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Scarred patterns in surface waves
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Surface wave patterns are investigated experimentally in a system geometry that has become a paradigm of
guantum chaos: the stadium billiard. Linear waves in bounded geometries for which classical ray trajectories
are chaotic are known to give rise to scarred patterns. Here, we utilize parametrically forced surface waves
(Faraday waves which become progressively nonlinear beyond the wave instability threshold, to investigate
the subtle interplay between boundaries and nonlinearity. Only a s(thse¢ main typesof the computed
linear modes of the stadium are observed in a systematic scan. These correspond to modes in which the wave
amplitudes are strongly enhanced along paths corresponding to certain periodic ray orbits. Many other modes
are found to be suppressed, in general agreement with a prediction by Agam and Altshuler based on boundary
dissipation and the Lyapunov exponent of the associated orbit. Spatially asymmetric or disdbdeérade-
independent patterns are also found even near onset. As the driving acceleration is increased, the time-
independent scarred patterns persist, but in some cases transitions between modes are noted. The onset of
spatiotemporal chaos at higher forcing amplitude often involves a nonperiodic oscillation between spatially
ordered and disordered states. We characterize this phenomenon using the concept of pattern entropy. The rate
of change of the patterns is found to be reduced as the state passes temporarily near the ordered configurations
of lower entropy. We also report complex but highly symmettiime-independentpatterns far above onset in
the regime that is normally chaotic.
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[. INTRODUCTION The influence of the container shape is also a fundamental
issue in the field of quantum chaos. There is known to be a
Parametrically forced surface waves arising as a result aflose correspondence between certain finite quantum sys-
the Faraday instability have provided an excellent opportutems(or analogous systems supporting classical waeeasl
nity to study nonlinear pattern formation. One of the specialheir particle(or ray-optig counterpartg6,7]. Of particular
features of this system is that the system size relative to thimterest are nonintegrable quantum systems with classical
basic correlation length can be varied so that both the largeounterparts that are chaotic, such as the billiard formed
aspect ratio and small aspect ratio limits can be explored. Afrom two semicircles separated by two straight edges. For
large aspect ratio, all of the classic ordered patterns havalmost all initial conditions, a particle launched inside such a
been found, including stripes, hexagons, and squares; addiilliard will exhibit sensitive dependence on initial
tional exotic structures such as quasicrystalline and superlatonditions—the hallmark of chaos. Experimental, numerical,
tice patterns have also been found, as well as secondary iand theoretical studies have shown that the statistical behav-
stabilities giving rise to spatiotemporal chaos. Extensiveor of the wave functions of the quantum or wave version of
references can be found in R¢L-3]. this system is distinctly different from the behavior for “in-
The case of small aspect ratio has also been studied iregrable” geometries such as a square or ci8le10]. Most
rectangular and circular containers. Typically the wave patnotably, regions of high amplitude in the wave functions—
terns found near onset are either normal modes of the corealled scars—are found along some of the periodic orbits of
tainer or symmetrical combinations of these mop#s For  the classical counterpart].
example, in the circular case the normal modes are Bessel Effects of this type were explored to a limited extent us-
functions of the radius multiplied by sinusoidal functions ofing parametrically forced surface waves by Biel et al.
the azimuthal angle. The effects of container shape can bd2]. Their experiment utilized water as a working fluid and
either a nuisance or a benefit depending on one’s point diigh frequency excitation. They reported observations of
view. One example of the usefulness of considering con“scarlets,” that are ridgelike structures consistent with a ran-
tainer geometry is the study by Laeeal. [5] in which the  dom superposition of plane wavg3] (but are not located
conceptual differences between square symmetry and squaging periodic orbit3.On the other hand, no clear evidence
geometry were elucidated. On the other hand, finite size effor the simpler “scarred” wave functions was given. The
fects impede efforts to utilize amplitude equations to de-ossible effects of hydrodynamic nonlinearity on the utility
scribe the wave dynamics. of the ray optics approach has also not been discussed. Non-
linearity is in principle important, since even infinitesimally
above the onset of instability, saturation of the wave ampli-
*Email address: akudrolli@clarku.edu tude is produced by nonlinear effects.
"Email address: jgollub@haverford.edu In this paper we first present observations of the spatial
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modes of Faraday waves in a finite nonintegrable geometry, (V24 kiz)wi(x)=0. 2)
close to onset where nonlinearity is as weak as possible, and

the waves might be usefully described by quasiclassiegl  The sidewall boundary condition is imposed by setting the
optics methods. A low viscosity fluid in a stadium shaped ,ormal component of the velocity of the fluid at the wall to
container is used for thI_S purpose. Scarred patterns that r6&r0. This leads to a guantization condition lorithe wave
semble the computed eigenfunctions of the stadium geoms,mpej. In addition, k; satisfies the dispersion relation

etry are clearly evident, but some of thg linear eigen.function%hich relates the frequency of oscillatiam of the fluid to
are apparently suppressed. The relative suppression of cfe \wave number:

tain modes has been plausibly explained by Agam and Alt-
shuler [14] in terms of higher dissipation rates for those r
modes near the boundaries in comparison with the modes w2=tanr(kid)(—ki3+gki
that are observed. p

We then consider the evolution of the wave patterns as the . ) o o
degree of nonlinearity is increased. Transitions betweeNherep is the fluid densityl" is the surface tension is the
modes are found at some driving frequencies, along with &'ean fluid depth, and is the gravitational acceleration. In
general increase in spatial complexity. The scars that ar@Ur experiment, the wave number is sufficiently large so that
characteristic of the linear eigenmodes are often evident sughe surface tension term is much greater than the gravity
stantially above onset. Finally, we consider the developmeri€rm. The hyperbolic tangent factor is close to unity since
of spatiotemporal chao$STC) in the stadium geometry. kid is large.
Though the onset of STC is strongly dependent on the exci- The time-dependent amplitudés of these normal modes
tation frequency, the boundaries continue to play a large rolesatisfy the Mathieu equation
leading, for example, to coherent oscillations between sym-

: ()

metric and asymmetric states, a phenomenon that we study d2A, o
using the concept of pattern entropy. 9 +kitanhkih| k; ;+g—acos(wt) A=0. (4
Il. THEORETICAL BACKGROUND An instability occurs and the amplitud® grows exponen-

tially in time when the eigenvalue is in a bafichown as the

stability tongué such that the frequency of oscillation of the
fluid is half the driving frequency. The instability occurs at
(%bitrarily small driving amplitude in the absence of viscos-

A fluid layer with a free surface is subjected to an oscil-
latory vertical acceleration of amplitude The surface is flat
until a critical acceleratiom, is reached, at which point the
surface becomes unstable and standing wave patterns are
served that oscillate at half the driving frequency. The
threshold acceleration depends on the frequency and the viﬁi
cosity of the fluid. It is convenient to define a dimensionlessm
driving parametere=(a—a.)/a. that measures the depar-

Damping, which is provided by a number of distinct
echanisms in addition to bulk viscosity, can be included by
eans of a phenomenological linear damping term as re-
viewed in Ref.[16]. Though treating damping in this way

. . " ?nay not be fully adequate, the main effect is to reduce the
patterns are time mdept_anden? .for a range of posm_\hmt width of the stability tongue in parameter space and raise the
eventually a se_conda_ry mstablh_ty gives rise to spatiotempOgitica) threshold to a finite amplitude. A proper theoretical
ral chaos. In this section, we briefly discuss the linear iNViSyreatment of instability in the viscous case has been given in

cid theary, the effect of viscosity, and the role of nonlinear-po¢ [17], where the shapes of the computed stability bound-
ity, as they pertain to the present investigation. aries were presented.

The linear stability theory for Faraday waves was first If the acceleratiora is sli :
S o ghtly higher thara., all modes
developed by Benjamin and Urs¢ll5]. We summarize it in a band k—Ak/2 k+ Ak/2) are accessible ;nd can be ex-

here because the quantum/classical correspondence OCCUfS. The wave number widthk of the stability band for
for linear waves. They started from the Eu{gwviscid) equa- smali ¢ has been estimatdd8,19 to be

tion of motion and the continuity equation for an ideal fluid

with a free surface in an oscillating gravitational field, and

simplified the equations by retaining only the linear terms

appropriate for small amplitude waves. The surface deforma- ] ] o ] ] ]

tion h(x,t) as a function of spatial coordinaseand timet whe_rev is the kinematic wscosny_ of the_ﬂwd. F(_)r a suitable

may be written as a superposition of normal moge&x) choice ofe,p, andw, and assuming no interaction between

with coefficientsA, (t): modes, one then expects to find either single mode patterns
or superpositions of a few modes whose thresholds lie in the
window (k—Ak/2 k+ Ak/2).

h(x,t)=2 A(t) i (%), (1) The cumulative number of eigenvalues of the Helmholtz
i equationN(Kk) is related to the geometry and is given by

Ak=82pvw\/el3l, (5)

(%) i i i S L
where ¢;(X) is a compl_ete orthogonal set of eigenfunctions N(K)= — K2F —k, 6)
of the Helmholtz equation A A
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whereSis the areal is the perimeter of the stadium, and the
negative or positive sign corresponds to Dirichlet or Neu-
mann boundary condition, respectivel§]. At high k, the
perimeter term is negligible compared to the area term. Tak-
ing e=0.01 and using Eq95), (6) with an areaS that is
appropriate to the experiments reported here, one can esti-
mate that the typical number of accessible modes is about 8
for a driving frequency of 70 Hz.

What are the effects of nonlinearity? A nonlinear theory
that describes regular Faraday wave patterns in large contain-

<4——— CCD Camera

<4— Lens

L ] «— Container

ers rather well has been given by Zhang andal§fi20] and Mirror
Chen and Vials[21]. In this theory, an evolution equation is Soumes A
determined for the time derivative of the amplitude of a typi- Lens

<4 VTS Shaker

cal Fourier modd3, of the interfacial deformation. It may be
expressed in the form

dB,

——=aB;—gB3— Om1)B2B1, 7
dT *P17 0% n;l 9(6m) BB @ FIG. 1. The Faraday wave and shadow graph imaging apparatus.

A stadium shaped container is rigidly attached to an electromag-
whereT is a slow time variable, the linear term is due to thenetic shaker, which provides a sinusoidal oscillation of amplitude
basic instability, the cubic self-interaction term produces
saturation of the wave pattern, and the coupling terms tdhe fluid surface is pinned to the ledge and boundary dissi-
other modeswhich depend on their relative angd are  pation is reduced. This situation has been modeled as a Di-
also of cubic order. The constants have been computed, amithlet boundary condition=0) [26]. The container is rig-
the ratiog(6)/g, is of order unity and independent ef This  idly attached to an electromagnetic shak¥ibration Test
implies that coupling effects between the accessible modeSystems Model 40Cand the acceleration is measured with
may be substantial. The theory was able to explain the strikan accelerometer. The apparatus is placed within a
ing cascade of 2-fold patterns discovered by Binks and van temperature-controlled environment. The driving frequency
de Water[2]. It also explains semiquantitatively the appear-is selected to be greater than 55 Hz to be in the capillary
ance of striped, square and hexagonal patterns observedave limit, but less than 75 Hz to prevent the density of
experiments using viscous fluids in large containgté modes from becoming too high.

However, the amplitude equation is variational, and is only The patterns are imaged with shadowgraph techniques.
appropriate near onset. It cannot describe nonuniform paffhe specific implementation is discussed in depth in Ref.
terns, secondary instabilities, or spatiotemporal chaos. Af25]. Light from an expanded and collimated incident beam
earlier approach that allowed spatially varying patterns wass collected and imaged onto a CGEharge-coupled devige
given by Milner[22]. video camera via a large collecting lens and the camera lens.

The amplitude equations also ignore the effects of thelhe resulting images can be interpreted by considering
boundary. For slightly viscous fluids in small containers, awhich rays of light reach the CCD plane after passing
large fraction of the dissipation occurs in the boundary layethrough the fluid. The relatively small aperture of the camera
and can in fact be the leading cause of dissipdtigh23,24. lens restricts the rays that reach the CCD. All the rays that
In work stimulated by the experiments reported here, Aganieave the fluid surface at an angle measured from the normal
and Altshule14] show that the dissipation near the bound-that is greater than a critical andligpically about 102 rad)

ary depends strongly on the nature of the mode. are blocked. Since the critical angle is so small, light is col-
lected only from the nearly horizontal regions of the wave

IIl. EXPERIMENTAL APPARATUS surface. Therefore, the bright regions in an image corre-

sponds to local extrema or antinodes of the wave pattern.

The apparatus is similar to that used by Glucknearal.  Images are averaged over one video frame, 1/30 s, which is

in Ref. [25]. Figure 1 shows a schematic diagram of themore than a full cycle of the standing waves. The imaging
experimental setup. The stadium shaped container made pfocess is nonlinear in the wave height, but a quantitative
Delrin has the following dimensions: depth+1.25 cm, ra- model for the measured intensity was presented and tested in
dius of semicircles =3 cm, and length of straight edde Ref.[25].
=4.5 cm. The top and bottom plates of the container are

made of glass to allow the transmission of light. The fluid is

silicone oil of kinematic viscosity 0.02 cis !, chosen for

its stable surface tension and good wetting characteristics. To We made a survey of the time-independent wave patterns
minimize meniscus waves, a brim full boundary conditionnear onset over the range 55 to 65 Hz by changing the fre-
was prepared by machining a ledge in the boundary at thquency in 0.1 Hz steps. In order to obtain useful statistics for
same height as the fluid. Therefore the fluid meets the ledgéne surface wave patterns, a systematic procedure was fol-
at 90°. By maintaining the fluid under brim full conditions, lowed: for each selected frequen&y, was first measured to

IV. PATTERNS NEAR ONSET
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FIG. 3. Selected eigenfunctions of the Helmholtz equation for a
stadium geometry identical to that used in the experiments. wave
numbers are chosen to be in the range explored experimenlly.
Bouncing ball mode(b) longitudinal mode,(c) bowtie mode,(d)
whispering gallery mode. A large proportion of the experimental
patterns are similar téa)—(c), which are scarred by periodic orbits
(shown by lineg of the corresponding ray system. However eigen-
states such as the whispering gallery médleare not observed in
the experiments.

geometry, obtained for comparable mean wavenumber using
an algorithm due to Hellef28]. Sample computed eigen-
states(selected from a large number of distinct patterae
rﬁhown in Fig. 3. We find that some of the computed states
shaped container filled with silicone oil as a function of driving resemble observed patterns. On the .other hand, a one't_o',one
frequency €=0.01; »=0.02 cnf s 1). The frequency interval be- correspondence for sequences Qf elgenstates'was definitely
tween displayed images is comparable to that required for the paflOt Observed. Furthermore, certain computed eigenstates that
tern to change significantlya) 60.1 Hz, (b) 60.4 Hz,(c) 60.8 Hz, ~ occur frequently such as the “whispering gallery” mode
(d) 61.2 Hz,(e) 61.6 Hz,(f) 62.1 Hz,(g) 62.4 Hz,(h) 62.8 Hz. The  [Fig. 3(d)] were not observed in the full experimental fre-
patterns are strongly influenced by the shape of the container. BotAUENCY range.
symmetric scarred patterns and asymmetric patterns are feeed Interestingly, most of the observed symmetric patterns re-
text). semble one of three basic classes of eigenstates shown in
Figs. 3a)—(c). For instance, Figs. (3),2(d) resemble the
within 0.1% and there was raised to 0.01, the smallest value Pouncing ball eigenstate Fig(a; Figs. 2g), 2(h) are close

that could be maintained accurately. The threshajdis 0 the longitudinal eigenstate of Fig8; and Figs. 2b),2(e)
3.1 ms?2 at f=60 Hz and increases weakly with fre- &€ a combination of the longitudinal and bowtie eigenstates

quency . of Figs. 3b),3(c). It is noteworth_y that among the observed
A sequence of images from the survey for driving fre- patterns are states such as Fi¢c) 2hat do not have the
guencyf between 60.1 and 62.8 Hz, and with an approximate
spacing of 0.4 HZi.e. every fourth image is shown in Fig. TABLE I. The percentages of patterns of various types observed
2. This spacing is comparable to the experimentally observet] @ sample of 128 patterns near onset0.01), for driving fre- -
increment(0.3 H2) typically required to obtain a distinctly duency between 55 and 65 Hz. A typical example of a bouncing
different pattern in this frequency range: it is greater then thé&?@!l pattem is shown Fig.(a), a longitudinal pattern in Fig.(@), a
computed mean level spacipgbout 0.1 Hz in this frequency bowtie pattern in Fig. @), and a disordered pattern in Fig(c2
range as estimated from Eq$) and (6)]. Most of the ob- Patterns with _sev_eral compone_nts such as Fig), &vhich c_ontalns
served patterns show the reflection symmetries of the stab—c’th.the longitudinal and bowtie modes, are c_our_lted in both cat-
dium. Regions of large amplitude are often located alonqegorles. Therefore the sum of the percentages is slightly over 100%.
lines that would form periodic orbits of the classical analog.

FIG. 2. Shadow graph images of patterns observed in a stadiu

. . S . Class of pattern Percentage of occurrence
Since these regions are similar to those found in other nu-
merical and experimental investigatiofil,27), we refer to Bouncing ball 27.2%*+ 1.6%
the patterns containing such enhancements as scarred pat- Longitudinal 50.1%* 3.3%
terns. Bowtie 13.2%=* 2.5%
We compare the observed patterns with numerically com- Disordered 13.2%+ 2.5%

puted eigenstates of the Laplace operator for the stadium
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TABLE II. Pattern spectral entropy, which is a measure of com-
plexity and is used in classifying the observed patterns. The patterns
are obtained in the driving frequency range 55 to 65 Hz, slightly
above onsetd=0.01).

LR ,v,‘i;',\)\\t

Jimimjio

Class of pattern Approximate entropy ranges
Bouncing ball 3.0to 4.2
Longitudinal 4.21t05.6
Bowtie 45t05.8
Disordered 5.81t0 6.4

reflection symmetries of the stadium. We refer to these as
disordered patterns. Table | summarizes the percentages ("
the pnset patterns that were visfually judge(_j to approximate FIG. 4. Steady patterns as a function of driving amplitude
particular computed scarred ngenstates !n the frequencl)fustrate the effect of increasing nonlinearity fat 62.8 Hz.(a) €
range 55 to 65 Hz a¢=0.01.(Visual comparison was used _ o1 () ¢=0.025,(c) e=0.125,(d) e=0.249. The influence of
because automated pattern recognition, which we attempteﬁhe scarred eigenfunction persists even in the presence of strong

was not sufficiently reliable. nonlinearity. Spatiotemporal chaos develops at high@eyond the
Since the discovery of scars, there have been a number efnge shown here.

theoretical attempts to obtain a quantitative measure for scar-

ring [29-31 based on eigenstate overlap, Wigner functionjinear and the approximation of E42) becomes inappli-
overlap, and inverse participation ratios for the amplitudes insaple. The patterns were observed to be time independent
the vicinity of the scars. To utilize such measures experimenyhile changing adiabatically witl for e<0.3. On the other
tally, the local wave amplitude is required with high accu- hand, they become weakly time dependentefe0.3 at most
racy. The shadowgraph technique used here is quantitati\ﬁequencies_
but nonlinear[25] and does not provide this information.  The evolution toward time dependence with increasing
Development of a quantitative experimental measure of scayepends on the excitation frequency. Three examples of this
ring has proven to be difficult even for linear probes. evolution are shown in Figs. 4—6. For some driving frequen-
We use the concept of “pattern entropy” as a t00l 10 jes the patterns remain reflection-symmetric eags in-
classify the patterns. Egolf, Melnikov, and Bodenschi8  ¢reased, but exhibit transitions from one spatial mode to an-
have applied this concept successfully to measure the conyner prior to the onset of time dependence, as in Fig. 5. In
plexity of patterns observed in Rayleigh+d convection. hage cases, the transition to spatial disordeymmetry

The pattern entropy is calculated from the power spectrum ofengs to coincide with the onset of spatiotemporal chaos
the pattern. IfP(k) is the normalized two-dimensional (sT().

power spectrum of the pattern at timethen the pattern It is important to note that asincreases, the width of the
entropyE(t) is defined as stability tongue grows[see Eq.(5)]: for example, atf
=74.1 Hz ande=0.2 the number of accessible modes of
E(t)=— >, P(K)IN[P(K)]. (8)  the container is approximately 35. Therefore, the observed
K

Here E(t) measures the spectral complexity of a pattern. If
the image consists of just one Fourier mode of amplitude Ypp(0)

unity, thenE=0; otherwiseE>0. To minimize the effects  RUfft m))f(ﬂ “mm
of experimental noise, we sum contributions only in a band @SS, OV
of wave numbers centered at the mean wave number of thi e \\\\‘_.,- illbj'_é;'
pattern with a rage of-25%. In Table II, the approximate e —
entropy ranges for the various types of patterns observed ir
the range 55—-65 Hz are given. Note that the patterns are nc
distinguishable solely by their entropy, since some of the
ranges overlap. However, the pattern entropy can be useft
in studies of time dependence farther above onset, as w
show in Sec. VI.

SN

(E32)
v ie ,
g,

V. PATTERNS BEYOND ONSET )
FIG. 5. Same as Fig. 4, except tHat 71.4 Hz.(a) e=0.010,

Here we examine the evolution of the wave patterns far{b) ¢=0.020, (c) e=0.078, (d) e=0.252. In this case, the scars
ther from onset, where the interactions between differenpersist but the dominant mode switches. The “bowtie” enhance-
Fourier components of the waves become increasingly nonment is lost and a “bouncing ball” enhancement appears.
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FIG. 6. Same as Fig. 4, except tHat 74.7 Hz.(a) e=0.010,
(b) €=0.015,(c) €=0.025,(d) €=0.058 forf=74.7 Hz. In this
case, the pattern becomes disordered at ratherelolut remains
time independent.

(c) (d)
mode switching might be a combined effect of the increase FIG. 8. The onset of spatiotemporal chaos involves an irregular

in the number of accessible modes and an increase in thegilation betweer(a) relatively ordered andb) disordered pat-
degree of nonlinearity that couples them. It is remarkabl@erns =0.55 andf=71.9 Hz). The corresponding power spectra
that the container boundary continues to influence the patare shown inc) and(d), respectively. The greater spectral isotropy
terns even aé= 0.252[Fig. 5d)], where nonlinearity clearly in (d) contributes to a higher pattern entropy.

plays a major role.

The variability of the nonlinear development is evident VI. ROLE OF ORDERED STATES IN THE REGIME OF
from examining the examples in Figs. 4—6. In Fig. 4, there is SPATIOTEMPORAL CHAOS
a general increase in complexity with but the dominant
mode does not change. In Fig. 6, the near onset pattern Ee
nearly obliterated even &t=0.025 by the growing complex-
ity, and the pattern is also distinctly asymmetric, while re-
maining time independent.

In one instance, a complex but symmetric time-
independent pattern was observed at an unusually high dri
ing amplitude ofe=0.8 at a frequency of 65.0 Hz, in a
regime where spatiotemporal chaos is usually fully devel
oped. The image shown in Fig. 7 was averaged over 300
images taken over a period of 5 min to test for time depena

dence. The lack of blurring demonstrates its time mdepenfWO quantitative measure&) the rate of change of the pat-

dence. ternR(t) and(ii) the entropyE(t) as defined in Eq(8). The
rate of changdR(t) was calculated by subtracting two con-
secutive images K,t+At) and I(x,t) separated by a time
interval of At=0.36 sec, and calculating(t) according to
the following formula:

For driving amplitudes just beyond the frequency-
pendent onset of spatiotemporal chaos, the time depen-
dence of the pattern is often intermittent; the patterns appear
to oscillate between states that are relatively ordered and
states that are relatively disorderese the images in Fig. 8
and a corresponding web-based moy&3]). The power
Spectra of these typical patterns are also shown in Fig. 8 and
indicate the greater complexity of the disordered case, where
he power is distributed more uniformly on the ring corre-
ponding to the dominant wave number. The time depen-
ence and complexity of the patterns are monitored using

R(t)=c>, [1(xt+At)—1(x,t)]?, (9)

wherex is the position and is a constant scaling factor.

In Fig. 9a), a section of the resulting quantifg(t) is
shown as function of time fof=71.9 Hz ande=0.55. The
data has been smoothed by averaging over four adjacent
points. At every pronounced minimum of this smoothed data

FIG. 7. A stationary symmetric pattern that is quite complex, We find that the corresponding pattern is symmetric and ap-
observed ate=0.8 (f=65 Hz), a regime where spatiotemporal pears to have long range order. At all other times the pattern
chaos usually predominates. This image is an average over 5 mifs asymmetric and disordered. A graph of the corresponding
its sharpness demonstrates its stationarity. entropyE(t) is shown in Fig. ®b). Examples of the ordered
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1.8 . T . T . T . . after adding 3000 instantaneous images obtained over five
16E @ ] minutes. An example of an instantaneous pattern is shown in
- T ] Fig. 10@). The resultant average pattern is shown in Fig.
£ 14F 10(b). The average reveals considerable ordered structure in-
_2; 1of cluding remnants of the bouncing ball states. This phenom-
3 I enon is seen at most frequencies and persists up-tb.6.
= 1L Beyond this point, scars were visually absent and the average
o o8k patterns are locally parallel to the boundary, as observed in
Bl circular or square patterns by Gluckmenal. [25].
0.6 [
0.4t \ . . 3 VIl. DISCUSSION
90 110 130 150 170
t (second) In this paper we have discussed the parametrically forced
wave patterns formed in a stadium-shaped container contain-
1.04 ing a low viscosity fluid, as a function of driving frequency
1.03 [ and amplitude. The patterns near onset 0.01) were com-
= | pared to a simple model consisting of linearized equations
'§ 1.02 that reduce to the Helmholtz equation with Dirichlet bound-
a8 I ary conditions(see Sec. )l While a large proportion of ob-
8 1.01 served patterns resemble the numerically computed eigen-
EJ \ states of the stadium, many of the computed eigenstties
1 instance, the whispering gallery mogi@gere not observed in
0.99 [ a scan with sufficient frequency resolution to detect them.
1 ] The observed patterns may be broadly classified into three
0.98 . L . A . A L] categoriesi(a) bouncing ball patternsib) longitudinal pat-
20 110 130 150 170 terns, and(c) bowtie patterns, which have high amplitudes
t (second) near corresponding periodic orbits. In addition, a significant

. number of disordered patterfiacking in symmetry but time
F'G' 9. (8 The rate of (.:hanga(t) of the pattern asa fl.mCt'on independentwere observed near onset. Furthermore, the ob-
of time, as computed by differences between successive imdyes. . .
The pattern entropye(t) as a function of time §=0.55, andf served mode_spacmg»(O.S Hz) IS So_meV\_/hat greater than
=71.9 Hz). Both functions oscillate in time and they are stronglythe mean eigenvalue sepa_ratlon implied by Hﬁ.)
correlated; both are smaller for ordered pattefag., pointX, (~0.1 _H_z)' These observations imply that the simplest
shown in Fig. &)] than for disordered patterr®.g., pointY, model is inadequate even close to onset.
shown in Fig. 8)]. A movie corresponding to this figure is avail- _ Recently, Agam and Altshuler have offered an explana-
able at the internet address in RES3)]. tion for the selection of modes at ongé#] by considering
the stability of the periodic orbits corresponding to the scars.

(X) and disorderedY) states are shown in Fig. 8, where the They argue tha.t a .threshold for excitation of a particular
location in time is indicated by symbobé(t=124 s) and Scarred pattern is given by
Y(t=136 s), respectively, in Fig. 9. A, where the pattern
entropy is low,R(t) is small, while atY, where the pattern h> o+ yp+ /2, (10)
entropy is highR(t) is large. This correlation betwedR(t),
and E(t) holds true for most of the other strong peaks an ) - ; ) S
vaIIeyg.) gp the systenti.e., the driving amplitude v, is the dissipation
For highere(>0.8) the oscillations diminish in strength ratg in the bulk .Of the fluidyy, is the dissipation near thg
and uniform STC is observed. In this regime, following Pefimeter, and is the Lyapunov exponent of the ray orbit

Gluckmanet al. [25], we obtained the time averaged patternthat predominantly scars the pattern. The bulk dissipation
yo=rk? is the same for all the patterns and corresponds to

approximately 2 sec* in the frequency window used in the
experiments. Therefore the appearance of a scarred pattern
depends on a combination of the two remaining factors
which are orbit dependent. Stability of a pattern is favored
both by a small Lyapunov exponent of the associated scar-
ring orbit, and by small perimeter dissipatigy .

In the limit of high wave numbek relevant to our experi-
ments, Agam and Altshuler derive an expression for the

damping rate of scars due to boundary effects:
FIG. 10. (a) Instantaneous an() time-averaged patterns in the ping Y

dwhereh is proportional to the rate that energy is pumped into

regime of spatiotemporal chaog=1.2f=65 Hz). We find that — _ '
scars usually persigexcept at very highke) and that the dominant Vo= wv/2 2 [1-cos(¢)] , (12)
pattern found at most frequencies is the one shown. P L i cog o)
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wherew is the angular frequency, is the viscosityL is the  state is observed at onset, an observation that may be related
length of the periodic orbit, and the sum is over all the col-to the larger perimeter dissipation and Lyapunov exponent of
lision points of the orbit with the boundaryp; being the the bowtie mode.

angle between the orbit and a line perpendicular to the At higher driving amplitude, additional nonlinear effects
boundary at the collision point. The parametgy and the occur as indicated by the growth in spatial complexity, and
Lyapunov exponent have been calculated for most of the&o adequate theoretical treatment exists. However, the onset
shortest periodic orbits and a long ergodic orbit in R&#]. patterns are often robust, persisting in the presence of in-
The perimeter dissipation, , which can be either smaller or creasing spatial complexity. The boundaries remain influen-
larger thany, , varies between 0.2 and 3.0 SécThe ex- tial even beyond the onset of time dependence. At suffi-
treme values correspond to patterns scarred by the horizonteiently high €(~0.2), the onset patterns are no longer
orbit, and the ergodic orbit respectively. visible, though they persist in the time average.

Most of the features observed in the experiments near Strong intermittency in the degree of order of the patterns
onset appear to be captured by EtQ). The bouncing ball is observed in the regime of spatiotemporal chaos. Further-
orbit is prominent because the Lyapunov exponent is zero imore, the rate of change of the patté(t) just above the
that case, and the longitudinal orbit occurs because of relé&8TC onset is strongly correlated with the order as character-
tively low perimeter dissipation. The whispering gallery or- ized by the entropye(t). The more ordered patterns evolve
bits and others with angles that come closerf@ have par- more slowly in time, a striking observation that remains to be
ticularly large boundary dissipation and are suppressedexplained. This tendency for ordered patterns to be more
Equation(10) implies that if one increases the dissipation onstable may be related to the complex but highly symmetric
the boundary so that it dominates, the longitudinal orbit willand time-independent pattern observed at atypically large ac-
be the last to survive. This is precisely what we observe irceleration(Fig. 7).
the experiments when the level of the fluid is lowered, a
change that results in higher perimeter dissipation because of
motion of the contact line.

The theory just cited14] is also able to account for the We thank Oded Agam and Boris Altshuler for many use-
observed tendency of one scarred pattern to suppress othfeit discussions, and E.J. Heller for software to determine
nearby eigenmodes through nonlinear interactions, as well asgenstates of the stadium. Bruce Boyes provided technical
the existence of some asymmetric patterns. At some drivin@elp. This work was supported by the National Science
frequencies the patterns are observed to switch modessas Foundation under Grant No. DMR-9704301. A.K. acknowl-
increased(Fig. 5). This occurs especially when the bowtie edges a grant from the Alfred P. Sloan Foundation.
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