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Numerical study of Lyapunov exponents for products of correlated random matrices
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We numerically study Lyapunov spectra and the maximal Lyapunov expdhtri) in products of real
symplectic correlated random matrices, each of which is generated by a modified Bernoulli map. We can
systematically investigate the influence of the correlation on the Lyapunov exponents because the statistical
properties of the sequence generated by the map, whose correlation function shows power-law decay, have
been well investigated. It is shown that the form of the scaled Lyapunov spectra does not change much even
if the correlation of the sequence increases in the stationary region, and in the nonstationary region the forms
are quite different from those obtained in tldecorrelated purely random case. The fluctuation strength
dependence of the MLE changes with increasing correlation, and a different scaling law from that of the
S-correlated case can be observed in the nonstationary region. Moreover, the statistical properties of the
probability distribution of the local Lyapunov exponents are quite different from those obtained from
é-correlated random matrices. Slower convergence that does not obey the central-limit theorem is observed for
increasing correlation.
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[. INTRODUCTION give a closed expression for all the Lyapunov exponents
when the matrix elements were distributed according to a
Many physical problems are related to the study of theGaussian distribution, for larg?\XN matrix products
asymptotic behavior of products of random matrileRMy ~ [28.29. _ _
[1-3]. Examples are localization of lattices vibration in dis-  Physicists have carefully applied these mathematical re-
ordered lattice§4—6], localization of quantum particles in sults to some physics problems. Matsuda and Ishii related

; ; Furstenberg’'s theorem to localization problems in one-
disordered systeni$,7,8], the random Ising model of ferro- ' . . . _
magnetic material§9,10], instability of dynamical systems dimensional disordered syster®y. Kissel[30] derived the

= : . Lyapunov exponents in multichannel localization as a func-
[n%édiﬁgﬁ[gg? the problem of directed polymers in a randomtion of the transmission matrix by using the Oseledec theo-

Some mathematicians have given rigorous results foo [22]. O'Connor proved the CLT for the amplitudes of

PRMs. The bi ) K of F b . | lane waves traveling in a semi-infinite isotropic disordered
s. The pioneering work of Fursternberg gives a law oty o monic chain, and it has been applied to the problem of

large numbers of matrices belonging to noncompact seMiggat conduction in disordered harmonic chdi€]. In all
simple Lie groupg21]. Oseledec proved a multiplicative er- the cases mentioned above, products of independently dis-
godic theorem that ensures the existence of the Lyapunoyihyted matrices, i.e §-correlated matrices, were dealt with.
exponents in independent identically distributédi.d.)  However, the asymptotic properties for correlated PRMs are
random symplectic matrices[22]. Tutubalin showed also interesting problems in physics. We will investigate
that the asymptotic probability distributiorP(R) of properties of correlated PRMs in the present paper.
é-correlated PRMs of unitary group for large, where R In classical dynamical systems with many degrees of free-
=MMq_;---M;M; are PRMs, converges to a Gaussiandom, the instability of the tangent vector of the trajectories
distribution[23]. Virster generalized the results obtained by plays an important role when we consider the statistical me-
Tutubalin to arbitrary groups with noncompact connected seehanics of the system. Lyapunov exponents, which are the
misimple Lie groups, such as SN(N) [24]. These theorems exponential growth of the vectors along the trajectories, can
correspond to the central-limit theorg@LT) in PRMs. The  be numerically estimated from products of real symplectic
CLT on the group SU{,N), which shows the existence of matrices, and the statistical properties of the Lyapunov ex-
the probability distributionP,(R) in the largem limit, has  ponents depend on the statistical properties of the time series
been given by some authdr85—-27. Newman was able to of the fluctuation of the matrix elemerit3,28]. Moreover, it
is well known that 1f type fluctuation in the power spec-
trum, corresponding to the existence of long-time correla-
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Okabe and Yamada also observed a similar fluctuation in a TABLE I. The classification of cases by combination of three
one-dimensional Lennard-Jones systg32]. These results matrix forms and two symbolic types that we use in the present
show that a variety of dynamical behaviors can be observe8aper.

in a dynamical system due to correlation that is different

from &S-correlated motion in random processes. Correlation Form A B c
effects in some dynamical systems have also been reportedrype 1(0 or ) case Al case B1 case C1
in different context$33—-39. Some authors have pointed out Type 2 (— /2 or €/2) case A2 case B2 case C2

the importance of correlation effects of dynamical systems
for Lyapunov spectra and the scaling form of the maximal

Lyapunov exponent, in comparison witkcorrelated ran- MLE, and the statistical properties of the probability distri-
dom matrix products. bution of local Lyapunov exponenfd2].

However, the statistical properties of the products of cor- We found some interesting results for the correlation ef-
related random matrices have not been studied, except forfact on Lyapunov exponents. For example, in dynamical
few numerical studieg36—38,41. Crisantiet al. investigated models, with increase of correlation all the Lyapunov expo-
the correlation effects on dynamical instability and showed aents increase in the stationary region. On the other hand, in
discrepancy between the dynamical system and the randothe nonstationary region the MLE increases with increase of
matrix approximation(RMA) due to correlation in low- the correlation, but the smaller Lyapunov exponents begin to
dimensional map$16,3]. Yamadaet al. have shown for decrease. Moreover, we observed a clear scaling law for the
products of 2 2 matrices that the convergent properties ofmaximal Lyapunov exponenh ()~ €?, where depending
the probability distribution of the transmission rate with re-on the correlation the exponepgttakes intermediate values
spect to the system size do not obey the CLT; they havéetween 2/3 and 1/2 in the stationary region. In the nonsta-
slower convergence because of the correlation of the sdionary region, however, the correlation does not greatly af-
quence, in the context of a one-dimensional disordered sydect the scaling form of the MLE ;. In comparison with the
tem with long-range structural correlati¢B86]. Oliver and RMA, the slower convergent properties of the probability
Petri gave exact expressions for the Lyapunov exponents dfistribution with respect to time are well observed. The de-
correlated PRMs with Markovian rulé88]. It is worth not-  tails of the numerical results are given in the present paper.
ing that a one-dimensional disordered system with off- This paper is constructed as follows. In the next section,
diagonal randomness can be expressed by PRMs with Mawe introduce three kinds of the symplectic matrix form we
kovian rules. Goda showed analytically that Furstenberg’sise. Two of them are based on interacting classical particles
convergence theorem is applicable to this d&$. in one dimension. We refer to them as form A and form B. In

Moreover, it has been detected that the matrix elementthe text of this paper we mainly focus on form A. The case
show a certain degree of correlation in the fluctuation of thgfor form B is mainly shown in Sec. VIIl. We also give re-
time evolution in some dynamical systefi#2,4(. Accord-  sults for another matrix fornform C) based on localization
ingly, to investigate systematically the effect of correlationin quasi-one-dimensional disordered systems in Sec. VIII.
on some statistical properties of the PRMs may give useful In Sec. lll, we introduce the modified Bernoulli map that
information for dynamical systems. Yamaguchi investigatedgenerates the correlated sequence. We mainly use two types
the effects of exponential correlation on the shape ofof symbolic sequence which take only two values Oeor
Lyapunov spectra by changing the correlation length in onettype 1) and —e/2 or €/2 (type 2, where e means the
dimensional nonlinear chairg1]. It has been shown that strength of the fluctuation. We investigate some properties of
exponential correlation changes the shape of the Lyapunothe Lyapunov exponents for some cases by changing the
spectra from linear to curved. Okabe and Yamada gave eombination of the above three kinds of matrix form and two
preliminary report on correlation effects on Lyapunov spec-kinds of distribution.(See Table ).
tra and the scaling form of the maximal Lyapunov exponent In Sec. IV, we give a definition and brief explanation of
(MLE) [42] where the correlated sequences are generated bfie Lyapunov exponents and local Lyapunov exponents we
a modified Bernoulli magsee below. used in this paper. We give numerical results for the matrix

In this paper, we study numerically some asymptoticform A in Secs. V, VI, and VII.
properties of Lyapunov exponents in products of symplectic In Sec. V, we investigate the Lyapunov spectra for matrix
random matrices with long-range correlation, each of whicHorm A with two kinds of probability distribution. It has been
is produced by a modified Bernoulli mgp3—45. We give  shown that scaled Lyapunov spedirgx), x=i/N, become
results by more systematic investigation for wider ranges ofinear, i.e.,Lg(x)1—x, in the limit N—o in the case of
parameters than in our preliminary reppt2]. The modified = PRMs with no correlation or a strongly chaotic regif8¢ In
Bernoulli map generates correlated sequences in which thie stationary region, the form of the Lyapunov spectra does
correlation function decays obeying an inverse power lawpot greatly depend on the strength of the correlation and the
i.e., the correlation length is infinite. The statistical proper-dependence is quasilinear. It will be shown that in the non-
ties of the sequence of the modified Bernoulli map have beeatationary region the forms of Lyapunov spectra become
well studied by Aizaweet al [43,44], who used the map in curved, depending on the strength of the correlation.
order to reveal the statistical properties of intermittent chaos. In Sec. VI, we investigate the dependence of the MLE on
Thus we can systematically investigate the influence of corthe \{(¢€), fluctuation strengtle, for various cases of com-
relation on the Lyapunov spectra, the scaling form of thebination of the matrix form and symbolized type. In the
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RMA \,(€)~€?? is shown in the weak disorder limit by Lyapunov exponents, which are indices of instability of the
using analytical methods, such as the weak disorder expatrajectory in phase space, can be calculated by the time
sion and replica trick and so dr8]. We showed that the evolution of an infinitesimally perturbed vector
scaling form\ 1(€) becomes different from that in the RMA  6z(t) = (6p4(t), - . . ,0pn(t), 694(t), . .. ,8qn(1)) in
in the nonsymbolic model in which the sequence takes val2N-dimensional tangent spa¢8,46,47. The discrete time
ues in the interva[0,e] or [ —€/2,e/2] in our preliminary  evolution of the system is given by
report[42]. We show some interesting scaling forg( )
for the discretizedtwo-value version in the present paper.
In Sec. VII, the statistical properties of the probability
distribution of the local MLE are investigated. Section VIII _
contains some numerical results in the other cases of matriwhere the matrix8(" is a real symplectic Jacobian matrix for
forms B and C. The last section is devoted to summary andt time evolution andZ(0) is a 2\N-dimensional arbitrary
discussion. real orthogonal matrix. The matrix can be determined only
by coordinategj(t) obtained as the solution of the equation
II. MATRIX FORMS of motion. Then the form of the symplectic matriced 33

Z(t=n5t)=Hl sWz(0)=P(1)Z(0), (2.2

In this section, we introduce the matrix forms and some ) I étl
terminology we use hereafter, based on Hamiltonian dynami- sh= —S5tHD = st2H® | 2.2
cal systems. Although we do not treat the Hamiltonian sys-
tem itself in the present paper, this is convenient for readerasherel andH" areN-dimensional unit and real symmetric
when they consider the background of this problem. (Hessianm matrices, respectively. First, we adopt the Hessian
We consider a one-dimensional classical many-body sysmatrix of a one-dimensional dynamical system with nearest-
tem with N degrees of freedom in order to set the matrixneighbor interaction and periodic boundary conditions as the
form, in which the N-dimensional phase space consistsmatrix form of H(). Accordingly, the sum of each row must

of generalized coordinates and momentabe zero, and so is that of each colunﬁ?{}LlH(”,k:O, Kk
(P1, - PNy G1,--..0n). In general, the Hamiltoniakl ~ =1,... N, based on the conservation of the momentum. As
=3N 1 p#2+Uo(qy, - - . On) describes a one-dimensional a result, the matrix form oH(® becomes tridiagonal with

system obeying classical dynamics. In the Hamilton systemiwo corner elements as follows:

oyt T 0 e 0 —wiN
—wqo w1t w3 —wy3 0 0
)~ —wp3 Wyt wzy : , (2.3
0
0 — oy 1
— 1N 0 e 0 —wn-in on-int o

where the{H;;} are given by second partial derivatives of the previous repor{42]. As we noted in Sec. |, here we deal
total potential energy, with two types of a symbolic distribution that takes two val-
ues.(See Sec. lI.
Before closing this section let us introduce other matrix
B _52Utot(Q1, PN 24 forms which were not investigated [A2]. One of them is a
@i +17 3099 +1 ' @4 case in which all of the matrix elements of the Hessian are
random variables. Then the number of independent random
variables becomedN(N+1)/2 because of the symmetry.
See Refs[47,32 for details. This corresponds, for example, to a one-dimensional dy-
In the RMA matrix element$wj; ,}'s are i.i.d. random namical system with interaction between all particles, such
variables with an appropriate density function, such as unias a coupled map system with cosine potential except in the
form distribution in an interval — €/2,e/2]. € is a parameter conservation law48,33. We refer to this form of the Hes-
that controls the strength of the fluctuati@r randomnegs  sian matrix as form B and deal with it in Sec. VIII.
Moreover, we consider another case in which the diagonal Another matrix form comes from the tight binding model
elements are positive definite values, which corresponds toaf a quasi one-dimensional disordered system. The ‘Schro
typical high energy state in a one-dimensional dynamicabinger equation of the system ¥, ,:1+Voim-1TVn-1m
system. Indeed, we used a distribution raf@e] in our  +YV, . 10t VoY om=EV¥Yam, Where¥ ., Vom, andE are
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the wave function, the potential on the site,if), and the

€
energy of the system. The equation can be written in recur- 1/2$Xi<1_>Yi:§1 (3.2
sive form,
n where thee is the strength of the fluctuation.
Z(n)=H SNZ(0)=P(n)Z(0), 2.5 rLIIQnother symbolic sequence is given by the following
i=1 :
where (Z(n))t:(\l,nl, P !\I,anan—ll! P !Tn—lN)' In O$Xi<l/2_>Yi:€1
periodic boundary conditions the matrix forg’ is given as 3.3
- [EI=HO  —] _ _ _ _
S = | o/ (2.6) It is analytically shown that the correlation function of the

symbolic sequencgY;} decreases as a power law for large

where0 is anN-dimensional null matrixE denotes the en- [44],

ergy of an electron injected into the system from a perfect (Yni1Yy)~n~ (2 B)(B-1) (3.4

conductor on the left side, and(" is the Hamiltonian of the neLen

ith slice of the two-dimensional strip. The matrix form of |t is worth noting that wheiB<2 a normalizable station-
H® becomes tridiagonal with two corner elements as fol-ary distribution(invariant measupesxists; on the other hand,
lows: whenB=2 the sequence becomes nonstationary and a nor-

malizable measure does not exist when0 [44]. This prop-

Vie 1 o - 0 1 erty of the sequence strongly affects the convergence of the
1 V, 1 o --- 0 Lyapunov exponents for the system. As we will mention in
0 1 v 1 ... 0 Sec. IV, we numerically judged the converged Lyapunov

3 . @27 exponents even for the nonstationary redjidé]. However,
H oo e . we restrict our numerical computation withB<2.5, be-

1 0 0 --- 1 Vyu cause it is difficult for large values @& to detect the conver-

gent Lyapunov exponents. See Ref2] for more details of

] ] ) : the convergence. We confirmed that the mean value and
In this case the number of random variablesljgnd theS”  \ariance of the sequence we used in this paper are the same
becomes a symplectic matrix. We refer to this matrix form aSegardless of the parametBreven in the nonstationary re-

form C and deal with it in Sec. VIII. The PRM is directly gion.

related to conductance in a quasi-one-dimensional electroniC |t \was shown that the result does not depend qualitatively

system. See Ref$49—-57 for the details. _ on the difference betweefX;} and{Y;} in form A in our

Finally, in this paper we mainly treat some cases given by, eyious reporf42]. We mainly use symbolic sequences that
combinations of the three kinds of matrix form, i.e., A, B, {5xe only two values, 0 o¢ (type D and — €/2 or /2 (type

and C, and two kinds of symbolization rules, i.e., types 1 ancb)_ When we use PRMs with form A and the symbolization

H{ =

2. (See Table ). rule of type 1, we refer to it as case Al. In a similar way, we
use case B2 when matrix form B and the symbolization rule
lll. MODIFIED BERNOULLI MAP of type 2 are used.

In the case of form A, we generate the sequence of matrix
In this section we briefly review the modified Bernoulli elements agw!.,=Y,, n=1,2, ...}, by the sequence of
map and the statistical properties of the sequence. The maptise modified Bernoulli magY,} [43—45, where the differ-
B_1 B ent initial conditions of the map are used for each\oin-
X . = Xi+2°5 (1= 2b)Xi'+b (0<X;<1/2) dependent elements of an initial mattk®. In the case of
O X —2B Y (1-2b)(1-X)B+b  (l/2<X;<1), form B,N(N+1)/2 independent matrix elements of the sym-
(3.)  Metric matrix H™ are generated byH{"=H{"=Y,, n

) ) ) =1,2,...}, where the initial conditions are independent of
whereB is a bifurcation parameter that controls the correla—andj_ In the case of form C, th&l independent matrix ele-

tior_l of_ the sequenc?tl)zis the deterministic_ perturbation, ents are generated Hy,;=Y,,n=1,2, ...}, where the
which is set asb=_10 _only for_ B=2 in this paper. For jnitial conditions are independent pf

numerical simulationg is used in order to overcome the
difficulty that comes from nonstationarity. Stationarity is re-

covered by perturbation although the essential property re- V. LYAPUNOV EXPONENTS

mains invariant for a long timei<i,, where i,=(B In this section we give a definition of Lyapunov expo-
—1)"(2b)(*~BVB [43]. Moreover, the sequendgX;} can nents that is used in Secs. V and VI, and also give local
be symbolized by the following rule: Lyapunov exponents, which are used in Sec. VII. We define
local Lyapunov exponent§ \;],,i=1,...,N} for a finite
0=X,<1/2-Y,=— f, time interval7 (=mét) by means of 'ghe time evo!ution of_
2 eigenvalues of the real symmetric symplectic matrix
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FIG. 1. Lyapunov spectra for matrix dimensionl X
=8, 16, 32 in(a) case Al andb) case A2 withst=1 ande FIG. 2. (a) Lyapunov spectré(x)=\; and(b) scaled Lyapunov
=0.05. spectral g(X) =\; /N1 as a function ok=i/N in case Al for some
B’s with 6t=0.01 ande=5.
C,=Z(0)"P(7)TP(7)Z(0) as follows: A Case Al

1 Recall that in the RMA without correlation the scaled
_ = - Lyapunov spectra show the forby(x) =1—x in some mod-
Nl==I[I i(CHl, i=1,... N, 4.1 _
[Aile 27[ 0goi(Cl, S els[28]. Figure 2 shows Lyapunov specttdx) and scaled
Lyapunov spectra for various paramet&st e=5 and 6t
=0.01in case Al. It follows that the effect of the correlation
appears in the shape of the Lyapunov spectrum. It is shown

nents in decreasing order. g ;
i . o in Fig. 2(b) that the shape of the spectrum gradually deviates
Instead of the Gram-Schmidt orthogonalizaticBSO) from the linear formLg(x)~1—x with increasing correla-

method, we used the Householder QR-based method in ord%n In the stationary regionB<2), the form of the

o Selcuate the Lyapunor exponents wch s Dtter 1 2L yapunow spectum does o oeatly depend on he strengt
f the correlation and it is approximately linear, especially

method[53,54. We also got local Lyapunov exponents by 4roundx~1. As B increases all of the Lyapunov exponents
direct calculation of the singular values of the matrix prod-increase. This behavior means that the correlation enhances
ucts. all of the indices of instability. Similar phenomena concern-
ing the MLE have been observed in a one-dimensional dis-
ordered system with correlated diagonal disorfds.

Moreover, in the nonstationary regioB%2) the MLE

In this section, we investigate the Lyapunov exponents\; increases with increase of the correlation param@t€n
L(x)=\; and the scaled Lyapunov exponentss(x) the other hand, the smaller Lyapunov exponents
=\i/\, as a function ok(=i/N) for cases Al and A2. We An-1,An-2, ..., With values near zero\(~0), begin to
restrict our numerical computation within the ceBe=2.5, ~ decrease whes becomes relatively largébeyond 2. The
because it is difficult to detect numerically convergentChange of shape di(x) with increasingB is quite interest-
Lyapunov exponents for large values & (See Refs. ing. It seems that the correlation doe; not make all of the
[47,42.) We confirmed that the form of the Lyapunov spec- Lyapunov exponents smaller_monotqn]cally, and allows the
tra for N=16 is almost the same as for the larger dimen_smaller Lyapunov exponents in the vicinity of zero decrease
sional matrix N=32) in Fig. 1. Accordingly, we mainly use and approach zero.
N=16 in order to reduce the computation time. The conver-
gence of the Lyapunov exponents as a function of tinteas
been numerically confirmed for matrices in all cases we in- Figure 3 shows Lyapunov spectra(x) and scaled
vestigated. Lyapunov spectrd_g(x) for various parameterB at fixed

where ;(-) denotes thath eigenvalue. We set the expo-

V. LYAPUNOV SPECTRA

B. Case A2
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FIG. 3. (a) Lyapunov spectra (x) =\; and(b) scaled Lyapunov
spectral g(x) =\;/\4 as a function ok=i/N in case A2 for some FIG. 4. Log-log plot of the fluctuation strength dependence of
B’s with 6t=0.01 ande=5. the MLE X\ (€) for someB'’s in case Al withét=0.01. The lines

denoteh ;. e* and\ ;%2

strength of the fluctuatioe=5 andst=0.01 in case A2. In

the region KB<3/2 the functional forms of the scaled tem. We reconsider the correlation effect on the localization
Lyapunov spectra are almost the same, and similar to thdéngth in Secs. VIII and IX. We can expect that one impor-
observed in the RMA, i.e., linear ir, independent of the tant perspective on interesting phenomena can be obtained in
correlation of the sequence. On the other hand, in the regioanalyzing the evolution of the Lyapunov vectors.

B>3/2 and in the nonstationary regiol%2) the func-

tional form of the scaled Lyapunov spectra has a character- VI. SCALING FORM OF THE MLE

istic form depending onB, and the form gradually ap-

proaches a hyperbolic function with increase of the In this section we present thedependence of the MLE
correlation strengttB. N1(€) in the cases Al and A2. In the RMA, the scaling form

~ B
C. Summary Ai(e)~e (6.3)
In the stationary region, the enhancement of all thewith g=2/3 for (wj,,)#0 and B=1/2 for {(wj;,1)=0,
Lyapunov exponents is related to the correlation of the sewhere(:--) means the average of i.i.d. variables, has been
quence. A deviation from linear behavior aroungdhas been  derived by some analytical methofikl,12,3.
reported in some dynamical systems with strong correlation.

Unfortunately, we are not able to give an analytical result for

. . i - A. Case Al

the correlation-enhanced instability observed in cases Al

and A2. The € dependence of the MLE for case Al witht

The behavior of the positive and smallest Lyapunov ex-=0.01 is shown in Fig. 4. We compare the results for the
ponent observed for the nonstationary region in cases Al ané-correlated case with those obtained from the modified Ber-
A2 is very important when we consider this phenomenon imoulli map. WherB=1.1 a clear scaling rule,;= €', can be
the context of a dynamical system with correlation. It sug-observed. The slope of thedependence decreases and ap-
gests that a few variables contribute to the instability on gproaches one-half &8 increases. As a result, a similar scal-
short time scale, and the others yield a very slow dynamicsng law to Eq.(6.1) with 1/2< <1 is observed foB in the
We confirmed that in cases B1 and B2 similar results tcstationary regiorB<<2. It is also found that the depen-
cases Al and A2 could be obtained. dence gradually deviates from linear behavior and shows de-

Moreover, when we consider the Lyapunov spectra froncreasing slope in the relatively largeregion.
the point of view of the localization problem, the phenomena On the other hand, in the nonstationary regi@&»2) the
are also interesting. The positive and smallest Lyapunov exMLE \(€) shows a different type of scaling,(e)~ €”, in
ponent determines the localization length in a disordered syswhich the slopeB gradually decreases and simultaneously
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FIG. 5. Log-log plot of the fluctuation strength dependence of 0.04 -
the MLE \(e€) for someB’s in case A2 with6t=0.01. The lines 002
denotex ;> €3 and \ ;< €2 :
0.00

the value of the MLE decreases for increasig

We can guess that the order of the MLE wBhwill be
changed at smalk, based on extrapolation of the scaling
form in Fig. 4b). It is worth noting that we can say that
correlation enhances the instability only at relatively small
values ofe.

FIG. 6. Probability distribution of local maximal Lyapunov ex-
ponentsP([\,],) for some typicalr (=4tm) at (a) B=1.3, (b)
B=1.7, and(c) B=2.0 in case Al withst=0.01 ande=5.

distributed over the initial conditions. In this section, we in-
vestigate the probability distribution of local Lyapunov ex-
Figure 5 shows the fluctuation strength dependence of thgonents for cases A1, A2, B1, and B2. We pay particular
MLE \y(e) in case A2 withst=0.01. As seen in case AL, it attention to the change of location of peaks and the conver-
seems that on a logarithmic scale thelependence shows gence properties of the probability distribution. Falcioni
good linear approximation and the slope slightly decreases g3 5 jnvestigated the convergence of the probability distri-

the correlation increases in the stationary regiBRe@). As tion of the MLE in a high-dimensional symplectic map

we might expect, on a logarithmic scale, a clear scaling Iav\fSS]. The coupling strengtl dependence of the convergence

X\~ 2%, which is similar to the case of the RMA, is observed yjth respect tom was reported.

for B=1.1. This is a different feature of the case A2 from the

case Al. Note that the sequence generate@®byi.0, i.e.,

the Bernoulli map, has the same KS entropy mathematically A. Case Al and B1: Maximal Lyapunov exponent

as random coin tossingl6). In Figs. 6 and 7, probability distributions of local MLEs

As a result, we observed clear scaling lawge)~ e” . 7 ;
depending on the correlation, in which the expong@ribkes .P(D‘l]T) for some _typ|calr [=otm, where them is th.e
terval used to decide the local Lyapunov exponents,me.,

intermediate values between 2/3 and 1/2 in the stationar) h ber of X in B 1 h ¢ 5
region. On the other hand, in the nonstationary regiBn ( S the number of matrices in E(2.1)], are shown for(@)
=1.3,(b) B=1.7, and(c) B=2.0 for cases Al and B1, re-

>2) the correlation does not affect the scaling form of the ! it : T
ectively. The ensemble size is 40000, i.e., the probability

MLE X\, strongly. In case B2 almost the same phenomena a3P¢Cc!Vé )
in case A2 were observed as the correlation increases. distributions are made from an ensemble of 40 000 different

initial conditions for each independent matrix element.
It is found that in the case dB=1.3 the form of the
distribution is Gaussian independent of the vatneNote
When a product of a finite numben of matrices is con- that in the case of random symplectic matrix products the
sidered, the corresponding local Lyapunov exponents arprobability distribution form for Lyapunov exponents has

B. Case A2

VII. DISTRIBUTION OF LOCAL LYAPUNOV EXPONENTS
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FIG. 7. Probability distribution of local maximal Lyapunov ex-
ponentsP([\,],) for some typicalr (=46tm) at (a) B=1.3, (b)
B=1.7, and(c) B=2.0 in case B1 withvt=0.001 ande=5.

begn analytlcal.ly derived by some methods, such as pertur- FIG. 8. Log-log plot of standard deviation of the probability
_batmn[8], functional equa’_[lon_E56,57_|, and so orj24]. O_W' distribution as a function of time intervah in case(a) A1 and(b)
ing to the CLT the fluctuation is generally well approximated g The lines are the linear least-squares fits forrthgependence.
by a Gaussian distribution if-correlated PRMs. As a result,

the convergence of the probability distribution obeys B. Case A2 and B2: Maximal Lyapunov exponent

~m~ Y2 with respect tam. , o
As B=1.3 is relatively small, the statistical properties of _In Fig. 8 the d|str|Eut|on_s of local MLE®([A,],) for
the sequence are similar to thoseseforrelated case. On the B=1.2, B=1.5, andB8=1.8 In the case A2 are shown. The
other hand, as we can see in Figoand Fig. Tc) for larger spiky peaks on the b.road distribution at sma_llare due to
L the small ensemble size. When we pay attention to the global
V?"“es ofB the distribution shows anomglogs structure €SPC%eature of the distribution form, the peak structure and the
c!all)_/ at_smallim. Some sharp pgaks exist in the prob_ab|llty convergence properties of the probability distribution are
distribution with a broad peak in the center, andmsn-  gimilar to the ones obtained in cases Al and B1. In particu-
creases the sharp peak is absorbed in the broad peak apd for caseB=1.9 a multipeak structure is clearly observed,
disappears. The origin of the sharp peak at swalb due to  anqg the shape of the probability distributions is different
products of identical matrices generated by the almost periyom Gaussian. But in order to confirm the details of the
odic sequence. functional form of the distribution, a much larger ensemble
In Fig. 8 them dependence of the standard deviationf s necessary in cases of larger paramBtaiVe observed that
the distribution is shown in order to estimate the speed ofhe distribution of the local MLEs in case B2 is almost
convergence of the distribution with regard to increasenof Gaussian even fd8=1.8.
The distribution converges with increasingwith a drift of Figure 10 shows then dependence of the standard devia-
the mean valueg\,),,. The speed of convergence of the tion of the probability distribution of MLEs in cases A2 and

m-dependent mean value becomes slowerBagecomes B2. The qualitative structure of the convergence is similar to
larger. that for A1 and B1. We try to characterize the slow conver-
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FIG. 9. Probability distribution of local maximal Lyapunov ex- 3
ponentsP([\,],) for some typicalr (=étm) at (a) B=1.2, (b) .
B=1.5, and(c) B=1.8 in case A2 with5t=0.01 ande=5. 2

gence for largeB. In Fig. 11 we show the convergence index
«;(B) of the distribution of the local Lyapunov exponents
which is defined by the change of the standard deviation,

FIG. 10. Log-log plot of standard deviation of the probability
" distribution as a function of time intervah in case(a) A2 and(b)
B2. The lines are the linear least-squares fits fornthdependence.
=((AN) D) g~m (B, 7.1 o . .
o=\((Ax)%)q 7.1 peak of the distributiorP([\,z],) gradually disappear with
increase of them. In case A2 the whole structure of the
ponent «; corresponds to distribution of théth local ~ Convergence is similar to that for case Al. Figure 14 shows

Lyapunov exponenk,; . We used linear least-squares fitting the probability distribution of the local fiftgenth largest
for the data in Figs. 8 and 10. The index decreases with Lyapunov exponent®([Ays],) for case B2. Unlike the other
increase of the paramet& The slow convergence in the C2S€s,a double-peak structure is not observed even for large

distribution of the MLEs is based on anomalous statisticai"aﬂues ofB at smalim. Figure 14c) shows that in the case
properties of the modified Bernoulli map. In the next subsecB=2-3 the probability distribution shape does not change for

tion we investigate the other Lyapunov exponents in caseficrease ofm.
A2 and B2. Figures 15 and 16 show ttme dependence of the standard

deviation of the distribution of some Lyapunov exponents in
some cases. A linean dependence is observed for some
cases in case B2. In Fig. 17 the indiceg B) and «45(B) of

In Figs. 12 and 13, distributions of the local seventh andthe convergence as a functioBsestimated by least-squares
fifteenth largest Lyapunov exponent®([A;],) and fitting using Eq.(7.1) for the standard deviation of the dis-
P([N1s5],) for case A2 are shown. The distributions are nottribution, are shown. The case Bf= 1.1 obeys the CLT, i.e.,
smooth, and in some cases the singular-peak structure ig=0.5 approximately. A$ increasesy decreases because
clearly observed. In particular, the narrow peak on the lefof the correlation effect. Accordingly, the correlation
side of the main broad peak grows gradually with increase o§trongly affects the convergence properties of the probability
m in case A2 withB=1.5. On the other hand, Fig. (3 distribution function of not only local MLEs but also the
shows that the sharp peaks on the right side of the broadther local Lyapunov exponents.

where(- - - )5 means the ensemble average, anditheex-

C. Case A2 and B2: The other Lyapunov exponents
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FIG. 11. The indexe; as a function ofB, estimated by the
convergence of the standard deviation in cases(éden circles
and B2(open squares

We recall that similar features for the probability distribu-

tion of Lyapunov exponents exist in other systems. When we
investigated the distribution of Lyapunov exponents in 2

X2 PRMs with correlation in the problem of a one-

dimensional disordered system, a double-peak structure

1 i 1 !

) _

020 L (a) case A2, . B=12
: e =25

50
100
200

0.154 oo

0.10

0.05 -

x107°

x107

FIG. 12. Probability distribution of local maximal Lyapunov
exponentsP([\;],) for some typicalr (=4tm) at(a) B=1.2,(b)
B=1.5, and(c) B=1.8 in case A2 with5t=0.01 ande=5.
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(a) case A2,A5, B=12 |

—— m=25
50
100
200

v
=]

7\‘15

FIG. 13. Probability distribution of local maximal Lyapunov
exponentd([\5],) for some typicalr (=6tm) at(a) B=1.2,(b)
B=1.5, and(c) B=1.8 in case A2 with5t=0.01 ande=>5.

could be clearly observed in the distribution, and the distri-
bution form had slow convergence for 3{B<2 [36].

In a 5-correlated disordered system, the differential equa-
tion obeyed by the probability distribution function of con-
ductance has been derive®]59,60. As a result, the conver-
gence of the distribution obeys a standard CLT for the limit
of large system size. However, correlation effects obeying
power-law decay in the Lyapunov exponents and the scaling
property of\;(e) are still open problems.

VIIl. CASE C2

In this section, we show some numerical results for the
Lyapunov spectra, scaling form of the MLE, and conver-
gence properties of the distribution of local MLEs in case
C2.

Figure 18 shows the Lyapunov spectrég) for someB’s
in case C2 at=0.01 andE=0. The energy of the electron
corresponds to the band center of the two-dimensional sys-
tem. In the figure &-correlated case with uniform distribu-
tion in [ —0.01,0.0] is added as a reference. In comparison
with the &-correlated case all of the Lyapunov exponents
decrease. The structure of tBalependence is similar to that
in the case A2 except that some Lyapunov exponents are
zero regardless of the strength of the correlation. The second
largest Lyapunov exponerX, determines the localization

026203-10
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FIG. 14. Probability distribution of local maximal Lyapunov
exponentd([\5],) for some typicalr (=46tm) at(a) B=1.1,(b)
B=1.9, and(c) B=2.3 in case B2 withvt=0.01 ande=5.

FIG. 15. Log-log plot of standard deviation of the probability

) ) ) _distribution (a) P([A;],) and (b) P([\15],) as a function of time
length as shown in Fig. 18 because it does not vanishpiervalmin case A2.

Roughly speaking, it seems thej decreases as the correla-

tion strength increases. . :
Figure 19 shows the fluctuation strength dependence c}fa for the correlated cases are different from that obtained

the MLE \(€) for someB’s in case C2. Az increases, the from S-correlated random matrices. In the §tationary r'egion
MLE changes from some positive value to another positivd B<2) all of the Lyapunov exponentg\;} increase with
value at some critical value, that depends on the correla- increase of the correlation parametrOn the other hand,
tion parameteB. The largere, becomes, the larger is param- the value of the smaller Lyapunov exponents aroundl
eterB. In other words, this system has a transition. The rebegins to decrease wh&hbecomes relatively largébeyond
lation between the existence of the transition and the) in the nonstationary regiorB=2).
localization problem is very interesting. The localization (2) In case Al the slope of the dependence decreases
property is strongly related to a singularity in the density offrom unity and approaches one-half Bsincreases. As a
states[16]. Accordingly, to make it clearer, further investi- result, similar scaling laws to E¢6.1) with 1/2<8<1 are
gations are necessary in a wider parameter range. The resufiBserved for anyd in the stationary regioB<2.
will be reported elsewhers8]. (3) In case A2, the: dependenci; (¢€) also shows a good
linear approximation on the logarithmic scale and the slope
decreases as the correlation increases in the stationary region
(B<2).Inthe case oB=2, a clear scaling law witjg=1 is

We have systematically investigated the Lyapunov specebserved, which is different from those derived from the
tra, scaling form of the MLE, and convergence properties oRMA.
the probability distribution of local MLEs in correlated (4) In cases Al and A2, for larger values Bfthe prob-
PRMs with long-range correlation, which is generated by aability distributions show multipeak structures especially at
modified Bernoulli map. The results we obtained in thesmallm, where a sharp peak corresponds to the almost peri-
present investigation are summarized as follows. odic sequence generated by the map. The probability distri-

(1) In cases Al and A2, the forms of the Lyapunov spec-butions converge with increasing with drift of the mean

IX. SUMMARY AND DISCUSSION
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FIG. 17. The indexx; (open circles and a5 (Open squargsas
a function ofB, estimated from convergence of the standard devia-
tion in case B2.

Lyapunov spectra_(x) and Lg(x) and squeezing of the
Lyapunov spectra neax~0 as the correlation of the se-
quence increases. If we express the situation with words in a
dynamical system, this suggests that a few variables contrib-
ute to chaotic motion on a short time scale, while all the
others yield a very slow dynamics. In other words, the first
chaotic behavior is confined to a low-dimensional manifold.
There is controversy about exponential localization in
two-dimensional disordered systefigd]. The simple scaling
theory concludes that in the two-dimensional disordered sys-
tem almost all of the eigenstates are exponentially localized
[62]. However, some experimental and theoretical reports
suggest the existence of nonexponentially localized states
when the strength of disorder is smg#hi3,64. The relation
between the existence of the “pseudo mobility edge,” which

value. Qualitatively, the speed of convergence becomes
slower asB becomes larger.

(5) In cases A2 and B2, the distribution of local maximal
Lyapunov exponent®([A1],) shows the multipeak struc-
ture also. The shape of the distributions is different from
Gaussian for larg®. The convergence index;(B), which
characterizes the slow convergence of the probability distri-
bution, becomes small with increase &f

(6) In cases A2 and B2, the distribution forms for the
local seventh and fifteenth largest Lyapunov exponents
P([A;],) and P([Ay5],) show slow convergence, i.eq;
and a5 are less than one-half, which would correspond to
the §-correlated case. Correlation strongly affects the con-
vergence properties of the distribution functions of not only
the local MLEs but also the other local Lyapunov exponents.

(7) In other cases, the Lyapunov spectra, scaling form of
the MLE, and convergence properties of the probability dis-
tribution of local MLEs have also been investigated, and
some similar features to those of cases Al and A2 have been
observed.

25x10

-3

20

15 4}

L(x)

10

[ A

_ . _ o FIG. 18. Lyapunov spectria(x) =\; as a function ok=i/N in
We would like to mention some physical meaning in thecase C2 for som®’s with e=0.01. A -correlated case with uni-
results. We observed deviation from the linear form inform distribution in[ —0.01,0.0] is added as a reference.
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in analytical derivation of the interesting phenomena caused

1800} by correlation. We can construct other models for the PRM

1600 B=1.1 with correlation by using a sequen¢¥;} generated by a
s B=1.3 modified Bernoulli map. First we prepare two kinds of sym-
o 14004 gj-? plectic matricesA andB, for which the matrix elements are
| =1.
B=1.9

set as in forms A, B, or C. The correlated products of the

m

1200 matricesll" ;M; are created by the rule

001° *fo1® "1 ? "y 1/2=X<1-M;=B.

9.7

Then analytical treatment for the Lyapunov exponents will
FIG. 19. Log-log plot of the fluctuation strength dependence ofbe easier than for those used in this paper, because the se-

the MLE \4(¢€) for someB’s in case C2 withe=0.01. guence can be well approximated by a renewal prop&3s

We will try to do this elsewhergs8].

divides power-law localizations from exponential ones, and.FUrther systematic investigation of the relation between
the Lyapunov spectra and thedependence of the MLE in the Lyapunov exponents and matrix form and/or correlation

case C2 is very interesting. Even in disordered electronid? € Products is necessary too. Moreover, there are other

system correlations are often present and may play an impopjterestlng problems concerning the Lyapunov exponents of

tant role. It can be said that we confirmed the effects of théhe produgts of matrices Wit.h correlation, such as the effect
spatial correlation on localization length of the wave func—Of correlat_lon between matrix elements_ on Lyapunov expo-
tion. nents, which has not been included in the present study.
The positive and smallest Lyapunov exponents correMany problems are open for future study.
spond to the inverse of the localization length. The correla-
tion of the matrix sequence, in general, works to enhance
delocalization. As expected, it was found that the presence of We would like to thank Dr. Y. Y. Yamaguchi and Profes-
correlation between impurities in the Anderson model leadsor T. Konishi for discussions. We also thank Professor M.
to an enhancement of delocalization at the band center eiGoda for useful comments and encouragement. H.Y. would
ergy. To make clearer the localization property, further sysiike to thank Professor M. Wilkinson for his hospitality dur-
tematic investigations are necessary for larger random matring a stay in the University of Strathclyde. Numerical com-
ces. putation in this work was carried out on the computer system
Unfortunately, at the present stage we have not succeeded the National Institute of Materials and Chemical Research.
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