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Stopping power of strongly coupled electronic plasmas: Sum rules and asymptotic forms
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The stopping power of coupled electronic plasmas is investigated. Within the dielectric formalism and
employing the method of frequency moments for the dielectric function we obtain a general formula describing
the linear stopping power of a coupled plasma. Analytical results for the low- and high-projectile-velocity
asymptotic forms are obtained. A sum rule for the plasma heavy ions linear stopping power projectile velocity
distribution is established to be related to the dielectric permeability ‘‘negative’’ frequency moment. This
permits for a simple interpretation of stopping power data.
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I. INTRODUCTION

Though the works on a fusion reactor with magnetic co
finement of hot plasma have decelerated lately, there is
unabated attention to the phenomena related to the inte
tion of particles~atoms, molecules, ions electrons, neutro!
with plasma and condensed matter@1–3#. The first vacuum
wall of the fusion reactor will be bombarded by strong flux
of particle radiation. This will change the physical and m
chanical properties of the walls, and the wall materials w
contaminate the plasma.

The phenomena of particle interactions with conden
matter and plasmas have been widely studied using the m
ods of diagnostics of experimental, model, and space p
mas.

In addition, beams of heavy fast ions are considered a
perspective driver for the inertial fusion.

Although the interaction of particles with condensed m
ter has been investigated for more than 90 years~scattering
of a particles in matter was discovered in 1906!, our knowl-
edge in the field is still quite scant.

Stopping power is one of the effects which character
the interaction of charged particles with condensed matt

Bohr suggested in 1913@4# a formula for the stopping
power based on the assumption that the atoms of the im
ing matter are classical oscillators. In the case of hi
velocity projectiles Bethe@5# carried out a consisten
quantum-mechanical study, and obtained for the energy
over a unit length the following classical expression:

dE

dx
5S Zpevp

v D 2

ln
2m0M pv2

~m01M p!\v
, ~1!

where v, Zpe, and M p are the projectile velocity, charge
and mass, andm0 is the atom~ion! mass,v being the elec-
tron’s eigenfrequency in an atom. In the case of free e
trons, i.e., when ions transpire a plasma,m0 is to be replaced
by the electron massm and v should be substituted by th
plasma frequencyvp54pne2/m (n being the number den
sity of electrons! @6#. The theory of the condensed matt
stopping power was developed further in@7# and @8#.
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In 1954 Lindhard@9# found fordE/dx, i.e., for the polar-
izational part of the losses, a formula which involved t
medium dielectric function:

FdE

dxG pol

5~Zpe!2
2

pv2E0

`dk

k E
0

kv
dvv ImS 21

«~kW ,v!
D . ~2!

Since then, the theory of energy losses has been relate
employment of the dielectric formalism.

The ions moving within condensed matter lose their e
ergy due to various interactions with atoms, ions, and e
trons. The losses caused by elastic Coulomb collisions
called ‘‘cold.’’ A part of the energy is spent to ionize an
excite atoms~ionization losses!.

There is a third type of ions energy losses in plasmas—
~linear! polarization losses. The process of ions dragging i
plasma in this case can roughly be described in the follow
way. An ion in a plasma is surrounded by charges of op
site sign in a way that at distances of the order of the De
radius the potential of the ion penetrating into the plas
becomes ‘‘dressed’’ by opposite sign charges. Since the t
of transfer of the electromagnetic interaction is finite, t
center of gravity of the ‘‘dress’’ differs from that of the ion
A dipole is thus created with the moment directed against
ionic movement, and retarding it. The contribution of t
polarizational losses obviously grows with increasing spe

In addition there are also nonlinear polarization effe
which can be visualized by noting that a longitudinal wav
generated in the plasma by a projectile, especially by
heavily charged ion, modulates the charge density th
which, hence, becomes dependent on the projectile’s ele
field ~e.g., the Barkas effect@10#; see @11# and references
therein!.

The nonlinear effects which can be characterized by
proportionality of the stopping power toZp

a with a.2 ~in
the Barkas effecta53) were studied in a number of rece
publications, e.g.,@12–14,11,3# and @1#. In the latter work
the range of importance of nonlinear effects is estimated
detail, and some semianalytical results are obtained and
ported by extensive simulations carried out by the autho

An important new direction in stopping, especially in th
sense of enhancing the losses in inertial fusion devices, is
©2001 The American Physical Society03-1
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correlation effect of the projectiles; see@2# and references
therein, and also@15#.

It should be stressed that Eq.~2! is valid only if the inter-
action between the projectile and the plasma is so weak
it can be considered as a linear effect~e.g., the projectiles are
fast enough!. The coupling within the plasma system may
arbitrarily strong~while the system is still a plasma, not
crystallized Coulomb system!. The aim of this work is to
study the influence of the plasma coupling on the energy
of an ion moving through a quantum plasma. The nonlin
coupling between the projectile and the plasma is beyond
scope of this paper.

Nowadays there is no coherent general and quantita
theory of charged particle stopping by a layer of matter, e
when nonlinear effects can be neglected~say, when the pro-
jectiles are fast protons!. A number of empirical formulas are
suggested, describing the stopping power of different s
stances. Usually these formulas are of a limited applicab
domain. In particular, to describe the plasma stopping pow
various approximate expressions are employed for
plasma dielectric function«(k,v). The works by Arista and
Brandt @16,17#, Maynard and Deutsch@18#, and Ichimaru
et al. @19# must be noted in this respect, where the dynam
dielectric function in the random-phase approximati
~RPA! was used to calculate the polarizational losses. T
results of these papers are restricted to the weak-coup
limit within plasma.

In order to describe the stopping power of a stron
coupled plasma one must go beyond the RPA. The coup
of the target plasma may be described by introducing
local field correction~LFC! @20,21#. The expression for the
energy loss obtained from a dielectric function with LFC
often quite complicated and restricted to certain plasma
rameters. Thus the zero-temperature case has been trea
Refs.@22–24,12#. Another way to go beyond the RPA is th
application of the method of frequency moments descri
here, Sec. II. Besides the enlargement of the validity reg
there is another advantage of the presented approac
quantitative evaluation of the energy losses can usually
achieved only numerically, depriving us of theoretical i
sight. The ‘‘moments method’’ described here will perha
significantly simplify the interpretation of the stoppin
power experimental data and their comparison with the t
oretical predictions. In Sec. III we study various asympto
properties of the electronic polarizational linear stopp
power, which are to complement the experimental data n
essary to apply the results of Sec. IV to diagnose the plas

II. DIELECTRIC FORMALISM

Consider a particle of massM p and chargesZpe moving
through a plasma system with initial velocityv. If the inter-
action between the projectile and the plasma is sufficie
weak, the inelastic scattering rate for the projectile is giv
by the golden Fermi rule@16#

r ~kW ,v!5S 4pZpe

k2 D 2
2p

\V
S~kW ,v!, ~3!
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where \v5E(pW 8)2E(pW ) and \kW5pW 82pW are the energy
and momentum transfer, andS(kW ,v) is the dynamical struc-
ture factorcharge-chargeof the plasma. The structure facto
is connected with the dielectric function«(kW ,v) of the
plasma via the fluctuation-dissipation theorem~FDT!

S~kW ,v!5
k2

4p2
nB~v!ImS 21

«~kW ,v!
D , ~4!

with the Bose factornB(v)5@12exp(2b\v)#21, V is the
plasma volume,b215kBT, and kB is the Boltzmann con-
stant.

The energy-loss rate then reads

dE

dt
5E VdpW 8

~2p\!3
\vr ~kW ,v!

5S Zpe

p D 2E dkW

k2
vnB~v!ImF 21

«~k,v!GU
v5kWvW

. ~5!

In the case of a heavy projectile one can omit the sec
term in the energy transfer\v5\kW•vW 1\2k2/2M p . After
some transformations and using the property of the B
factor,nB(v)1nB(2v)51, one arrives at Eq.~2! @16#.

Usually electrons provide the main contribution to t
stopping power process. Therefore we consider only
electronic subsystem of the plasma. There is no princ
problem with the inclusion of the plasma ions in our cons
erations, e.g., using the plasma dielectric function with
ions, possibly of various species, included. However, t
would complicate our formulas even more.

Various limiting cases of plasma characteristics are u
ally considered in the works on plasma energy losses to s
plify the medium dielectric function expression. The cases
high- and low-energy projectiles are normally distinguishe
along with the classical and quantal approximations. In
dition, each single approximation is applicable in a giv
range of density and temperature. The necessity to em
different approximate expressions to evaluate the stopp
power is due also to the fact that in a majority of experime
neither the equation of state nor the dielectric function
known.

The method of moments@25–30# allows us to determine
the dielectric function«(kW ,v) from the first known fre-
quency moments or sum rules. The frequency moment
the imaginary part of the inverse dielectric function~DF! are
defined by

Cn~kW !52
1

pE2`

`

vn21 Im «21~kW ,v!dv, n50,1, . . . .

~6!

Due to the parity of the imaginary part of the inverse D
all even-frequency moments vanish. The odd-frequency m
3-2
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ments are given in terms of the static properties of the e
tron subsystem. After a straightforward calculation one
tains @20,25,28,29#

C0~k!512«21~kW ,0!, ~7!

C2~k!5vp
2 , ~8!

C4~k!5vp
4@11K~k!1L~k!#, ~9!

where

K~k!5
^ve

2&k2

vp
2

1S \

2mD 2 k4

vp
2

~10!

is the kinetic contribution of the fourth frequency mome
involving quantum corrections,^ve

2& is the average value o
the plasma electrons velocityve square.

The correlation contribution

L~k!5
1

3p2n
E

0

`

p2@S~p!21# f ~p,k!dp, ~11!

with

f ~p,k!5
5

8
2

3p2

8k2
1

3~k22p2!2

16pk3
lnS p1k

p2kD , ~12!

is expressed through the static structureS(q) factor of the
electron subsystem.

The Nevanlinna formula of the classical theory of m
ments expresses the dielectric function which satisfies
known sum rulesC0 to C4 @25,27,28#,

«21~kW ,z!511
vp

2~z1q!

z~z22v2
2!1q~z22v1

2!
, ~13!

in terms of a functionq5q(kW ,z). Here q is an arbitrary
function, being analytic in the upper complex half-pla
Im z.0 and having a positive imaginary part there. It al
should satisfy the limiting conditionq(kW ,z)/z→0, asz→`
within the sectorq,arg(z),p2q (0,q,p).

The frequenciesv1(kW ) andv2(kW ) are defined via the mo
mentsCn(kW ):

v1
25C2 /C05vp

2@12«21~kW ,0!#21, ~14!

v2
25C4 /C25vp

2@11K~k!1L~k!#. ~15!

We have no phenomenological basis for the choice of
functionq(kW ,z) which would lead to the exact expression f
«21(kW ,v).

In the limit of small wave vectorsk one might neglect the
function q(kW ,v), since the damping is small@28#. In this
case one arrives at the inverse dielectric function with
simpled-function peak at the frequencyv2(k):
02640
c-
-

t

e

at

a

Im «21~kW ,v!5
p

2

vp
2

v
@d„v2v2~k!…1d„v1v2~k!…#.

~16!

In the case of a strongly coupled plasmaG@1 we have in
the fourth moment thatL(k)@K(k) and the above expres
sion, Eq. ~16!, coincides with that obtained within th
quasilocalized charge approach of Kalman and Golden@31#.

To go beyond the simple approximationq50 one might
put the functionq(kW ,v) equal to its static value@25#,

q~kW ,z!5q~kW ,0!5 ih~kW !, ~17!

whereh(kW ) is connected to the static value of the dynam
structure factorS(kW ,0) @32#:

h~k!5
k2

kD
2

C0~k!

S~kW ,0!
@~v2 /v1!221#. ~18!

It stems from the Nevanlinna formula and the FDT th
the loss function reads@28,29,33#

2
Im «21~kW ,v!

v
5

h~kW !@v2
2~k!2v1

2~k!#

@v2~v22v2
2!21h2~kW !~v22v1

2!2#
.

~19!

Equation ~19! interpolates between the exact low
frequency behavior characterized by magnitudesC0(k) and
S(kW ,0) and the exact high-frequency behavior given by
sum rulesC2(k) andC4(k). One expects therefore that E
~19! represents a good description of the whole shape of
loss function. We suggest that the validity of Eq.~19! be
checked against the experimental data~see@34# for a prelimi-
nary result!.

III. ASYMPTOTIC FORMS

Let us now study certain limiting cases of the plasm
stopping power. We derive analytic results for th
asymptotic behavior of the plasma polarizational stopp
power as a function of the heavy projectile velocityv at both
v→0 andv→`. In addition to being generally importan
these results can serve to determine the power momen
the experimental velocity dependence of the plasma stop
power which cannot be measured at very low and very h
projectile speeds.

A. Fast projectiles

At projectile velocities much higher than the thermal v
locity of plasma electrons,̂ve&, the polarizational losses ar
described by the Bethe formula~1! quite well@35,36#. Notice
that this classical result can be easily reproduced within
dielectric formalism. It just suffices to substitute the fin
width function Im@21/«(k,v)# with maxima at the plasma
excitation frequencies6vk by two infinitesimally narrow
peaks at the same characteristic frequencies:
3-3
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ImF2
1

«~k,v!G5
pvp

2

2v
@d~v2vk!1d~v1vk!#. ~20!

Consider first a weakly coupled plasma with a Brueck
parameter r s5(4p)1/3me2/(3n)1/3\2!1, n being the
plasma electron number density. In this region the RPA d
persion law which neglects the correlational contributio
into the plasma excitation frequency is applicable:

vk5vpF11
^ve

2&k2

vp
2

1S \

2mD 2 k4

vp
2G 1/2

. ~21!

At very high projectile velocities plasma oscillations a
one-particle excitations can be considered separately;
one uses the dispersion law

vk5vp ~22!

for small wave vectorsk ~collective excitations! and

vk5
\k2

2m
~23!

for large values of the wave vector~single-particle excita-
tions!.

Substituting Eqs.~21! and~20! into the Lindhardt formula
~2!, we recover Eq.~1!.

Further terms of the high-velocity expansion for the p
larizational losses can be easily obtained if one accounts
the other terms of the dispersion law, Eq.~21! @18#:

FdE

dxG pol

5S Zpevp

v D 2F ln
2mv2

\vp
2A0

vF
2

v2
1O~v24!G ,

~24!

A05
3

2
u5/2F3/2~h!, ~25!

u5D215~bEF!21 ~26!

being the plasma degeneration parameter and

EF5
\2kF

2

2m
, kF5~3p2n!1/3, vF5

\kF

m

are the energy, wave number, and velocity of Fermi. W
have introduced in Eq.~24! the order-n Fermi integral

Fn~m!5E
0

` xndx

11exp~x2h!
, ~27!

h5bm being the dimensionless chemical potential to be
termined from the normalization condition

F1/2~h!5
2

3
D3/2. ~28!

Consider now a plasma with arbitrary coupling. T
method of moments in its simplest form, Eq.~16!, predicts
02640
r

-
s
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the collective excitation frequency to bevk5v2(k). At
small wave numbers we can expandL(k) into powers ofk.
Then we have

v2
2~k!5vp

2F11
^ve

2&k2

vp
2

2
v int

2 k2

vp
2

1O~k4!G , ~29!

where

v int
2 52

4

15

Eint

nm
~30!

is defined by the interaction energy densityEint of the
plasma.

Alternatively, at large wave numbers we get instead

v2
2~k!5vp

2F S \

2mD 2 k4

vp
2

1
^ve

2&k2

vp
2

112
1

3
hee~0!1O~k22!G ,

~31!

with the partial electron-electron correlation function at ze
distancehee(0) being involved.

Using Eqs.~2!, ~15!, ~16!, ~29!, and~31! one obtains the
following energy loss rate of a fast projectile transpiring
coupled plasma:

FdE

dxG pol

5S Zpevp

v D 2F ln
2mv2

\vp
2Ac

vF
2

v2
1O~v24!G ,

~32!

where

Ac5
2^ve

2&2v int
2

2vF
2

~33!

describes the coupled plasma correction to the lead
coupling-independent Bethe term. Notice that in a quant
coupled plasma the average velocity square^ve

2& differs from
its value in an ideal gas. In a coupled system both mag
tudes ^ve

2& and v int
2 can be obtained from the plasma fre

Helmholtz energy by differentiation with respect to the ele
tron massm and the squared electron charge, respectiv
(N5nV being the number of plasma electrons!:

^ve
2&52

2

N S ]F

]mD
T,V,n

, v int
2 52

4

15N

e2

m S ]F

]e2D
T,V,n

.

~34!

Notice that at very high projectile velocities we still re
cover the classical Bethe asymptotic form at any plasma c
pling rate, which is not the case in@37#. On the other hand
an expression similar to Eq.~32! for the stopping power was
found in Ref.@22#. Tanaka and Ichimaru also found the lea
ing Bethe asymptotic form and a correction decreasing
v22. However, their proportionality coefficientAc contains
the RPA kinetic energy term̂ve

2&RPA53vF
2/5 ~Tanaka and

Ichimaru consider an electron at zero temperature only! in-
stead of the correct valuêve

2& of the interacting electron
3-4
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system@see Eq.~34!#. In addition the expression of Ref.@22#
contains a contribution from the low-frequency part of t
dielectric function, whereas our expressions~32! and~33! are
given in terms of the high-frequency expansion of the diel
tric function only. As a result in our approach the correcti
to the Bethe result can be obtained from the free energ
the plasma via Eqs.~34!.

For the cases of zero temperature and classical plas
these equations simplify.

1. Low-temperature limit

At zero temperature all relevant magnitudes may be
pressed in terms of the Brueckner parameterr s . The average
kinetic energy and the correlation energy defined by the
locities ^ve

2& andv int
2 may be expressed through the corre

tion energy«c per electron in Rydbergs:

^ve
2&5

e2

\ F2.21

r s
2

2«c2r s

]«c

]r s
G ,

v int
2 52

2

15

e2

\ F2
0.916

r s
12«c1r s

]«c

]r s
G . ~35!

On the basis of the quantum Monte Carlo data for the co
lation function of Ref.@38# Vosko et al. derived a fitting
formula @39#

«c5B1H ln
x2

X~x!
1

2B2

B4
arctan

B4

2x1B2
2

B2x0

X~x0!

3F ln
~x2x0!2

X~x!
1

2~B21x0!

B4
arctan

B4

2x1B2
G J ,

~36!

where x5Ar s, B150.062 181 4, B253.727 44, B3

512.9352,B45A4B32B2
2, x0520.104 98, andX(x)5x2

1B2x1B3. One may use Eqs.~35! and~36! to calculate the
parameterŝve

2& and v int
2 in Eq. ~33!. The valueAc /A0 cal-

culated from Eqs.~25!, ~33!, ~35!, and~36! is shown in Fig.
1. One observes that at moderate Brueckner parameters
cal for metal densities the correction parameter of
coupled plasmaAc is slightly greater than 1 and the high
velocity stopping power is slightly smaller than the corr
sponding RPA magnitudes. Only at the Brueckner param
r s550.5 does the valueAc become smaller than the RP
valueA0 and atr s597.1 it becomes even negative. For the
values of the Brueckner parameter the stopping power of
coupled plasma exceeds the RPA stopping power.

2. High-temperature limit

For a classical plasma~i.e., if u@1) all magnitudes may
be expressed in terms of the plasma parameterG
5e2/dkBT, d5(3/4pn)1/3 being the Wigner-Seitz radius. I
contrast to the quantum case the kinetic energy is not in
enced by coupling effects and reads^ve

2&53kBT/m. The ve-
locity v int

2 is expressible in terms of the interaction energy
given by Eq.~30!. The interaction energy~which coincides
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with the excess internal energy in the case of a class
plasma! may be represented by the fitting formula
Chabrier and Potekhin@40#:

Eint

n
5kBTG3/2F A1

AA21G
1

A3

11GG , ~37!

where A1520.9052, A250.6322, and A352A3/2
2A1 /AA2. On the basis of Eqs.~37!, ~30!, and ~33! one
calculates the coefficientAc of a classical one-componen
plasma. The ratioAc /A0 for a classical plasma is provided i
Fig. 2, which demonstrates a monotonic behavior—almo
linear dependence—ofAc /A0 on the plasma parameterG.
From the figure one also observes that coupling effects
hance the stopping power rate of a classical coupled pla
in comparison with the rate in an ideal plasma. At plas
parametersG.26.6 the coefficientAc becomes negative an
the fast projectile stopping power rate will be greater than
asymptotic Bethe value.

FIG. 1. Dependence of the high-velocity stopping power para
eter Ac of a degenerate plasma~measured in units of the RPA
parameterA0) on the Brueckner parameterr s .

FIG. 2. Dependence of the high-velocity stopping power para
eterAc of a classical plasma~measured in units of the RPA param
eterA0) on the coupling parameterG.
3-5
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B. Slow projectiles

The case of slow projectiles was first studied by Fer
and Teller@8# . Their result is valid for degenerate plasm
with the characteristic linear dependence of@dE/dx#pol on
the projectile velocity. This linear dependence of the ene
loss of a slow particle is a consequence of the heavy-par
limit M→`, considered in this paper. It is a general res
and is not restricted either to the RPA or to the line
projectile-target approximation. To find an expression va
in a plasma of any degree of degeneracy and to take
electron plasma coupling into account~but restricting our-
selves to the case of linear projectile-target coupling!, let us
carry out the estimate beyond the RPA dielectric function

«~k,v!511f~k!P~k,v!511
f~k!PRPA~k,v!

12f~k!G~k!PRPA~k,v!
,

~38!

wheref(k)54pe2/k2 and P(k,v) is the system polariza
tion function, while PRPA(k,v)5PRPA8 (k,v)
1 iPRPA9 (k,v) is its random-phase approximation expre
n

-

n
le
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sion @41#. The low-velocity linear stopping power of an ele
tron liquid at metallic densities has been studied in Re
@42,22–24#. The effect of the dynamic local field correctio
on the nonlinear stopping power has been investigated
Ref. @12#. Instead of using the rather complex but neverth
less not sufficiently accurate LFC’s employed in these pap
and applicable at zero temperature only, we propose a sim
expression for a static LFC which satisfies the asympto
behaviors at short and long distances. This allows us to
tain simple analytical expressions for the low-velocity sto
ping power in linear response approximation and for ar
trary temperature. These analytical formulas may be use
estimate the linear coupling part of the total low-veloc
stopping power. The LFC in a finite-temperature plasma
be cast as@43# ~see the Appendix!

G~k!5k2~akF
21bk2!21, ~39!

while in a Coulomb gas atT50 a similar interpolation mus
also incorporate the correct short-range asymptotic form
Holas @44#; see also@21# or @45#. The loss function then
becomes
Im@21/«~k,v!#5
f~k!PRPA9 ~k,v!

@12f~k!H~k!PRPA9 ~k,v!#21@f~k!H~k!PRPA9 ~k,v!#2
, ~40!
whereH(k)5G(k)21. In the long-time~slow projectiles!
limiting case we can approximate Eq.~40! as

Im@21/«~k,v!#'
f~k!PRPA9 ~k,v!

@12f~k!H~k!PRPA8 ~k,v!#2
, ~41!

and use for the real and imaginary parts of the electro
RPA @H(k)521# dielectric function the limiting forms of
@41#.

Thus we find the low-velocity limiting form for the polar
izational energy losses:

FdE

dxG pol

5Cv, ~42!

with the proportionality coefficient depending on the dege
eracy and coupling in the system. In a weakly coup
plasma of any degeneracy@41,34#, in the RPA we have~for
details see below!

CRPA5
2~Zpe2m!2

3p\3 H 4D3/2

3Ap
D0~d!, D!1,

J0~j!, D@1,

~43!

where

D0~d!5@~11d!exp~d!E1~d!21#,
ic

-
d

J0~j!5 ln~11j!2
j

11j
,

E1~x!5E
x

`e2t

t
dt ~44!

is the integral exponent function,d5DG/(12p2)1/3, j
5paBkF , andaB is the Bohr’s radius. Notice that

D0~d→0!.2~11g1 ln d!1d~122g22 lnd!,

J0~j→`!. ln j211
2

j
,

with g50.577 216 being Euler’s number.

1. High-temperature limit

In a classical plasmau@1, we have thus

Im@21/«~k,v!#5nAm~2pb!3/2e2kv

3@k21ks
22ks

2k2~akF
21bk2!21#22

3exp@2b\2k2/8m#, ~45!

where@41#

ks5kD5A4pne2b, u@1. ~46!
3-6
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The integral, Eq.~2!, can be done in this case analyticall
and we obtain, for the coefficientC in a coupled classica
plasma (D!1),

Ccl5
2~Zpe2m!2

3p\3 S 4D3/2

3Ap
D D~d!, ~47!

where

D~d!5E
0

`

se2sS s1u0

~s1u1!~s1u2! D
2

ds

5u3
2D0~u1!12u3u4U~u1 ,u2!1u4

2D0~u2!. ~48!

Here

u05
aD

4b
, u$

1
2%5

D

2
$@G8ge~0!1u8#

7A@G8ge~0!1u8#224u8G8%,

G85
G

~12p2!1/3
, u85

a

4b
,

u35
u02u1

u22u1
, u4512u3 ,

U~u1 ,u2!511
U~u1!2U~u2!

u22u1
,

U~u!5exp~u1!u1
2E1~u1!. ~49!

Notice that in a classical system (D!1) we can consider
ge(0)51 @53#. In the case of an ideal classical system (D
!1 andG→0) we recover expression~43!. The dimension-
less stopping power proportionality coefficientCD
53p\3Ccl/2(Zpe2m)2 is plotted in Fig. 3 versus the cou

FIG. 3. The low-velocity dimensionless stopping power coe
cientCD53p\3C/2(Zpe2m)2 of a classical plasma (D!1) versus
the coupling parameterG. The solid curves show the result with th
LFC ~39!; the dashed lines represent the corresponding result
neglect of the LFC. The upper curves are for parameter of de
eracyD50.1, the lower curves forD50.05.
02640
pling parameterG. From the figure it is ensured that th
account of the local-field correction increases the lo
velocity stopping power in comparison with the RPA sto
ping power.

2. Low-temperature limit

In degenerate ideal plasmas (u!1,r s→0),

Im@21/«~k,v!#5H 2m2e2kv

\3~k21ks
2!2

, k<2kF ,

0 , k.2kF ,

~50!

with @41#

ks5kTF5A3mvp /\kF , ~51!

so that

CRPA5
2~Zpe2m!2

3p\3
J0~j!, D@1, ~52!

where

J0~j!5E
0

2 2t3dt

~ t214/j!2
5 ln~11j!2

j

11j
. ~53!

Notice that to calculate a similar integral in a coupled deg
erate plasma, we need an approximation for the LFC onl
k<2kF . In this case, as was observed in@45#, we can sub-
stitute the electronic liquid LFC by its long-range asympto
@21#,

G~k→0!.g0~k/kF!2, ~54!

without taking the Holas short-range result into consid
ation. The compressibility sum rule connects the coeffici
g0 with the thermodynamic properties as

g05
1

4
2

pa

24 F r s
3 d2«c~r s!

drs
2

22r s
2 d«c~r s!

drs
G , ~55!

where«c(r s) refers to the correlation energy per electron
rydbergs, which can be readily calculated from an accur
parametrization@39# of the equation of state of the uniform
electron gas@38#:

r s

d«c~r s!

drs
5

b0~11b1x!

11b1x1b2x21b3x3
, ~56!

with x5Ar s, b050.062 181 4,b159.813 79,b252.822 24,
and b350.736 411. We used these expressions to estim
the variation of the coefficient@46#

Cd5
2~Zpe2m!2

3p\3
J~r s!, D@1, ~57!

where

-

th
n-
3-7
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J~r s!5S 12
4g0

j D 22

J0~j24g0!. ~58!

We observed that due to the inclusion of the approximat
~54! for the LFC, the coefficientC increases 1.5–3 times fo
the values ofr sP@2,6#; see Fig. 4. The reason for the e
hancement of the stopping power is the correct calculatio
the screening length by taking into account the static L
satisfying the compressibility sum rule. The RPA screen
length is smaller than the correct one. For a coupled pla
with r s.1 the RPA screening length becomes even unph
cal since it is smaller than the interparticle distance. O
simple LFC corrects this failure of the RPA. We have co
pared our results with the linear stopping power calcula
by using other static LFC@22–24#. The comparison is shown
in Fig. 4. We see that the static LFC’s shown~present and
that of Refs.@22,47,48#! result in the same qualitative an
almost the same quantitative behavior as the slow-velo
stopping power. Still higher results for the stopping power
shown in Fig. 4 have been obtained@24# with the LFC’s of
Devreeseet al. @49# and of Utsumi and Ichimaru@50# which
have a very large peak around 2kF . However, the LFC’s of
Devreeseet al. and of Utsumi and Ichimaru do not satis
some important limiting conditions of the LFC. Therefore
is dubious whether a static LFC may produce much hig
stopping power than shown in Fig. 4. Nevertheless, there
two important effects which may lead to a further enhan
ment of the slow-velocity stopping power:~i! the effect of
dynamic LFC @22–24,12# and ~ii ! the effect of nonlinear
stopping power~see the discussion in the Introduction!.
However, both effects are beyond the scope of the pre
paper.

Notice that, in Eq.~58!, j5p/(ar s) and that

FIG. 4. The low-velocity dimensionless stopping power coe
cient CD53p\3C/2(Zpe2m)2 of a degenerate plasma (D@1) is
shown versus the Brueckner parameterr s . The solid line represen
the present result with the LFC~57!, the long dashed line~small r s

expansion! that without the LFC@the second equation of Eqs.~43!#,
the dot-dashed line~NLG! is the result of Nagyet al. @23# using the
static LFC of Lanttoet al. @47#, the dashed line~VS! represents the
calculation of Dabrowski@24# using the static LFC of Vashishta an
Singwi @48#, and the dotted line~TI! shows the calculations o
Tanaka and Ichimaru using a static LFC@22#.
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Js~r s→0!. ln j211
2 lnj21

j
.

Expressions~24! and ~42! can be employed to comple
ment the experimental data on energy losses of heavy
jectiles ~fast and slow, respectively! in plasmas.

IV. NEGATIVE VELOCITY MOMENT

We are going to show in this section that in order to che
the applicability of different approximations for the plasm
dielectric function«(k,v) it suffices to calculate the integra

K215
1

2
~Zpe!2E

0

`

kdk@12«21~k,0!#, ~59!

with the static dielectric function~SDF!, «(k,0), only.
To find the experimental estimate for the quantityK21, it

is necessary to measure the stopping power~polarization
contribution! dependence on the projectile speedv in the
broadest domain possible and to calculate the negative
locity moment

K21
expt5E

vmin

vmaxdv
v FdE

dxG pol

, ~60!

wherevmax andvmin are the maximum and minimum projec
tile speed registered experimentally, respectively. The se
tion of estimates for the values ofvmax and vmin will cer-
tainly produce discrepancies between the experimental
theoretical evaluations for the momentK21. To diminish
these inconsistencies, one might use the limiting forms
the stopping power@dE/dx#pol suggested in Sec. III in the
intervals@vmax,`) and @0,vmin#.

To prove the relation between Eqs.~60! and ~59!, notice
that we can construct a finite ‘‘negative velocity moment’’
the plasma Lindhardt polarizational stopping power of hea
projectiles, Eq.~2! @51#:

K215E
0

`dv
v FdE

dxG pol

5@2~Zpe!2/p#E
0

`

kdkE
0

1

sdsE
0

`

v21dv

3Im@2«21~k,kvs!#. ~61!

This last equation can be simplified using the Krame
Kronig relation

1

pE2`

1` Im@2«21~k,v8!#

v82v
dv8512Re«21~k,v!, ~62!

and immediately obtain Eq.~59!.
As we have already mentioned, and since the mom

K21 can be ‘‘measured,’’ Eq.~59! can be used to diagnos
nonideal plasmas within a certain model for its SDF«(k,0).
Notice that the asymptotic properties of the electronic po
izational linear stopping power studied in Sec. III can

-
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used to complement the experimental data necessary to
tain the value of the momentK21.

In addition it may be utilized to carry out a simple pr
liminary interpretation of the stopping power experimen
data to diagnose the plasma under study.

The asymptotic behavior of the electronic plasma S
«(k,0) as k→0 and k→` can be described by a simp
interpolation@52#
ti
ra

t

in
ra
o
v

02640
b-

l

F

«~k,0!511
kD

2

k21m4kD
2 k4

, ~63!

where m45\2/(16pne2m), so that 2m2kD
2 5\bvp . If we

accept this last expression~ 63! for the SDF, the momen
K21 takes the form
l losses is
n-
K215
1

2
~ZpekD!25

@~\bvp!221#21/2arctan@~\bvp!221#21/2, \bvp.1,

@12~\bvp!2#21/2 ln
11A12~\bvp!2

\bvp
, \bvp,1,

1, \bvp51.

~64!

Notice that under the thermodynamic conditions pointed out in@2# the parameter\bvp ranges between 5.931023 and 3.7.
The plasma electronic density was found in@36# from the energy losses of fast protons (Zp51) using the Bethe-Larkin
formula

FdE

dxG pol

5S Zpevp

v D 2

ln
2mv2

\vp
, ~65!

but the plasma temperature had to be measured independently. In case the velocity dependence of polarizationa
known, we suggest to avoid this measurement employing the value of the momentK21. Indeed, one may consider a dime
sionless stopping

S5S aB

ZpeD 2FdE

dxG pol

, ~66!

for which the negative moment depends exclusively on the parameter\bvp and the dimensionless temperature (bRy)21:

S215
~\bvp!2

bRy 5
@~\bvp!221#21/2arctan@~\bvp!221#21/2, \bvp.1,

@12~\bvp!2#21/2 ln
11A12~\bvp!2

\bvp
, \bvp,1,

1, \bvp51.

~67!
ric
the
.
d
b-
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ce
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ta
On the other hand, at very high velocities the asympto
dimensionless stopping depends on these convenient pa
eters only as well:

S`5S \vp

vRyD
2 ln

2mv2

\vp

2m
; ~68!

otherwise, the above corrections~Sec. III! can be involved.
We lack modern experimental data which could permit us
test this simple diagnostics approach.

V. CONCLUSIONS

In this paper we have mainly considered the stopp
power of a coupled electronic plasma at arbitrary tempe
ture. We have considered the influence of the plasma c
pling on the energy loss of a test particle. All results ha
c
m-

o

g
-

u-
e

been obtained within the dielectric formalism. The dielect
function has been considered beyond the RPA within
method of moments and using the local field corrections

We have derived analytic results in the limit of high an
low particle velocities. The high-velocity result has been o
tained on the basis of a sum-rule analysis only, whereas
low-velocity result depends on the model which has be
chosen to calculate the low-frequency local-field correcti
In our paper we have used a static local-field correct
which satisfies the asymptotic limiting forms at short a
long distances. It has been found that at high velocities
plasma coupling has only a small influence on the stopp
power, while at low velocities the coupling effects enhan
the stopping power substantially.

Furthermore, a sum rule for the plasma heavy ions lin
stopping power projectile velocity distribution ha
been established to be related to the dielectric permeab
‘‘negative’’ frequency moment. Reliable experimental da
3-9
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in a wider interval of projectile speed are needed to check
applicability of themoments methodoutlined here and, in
particular, to check the dielectric function interpolation e
pression~63! we used in our estimates.

These data could also be used to verify the asympt
forms for the strongly coupled plasma stopping power o
lined in Sec. III, in particular the fast- and slow-projecti
limiting forms @Eqs.~32!, ~47!, and~57!# and dependence o
polarizational losses on the plasma coupling.

Not less important is the verification of our approach
the calculation of polarizational losses in strongly coup
plasmas using the loss function due to the classical me
of moments, Eq.~19!.

APPENDIX

The interpolating formula for the electronic LFC su
gested in@43# and tested in@53#,

Ge~z!5~b1a/4z2!21 z5k/2kF , ~A1!

incorporates both long- and short-wavelength asympt
values ofGe(k).

In particular,

b215 lim
k→`

Ge~k!. ~A2!

The short-range behavior ofGe(k) in the low-temperature
limit has been studied, e.g., in the papers of Kimball@54#.
Namely, it has been shown that ifT→0 in hydrogenlike
systems,

b21512ge~0!, ~A3!

ge(r ) being the usual electronic radial distribution functio
This result is based on the ‘‘cusp’’ condition which can
obtained from thes solution of the two-particle Schro¨dinger
equation atr 50 ~see, e.g.,@54#!. An approximate expressio
for the short-range parameterge(0) may be found by a re
summation of the electron-electron ladder diagrams@55#:
ep

ev

ev

02640
e

-
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t-

d
od

ic

.

ge~0!5
1

8
@z/I 1~z!#2, ~A4!

wherez54(ar s /p)1/2 andI 1(z) is the modified Bessel func
tion of the first kind and first order. One may use Eqs.~A4!
and~A2! to obtain the short-range behavior of the LFC~A1!
at zero temperature. SinceGe(k→`) involves only the
short-range properties of the system, one expects
asymptotic value of Eq.~A2! to be finite and the relation
~A3! to hold at arbitrary values of temperatureT. On the
other hand, one would not expect the details of short-ra
interaction in the electronic plasmas to influence its stopp
power in a significant way. Notice that for a classical low
density plasma it follows from Eq.~A4! thatge(0)50. This
relation has been employed to construct the LFC and
dielectric function of a classical plasma.

One further notices that the long-wavelength behavior
Ge(k→0)'a21(k/kF)2 is responsible for the screening of
static impurity in the plasma. The parametera is determined
by the system thermodynamic properties via the compre
ibility sum rule

a2152
1

3Ga2 S b
]pexc

]n D
b

, ~A5!

wherea5(4/9p)1/3 andpexc5p2pid is the excess pressure
In the case of a classical plasma (D!1) the parametera

can be expressed through the interaction energy:

a52
~12/p!2/3G

uint~G!1Guint8 ~G!/3
, ~A6!

with uint5Eint /nkBT. One may now use the interpolatio
excess interaction energy of@40# @see Eq.~37!# to obtain the
parametera of the LFC of a classical plasma.

In a degenerate plasma the parametera5g0
21 is given by

the correlation energy of the plasma@see Eq.~55!#.
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@23# I. Nagy, J. László, and J. Giber, Z. Phys. A321, 221 ~1985!.
@24# B. Dabrowski, Phys. Rev. B34, 4989~1986!.
@25# V. M. Adamyan, Th. Meyer, and I. M. Tkachenko, Fiz

Plazmy11 , 826~1985! @Sov. J. Plasma Phys.11, 481~1985!#.
@26# Th. Meyer and I. M. Tkachenko, Contrib. Plasma Phys.25,

437 ~1985!.
@27# V. M. Rylyuk and I. M. Tkachenko, Phys. Rev. A44, 1287

~1991!.
@28# J. Ortner, F. Schautz, and W. Ebeling, Phys. Rev. E56, 4665

~1997!.
@29# I. M. Tkachenko and J. Alcober, in Proceedings of the Int

national Conference on Strongly Coupled Coulomb Syste
Saint-Malo, France, 1999@J. Phys. IV10, Pr-5-195~2000!#.

@30# J. Ortner, Phys. Scr.T84, 69 ~2000!.
@31# G. Kalman and G. Golden, Phys. Rev. A41, 5516~1990!.
@32# The positivity ofh(kW ) is guaranteed by the Ho¨lder inequality

between the moments@25#.
@33# S. V. Adamjan, I. M. Tkachenko, J. L. Mun˜oz-Cobo, and G.
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