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Stability and bifurcations of periodically modulated, optically injected laser diodes
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Recent experiments using lasers subject to external injection@T. B. Simpson, Opt. Commun.,170, 93
~1999!# have shown remarkable locking performances when a small reference current modulation is added to
the dc-bias current. The locking problem is studied analytically by using a multiple scale perturbation method.
We derive a slow time amplitude equation for the laser rapid limit-cycle oscillations. The solution of this
equation is then investigated both analytically and numerically using a continuation method. We find that the
intensity of the laser field can be time periodic~locking! or quasiperiodic~unlocking! and that there exist two
distinct bifurcation mechanisms leading to locking. Finally, we compare bifurcation diagrams based on our
amplitude equation with diagrams obtained from the laser original equations and find a good quantitative
agreement.
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I. INTRODUCTION

Optical generation and transmission of microwave a
millimeter waves is an area that has received consider
attention in the last few years. Various novel device confi
rations using diode lasers have been tested and the ge
tion and transmission of millimeter waves for 25 km in
optical fiber has been successfully realized@1#. Such ad-
vances will greatly benefit the mm-wave communicatio
and the wavelength division multiplexing technology. In a
dition, a number of applications such as optical control
antennas and optical communications require a spect
pure microwave oscillator with frequencies in tens of G
that can easily interface with optical systems. Recent de
opments in this area have been reviewed in@2#. In particular,
optically injected semiconductor lasers are promising
vices that can produce high quality microwave radiation
high injection rates@3,4#.

It is well known that optical injection may destabilize th
steady state of the laser and induce a Hopf bifurcation
sustained intensity oscillations. Stable limit cycles are th
produced that manifest themselves as sidebands to the
center line in the optical spectra. Of particular interest is
fact that the frequency of the limit-cycle oscillations m
vary from the free running laser relaxation frequency~typi-
cally a few GHz! to tens of GHz as a function of the injec
tion strength. For large injection rates and slave-master
tunings, the relaxation frequency of the system can re
values as high as 50–80 GHz@5#.

However, even though the microwave spectra are ea
induced in diode lasers under strong external optical in
tion, the bandwidth of these sidebands can be broad an
the order of a few hundreds of MHz. This is due to t
intrinsic spontaneous noise in the slave laser and to the
tuations in the injected signal strength rate and slave-ma
detuning. Phase locking to an external modulation signal
frequency close to the intrinsic frequency of the limit cyc
1063-651X/2001/63~2!/026212~9!/$15.00 63 0262
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has been proposed as a stabilizing mechanism@6#. The ex-
periments have produced robust phase locking even und
weak external modulation signal. In addition, the bandwid
of the resulting sidebands experiences large gains and na
linewidth. This motivates a new study of the laser rate eq
tions modeling a periodically modulated optically injecte
laser diode.

In our recent analysis of these rate equations, we con
ered the limit of large values of the linewidth enhancem
factor and only periodic solutions were constructed anal
cally @7#. In this paper, we consider arbitrary values of t
linewidth enhancement factor but investigate a different lim
of the laser equations, which is motivated by the laser
rameters. Specifically, we apply the method of multip
scales and determine a slow time amplitude equation for
laser rapid limit-cycle oscillations. Branches of steady st
solutions of this equation are obtained analytically and c
respond to time-periodic laser intensity oscillation
Branches of periodic solutions are determined numeric
by using a continuation method. They correspond to qua
eriodic laser intensity oscillations. Because steady and p
odic solutions of our bifurcation equation are quickly o
tained, a systematic study of the laser bifurcations in term
the modulation depth and the injection rate is possible. Co
bined analytical and numerical studies of slow time amp
tude equations for driven nonlinear oscillators remain ra
However, we show in this paper that bifurcations obtain
from an amplitude equation compares quite well with bifu
cations obtained from the original evolution equations.

The results of our analysis contribute to a richer view
the periodic locking phenomenon. Indeed, depending on
modulation amplitude, the transition to locking may occ
either through a homoclinic bifurcation point or through
Torus bifurcation point. In the first case, the amplitude of t
limit-cycle oscillations remains almost steady but the ph
of the oscillations is strongly pulsating with a period th
becomes infinite at locking. This mechanism is similar to t
©2001 The American Physical Society12-1
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NIZETTE, ERNEUX, GAVRIELIDES, AND KOVANIS PHYSICAL REVIEW E63 026212
familiar Adler’s mechanism for steady state locking@8,9#. In
the second case, both the amplitude and the phase o
limit-cycle oscillations are pulsating but the period does
change as we approach the locking point. This mechanis
equivalent to a Hopf bifurcation transition but now operati
on the amplitude and phase of the laser limit-cycle osci
tions.

The paper is organized as follows. In Sec. II, we form
late the laser rate equations in dimensionless form and
plify these equations by taking advantage of the small
large parameters appearing in these equations. In Sec. II
determine an approximation of the solution that leads t
slow time amplitude equation for the laser rapid limit-cyc
oscillations. This approximation is strictly valid for sma
amplitude solutions but we show in Sec. VI that it quanti
tively predicts the behavior of the solution of the origin
laser equations. In Sec. IV, the bifurcation possibilities
our amplitude equation are analyzed and different bifurca
diagrams are shown in Sec. V. In Sec. VI, we compare
furcation diagrams obtained from the full laser rate equati
and that obtained from the slow time amplitude equati
Finally, we discuss in Sec. VII the originality of our math
ematical analysis, the two different routes to locking, and
main effect of a nonzero detuning. All mathematical deta
have been deferred to appendices for clarity.

II. LASER RATE EQUATIONS

Semiconductor lasers are an example of a class B l
system where the equation describing the polarization of
gain medium can be adiabatically eliminated due to the
intraband carrier relaxation time. This leaves two equatio
one for the electric field within the laser cavity and one
the carrier density, to describe the dynamics of a sing
mode laser under optical injection@10,11#. In dimensionless
form, the equations for the complex intracavity field amp
tudeE and the carrier densityZ are given by@12#.

dE

dt
5~12 ib !ZE1L exp~2 iVt !, ~1!

T
dZ

dt
5P2Z2~112Z!uEu2, ~2!

where timet is measured in units of photon lifetime.L and
V are proportional to the amplitude of the injected field a
the detuning frequency between the solitary diode laser
the injected signal, respectively.P is the average value of th
dimensionless pumping current above threshold. The fi
parametersb andT are the linewidth enhancement factor th
measures the degree of amplitude-phase coupling and
ratio of carrier lifetime to photon lifetime, respectively. Th
relation between these parameters and the original lase
rameters such as the optical frequencies and the photon
carrier lifetimes is shown in the Appendix of@12#. All pa-
rameters can be determined experimentally by using fo
wave mixing techniques@14# ~see also the review in@15#!.
Numerical simulations of these equations lead to an exce
agreement between numerical and experimental spectra@13#.
02621
the
t
is

-

-
-

d
we
a

-

f
n
i-
s
.

e
s

er
e

st
s,
r
-

d

d
t
he

a-
nd

r-

nt

Introducing the current modulation and insertingE5E exp
(2iVt) into Eqs.~1! and~2!, our laser rate equations take th
form @7#

dE
dt

5~12 ib !ZE1 iVE1L, ~3!

T
dZ

dt
5P@11d cos~vmt !#2Z2~112Z!uEu2, ~4!

whered and vm are proportional to the amplitude and th
frequency of the current modulation, respectively.

In the absence of modulations, the steady state solut
and the stability boundaries are available analytically@16#.
The conditions for a Hopf bifurcation point are given in Ap
pendix A. Resonance between the modulation oscillati
and the Hopf bifurcation oscillations is possible if

P5P0 and L5L0 , ~5!

where P0 and L0 satisfy Eqs.~A2! and ~A3! with vH
5vm . If V50, their leading approximations forT large are
given by

P0.P00[
Tvm

2

b211
and L0.L00[P00A~b221!/T.

~6!

These expressions will be useful for the nonlinear analy
In @7#, we modeled the experiments by Simpson@6# by con-
sidering the following values of the fixed parameters:

V50, T5155, b55, P50.25, vm50.1895. ~7!

Using the expression ofP00 in Eq. ~6!, we find P00.0.21,
which is close to the actual value ofP50.25. This means
that the injected laser operates under nearly resonance
ditions. As we shall demonstrate these conditions may ha
dramatic effect on the laser bifurcations allowing multip
periodic or quasiperiodic solutions to appear. This motiva
a new analysis of the laser equations assuming now (P,L)
near (P0 ,L0). Specifically, we shall apply the method o
multiple scales@17,18# and construct a small amplitude time
periodic solution of Eqs.~3! and ~4! @19,20#. The long time
solution is then described by a slow time amplitude equat
that we analyze both analytically and numerically. Stea
and time-periodic solutions correspond to periodic or qua
periodic solutions of the laser original equations. The m
objective of this paper is to determine analytically whe
they appear in the parameter space~L,d !. To this end, we
shall consider the simplest case of zero detuningV50 and
further simplify our laser equations by taking advantage
the relatively large value ofT. This is achieved by first in-
troducing the new variablesF, z, ands defined by

E[AP0F, Z5AP0 /Tz, s[vmt. ~8!

Inserting Eq.~8! into Eqs. ~3! and ~4! and evaluating the
resulting equations atE5T2150 leads to the following
problem forF andz:
2-2
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STABILITY AND BIFURCATIONS OF PERIODICALLY . . . PHYSICAL REVIEW E63 026212
s
dF

ds
5~12 ib !zF1b

L

L00
, ~9!

s
dz

ds
5

P

P00
@11d cos~s!#2uFu2, ~10!

whereP00, L00 are defined in Eq.~6! and the coefficientsb,
s are defined by

b[Ab221 and s[Ab211. ~11!

Equations~9! and ~10! are now in a form appropriate for
bifurcation analysis. The caseT large but fixed has bee
examined numerically but we have found no qualitative d
ferences with the limiting caseT2150. Furthermore, the im-
portant caseuVuÞ0 has also been investigated by the m
tiple scale method and the main differences with the z
detuning case will be described elsewhere.

III. SLOW TIME AMPLITUDE EQUATION

In this section, we determine a small amplitude solut
of Eqs. ~9! and ~10!. If d50, P5P00, and L5L00, the
linearized equations for the steady state admit a 2p-periodic
solution with an arbitrary amplitude. Our goal is to dete
mine an equation for this amplitude assumingd small, P
slightly higher thanP00, andL close toL00. To this end, we
introduce a small parametern defined by

P[P0~11n2! ~12!

and expand the other parametersL andd as

L5L0~11n2l!, ~13!

d5
P0

P
n3D.n3D, ~14!

wherel andD areO(1) quantities. The factorP0 /P in Eq.
~14! has been introduced in the expansion ofd for algebraic
convenience only. Note from Eqs.~12! and~13! that we con-
sider values of (P,L) near the exact point of resonanc
(P0 ,L0) instead of its leading approximation (P00,L00).
This particular choice does not affect the perturbation an
sis but allow a better quantitative comparison between bi
cation diagrams based on our approximation and bifurca
diagrams obtained numerically from the laser rate equatio

We now seek a solution in power series ofn and apply
solvability conditions. The perturbation analysis is long a
tedious~see Appendix B! but lead to a series of relativel
simple analytical results. The leading approximation of
intensity of the laser field is given by

uEu25P@11n&uAucos~vms1f!1O~n2!#, ~15!

whereA5uAuexp(if) satisfies the following amplitude equa
tion:

c1

dA

dt
5bD1A~c21c3l1c4uAu2!. ~16!
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In Eq. ~16!, t[n2s is defined as a slow time variable an
c1 ...,c4 are constant coefficients given by

c152~b222ib12!, ~17!

c252 i ~b212ib22!, ~18!

c352ib2, ~19!

c45
i ~b41 ib312b214ib2 4

3 !

~21 ib!~12 ib!
, ~20!

whereb5b(b) is defined by Eq.~11!. Equation~16! is the
main mathematical result of this paper. In the next secti
we analyze its solutions in terms of the bifurcation parame
l and for fixed values ofb andD.

IV. PHASE-LOCKED SOLUTIONS

Periodic, phase-locked solutions of the original system~3!
and ~4! correspond to solutions of Eq.~16! that are constan
in phase and modulus. SettingdA/dt50 in Eq. ~16! yields
an equation forA5A0 , which is given by

bD52A0~c21c3l1c4uA0u2!. ~21!

Taking the square of the modulus of both sides, we obta
cubic equation foruA0u2 of the form

b2D25uA0u2zc21c3l1c4uA0u2z2. ~22!

We wish to determine the stability properties of the pha
locked solutionA5A0 . After substitutingA5A01a and
A* 5A0* 1a* into Eq. ~16! and its complex conjugate, w
formulate the linearized equations fora and a* . We then
determine the following characteristic equation for t
growth rateG:

uc1u2G22G@c1* ~c21c3l12c4uA0u2!1c.c.#1uc21c3l

12c4uA0u2u22uc4u2uA0u450, ~23!

where c.c. means complex conjugate. Note that the cha
teristic equation does not depend on the phase ofA0 . The
condition for a steady limit point is obtained by settingG
50 in Eq. ~23! and is given by

zc21c3l12c4uA0u2z22uc4u2uA0u450. ~24!

From Eq. ~24!, we obtainl5l(uA0u2) and then from Eq.
~22!, we determineD5D(uA0u2). With this parametric solu-
tion, we determine the limit point lines in the~l, D! param-
eter space. These points limit the domains of limit-cycle
lutions of the original laser equations.

A Hopf bifurcation is also possible. We determine th
Hopf conditions by introducingG5 iv into Eq. ~23!. From
the real and imaginary parts, we obtain

c1* ~c21c3l12c4uA0u2!1c.c.50, ~25!

uc1u2v25 zc21c3l12c4uA0u2z22uc4u2uA0u4.0. ~26!
2-3
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NIZETTE, ERNEUX, GAVRIELIDES, AND KOVANIS PHYSICAL REVIEW E63 026212
A Hopf bifurcation corresponds to a Torus bifurcation of t
original laser equations. The bifurcation leads to quasip
odic oscillations exhibiting the two frequenciess151 and
s25n2v. Using Eqs.~25! and~22!, we may again formulate
useful implicit expressions for the Hopf bifurcation lines.

In summary, Eqs.~22!, ~24!, and ~25! provide analytical
stability boundaries that can be analyzed in terms ofl andD
for different values ofb. We have found that the stabilit
diagram shows the same qualitative features for allb.b0
.3.872. In this paper, we shall concentrate on the casb
.b0 and describe the possible bifurcation diagrams in de

V. BIFURCATION DIAGRAMS

In this section, we determine the bifurcation diagram
the steady and time-periodic solutions of Eq.~16! using the
numerical continuation packageAUTO @22#. Recall that
steady and time-periodic solutions of Eq.~16! correspond to
periodic and quasiperiodic solutions of the laser rate eq
tions, respectively.

As in @7#, we consider the optical injection ratel as our
control parameter and examine the bifurcation diagram
different values of the pump modulation amplitudeD. All the
other parameters are kept fixed and are listed in Eq.~6!.
Solving Eqs.~A1!–~A4! numerically, we findP0.0.18 and
L0.0.087 and then from Eq.~12! with P50.25, we obtain

n2.0.3777. ~27!

Because we plan to compare bifurcation diagrams
tained from the amplitude equation~16! and from the full
laser equations~3! and ~4!, we show all our diagrams in
terms of the original control parametersL andd @L andd are
proportional tol andD, respectively, see Eqs.~12!–~14!#.

FIG. 1. Bifurcation diagram of the limit-cycle oscillations in th
case of no modulation (d50). The figure represents theL2 norm of
nA where A satisfies Eq.~16! with D50. The basic steady stat
solution changes stability at a Hopf bifurcation point labeled by
The two points denoted by R correspond to points of resona
The upper point R indicates the value ofL where the limit-cycle
frequency equalsvm . The lower point R indicates the value ofL
where a small perturbation of the steady state grows w
2p/vm-periodic oscillations. Full and dashed thin lines mean sta
and unstable limit-cycle solutions, respectively. The full thick lin
represent stable branches of tori.
02621
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In Figs. 1–5, we show theL2-norm ofnA as a function of
L for different values ofd. Figure 6 then summarizes th
different responses of the laser in thed versusL parameter
space. Various symbols label critical points that are
scribed in Table I.

We first examine the case of no modulation (d50). See
Fig. 1. The basic steady state solutionuAu50 transfers its
stability to a stable limit-cycle solution asL passes below
the Hopf bifurcation pointLH.0.12. If dÞ0 but small, the
steady stateuAu50 is replaced by a branch ofO(d) periodic
oscillations and the Hopf bifurcation point is now a Tor
bifurcation point. See Fig. 2. The branch of limit cycle
shown in Fig. 1 is now a branch of tori except in anO(d)
neighborhood of the upper point~R! in Fig. 1. Around this
point, we note an isola of limit-cycles locked to the modu

.
e.

h
e

FIG. 2. Bifurcation diagram of the limit-cycle oscillations fo
low amplitude modulations (d50.048). An isola of locked limit-
cycle solutions is bounded by the two points HC. It emerges fr
the upper point R in Fig. 1 asd is increased from zero. The branc
of steady states in Fig. 1 is replaced by a branch of low amplit
oscillations that exhibits a maximum close to the lower point R
Fig. 1. The Hopf bifurcation point H in Fig. 1 becomes a Tor
bifurcation point labeled by T. From right to left, the lines emergi
from T and finishing at the right HC point and the line starting
the left HC correspond to branches of tori exhibiting quasiperio
oscillations.

FIG. 3. Bifurcation diagram of the limit-cycle oscillations a
two branches of periodic solutions connect (d5dc.0.1294). The
branch of low amplitude oscillations and the isola in Fig. 2 conne
For d slightly less thandc , the right HC point became a Toru
bifurcation point.
2-4
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STABILITY AND BIFURCATIONS OF PERIODICALLY . . . PHYSICAL REVIEW E63 026212
tion frequencyvm . Outside this isola, the tori exhibit quas
periodic oscillations with frequencyvm and a newO(d)
small frequency. This new frequency approaches zero aL
approaches the points HC. In all our bifurcation diagram
we have found that the points HC coincide with the LP of t
isola although this is not necessarily always the case.

At a critical value ofd5dc.0.1294, the isola is connec
ing the branch of low amplitude periodic solutions. See F
3. Note that the right HC point in Fig. 2 has disappeared
that a second Torus bifurcation point has emerged in
bifurcation diagram. This bifurcation appeared at a value
d slightly below dc . For d slightly larger thandc , the two
connected branches of limit-cycle solutions unfold and fo
an S-shaped curve, as illustrated in Fig. 4. Increasingd fur-
ther, we note that the two Torus bifurcation points are co
ing closer, collide, and disappear. Consequently, ifd is suf-
ficiently large, Torus bifurcations are no more possible a
the branch of locked limit-cycle solutions is continuous f
all L as we pass the left HC~see Fig. 5!.

Figure 6 summarizes the different responses of the la
in the d versusL parameter space. We have shown th
branches of limit cycles and tori may coexist in the bifurc

FIG. 4. Bifurcation diagram of the limit-cycle oscillations fo
moderate amplitude modulations (d50.18). Ford.dc , the branch
of limit-cycle solutions is S-shaped and the two Torus bifurcatio
points are closer.

FIG. 5. Bifurcation diagram of the limit-cycle oscillations fo
high amplitude modulations (d50.30). The Torus bifurcation
points have merged and have disappeared. As a result, the bran
stable locked solutions is now continuous for allL.LHC .
02621
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tion diagram but bistability is not possible. Increasing or d
creasing the injection rate, we observe the same bifurca
diagram. Depending on the modulation amplituded, we note
three distinct bifurcation diagrams. For lowd ~Fig. 2!, the
oscillations of the intensity lock and unlock through h
moclinic bifurcations. This is the same mechanism
Adler’s mechanism for steady state locking@8,9#. Indeed, an
Adler’s equation can be derived from our amplitude equat
~16! in the smallD limit. We do not reproduce this analysi
here ~see@20# for a similar exercise on a driven oscillato
problem!. For moderate values ofd ~Fig. 4!, the oscillations
may lock through either a homoclinic bifurcation or throug
Torus bifurcations. For large values ofd ~Fig. 5!, Torus bi-
furcations are no more possible and locking is possible o
through a homoclinic bifurcation.

VI. QUANTITATIVE COMPARISON OF THE REDUCED
AND FULL MODELS

In this section, we compare quantitatively the bifurcati
diagrams obtained from the amplitude equation~16! and bi-
furcations diagrams obtained from solving the full rate eq

s

of

FIG. 6. Possible solutions in thed versusL diagram. Full and
dashed LP lines correspond to stable and unstable limit points
spectively. Gray regions limit the regions of unlocked behavio
For d smaller than the point connecting the right LP curve and
T curve, the laser locks and unlocks through HC bifurcations t
coincide with the LP points. This is the case illustrated by t
bifurcation diagram in Fig. 2. For higher values ofd but below the
maximum of the T curve, the right LP curve has disappeared. C
sequently, the laser locks and unlocks through either a HC p
located at the left LP curve or through a Torus bifurcation poi
This case is illustrated by the bifurcation diagram in Fig. 4. Abo
the maximum of the T curve only one locking point appears and
located at the left LP curve. This case is illustrated by the bifur
tion diagram of Fig. 5.

TABLE I. List of the bifurcation and limit points.

H Hopf bifurcation
T Torus bifurcation
HC homoclinic bifurcation
LP limit point of the limit-cycles
2-5
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NIZETTE, ERNEUX, GAVRIELIDES, AND KOVANIS PHYSICAL REVIEW E63 026212
tions ~3! and~4!. To this end, we again use the continuati
packageAUTO in order to find the branches of limit-cycl
solutions of Eqs.~3! and ~4! and determine their stability
properties. Note, however, thatAUTO is unable to follow
branches of quasiperiodic solutions. The agreement betw
the bifurcation diagrams is excellent. Figure 8 shows
bifurcation diagram obtained ford50.048. In this figure, the
amplitude of the periodic solutions is determined by comp
ing

A5A~ iE i2
22u^E&u2!/iE i2

2 ~28!

as a function ofL. iE i2
2 is defined as the squaredL2-norm of

the electric field and̂E& denotes the time average of th
electric field over a period. The expression~28! has a simple
physical meaning. Its square represents the ratio of the
power in the sideband modes to the total field power. Us
Eq. ~15!, we find that Eq.~28! clearly matches our analytica
expression of the amplitude since

A5nuAu1O~n2! ~29!

asn→0. The bifurcation diagram shown in Fig. 7 compar
quantitatively the bifurcation diagram shown in Fig. 2. Sim
lar comparisons have been done for higher values ofd. The
different bifurcation possibilities predicted by solving n
merically the laser equations~3! and ~4! are shown in thed
versusL diagram of Fig. 8. It compares well with the dia
gram of Fig. 6 based on our asymptotic approximation.

VII. DISCUSSION

The advantages of deriving a slow time amplitude eq
tion for the laser rapid intensity oscillations are twofol
First, we may determine useful analytical expressions for

FIG. 7. Numerical bifurcation diagram, the laser limit-cycle o
cillations. The solution of the laser equations~3! and ~4! is deter-
mined for d50.048. Stable and unstable periodic solutions ha
been determined using the continuation methodAUTO. Branches of
quasiperiodic oscillations cannot be followed. The numerical bif
cation diagram of the periodic solutions compares quantitativ
well with the bifurcation diagram of the approximative solutio
shown in Fig. 1.
02621
en
e

t-

ld
g

-

e

periodic solutions and their stability boundaries that can
studied in terms of the laser parameters. Second, we are
to useAUTO and follow branches of periodic solutions of th
amplitude equation meaning branches of quasiperiodic os
lations of the original laser equations. These branches ca
be determined byAUTO if we directly consider the lase
original equations. Surprisingly, the determination
branches of periodic solutions of a slow time amplitude d
scribing a driven oscillator remains rare~see@20,21# for two
different problems!. We considered the case of zero detuni
and used the fact that parameterT is large in order to analyze
the simplest form of the laser rate equations. But the met
of multiple scales can be applied to the case,T large and
fixed. We have found no qualitative changes in the bifur
tion possibilities. We also evaluate the validity of our pertu
bation method by comparing bifurcation diagrams and fou
a good agreement even if our small parameter that meas
the amplitude of the solutions is not very small@from Eq.
~27!, we findn.0.6#.

The results of our combined analytical-numerical study
the modulated laser show that there exist two distinct mec
nisms for locking. The first mechanism~homoclinic bifurca-
tion! is similar to Adler’s mechanism for the steady sta
locking of the phase of the laser field. Approaching lockin
the amplitude of the limit-cycle oscillations remain near
constant but the phase is pulsating and the period betw
pulses becomes larger. The second mechanism~Torus bifur-
cation! is similar to a Hopf bifurcation. Approaching lock
ing, both the amplitude and the phase of the limit-cycle
cillations are oscillating and the frequency chang
moderately. These two different routes to locking exhibit d
ferent spectra near locking that can be identified experim
tally.

In this paper, we considered the case of zero detun
(V50). Our analysis demonstrated that only one stable~pe-
riodic or quasiperiodic! solution can be observed as we i
crease or decrease the injection rate. This is, however
more the case ifVÞ0. A preliminary analysis of this cas
indicates that two stable regimes may coexist for the sa

e

-
ly

FIG. 8. The domains of periodic solutions in thed versusL
diagram. This diagram is determined numerically by finding t
periodic solutions of Eqs.~3! and~4!. Note that the diagram agree
quantitatively with the analytical-numerical diagram shown in F
6, which is based on solving Eq.~16!.
2-6
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values of the parameters~bistability! provided that the modu
lation amplitude is sufficiently large. These predictions are
agreement with recent experiments by Simpson, The deta
analysis of the nonzero detuning case and the experim
will be described in a future publication.
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APPENDIX A: RESONANCE CONDITIONS

In this appendix, we formulate the conditions for res
nance between the Hopf bifurcation frequency and
modulation frequency. The Hopf bifurcation conditions a
given in @16# for slightly different forms~usingh5LP21/2!
of the rate equations. We first rewrite the Hopf bifurcati
conditions for our Eqs.~3! and~4!. The steady state solutio
Z5Z(L) is obtained from the implicit expression

L5A@~P2Z!/~112Z!#@Z21~V2bZ!2#. ~A1!

Using Z as the bifurcation parameter, the Hopf bifurcati
point Z5ZH satisfies the following equation:

~V2bZ!2Z1«b~V2bZ!~P2Z!2«„«~P2Z!12Z2
…

3
112P

112Z
1Z31«Z~P2Z!1«2Z

~112P!2

~112Z!2 50,

~A2!

where«[T21. The frequencyvH of the oscillations at the
Hopf bifurcation point is then determined from

vH
2 522«Z

112P

112Z
12«~P2Z!1Z21~V2bZ!2.0.

~A3!

Resonance at the modulation frequencyvm is possible if

vH5vm . ~A4!

This condition leads to three equations forL5L0 , P5P0 ,
andZ5Z0 given by Eqs.~A1!, ~A2!, and~A3!, which can be
solved numerically.

For V50 and small«, the high injection Hopf bifurcation
point admits the approximation@16#

LH.PA«~b221! and vH.A«P~11b2!. ~A5!

Using ~A5!, the resonance conditionvH5vm gives approxi-
mations forP5P0 andLH5L0 as
02621
n
ed
nts

.
.

al
a-

-
e

P0.P00[
vm

2

«~11b2!
and L0.L00[P00A«~b221!.

~A6!

APPENDIX B: PERTURBATION SOLUTION

In this appendix, we determine a solution of Eqs.~9! and
~10! by a multiple scale perturbation method. We may d
compose the complex fieldF in amplitude and phase vari
ables but we found more advantageous to work with
variableF and its complex conjugateF* . All our analysis
has been repeated using the symbolic calculus softw
MAPLE. From Eqs.~9! and ~10!, we determine equations fo
F, F* , andz given by

s
dF

ds
5~12 ib !zF1b

L

L00
, ~B1!

s
dF*

ds
5~11 ib !zF* 1b

L

L00
, ~B2!

s
dz

ds
5

P

P00
~11d coss!2FF* . ~B3!

After inserting Eqs.~12!–~14! into Eqs.~B1!–~B3!, we seek
a 2p-periodic solution ins of the form

F5F01nF1~s,t!1n2F2~s,t!1¯ , ~B4!

F* 5F0* 1nF1* ~s,t!1n2F2* ~s,t!1¯ , ~B5!

z5z01nz1~s,t!1n2z2~s,t!1¯ , ~B6!

where

t[n2s ~B7!

is defined as a slow time variable.F0 andz0 correspond to
the stable steady state solution evaluated atP5P00, d50,
andL5L00 given by

F05
11 ib

s
and z052

b

s
. ~B8!

The assumption of two independent time variables requ
the chain rule

d

ds
5

]

]s
1n2

]

]t
. ~B9!

Introducing Eqs.~B4!–~B6! and ~B9! into Eqs. ~B1!–~B3!
and equating to zero, the coefficients of each power on
leads to a series of linear problems for the unknown fu
tions F1 ,F2 ,...; z1 ,z2 ,... . We analyze each problem se
quentially.

1. O„n… problem

The O(n) problem is the system~B1!–~B3! linearized
around the steady solution
2-7
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s
dF1

ds
2~12 ib !~z0F11F0z1!50, ~B10!

s
dF1*

ds
2~11 ib !~z0F1* 1F0* z1!50. ~B11!

s
dz1

ds
1F0F1* 1F0* F150. ~B12!

Its solution is given by

S F1

F1*
z1

D 5a~t!S F1

F2

2b
D exp~ is!1a* ~t!S F2*

F1*
2b

D
3exp~2 is!1edf, ~B13!

wherea is an unknown complex function oft, and edf de-
notes a single exponentially decaying function ofs. The con-
stant coefficientsF6 are defined by

F6[7~16 ib !~16 ib1 ib!. ~B14!

2. O„n2
… problem

The solution to theO(n2) problem is given by

F65F2,2exp~2is!1F2,01F2,22 exp~22is!, ~B15!

F2* 5F2,22* exp~2is!1F2,0* 1F2,2* exp~22is!, ~B16!

z25z2,2exp~2is!1z2,01z2,2* exp~22is!, ~B17!

where

F2,2[
s~11 ib !~b12i !~b2 i !a2

3b2~b213!

3S b~6ib222b2 i !16ib32b2

12ib21 D , ~B18!

F2,22* [
s~12 ib !~b12i !~b2 i !a2

3b2~b213!

3S b~6ib212b2 i !26ib32b2

22ib21 D , ~B19!

z2,2[
s~b2 i !a2

3b2~b213!
@b~213ib21 i !23b4118b211#,

~B20!
02621
F2,0[
11 ib

s
†

1
2 22bs2~b12i !uau2

‡, ~B21!

z2,0[
b

s
†

1
2 2l22b2s2uau2‡. ~B22!

3. O„n3
… problem

We note that the right-hand side of theO(n3) problem
contain terms proportional to the two periodic solutions
the homogeneous problem. This implies that the right-ha
side needs to verify a solvability condition. After solving th
adjoint linear problem, this condition can be formulated
the integral

E
0

2p

~U1 ,U2,2b!

3S 2s
dF1

dt
1~12 ib !~z1F21F1z2!

2s
dF1*

dt
1~11 ib !~z1F2* 1F1* z2!

2s
dz1

dt
2~F1* F21F1F2* !1D cos~s!

D
3exp~2 is!ds50, ~B23!

where

U6[6~16 ib1 ib!. ~B24!

Substituting the various expressions ofF1 ,F2 ,... given
above, we obtain from~B23! a differential equation for the
complex amplitudea

4s~b222ib12!~11 ib!
da

ds

5bD22is~b212ib22!

3~11 ib!a14ib2s~11 ib!la

18is3
~11 ib!2~b41 ib312b214ib2 4

3 !

21 ib
uau2a.

~B25!

It can be further simplified by introducing the new variableA
defined as

A[2s~11 ib!a. ~B26!

In terms of Eq.~B26!, Eq. ~B25! takes the form of Eq.~16!.
Moreover, using~B4!, the field intensity takes the form o
Eq. ~15!.
2-8
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