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Stability and bifurcations of periodically modulated, optically injected laser diodes
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Recent experiments using lasers subject to external inje¢fiorB. Simpson, Opt. Commun170, 93

(1999 ] have shown remarkable locking performances when a small reference current modulation is added to
the dc-bias current. The locking problem is studied analytically by using a multiple scale perturbation method.
We derive a slow time amplitude equation for the laser rapid limit-cycle oscillations. The solution of this
equation is then investigated both analytically and numerically using a continuation method. We find that the
intensity of the laser field can be time periodiocking) or quasiperiodidunlocking and that there exist two
distinct bifurcation mechanisms leading to locking. Finally, we compare bifurcation diagrams based on our
amplitude equation with diagrams obtained from the laser original equations and find a good quantitative

agreement.
DOI: 10.1103/PhysRevE.63.026212 PACS nunier05.45.Xt, 42.55.Px, 42.60.Fc, 42.65.Sf
[. INTRODUCTION has been proposed as a stabilizing mecha®mThe ex-

periments have produced robust phase locking even under a

Optical generation and transmission of microwave andveak external modulation signal. In addition, the bandwidth
millimeter waves is an area that has received considerablef the resulting sidebands experiences large gains and narrow
attention in the last few years. Various novel device configudinewidth. This motivates a new study of the laser rate equa-
rations using diode lasers have been tested and the genetesns modeling a periodically modulated optically injected
tion and transmission of millimeter waves for 25 km in anlaser diode.
optical fiber has been successfully realiZedd. Such ad- In our recent analysis of these rate equations, we consid-
vances will greatly benefit the mm-wave communicationsered the limit of large values of the linewidth enhancement
and the wavelength division multiplexing technology. In ad-factor and only periodic solutions were constructed analyti-
dition, a number of applications such as optical control ofcally [7]. In this paper, we consider arbitrary values of the
antennas and optical communications require a spectralljnewidth enhancement factor but investigate a different limit
pure microwave oscillator with frequencies in tens of GHzof the laser equations, which is motivated by the laser pa-
that can easily interface with optical systems. Recent devekameters. Specifically, we apply the method of multiple
opments in this area have been revieweflih In particular, scales and determine a slow time amplitude equation for the
optically injected semiconductor lasers are promising delaser rapid limit-cycle oscillations. Branches of steady state
vices that can produce high quality microwave radiation asolutions of this equation are obtained analytically and cor-
high injection rate$3,4]. respond to time-periodic laser intensity oscillations.

It is well known that optical injection may destabilize the Branches of periodic solutions are determined numerically
steady state of the laser and induce a Hopf bifurcation tdoy using a continuation method. They correspond to quasip-
sustained intensity oscillations. Stable limit cycles are thereriodic laser intensity oscillations. Because steady and peri-
produced that manifest themselves as sidebands to the maidic solutions of our bifurcation equation are quickly ob-
center line in the optical spectra. Of particular interest is thegained, a systematic study of the laser bifurcations in terms of
fact that the frequency of the limit-cycle oscillations may the modulation depth and the injection rate is possible. Com-
vary from the free running laser relaxation frequerttypi- bined analytical and numerical studies of slow time ampli-
cally a few GHz to tens of GHz as a function of the injec- tude equations for driven nonlinear oscillators remain rare.
tion strength. For large injection rates and slave-master dddowever, we show in this paper that bifurcations obtained
tunings, the relaxation frequency of the system can reacfrom an amplitude equation compares quite well with bifur-
values as high as 50—-80 GH3]. cations obtained from the original evolution equations.

However, even though the microwave spectra are easily The results of our analysis contribute to a richer view of
induced in diode lasers under strong external optical injecthe periodic locking phenomenon. Indeed, depending on the
tion, the bandwidth of these sidebands can be broad and efiodulation amplitude, the transition to locking may occur
the order of a few hundreds of MHz. This is due to theeither through a homoclinic bifurcation point or through a
intrinsic spontaneous noise in the slave laser and to the flucForus bifurcation point. In the first case, the amplitude of the
tuations in the injected signal strength rate and slave-mastdimit-cycle oscillations remains almost steady but the phase
detuning. Phase locking to an external modulation signal at af the oscillations is strongly pulsating with a period that
frequency close to the intrinsic frequency of the limit cycle becomes infinite at locking. This mechanism is similar to the
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familiar Adler's mechanism for steady state lockii®9]. In  Introducing the current modulation and insertiEg- € exp

the second case, both the amplitude and the phase of tffe-jOt) into Egs.(1) and(2), our laser rate equations take the
limit-cycle oscillations are pulsating but the period does notform [7]

change as we approach the locking point. This mechanism is
equivalent to a Hopf bifurcation transition but now operating

on the amplitude and phase of the laser limit-cycle oscilla- a:(l—ib)zg+i95+/\, ©)
tions.

The paper is organized as follows. In Sec. I, we formu-
late the laser rate equations in dimensionless form and sim- Ta= P[1+ 8cogwnt)]—Z—(1+22)|&, (4)

plify these equations by taking advantage of the small and

large parameters appearing in these equations. In Sec. lll, Wehere 5 and w,,, are proportional to the amplitude and the
determine an approximation of the solution that leads to Frequency of the current modulation, respectively.

slow time amplitude equation for the laser rapid limit-cycle |, the ‘absence of modulations, the steady state solutions
oscillations. This approximation is strictly valid for small gnq the stability boundaries are available analyticil§].
amplitude solutions but we show in Sec. VI that it quantita-The conditions for a Hopf bifurcation point are given in Ap-

tively predicts the behavior of the solution of the original hendix A. Resonance between the modulation oscillations
laser equations. In Sec. 1V, the bifurcation possibilities ofgng the Hopf bifurcation oscillations is possible if
our amplitude equation are analyzed and different bifurcation

diagrams are shown in Sec. V. In Sec. VI, we compare bi- P=P, and A=A, (5)

furcation diagrams obtained from the full laser rate equations

and that obtained from the slow time amplitude equationwhere P, and A, satisfy Eqgs.(A2) and (A3) with wy

Finally, we discuss in Sec. VIl the originality of our math- = wy,. If Q=0, their leading approximations fdr large are

ematical analysis, the two different routes to locking, and thegiven by

main effect of a nonzero detuning. All mathematical details T
X . w

have been deferred to appendices for clarity. Py=Poy= b2erl and A g= A o= P (b2— 1)/T.

Il. LASER RATE EQUATIONS (6)

Semiconductor lasers are an example of a class B las@ihese expressions will be useful for the nonlinear analysis.
system where the equation describing the polarization of thén [7], we modeled the experiments by Simp$6hby con-
gain medium can be adiabatically eliminated due to the fassidering the following values of the fixed parameters:
intraband carrier relaxation time. This leaves two equations,
one for the electric field within the laser cavity and one for =0, T=155, b=5 P=0.25 ©,=0.1895.(7)
the carrier density, to describe the dynamics of a single- ) i ,
mode laser under optical injectiga0,11. In dimensionless USing the expression dPy in Eq. (6), we find Po=0.21,

form, the equations for the complex intracavity field ampli- Which is close to the actual value &=0.25. This means
tudeE and the carrier densitg are given by[12]. that the injected laser operates under nearly resonance con-

ditions. As we shall demonstrate these conditions may have a
dramatic effect on the laser bifurcations allowing multiple
E:(l_ ib)ZE+ A exp(—iQt), (1) periodic or quasiperiodic solutions to appear. This motivates
a new analysis of the laser equations assuming ney §
near Py,Aq). Specifically, we shall apply the method of
_I_d_Z —P-Z—(1+22)|E?, ) multiple scale_s{l?,lB] and construct a small amplitude time-
dt periodic solution of Eqs(3) and (4) [19,20. The long time
solution is then described by a slow time amplitude equation
where timet is measured in units of photon lifetima. and  that we analyze both analytically and numerically. Steady
() are proportional to the amplitude of the injected field andand time-periodic solutions correspond to periodic or quasi-
the detuning frequency between the solitary diode laser anferiodic solutions of the laser original equations. The main
the injected signal, respectivel.is the average value of the opjective of this paper is to determine analytically where
dimensionless pumping current above threshold. The fixeghey appear in the parameter spddes). To this end, we
parameterd andT are the linewidth enhancement factor that shall consider the simplest case of zero deturfihg0 and
measures the degree of amplitude-phase coupling and thgrther simplify our laser equations by taking advantage of
ratio of carrier lifetime to photon lifetime, respectively. The the relatively large value of. This is achieved by first in-
relation between these parameters and the original laser pgoducing the new variableB, z, ands defined by
rameters such as the optical frequencies and the photon and
carrier lifetimes is shown in the Appendix §12]. All pa- E= \/P—OF, Z=\PylTz, S=wut. )
rameters can be determined experimentally by using four-
wave mixing techniquegl4] (see also the review ifil5]). Inserting EQ.(8) into Egs.(3) and (4) and evaluating the
Numerical simulations of these equations lead to an excellenesulting equations aE=T 1=0 leads to the following
agreement between numerical and experimental spgk®fa  problem forF andz
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wherePgg, Agg are defined in Eq(6) and the coefficients,
o are defined by

B= Jb?2=1 ando=\b%+1.

Equations(9) and (10) are now in a form appropriate for a
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In Eq. (16), 7=1%s is defined as a slow time variable and
c;...,C4 are constant coefficients given by

C1=2(p*-2iB+2), (17)
C,=—i(B2+2iB—2), (18
c3=2ipB2, (19
C4Zi(ﬁ4+i,83+2,82+4i,8—§) 0

(2+iB)(1-ipB) '

bifurcation analysis. The casE large but fixed has been whereB=pB(b) is defined by Eq(11). Equation(16) is the

examined numerically but we have found no qualitative dif-

ferences with the limiting case™ *=0. Furthermore, the im-
portant casé()|#0 has also been investigated by the mul-

main mathematical result of this paper. In the next section,
we analyze its solutions in terms of the bifurcation parameter
\ and for fixed values ob and A.

tiple scale method and the main differences with the zero

detuning case will be described elsewhere.

Ill. SLOW TIME AMPLITUDE EQUATION

IV. PHASE-LOCKED SOLUTIONS

Periodic, phase-locked solutions of the original sys{8m
and(4) correspond to solutions of E¢L6) that are constant

In this section, we determine a small amplitude solutionin phase and modulus. Settingh/d7=0 in Eq. (16) yields

of Egs. (9) and (10). If §=0, P=Pqy, and A=Ay, the
linearized equations for the steady state admitrgp2riodic
solution with an arbitrary amplitude. Our goal is to deter-
mine an equation for this amplitude assumidgmall, P
slightly higher tharP,, andA close toA q. To this end, we
introduce a small parameterdefined by

P=Py(1+1?) (12)
and expand the other parametdrsand 6 as
A=Ag(1+v2N), (13
P
5= 5 vPA=13A, (14)

where\ andA areO(1) quantities. The factoPy/P in Eq.
(14) has been introduced in the expansionsdbr algebraic
convenience only. Note from Eg&.2) and(13) that we con-
sider values of P,A) near the exact point of resonance
(Pg,Ap) instead of its leading approximatiorPgg,Aqg).

an equation foA=A,, which is given by

bA: _Ao(C2+ C3)\+C4|A0|2). (21)
Taking the square of the modulus of both sides, we obtain a
cubic equation fotAy|? of the form

bZA%=|Ag|?|co+ ok +Cg| Agl ?. (22)

We wish to determine the stability properties of the phase-
locked solutionA=A,. After substitutingA=A,+a and
A*=Aj +a* into Eq. (16) and its complex conjugate, we
formulate the linearized equations farand a*. We then
determine the following characteristic equation for the
growth ratel™:

|c1|?T2—T[C} (Co+Ca\ +2C4|Ag|?) +C.C]+|Co+CaN
+2¢4|Aol?|?— |cal?|Agl*=0, (23

where c.c. means complex conjugate. Note that the charac-
teristic equation does not depend on the phas@gpf The

This particular choice does not affect the perturbation analycondition for a steady limit point is obtained by settifig
sis but allow a better quantitative comparison between bifur=0 in Eq.(23) and is given by
cation diagrams based on our approximation and bifurcation

diagrams obtained numerically from the laser rate equations.

We now seek a solution in power seriesoand apply

|co+CaN +2¢4| Aol —|cal?|Ag|*=0. (24

solvability conditions. The perturbation analysis is long andFrom Eq.(24), we obtainx =X (|A|*) and then from Eq.

tedious(see Appendix B but lead to a series of relatively

(22), we determined = A (|A,|?). With this parametric solu-

simple analytical results. The leading approximation of thetion, we determine the limit point lines in th@, A) param-

intensity of the laser field is given by

|5|2:P[1_|_V‘/§|A|co{{wms—l—¢)+0(1}2)], (15)

whereA=|A|exp(¢) satisfies the following amplitude equa-
tion:

Ci—— =bA+A(C,+Ca\+CyA]?). (16)

dr

eter space. These points limit the domains of limit-cycle so-
lutions of the original laser equations.

A Hopf bifurcation is also possible. We determine the
Hopf conditions by introducind’=iw into Eq. (23). From
the real and imaginary parts, we obtain

CF(Co+ Cah +2¢4|Ag|?) +c.c=0, (25)

|c12w?=]ca+Cah +2C4|Ag| )P —|cql?|Ag*>0. (26)
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FIG. 1. Bifurcation diagram of the limit-cycle oscillations in the ) i . . .
case of no modulations=0). The figure represents the norm of FIG. 2. Bifurcation diagram of the limit-cycle oscillations for
VA where A satisfies Eq(16) with A=0. The basic steady state low amplitl_Jde r_nodulationsé(=0.048). An isola of locked limit-
solution changes stability at a Hopf bifurcation point labeled by H.CYcle solutions is bounded by the two points HC. It emerges from
The two points denoted by R correspond to points of resonance® UPPer point R in Fig. 1 asis increased from zero. The branch
The upper point R indicates the value Afwhere the limit-cycle of steady states in Fig. 1 is replaced by a branch of low amplitude
frequency equals),,. The lower point R indicates the value af oscillations that exhibits a maximum close to the lower point R in
where a small perturbation of the steady state grows with - 1. The Hopf bifurcation point H in Fig. 1 becomes a Torus
2/ w-periodic oscillations. Full and dashed thin lines mean stabldlifurcation point labeled by T. From right to left, the lines emerging
and unstable limit-cycle solutions, respectively. The full thick lines oM T and finishing at the right HC point and the line starting at
represent stable branches of tori. the left HC correspond to branches of tori exhibiting quasiperiodic

oscillations.

A Hopf bifurcation corresponds to a Torus bifurcation of the | Figs. 1-5, we show the,-norm of vA as a function of
original laser equations. The bifurcation leads to quasiperip for different values ofs. Figure 6 then summarizes the
odic oscillations exhibiting the two frequenciegs=1 and different responses of the laser in theversusA parameter
o,=1%w. Using Eqs(25) and(22), we may again formulate space. Various symbols label critical points that are de-
useful implicit expressions for the Hopf bifurcation lines.  scribed in Table I.

In summary, Eqs(22), (24), and (25) provide analytical We first examine the case of no modulatio®=0). See
stability boundaries that can be analyzed in terms ahdA Fig. 1. The basic steady state solutiphl=0 transfers its
for different values ofb. We have found that the stability stability to a stable limit-cycle solution as& passes below
diagram shows the same qualitative features forballb,  the Hopf bifurcation point\ ,;=0.12. If 5+0 but small, the
=3.872. In this paper, we shall concentrate on the d¢ase steady statA|=0 is replaced by a branch @i( ) periodic
>b, and describe the possible bifurcation diagrams in detailoscillations and the Hopf bifurcation point is now a Torus

bifurcation point. See Fig. 2. The branch of limit cycles
V. BIFURCATION DIAGRAMS shown in Fig. 1 is now a branch of tori except in @q{s)
neighborhood of the upper poifiR) in Fig. 1. Around this

In this section, we determine the bifurcation diagram ofPCint, we note an isola of limit-cycles locked to the modula-
the steady and time-periodic solutions of Efj6) using the
numerical continuation packageuto [22]. Recall that
steady and time-periodic solutions of E@6) correspond to
periodic and quasiperiodic solutions of the laser rate equa-

0.90

0.80]

0.704

tions, respectively. 9-604

As in [7], we consider the optical injection rakeas our 0.50
control parameter and examine the bifurcation diagram for Y4l o4
different values of the pump modulation amplituieAll the 0.30

other parameters are kept fixed and are listed in &Y.
Solving Egs.(A1)—(A4) numerically, we findP,=0.18 and
A(=0.087 and then from Eq12) with P=0.25, we obtain

0.20]

0.00
T T T T ] T
0.060 0.070 0.080 0.0%0 0.100 0.110 0.120 0.130

v?=0.3777. (27 A

Because we plan to compare bifurcation diagrams ob- giG, 3. Bifurcation diagram of the limit-cycle oscillations as
tained from the amplitude equatidd6) and from the full  two branches of periodic solutions conneét(s,~0.1294). The
laser equationg3) and (4), we show all our diagrams in pranch of low amplitude oscillations and the isola in Fig. 2 connect.
terms of the original control parameteksand§[A andSare  For § slightly less thans,, the right HC point became a Torus

proportional tox and A, respectively, see Eq§12)—(14)]. bifurcation point.

026212-4



STABILITY AND BIFURCATIONS OF PERIODICALLY ... PHYSICAL REVIEW E63 026212

viAll:

\ T \ T T T
0.060  0.070  0.080  0.090  0.100 0.110  0.120  0.130
L0000 L S :

A 0.00 1 T T T \ t
0.060 0.070 0.080  0.090 0,100  0.110  0.120  0.130

A

FIG. 4. Bifurcation diagram of the limit-cycle oscillations for
moderate amplitude modulationd=< 0.18). For5> &, , the branch

of limit-cycle solutions is S-shaped and the two Torus bifurcations FIG. 6. Possible solutions in théversusA diagram. Full and
. Y P dashed LP lines correspond to stable and unstable limit points, re-
points are closer.

spectively. Gray regions limit the regions of unlocked behaviors.
For § smaller than the point connecting the right LP curve and the
tion frequencyw,. Outside this isola, the tori exhibit quasi- T curve, the laser locks and unlocks through HC bifurcations that
periodic oscillations with frequencw,, and a newO(J5)  coincide with the LP points. This is the case illustrated by the
small frequency. This new frequency approaches zerd as bifurcation diagram in Fig. 2. For higher values &but below the
approaches the points HC. In all our bifurcation diagramsmaximum of the T curve, the right LP curve has disappeared. Con-
we have found that the points HC coincide with the LP of thesequently, the laser locks and unlocks through either a HC point
isola although this is not necessarily always the case. located at the left LP curve or through a Torus bifurcation point.
At a critical value of§= §,~=0.1294, the isola is connect- This case is illustrated by the bifurcation diagram in Fig. 4. Above
ing the branch of low amplitude periodic solutions. See Figthe maximum of the T curve only one locking point appears and is
3. Note that the right HC point in Fig. 2 has disappeared andPcated at the left LP curve. This case is illustrated by the bifurca-
that a second Torus bifurcation point has emerged in th&on diagram of Fig. S.
bifurcation diagram. This bifurcation appeared at a value of ) o ) )
5 slightly below 8. . For & slightly larger thans,, the two  tion d_|agram bqt bl_stablhty is not possible. Increasmg or d_e-
connected branches of limit-cycle solutions unfold and formcreasing the injection rate, we observe the same bifurcation
an S-shaped curve, as illustrated in Fig. 4. Increagifig- ~ diagram. Depending on the modulation amplitutieve note
ther, we note that the two Torus bifurcation points are comthree distinct bifurcation diagrams. For lod(Fig. 2), the
ing closer, collide, and disappear. Consequentlyj i suf- ~ 0scillations of the intensity lock and unlock through ho-
ficiently large, Torus bifurcations are no more possible andnoclinic bifurcations. This is the same mechanism as
the branch of locked limit-cycle solutions is continuous for Adler's mechanism for steady state lockif&j9]. Indeed, an
all A as we pass the left HGee Fig. 5. Adler’s equation can be derived from our amplitude equation
Figure 6 summarizes the different responses of the laséf6) in the smallA limit. We do not reproduce this analysis
in the & versusA parameter space. We have shown thathere (see[20] for a similar exercise on a driven oscillator

branches of limit cycles and tori may coexist in the bifurca-Problem. For moderate values &f (Fig. 4), the oscillations
may lock through either a homoclinic bifurcation or through

Torus bifurcations. For large values 6f(Fig. 5), Torus bi-
furcations are no more possible and locking is possible only
through a homoclinic bifurcation.

0.80

HC

0.70

0.60]

VI. QUANTITATIVE COMPARISON OF THE REDUCED
AND FULL MODELS

0.50]

viAll 5 40
o 30l In this section, we compare quantitatively the bifurcation
o diagrams obtained from the amplitude equatitf) and bi-
] furcations diagrams obtained from solving the full rate equa-
0.10. .-
0-00 l w w T r T TABLE I. List of the bifurcation and limit points.
0.060 0.070 0.080 0.090 0.100 0.110 0.120 0.130
A
H Hopf bifurcation
FIG. 5. Bifurcation diagram of the limit-cycle oscillations for T Torus bifurcation
high amplitude modulations §&0.30). The Torus bifurcation HC homoclinic bifurcation
points have merged and have disappeared. As a result, the branch|g$ limit point of the limit-cycles

stable locked solutions is now continuous for Al> A .
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FIG. 7. Numerical bifurcation diagram, the laser limit-cycle os-
cillations. The solution of the laser equatio{® and (4) is deter- FIG. 8. The domains of periodic solutions in tiéeversusA
mined for §=0.048. Stable and unstable periodic solutions havediagram. This diagram is determined numerically by finding the
been determined using the continuation methoto. Branches of ~ periodic solutions of Eqg3) and(4). Note that the diagram agrees
quasiperiodic oscillations cannot be followed. The numerical bifur-quantitatively with the analytical-numerical diagram shown in Fig.
cation diagram of the periodic solutions compares quantitatively, which is based on solving E¢L6).
well with the bifurcation diagram of the approximative solutions
shown in Fig. 1. periodic solutions and their stability boundaries that can be
studied in terms of the laser parameters. Second, we are able
tions (3) and(4). To this end, we again use the continuationto useauTo and follow branches of periodic solutions of the
packageAuTo in order to find the branches of limit-cycle amplitude equation meaning branches of quasiperiodic oscil-
solutions of Egs(3) and (4) and determine their stability lations of the original laser equations. These branches cannot
properties. Note, however, thauTo is unable to follow be determined bywuTo if we directly consider the laser
branches of quasiperiodic solutions. The agreement betwediginal equations. Surprisingly, the determination of
the bifurcation diagrams is excellent. Figure 8 shows thedranches of periodic solutions of a slow time amplitude de-
bifurcation diagram obtained faf=0.048. In this figure, the scribing a driven oscillator remains rafgee[ 20,21 for two
amplitude of the periodic solutions is determined by computdifferent problems We considered the case of zero detuning
ing and used the fact that parametes large in order to analyze
the simplest form of the laser rate equations. But the method
of multiple scales can be applied to the casdarge and
A= \/(||g|\§—|<5>|2)/||5\|§ (29) fixed. We have found no qualitative changes in the bifurca-
tion possibilities. We also evaluate the validity of our pertur-
as a function of\. \|5||§ is defined as the squarég-norm of bation method by compa_ring bifurcation diagrams and found
the electric field and€) denotes the time average of the @ good agreement even if our small parameter that measures
electric field over a period. The expressi@®) has a simple  the amplitude of the solutions is not very smgom Eq.
physical meaning. Its square represents the ratio of the fielt2?), we find v=0.6]. _ . .
power in the sideband modes to the total field power. Using The results of our combined analytical-numerical study of

Eq. (15), we find that Eq(28) clearly matches our analytical the modulated laser show that there exist two distinct mecha-
expression of the amplitude since nisms for locking. The first mechanisthomoclinic bifurca-

tion) is similar to Adler's mechanism for the steady state
locking of the phase of the laser field. Approaching locking,
A=v|A|+0(1?) (290  the amplitude of the limit-cycle oscillations remain nearly

constant but the phase is pulsating and the period between
as v— 0. The bifurcation diagram shown in Fig. 7 comparespulses becomes larger. The second mechafil@rus bifur-
quantitatively the bifurcation diagram shown in Fig. 2. Simi- cation is similar to a Hopf bifurcation. Approaching lock-
lar comparisons have been done for higher valueé dhe  ing, both the amplitude and the phase of the limit-cycle os-
different bifurcation possibilities predicted by solving nu- cillations are oscillating and the frequency changes
merically the laser equatior(8) and (4) are shown in thes ~ moderately. These two different routes to locking exhibit dif-
versusA diagram of Fig. 8. It compares well with the dia- ferent spectra near locking that can be identified experimen-

gram of Fig. 6 based on our asymptotic approximation.  tally.
In this paper, we considered the case of zero detuning

(2=0). Our analysis demonstrated that only one stgée
riodic or quasiperiodicsolution can be observed as we in-
The advantages of deriving a slow time amplitude equaerease or decrease the injection rate. This is, however, no
tion for the laser rapid intensity oscillations are twofold. more the case if)#0. A preliminary analysis of this case
First, we may determine useful analytical expressions for théndicates that two stable regimes may coexist for the same

VII. DISCUSSION
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values of the parametefkistability) provided that the modu- w?,

lation amplitude is sufficiently large. These predictions are in - Pg=Pg=——-5 and Ag=Aq=Poo/e(b’°—1).
: . . . e(1+b%)

agreement with recent experiments by Simpson, The detailed

: , ; A6
analysis of the nonzero detuning case and the experiments (A6)
will be described in a future publication.

APPENDIX B: PERTURBATION SOLUTION
ACKNOWLEDGMENTS In this appendix, we determine a solution of E(®.and

(10) by a multiple scale perturbation method. We may de-
_The research of A.G. and V.K. was supported by the U.S¢qnase the complex fielfl in amplitude and phase vari-
Air Force Office of Scientific Research. The research of T.Egpjes but we found more advantageous to work with the

was supported by the U.S. Air Force Office of Scien_tificvariaue,: and its complex conjugate*. All our analysis
Research Grant No. AFOSR F49620-98-1-0400, Nationg}5g peen repeated using the symbolic calculus software
Science Foundation Grant No. DMS-9973203, the Fonds Nayxp £, From Egs.(9) and (10), we determine equations for
tional de la Recherche Scientifiq@®elgium), and the Inter- F, F*, andz given by

University Attraction Pole of the Belgian government.

dF A
APPENDIX A: RESONANCE CONDITIONS ogs ~(ATib)zRH A B1)
In this appendix, we formulate the conditions for reso- dE* A

nance between the Hopf bifurcation frequency and the o =(1+ib)zF*+8—, (B2)
modulation frequency. The Hopf bifurcation conditions are ds Aoo
given in[16] for slightly different forms(using 7= AP~ *?)
of the rate equations. We first rewrite the Hopf bifurcation Ud_Z: i(lJr 5coss)— FF* (B3)
conditions for our Egqs(3) and(4). The steady state solution ds Pqo '

Z=Z(A) is obtained from the implicit expression . , ,
After inserting Eqs(12)—(14) into Egs.(B1)—(B3), we seek

A=\[(P=2)/(1+22)][Z2+(Q-bZ)?]. (A1) @ 2m-periodic solution ins of the form

, , , , , F=Fo+ vFy(s,7)+ V?Fy(s,7)+ -+, (B4)

Using Z as the bifurcation parameter, the Hopf bifurcation
point Z=Z,; satisfies the following equation: F*=F% + vF*(s,7)+ v2F5(s, 1)+, (B5)
(Q—b2)2Z+eb(Q—bZ)(P-2)—e(e(P—2Z)+2Z?) z=270+ vZ4(s,7) + 1v225(S,7) ++ (B6)

1+2P (1+2P)?
3 _ 2 _ where
X1+ZZ+Z +eZ(P-2)+¢ Z(1+ZZ)2 ,

r=1°s (B7)

(A2)

I o is defined as a slow time variablE, andz, correspond to
wheres=T"". The frequencyw, of the oscillations at the the staple steady state solution evaluate®atPyy, 5=0,

Hopf bifurcation point is then determined from and A = A given by
Z=-2 zl+2p+2 P—2)+Z%+(Q—bZz)*>>0 L __5
wpy=—Z¢g m 8( - ) ( - ) . FO_ andzo——;. (88)
(A3)
The assumption of two independent time variables requires
Resonance at the modulation frequengy is possible if the chain rule
o= wn. (Ad) 4_9,..0 (B89)

ds os ' a7

This condition leads to three equations for= Ay, P=P,

andZ =27, given by Eqs(Al), (A2), and(A3), which can be Introducing Eqs.(B4)—(B6) and (B9) into Egs. (B1)—(B3)
solved numerically. and equating to zero, the coefficients of each powew of

For =0 and smalk, the high injection Hopf bifurcation leads to a series of linear problems for the unknown func-
point admits the approximatidii6] tions Fq,F5,...; 21,25,... . We analyze each problem se-

quentially.
Ap=Pe(b’-1) and sz\/m- (A5)
1. O(v) problem

Using (A5), the resonance conditian, = w,, gives approxi- The O(v) problem is the systeniB1)—(B3) linearized
mations forP=Py and A=A, as around the steady solution
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dF, i
0'__(1_|b)(ZOFl+ F021)=0,

ds (B10)
F*
od—sl—(1+ib)(zoF’l‘+F321)=0. (B11)
dz . .
045 HFoFT +F§F1=0. (B12
Its solution is given by
Fi F. F*
FI |=a(n)| F- |expis)+a*(7)| F%
Z; 2b 2b
X exp —is) +edf, (B13

wherea is an unknown complex function af, and edf de-
notes a single exponentially decaying functiorsof he con-
stant coefficient$-.. are defined by

F.=%(1xib)(1xib+iB). (B14)
2. O(v?) problem
The solution to théD(»?) problem is given by
Fi=szzeXF(ZiS)-i-F210+Fzy,zexﬂ—2is), (815)
F5=F5_,exp2is)+Fj;y+F5,exp —2is), (B16)
Z,=7,,€XP(2iS) + 2,0t 75 ,exp( — 2is),  (B17)
where
_ o(1+ib)(B+2i)(B—i)a?
2z 3b*(b*+3)
B(6ib2—2b—i)+6ib3—b?
X( +2ib—1 . (B1§
. o(l=ib)(B+2i)(p-i)a’
2m2 3b*(b*+3)
B(6ib%+2b—i)—6ib3—b?
X( —2ib—1 . (B19
o(B-i)a’ P
227 37075 3) +3)[,8(—13|b2+|)—3b4+18b2+1],
(B20)
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b
Foo=——I[3—2bo?(b+2i)|al?], (B21)

[3—\—2b%¢?al?]. (B22)

3. O(»°) problem

We note that the right-hand side of ti@(»®) problem
contain terms proportional to the two periodic solutions of
the homogeneous problem. This implies that the right-hand
side needs to verify a solvability condition. After solving the
adjoint linear problem, this condition can be formulated as
the integral

2
(U, ,U_,2b)
0

dF; ]

0 +(1—ib)(z;F,+F12,)
dF}

X —UF+(1+ib)(ZlF;+F’IZZ)

dz . .
—O'E—(Fllzz-i‘ FiF3)+Acogs)

Xexp(—is)ds=0, (B23)

where
U.==x(1xib+ip). (B24)
Substituting the various expressions bf,F,,... given

above, we obtain froniB23) a differential equation for the
complex amplitudea

da
40(/32—2i,6'+2)(1+i,8)d—s
=bA—2ic(B?+2iB—2)
X(1+iB)a+4ip?o(1+iB)ra

L (iBB i B+ 287 41—
+8io 2118

la|?a.
(B25)

It can be further simplified by introducing the new variaBle
defined as

A=20(1+ipB)a. (B26)

In terms of Eq.(B26), Eq. (B25) takes the form of Eq(16).
Moreover, using(B4), the field intensity takes the form of
Eqg. (15).
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