sinc&.(k— =) involves only the
short-range properties of the system, one expects the
asymptotic value of Eq(A2) to be finite and the relation
(A3) to hold at arbitrary values of temperatufe On the
ther hand, one would not expect the details of short-range
Ihteraction in the electronic plasmas to influence its stopping
power in a significant way. Notice that for a classical low-
density plasma it follows from EqA4) thatg,(0)=0. This
relation has been employed to construct the LFC and the

The interpolating formula for the electronic LFC sug- dielectric function of a classical plasma.

APPENDIX

gested in43] and tested if53], One further notices that the long-wavelength behavior of
Go(k—0)=a"1(k/kg)? is responsible for the screening of a
Go(2)=(b+aldz®)™t z=k/2ke, (A1) static impurity in the plasma. The parameteis determined

_ by the system thermodynamic properties via the compress-
incorporates both long- and short-wavelength asymptotigyjlity sum rule
values ofG(k).

In particular, 1
a l= (

b~1= lim Gy(k). (A2) 3ra? (A9

k— oo

&pexc)
an s
wherea = (4/97)® and pe,= p— Piq is the excess pressure.

In the case of a classical plasma<€1) the parametea
can be expressed through the interaction energy:

The short-range behavior &(k) in the low-temperature
limit has been studied, e.g., in the papers of KimljgH].
Namely, it has been shown that 7—0 in hydrogenlike
systems,

(12/m)?°r

L —_ , A6
b~ =1-0(0), (A3) A (D) + DU (173 "o

ge(r) being the usual electronic radial distribution function.

This result is based on the “cusp” condition which can bewith uj,=E;;/nkgT. One may now use the interpolation
obtained from thes solution of the two-particle Schdinger ~ excess interaction energy pf0] [see Eq(37)] to obtain the
equation at =0 (see, e.g.[54]). An approximate expression parametei of the LFC of a classical plasma.

for the short-range parametgg(0) may be found by a re- In a degenerate plasma the paramatery, * is given by
summation of the electron-electron ladder diagrd&: the correlation energy of the plasifeee Eq(55)].
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