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Percolation, Bose-Einstein condensation, and string proliferation
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The close analogy between cluster percolation and string proliferation in the context of critical phenomena
is studied. Like clusters in percolation theory, closed strings, which can be either finite-temperature worldlines
or topological line defects, are described by a distribution parametrized by only two exponents. On approach-
ing the critical point, the string tension vanishes and the loops proliferate, thereby signalling the onset of
Bose-Einstein condensation~in the case of worldlines! or the disordering of the ordered state~in the case of
vortices!. The ideal Bose gas with modified energy spectrum is used as a stepping stone to derive general
expressions for the critical exponents in terms of the two exponents parametrizing the loop distribution near
criticality.
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I. INTRODUCTION

The quest for a geometrical description of phase tra
tions has a long history going back to ideas first put forw
by Onsager@1# in the context of thel transition in liquid
4He. The relevant geometrical objects in this transition
topological line defects. The description envisaged by O
sager is one entirely in terms of these one-dimensional
jects, with their geometrical properties such as fractal dim
sion and configurational entropy. The phase transition
characterized in this picture by a fundamental change in
typical string size. Whereas in the superfluid phase only
nite strings are present, at the critical point infinite strin
appear—similar to the sudden appearance of a percola
cluster in percolation phenomena at criticality.

The analogy between percolation of clusters and pro
eration of strings has been noted by various authors@2–5#.
As we will see, it derives from a similarity in the cluster an
string distribution. Both have the same form containing t
factors, one related to the entropy of a given cluster or str
configuration and the other related to the Boltzmann wei
assigned to the configuration. Close to criticality, each
these factors is parametrized by a single exponent.
specifies the algebraic behavior of the distribution at critic
ity, while the other describes how the Boltzmann factor ten
to unity upon approaching the critical point. Physically, t
unity of the Boltzmann factor implies that clusters or strin
can grow, and thus, gain configurational entropy without
ergy cost. When the Boltzmann factor is not unity, the cl
ters and strings are exponentially suppressed. In the con
of strings, the transition between a phase consisting of fi
strings only and one having infinite strings, is called a Ha
dorn transition. We will refer to the appearance of infin
strings as proliferation.

A central position in our arguments is taken by an id
Bose gas with modified energy spectrum. The reason is
although noninteracting, the model has nontrivial critical e
ponents, which are known exactly, while at the same tim
can also be mapped onto a loop gas of worldlines in an e
way. The worldlines form closed loops, because in the
sence of external fields and sources they cannot termina
the system. The map onto the loop gas allows us to con
1063-651X/2001/63~2!/026115~11!/$15.00 63 0261
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the critical exponents of the phase transition to the two
ponents parametrizing the worldline loop distribution ne
criticality. Using general scaling relations, these results
then be generalized to interacting loop gases represen
statistical models. Each universality class is defined b
loop distribution with specific values for the two exponen
from which all the critical exponents follow.

To close the circle, the resulting loop gas description
critical phenomena can also be applied to phase transit
involving ~interacting! vortex loops—like thel transition in
liquid 4He. As for worldlines, vortices cannot terminate
the system, and therefore, form closed loops too. When
word string is used in the following, the two different on
dimensional objects worldlines and vortices should be k
in mind.

As an aside, we believe that the theory of vertex lo
gases discussed here has also a bearing on homogen
superfluid turbulence.

The paper is organized as follows. In the next sect
those essentials of percolation theory are recalled, wh
later on in the paper become important to establish the c
nection with the proliferation of strings. In Sec. III, Bose
Einstein condensation in an ideal Bose gas with a modi
energy spectrum is studied from the perspective of wo
lines. In Sec. IV, numerical work on random string networ
is discussed in relation to uncorrelated percolation, follow
by a discussion of correlated percolation in Sec. V. In S
VI, thermal phase transitions are formulated in terms of p
liferating worldlines. In Sec. VII, a similar formulation is
discussed for phase transitions involving proliferating vo
ces. The paper ends with conclusions in Sec. VIII.

II. REVIEW OF SITE PERCOLATION

In this section, we briefly recall some basic aspects
percolation theory@6# that are important for our purpose
Consider a lattice, with each lattice site being randomly
cupied with a probabilityp, say, independent of its neigh
bors. Islands of next-neighboring occupied sites form cl
ters. The properties of these clusters as a function ofp form
the subject of percolation theory—or more precisely, ofun-
correlatedpercolation theory because the occupations of d
©2001 The American Physical Society15-1
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ferent lattice sites are uncorrelated. Asp increases, cluster
become bigger, and at some critical valuepc , a cluster span-
ning the entire lattice first appears. Near this percolat
threshold, various quantities show power-law behavior.
for thermal critical phenomena, this behavior can be cha
terized by a set of critical exponents of which two are ind
pendent.

Of interest to us is the so-called percolation stren
P(p);(p2pc)

bper defined forp.pc as the probability that a
randomly chosen site belongs to the percolating cluster,
average cluster sizeS(p);upc2pu2gper, and the correlation
length j(p);upc2pu2n. We give some quantities a sub
script ‘‘per’’ to avoid confusion later on, where similar, bu
different quantities appear. The percolation strength is an
gous to the magnetization in spin models, while the aver
cluster size corresponds to the magnetic susceptibility.

The number density of clusters having sizes, i.e., with s
occupied sites, is assumed to be distributed according to

l s~p!}s2t exp~2cs!, ~1!

where the coefficientc vanishes with an exponent 1/s when
the percolation thresholdpc is approached from below,c
}(pc2p)1/s. At criticality, the cluster distribution become
l s(pc)}s2t and falls off algebraically. This factor measur
the configurational entropy of clusters, while the exponen
is a Boltzmann factor. Together with the so-called Fish
exponentt, the exponents determines the critical exponent
such asbper, gper, andn through scaling relations.

In terms of the cluster distributionl s , the average cluste
size is given by

S~p!5

(
s

s2l s~p!

(
s

sls~p!

, ~2!

where only finite clusters are included in the sum. To und
stand thatS thus defined indeed is a measure for the aver
cluster size, note that the combinationsls(p) in the denomi-
nator is the probability that a randomly chosen site belo
to a cluster of sizes. When summed overs, this gives the
probability that the randomly chosen site belongs to a clu
of arbitrary ~finite! size. The ratiosls(p)/(ssls(p) is there-
fore the probability that the cluster to which the random
chosen site belongs is of sizes. When this ratio is multiplied
with the cluster size and summed overs, one obtains indeed
a measure of the average cluster size. With the explicit
pression forS, one easily finds that

2gper5
t23

s
. ~3!

For later reference, recall that the susceptibility also equ
the integral over the correlation functionGper(x) of the sys-
tem under consideration. Because of Eq.~2!, one finds for
percolation
02611
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Gper~x!}(
s

s2l s~p!, ~4!

where the sum(x is over all lattice sites. Physically,Gper(x)
is the probability of finding at a distancex from the origin an
occupied site belonging to the same cluster as the or
does. At criticality, it has ind space dimensions the algebra
behavior

Gper~x!;
1

xd221hper
, ~5!

with hper a critical exponent.
To obtain a similar expression for the percolation stren

as given in Eq.~2! for S, one uses the identity

p5P~p!1(
s

sls~p!, ~6!

stating that an occupied site either belongs to the percola
cluster or to a finite one. Hence, forp.pc ,

P~p!;2(
s

sls~p!, ~7!

and

bper5
t22

s
. ~8!

Below the percolation threshold,P(p)50, so that the iden-
tity becomesp5(ssls(p).

Given the analogy with spin systems, it should be poss
to define a partition functionZ from which the percolation
strength~magnetization! and the average cluster size~sus-
ceptibility! can be obtained by differentiation. Indeed, wi
the definition

ln~Z!}(
s

l s , ~9!

one finds

P5
] ln~Z!

]c
, S5

]2 ln~Z!

]c2 , ~10!

as required by the analogy. Physically, ln(Z) denotes the tota
number density of finite clusters.

The two critical exponentsgper andbper can be related to
the critical exponenta characterizing the algebraic behavi
of ln(Z);upc2pu22a close to the percolation threshold as fo
lows:

22a5
t21

s
52bper1gper. ~11!

On dimensional grounds, one expects that near the perc
tion threshold ln(Z);j2d;up2pcudn, so that one arrives at th
hyperscaling relation
5-2
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dn522a, ~12!

involving the dimensionalityd of the lattice. In the context o
thermal critical phenomena, relations~11! and ~12! are
known as Rushbrook’s and Josephson’s scaling law, res
tively. A hyperscaling relation in general breaks down at
upper critical dimension. Beyond the upper critical dime
sion du , the critical exponents are locked in their values
d5du . For percolation, as we will see below, the upp
critical dimension isdu56.

Another scaling relation between the various critical e
ponents is obtained from the expressions~4! and~5! involv-
ing the correlation function. Usingj as lower cutoff in the
integral, one finds

gper5n~22hper!, ~13!

which in the context of thermal-phase transitions is known
Fisher’s scaling law.

The correlation length exponentn is known to have a
geometric meaning, being related to the Hausdorff, or fra
dimensionD at criticality. The latter can be defined throug
the average squared distance between the sites of a clu

Rs
25

1

s (
i 51

s

~xi2 x̄!25
1

2s2 (
i , j 51

s

~xi2xj !
2, ~14!

with Rs the so-called radius of gyration, andx̄
5(1/s)( i 51

s xi the center of mass of the cluster with its sit
at xi , as

Rs;s1/D ~15!

for large enough clusters. A standard definition of the cor
lation length in terms of the correlation functionG(x), with
x5uxu, reads

j2}

(
x

x2G~x!

(
x

G~x!

. ~16!

It measures the average distance between two sites in
same cluster. Because of the observation~4!, this definition
can be transcribed in terms of the cluster distribution as

j2}2
(

s
Rs

2s2l s~p!

(
s

s2l ~p!

. ~17!

With Eq. ~15!, the relation between the correlation leng
and the fractal dimension is then easily found to be

1

D
5ns. ~18!
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Combined with this relation, the hyperscaling relation~12!
leads to the well-known expression for the Fisher exponet
in terms of the fractal dimension,

t5
d

D
11. ~19!

Using a Flory-type@7# argument known from polymer phys
ics and the theory of self-avoiding walks@8#, de Gennes@9#
estimated the fractal dimension for uncorrelated site perc
tion to be

DdG5~d12!/2. ~20!

In Fig. 1, the Fisher exponentt with this estimate is com-
pared with numerical (d53,4,5) and analytic (d52,6) re-
sults taken from Ref.@6#.

Considering Eq.~4! at criticality with a long-distance cut
off xmax5L, corresponding tosmax5LD, we obtain a relation
between the fractal dimension and the critical exponenthper
characterizing the algebraic behavior~5! of the correlation
function,

D5 1
2 ~d122hper!. ~21!

The de Gennes’s estimate~20! is equivalent to settinghper to
zero here.

To determine the upper critical dimension, it is prudent
consider uncorrelated percolation on a Bethe lattice, whic
exactly solvable. Because of the absence of closed path
such a lattice, it mimics an ordinary lattice with high dime

FIG. 1. The Fisher exponentt and the exponents parametrizing
the cluster distribution of uncorrelated site percolation as funct
of the dimensionalityd of the lattice. The points represent resu
@6# obtained by lattice simulations (d53,4,5) and analytic method
(d52,6), while the line in the top panel is based on de Genne
estimate~20! that can be given for any dimension 2<d<6, not just
integer values.
5-3
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sionality, where one expects the same critical behavior a
the upper critical dimension. The cluster distribution on
Bethe lattice is given by Eq.~1! with t5 5

2 and s5 1
2 , cor-

responding to the critical exponents

a521, bper51, gper51, n5 1
2 hper50, ~22!

and the fractal dimensionD54. These values are consiste
with the scaling laws ind56, which can thus be identified a
the upper critical dimension.

To summarize, percolation near criticality is specified
the two exponentss and t parametrizing the cluster distri
bution, both of which are related to the fractal dimensionD
via Eqs. ~18! and ~19!. Given the value oft and s, the
critical exponents can be obtained using scaling relatio
Specifically,

a522
t21

s
, bper5

t22

s
, gper5

32t

s
,

hper521d
t23

t21
, n5

t21

ds
, D5

d

t21
. ~23!

III. IDEAL BOSE GASES

In this section, we wish to point out a close analogy b
tween percolation and Bose-Einstein condensation in
ideal Bose gas. The partition functionZ, describing this sys-
tem ind space dimensions, can be written as an integral o
momentum as@10#

ln~Z!52VE ddk

~2p!d ln~12e2E~k!/kBT!, ~24!

ignoring thek50 contribution. In Eq.~24!, V is the volume
of the system, whileE(k)5k2/2m2m is the single-particle
spectrum, withm the mass of the particles andm the chemi-
cal potential that accounts for a finite particle number d
sity. In deriving this, the time coordinate was analytica
continued to the imaginary axis, where it becomes a cy
variable taking values only in the interval@0,\/kBT#, with
kB Boltzmann’s constant. After a Taylor expansion of t
logarithm, the partition function takes the familiar form of
fugacity @5exp(m/kBT)# series@10#

ln~Z!5
V

ld (
w

l w , ~25!

where

l w~T!5w2t exp~mw/kBT!, ~26!

with t5d/211 andl5\A2p/mkBT the de Broglie therma
wavelength.

The correlation functionG(x) written as a sum overw
reads

G~x!ª(
w

Gw~x!5
1

ld (
w

wlw expS 2
px2

l2wD , ~27!
02611
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so that

G~0!5
1

ld (
w

wlw ~28!

and

E ddx G~x!5(
w

emw/kBT, ~29!

where the left side of the last equation denotesG̃(0), with
G̃(k) indicating the Fourier transform ofG(x). Physically,
the correlation functionGw(x) denotes the probability for a
Brownian random walk starting at the origin to end up a
distancex from the origin afterw steps, whileGw(0) denotes
the probability for the random walk to return to its startin
point afterw steps.

As last quantity, we need the correlation lengthj that is
given by j25l2kBT/(24pm), i.e., j}m21/2, as also fol-
lows from definition~16!. The chemical potential is negativ
in the normal state and vanishes on approaching the cri
temperatureTc , which is determined by the condition

n5G~0!um50 , ~30!

wheren is the particle number density. This equation is va
for anym,0 and thus for any temperatureT.Tc . However,
it starts to break down at the critical temperature where
condensate starts to form in thek50 state, which has bee
ignored in Eq.~24!. The critical temperature is, in othe
words, the lowest temperature where this equation is
valid. From the criticality condition it follows that upon ap
proaching the critical temperature from above, the chem
potential tends to zero in ad-dependent way asm(T)
;2(T2Tc)

2/(d22). Below this temperature, in the con
densed state, the chemical potential remains zero. Thed de-
pendence here distinguishes an ideal Bose gas from a Ga
ian theory, wherem tends to zero asm(T);uT2Tcu
irrespective of the dimensionality. The critical exponents
an ideal Bose gas, which can be extracted from the inform
tion given above, areb51/2, n51/(d22), and g52/(d
22). As noted a long time ago by Gunton and Buckingha
@11#, these exponents are the same as for the spherical m
in d dimensions. This model corresponds to the limitn→`
of the O(n) spin model.

They continued to show that an ideal Bose gas with
modified energy spectrume(k)}kD, is in the same univer-
sality class as the spherical model with long-range inter
tions considered by Joyce@12#. The critical exponents for
D,d<2D, with d52D the upper critical dimension, ar
given by

a5
d22D

d2D
, b5 1

2 , g5
D

d2D
,

n5
1

d2D
, h522D. ~31!
5-4
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The critical exponents of the standard ideal Bose gas
recovered by settingD52. As will be shown shortly, the
energy spectrum indexD equals the fractal dimension.

The partition function of the ideal Bose gas with a mo
fied energy spectrum can again be represented in the
~25!, with t5d/D11 andm}(T2Tc)

1/s, wheres51/nD
as for percolation@see Eqs.~18! and ~19!#. The thermal
wavelengthl for the generalized Bose gas is defined in
way that the spectrum can be written as

e/kBT5cDlDkD, ~32!

with the constantcD conveniently chosen such that

cD
d/D5

1

~4p!d/2

2

D

G~d/D !

G~d/2!
, ~33!

where G(x) is the Euler gamma function. The correlatio
function G(x) at x50 is again given by Eq.~28! while also
the integral of this function over space yields the same re
as forD52 given in Eq.~29!. From the criticality condition
~30!, it follows that the correlation length scales with th
chemical potential asj}m21/D, where—as already indicate
by our choice of notation—D denotes the fractal dimensio
as calculated from its definition~15!. The critical exponents
~31! now follow easily.

As detailed in Ref.@13#, the fugacity series~25! repre-
sents a sum over loops with the distribution~26!, or, equiva-
lently,

l w~T!5~ l /a!2t exp~2ul /kBT!, u}~T2Tc!
1/s, ~34!

with l 5wa the ‘‘length’’ measured in units of the characte
istic ‘‘length’’ scale a5\kBt, andu52mkBT/\ the string
‘‘tension.’’ The first factor in Eq.~34! measures the configu
rational entropy of loops, while the second is a Boltzma
factor. Each loop is characterized by the winding numberw,
telling how often it wraps around the imaginary time ax
Physically, a loop represents the worldlines in imagina
time of w particles grouped together in a single ring know

FIG. 2. A worldline loop involving three particles projecte
onto the finite imaginary time interval 0<t<\/kBT ~left panel!.
The loop, which has winding numberw53, can be equivalently
represented as the worldlines of three cyclically permuted parti
~right panel!. ~After Ref. @13#.!
02611
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from Feynman’s theory of thel transition in4He @14#. Par-
ticles in the same ring are cyclically permuted after an ima
nary time \/kBT ~see Fig. 2 for an illustration involving
three particles!. With increasing imaginary time, the particle
move along closed strings towards the initial position of t
particle in front of them~see Fig. 3!. When only one particle
is contained in a ring, the particle returns to its own init
position after an imaginary time\/kBT. On approaching the
critical temperature from above, the chemical potential a
thus the string tension become smaller, and loops with lar
winding numbers start to appear. AtTc , the string tension
vanishes and long loops containing arbitrarily many cyc
cally permuted particles appear in the system, signalling
onset of Bose-Einstein condensation. Above the critical te
perature, long loops are exponentially suppressed. Bec
the loops are worldlines embedded in spacetime and par
eterized by Euclidean time,l and a have the dimension o
time, not of length—hence the quotation marks used be
Eq. ~34!.

From this and also from comparing the partition functi
~25! of an ideal Bose gas with the one for percolation, E
~9!, we observe a close connection between the two phen
s

FIG. 3. Worldline loops of 20 particles in two space dimensio
Some of the worldlines are grouped together in single rings. T
beats in the top panel represent particles moving in imaginary t
along the strings towards their own initial position, in case o
single particle in a ring, or towards that of the neighboring parti
in front of them. After an imaginary time\/kBT, these positions are
reached and the particles cyclically permuted. In the bottom pa
the beads are omitted, leaving behind a loop gas of worldlin
~After Ref. @13#.!
5-5
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ena. The rings of cyclically permuted particles in a Bose
correspond to the clusters of percolation theory. The num
of Bose particles contained in a ring corresponds to the n
ber of sites contained in a cluster. In the same way t
clusters grow when the percolation threshold is approac
from below, rings with larger winding numbers appear in
Bose gas on approaching the critical point from above.
both cases, the behavior at the critical point is algebr
rather than exponential. The percolating cluster atp.pc cor-
responds to the Bose-Einstein condensate atT,Tc . @The
reason for ignoring thek50 contribution in Eq.~24! was to
bring out this analogy as clearly as possible.# But there are
also differences.

Although the exponents~31! satisfy the scaling relations
b, g, andh are not related to the exponentss andt param-
etrizing the loop distribution~26! in the same way as in
percolation theory@see Eq.~23!#. Using these equations wit
the ideal Bose gas values fort ands, we find instead

bper51, gper52
d22D

d2D
, hper521d22D, ~35!

where we have given the exponents also the subscript ‘‘p
to indicate that we used the percolation formulas for them

Despite the differences in form, these exponents too
isfy the scaling relations 2bper1gper522a and gper5n(2
2hper), with a andn given in Eq.~31!. Apparently, there are
two different sets of critical exponents, both satisfying t
scaling laws.

To understand this, let us compare the sum rules~4! and
~29! satisfied by the correlation function of percolation a
an ideal Bose gas, respectively. There is no obvious con
tion between the two, implying that the ‘‘susceptibility’’ an
also the ‘‘magnetization’’ are defined differently in the tw
systems. In percolation theory, they were defined in term
the partition function in Eq.~10!. With c replaced by
2m/kBT to map the cluster distribution of percolation theo
onto the loop distribution of an ideal Bose gas, it follows th
P and S correspond to the condensate densityn0 and the
compressibilityk of an ideal Bose gas, respectively, with

n0;~Tc2T!bper, k;uTc2Tu2gper. ~36!

The exponentsb andg featuring in Eq.~31! are, on the other
hand, connected to the order parameter of an ideal Bose
which is the fieldf0 describing the condensate, withuf0u2

5n0 . This last equation relates the twob exponents, giving
bper52b. Sincebper51, it also follows thatgper52a, as
one would expect naively. It should be noted that the ex
nentsn and a are not sensitive to the nature of the ord
parameter describing the transition. Given the presence
single diverging length scale, any sensible definition of
correlation length leads to the same exponentn. And a
merely characterizes the algebraic behavior of the logari
of the partition function, which is essentially the pressu
Despite the difference in the correlation function of perco
tion and an ideal Bose gas, the relation~18! between the
correlation length exponentn and the fractal dimension is th
02611
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same for the two, as can be easily checked repeating
derivation of this relation with the correlation function of a
ideal Bose gas.

A more fundamental difference between percolati
theory and the string picture of an ideal Bose gas is tha
the latter, the number of particles is fixed, while in th
former there is no condition on the number of occupied sit
The fixed number of particles in an ideal Bose led to t
criticality condition~30! with G(0) given in Eq.~28! that in
turn determined the critical exponentn. In percolation
theory, where there is no such condition,n is not determined
that way. As a result, although the two phenomena are
scribed by essentially the same theory specified by a loo
cluster distribution, they in general are not in the same u
versality class. Only the special case of percolation in
upper critical dimensiondu56, whereD54, or on a Bethe
lattice is in the same universality class as an ideal s
dimensional Bose gas with fractal dimensionD54.

However, in the absence of a criticality condition, we e
pect uncorrelated percolation and strings of the type app
ing in the description of an ideal Bose gas to be described
exactly the same theory. This is indeed what has been
served in numerical simulations on random string netwo
@15#.

IV. RANDOM STRING NETWORKS

These simulations describe theories with a global U~1!
gauge symmetry, which undergo a phase transition from
symmetric state to one where the U~1! symmetry is sponta-
neously broken. The ordered state, which is characterize
a complex order parameter, can have topological l
defects—known as cosmic strings in the context of cosm
ogy, and as vortices in the context of condensed matter.
line defects are either closed or terminate at the bound
they cannot terminate inside the system. Upon circling a v
tex of unit strength, the phaseq of the order paramete
changes continuously by 2p.

To numerically study line defects, Vachaspati and Vile
kin @16# considered a cubic lattice with periodic bounda
conditions. They discretized the vacuum manifold of the
dered state by allowingq to take on only certain discret
values in the interval 0<q,2p. The restriction to this in-
terval assures that only vortices of unit strength are gen
ated. Each lattice site is assigned one of the discrete valu
random. Phases at different lattice sites are therefore un
related. Vortices are traced by going around each plaqu
of the lattice once. If a phase difference of 2p is found upon
returning to the site one started at, it is concluded tha
vortex penetrates the plaquette. In going from one lattice
to a neighboring one, the geodesic rule introduced by Kib
@17# is implemented, assuming that the~discrete! changes in
q are minimal. When two instead of just one vortex a
found to penetrate a unit cell, the two incoming and tw
outgoing vortex segments are randomly connected. There
different ways to do this, the simplest one being to choo
equal probabilities as was done in Ref.@16#. But there are
other choices, such as favoring those possibilities that ge
ate longer loops@18#. In this way, a whole random networ
5-6
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of vortices~of unit strength! can be traced out.
Such a random string network is of relevance to the f

mation of topological defects after a rapid phase transit
involving the spontaneous breakdown of some symme
@19#. As was first proposed by Kibble@17# in the context of
cosmology, causally disconnected pieces of the early
verse may after a rapid temperature quench end up in di
ent, but degenerate states of the broken-symmetry vacu
characterized by different values for the phaseq of the order
parameter. When these regions come together, the resu
frustration at the boundaries may lead to the formation
topological defects. Zurek@20# noted that a similar mecha
nism might operate in the context of condensed-matter ph
ics and developed a qualitative theory, based on scaling
guments, of the formation of topological defects in tim
dependent phase transitions. To test this scenario, supe
3He-B in rotation was radiated with neutrons@21#. After a
neutron-absorption event, in which a small region is brie
heated up to the normal phase, a vortex network was
duced. Under the action of the Magnus force, some of
vortex loops in the network expand and connect to the c
tainer wall. They are then, still under the action of the Ma
nus force, pulled straight, and finally, end up in the cente
the cylindrical container aligned parallel to the rotation ax
where they can be detected by means of NMR. The num
of vortices produced in the neutron irradiation experime
was in agreement with Zurek’s predictions. The vortex n
work was numerically simulated@22# with the Vachaspati-
Vilenkin algorithm discussed above.

Besides finite vortex loops, also infinite vortices appea
a random network with high enough vortex densities. T
division between finite vortex loops and infinite ones is
course somewhat arbitrary on a finite lattice. A possi
choice is to classify vortices with a length larger than 2L2,
whereL is the lattice size, as infinite. Universal quantitie
such as the critical exponents should be independent of
precise choice. The fractal dimension found in the init
simulations@16# were consistent with that of a Brownia
random walk,D52. This result can be understood@4# by
realizing that a dense random network was simulated, wh
a single vortex experiences an effective repulsion from
neighboring vortex segments as the volume occupied
these segments is not available anymore. The situatio
similar to a polymer in a dense solution, which also displa
the structure of a Brownian random walk.

Without any external field, all phase values of the ord
parameter have equal probability. Vachaspati@2# lifted this
degeneracy of the vacuum manifold by giving some value
bias, thus obstructing the formation of vortices and decre
ing the vortex density. When studying the statistics of
random network as function of the bias, a threshold w
found, above which infinite vortices are absent and fin
loops exponentially suppressed. The sudden appearan
infinite vortices as the threshold is approached from the lo
density side, was interpreted as a percolation process.

Strobl and Hindmarsh@15# carried out more extensive nu
merical simulations on the transition of a random string n
work triggered by changing the bias. Using the percolat
set of critical exponents, they measured—within statisti
02611
-
n
y

i-
r-
m,

ing
f

s-
r-

-
uid

y
o-
e
-

-
f
,
er
s
t-

n
e
f
e

,
he
l

re
e
y
is
s

r

a
s-
e
s
e

of
-

t-
n
l

errors—values similar to those for three-dimensional unc
related site percolation, which hass50.45, t52.18 andD
52.53 @6#. For the vortex loops, the valueD.2 means that
they are self-seeking. The conclusion that the phase tra
tion of a random string network is identical to the uncorr
lated percolation transition is precisely what one would e
pect given our observations of the last section.

V. CORRELATED PERCOLATION

Up to this point we considered onlyuncorrelatedsite per-
colation, where lattice sites were occupied at random,
nearest-neighboring occupied sites grouped together in c
ters. However, as is known from work on the Ising mod
@6#, this is not the whole story.

In the context of the Ising model, it is more appropriate
refer to occupied sites as sites with spin up, say. In gene
the percolation threshold temperature is below the criti
one. That is to say, already before the thermal phase tra
tion is reached, clusters of spin-up sites percolate the lat
Only on a two-dimensional square lattice, the site percolat
threshold temperature coincides with the critical temperatu
Despite this, the Ising model and percolation critical exp
nents are different—as in higher dimensions. The situatio
similar to the one discussed at the end of Sec. III, with
percolation translation being in a different universality cla
as the thermal one.

It is nevertheless possible to modify the definition of clu
ters in such a way that the critical behavior of the modifi
clusters becomes identical to that of the Ising model@23#.
This approach goes back to seminal work by Fortuin a
Kasteleyn@24#, who mapped the partition function of th
Ising model onto acorrelatedpercolation problem. To obtain
a modified cluster, take two nearest-neighboring sitesi,j of a
standard cluster with all the spins up, and add the pair to
new cluster with the bond probability pi j 51
2exp(22J/kBT), where J is the spin-spin coupling of the
Ising model. The factor 2J appearing here corresponds to t
increase in energy when one of the two spins involved in
bond is flipped. The upshot is that the bond clusters are
general smaller than the standard ones and also more loo
connected. The bond clusters percolate right at the crit
temperature and display critical behavior identical to that
the Ising model.

The method has been turned into a powerful Monte Ca
algorithm by Swendson and Wang@25#, and by Wolff @26#,
where no individual spins are updated, but entire clust
The main advantage of the nonlocal cluster algorithm
comparison to a local update algorithm, like Metropolis
heat bath, is that it drastically reduces the critical slowi
down near the critical point.

Very recently, also the critical behavior of the thre
dimensional O(n) spin models, withn52,3,4, was described
as a correlated percolation process@27#. The relevant clusters
percolate at the critical temperature, and were shown to h
the same critical exponents as the corresponding models

VI. WORLDLINE LOOP GASES

In the same way that correlated percolation can desc
thermal phase transitions of interacting systems also co
5-7
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ADRIAAN M. J. SCHAKEL PHYSICAL REVIEW E 63 026115
lated worldline loop gases can. Recall that the loop gas
scription of an ideal Bose gas hinged on the representa
~25! of the partition function in terms of the loop distributio
~34!, which derived from the representation~24! as an inte-
gral over momentum. If we assume that near the criti
point, the partition function of an interacting system can
put in a similar form, but withE(k) replaced by the single
particle spectrum of the excitation that becomes critica
Tc , the integral can in principle be done, yielding some lo
distribution l w , with w physically denoting the number o
times a world-line loop wraps around the imaginary tim
axis. As for the ideal Bose gas, this distribution is para
etrized by two exponentss and t, and can be put in the
general form~34!, with values characteristic for the unive
sality class under consideration. The string tension of
worldline loops vanishes atTc , and loops with arbitrarily
large winding numberw appear in the system, signalling th
onset of Bose-Einstein condensation in the low-tempera
phase. Note that the representation~24! of the partition func-
tion as an integral over momentum does not require a n
relativistic theory. Also relativistic theories lead to a simil
form for the ~equilibrium! partition function at finite tem-
perature@28#, as it is essentially fixed by Bose statistics.

The generalization of the sum rule~29! to correlated
worldline loop gases reads

E ddx G~x!5(
w

e2ul /kBT, ~37!

where we recall that the string tension behaves near the c
cal point asu}(T2Tc)

1/s. The sum rule leads directly to th
relation

g51/s, ~38!

while at criticality, with the long distance cutoffxmax5L,
corresponding towmax5LD as before, it gives the relation

h522D. ~39!

These two relations generalize the corresponding result
Eq. ~31! for an ideal Bose gas with modified energy spe
trum. The valueh50 separates self-avoiding worldline
(D,2) from self-seeking ones. Since the fractal dimens
has to be positive and smaller than the dimensiond of the
embedding space@29#, 22d,h,2. Translated in terms o
limits on t, it follows that 2,t,d/211 for self-seeking
worldlines, while t.d/211 for self-avoiding ones. Note
that in two space dimensions and below, no self-seek
strings are possible.

As in Sec. III the exponents here are those for describ
the thermal-phase transition of a loop gas of strings~world-
lines!. They are to be distinguished from the ones defined
the context of percolation theory given in Eq.~23!. The two
sets have, however, the exponentsa andn in common, im-
plying that the present set can also be expressed entire
terms of the exponentss and t parametrizing the loop dis
tribution ~34!. Indeed, we find
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a522
t21

s
, b5

t22

2s
, g5

1

s
, h522

d

t21
,

n5
t21

ds
, D5

d

t21
. ~40!

Since only general scaling laws are used in deriving th
results, we believe they hold for any critical theory specifi
by a loop distribution~34! with exponentss andt. It can be
easily verified that for an ideal Bose gas withs5d/D21
andt5d/D11, Eq. ~40! reduces to the correct values@Eq.
~31!#.

As an illustration, let us discuss the worldline loop dist
bution of some well-known statistical models. We start w
random walks. In Table I the critical exponents of two d
ferent types of random walks are given together with
corresponding values fors andt parametrizing the loop dis
tribution ~34!. Both have the values51 in common. The
first one is the Brownian random walk@7#, which has a frac-
tal dimensionD52, while the second one is the so-calle
smooth random walk@30,31#, which hasD51 and is there-
fore self-avoiding. Whereas a Brownian random walk can
understood as a particle hopping through a lattice with
next~nearest-neighboring! site chosen randomly at each ste
a smooth random walk can be understood as a particle h
ping through the lattice with its velocity rather than its po
tion being changed randomly at each step. As a res
whereas a typical path of a Brownian random walk is co
tinuous but not differentiable, a typical path of a smoo
random walk is differentiable while only the first derivativ
is not. The reluctance to change directions is typical for f
mionic particles. To understand the valueh51 for a smooth
random walk, note that the correlation function of a Brow
ian random walk is given in the continuum by

G~x!5E ddk

~2p!d GB~k!eik•x. ~41!

with

GB~k!5
1

k21j22 , ~42!

leading to the algebraic behavior~5! at criticality with h
50. A smooth random walk, on the other hand, has a co
lation function involving one factor of momentum les
@30,31#,

GS~k!5
1

k•e1j21 , ~43!

TABLE I. Critical exponents for Brownian and smooth rando
walks together with the exponentss and t parametrizing the loop
distribution ~34!.

Random walk s t a b g h n D

Brownian 1 11d/2 22d/2 d/421/2 1 0 1/2 2
Smooth 1 11d 22d d/221/2 1 1 1 1
5-8
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TABLE II. Critical exponents for the two-dimensional O(n) spin model, withn522,0,1,2,̀ , respec-
tively, together with the exponentss andt parametrizing the loop distribution~34!.

Model n s t a b g h n D

Gaussian 22 1 2 1 0 1 0 1/2 2
SAW 0 32/43 91/43 1/2 5/64 43/32 5/24 3/4 43/24
Ising 1 4/7 15/7 0 1/8 7/4 1/4 1 7/4
XY 2 0 15/7 1/4 7/4
Spherical ` 0 2 1/2 0 2
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wheree is some unit vector. At criticality, this again give
the algebraic behavior~5!, but now withh51.

In two space dimensions, the critical exponents of vario
models are known exactly. For example, for O(n) spin mod-
els with n522 cos(2p/t) and 1<t<2 they are given by
@32#

a5
2t23

t22
, b5

~ t21!~ t23!

8t~ t22!
, g52

t213

4t~ t22!
,

n52
1

2~ t22!
, h52

~ t21!~ t23!

2t
, D5

t213

2t
,

~44!

corresponding to

s52
4t~ t22!

t213
, t5

~ t11!~ t13!

t213
. ~45!

For special values of the parametert such thatn is an integer,
one obtains the critical exponents for the Gaussian mode
the Brownian random walk (n522), the self-avoiding walk
~SAW! (n50), the Ising model (n51), and theXY model
(n52). The critical exponents for these models toget
with those of the spherical model are collected in Table

A few points may be worth noting.
~i! Both the Ising (t5 3

2 ) and theXY model (t52) have
the same fractal dimension. This is made possible by a m
mum in D(t) at t5) located between the two model
whereD5).

~ii ! In the literature, the fractal dimension is often equa
to 1/n rather than to 1/sn as in Eq.~18!. We believe, the
result ~18! is more general.

~iii ! The special character of the two-dimensionalXY and
also of the spherical model is seen in the loop gas picture
the vanishing of the exponents, implying the absence of the
Boltzmann factor in the loop distribution function~34!.

~iv! Besides the two-dimensional Ising andXY model
there is at least one other one-dimensional object embed
in two space dimensions with the same fractal dimens
Surprisingly, it is the perimeter of the percolation cluster
standard, uncorrelated percolation in two dimensions@33#,
which can also be mapped onto various types of rand
walks. Close to criticality, the perimeter of the percolati
cluster is again distributed according to Eq.~1! but with dif-
ferent values for the exponents. To avoid confusing with
two-dimensional cluster exponentss536/91 and t
5187/91 corresponding toD591/48, we call the perimete
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exponentss8 and t8. Since there is only one correlatio
length in the system, the cluster and perimeter expone
satisfy @34#

~t21!/s5~t821!/s, s/s85D8/D. ~46!

The perimeter values@35#

s853/7, t8515/7, ~47!

leading toD857/4 indeed fulfill the relations~46!.
Recent high-precision Monte Carlo studies of the thr

dimensionalXY universality class gave@36#

n50.6423~3!, h50.0381~2!. ~48!

The resulting exponents parametrizing the worldline lo
distribution are

s50.7582, t52.5291, ~49!

corresponding to a fractal dimensionD51.9619 very close
to 2, in accordance with the smallness ofh. SinceD,2, the
worldline loops of the three-dimensionalXY model are self-
avoiding.

VII. VORTEX LOOP GASES

Let us next turn to interacting systems with a global U~1!
gauge symmetry, which have vortices as topological defe
in the ordered state. Thermal phase transitions in system
this type have, besides the conventional Landau descrip
an alternative description in terms of proliferating vortic
@37#. Such a scenario was first put forward by Onsager@1#
and later by Feynman@38# to describe thel transition in
4He. In the ordered, superfluid state, where the U~1! symme-
try is spontaneously broken, only finite vortex loops a
present. Because of the finite string tension, the loops
exponentially suppressed. Upon approaching the critical t
perature from below, the string tension vanishes, and vo
ces start to proliferate. For vanishing string tension, vorti
can gain configurational entropy by growing without ener
cost. The resulting infinite vortices disorder the system a
thereby restore the spontaneously broken U~1! symmetry.
The importance of vortex loop excitations in triggering t
phase transition has since then been emphasized by va
authors@39#. Early numerical evidence for this picture bas
on Monte Carlo simulations of the three-dimensionalXY
model was given by Janke and Kleinert@37,40#. Analytic
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methods to describe the transition using vortex loops i
qualitative way were developed by Williams@41#, and by
Shenoy and collaborators@42#.

Like worldline loops, vortex loops are specified by a lo
distribution as in Eq.~34! parametrized by two exponentss8
and t8 @43#. These determine the critical exponents of t
system again through Eq.~40!, with s andt replaced bys8
andt8. The result that the exponent 1/s8 parametrizing the
vanishing of the vortex string tension directly gives the cr
cal exponentg—and not 2n as is often claimed in the litera
ture, also by the present author@13,44#—was first observed
by Nguyen and Sudbo” @45#, while the connectionh522D
for vortex loops was very recently derived independently
Ref. @29#.

In the past few years, various groups have continued
numerically investigate the three-dimensionalXY model
from the perspective of vortices, in particular their loop d
tribution @18,45,46#. Let us discuss the numerical values f
the exponentss8 and t8 obtained in these studies from th
present perspective, concentrating on insights not avail
before.

Irrespective of the description chosen, either with the h
of worldline loops or vortex loops, the expression for t
correlation length exponent is formally the same. Since a
the numerical value of this critical exponent is independ
of the description, the exponentss and t parametrizing the
worldline loop distribution ands8 andt8 parametrizing the
vortex loop distribution satisfy (t21)/s5(t821)/s8 as in
Eq. ~46!. They should both lead to the same numerical va
for n given in Eq.~48!. Using for s8 and t8 the numerical
values@47#

1/s851.45~5!, t852.4~1! ~50!

reported by Nguyen and Sudbo” @45#, we find from Eq.~40! a
result n50.68 very close to the expected one@Eq. ~48!#.
Since 2,t8,d/211, vortex loops in theXY model are
~slightly! self-seeking. The numerical values fors8 and t8
reported by the other groups give the resultsn50.62 @46#
and n50.60 @18#, which are within about 10% of the ex
pected result.

It was noted by Williams@41# that the fractal dimensionD
extracted from the valuet852.23(4) reported in Ref.@46#
was close to the estimateD5(d12)/2 obtained from a
Flory-type of argument@42#. This estimate is identical to d
Gennes’s one@Eq. ~20!# for uncorrelated percolation that wa
also based on a Flory-type argument. It should be no
however, that de Gennes’s modification of the original Flo
argument was motivated in part to arrive at the correct up
critical dimensiondu56 for percolation rather thandu54
for random walks and theXY model.

Kajantie and collaborators@18# investigated different al-
gorithms to construct the string network. Depending on
algorithm chosen, they obtained~slightly! differing quantita-
tive results. None of the algorithms used yielded a perco
tion threshold precisely at the critical temperature. From t
observation they concluded that ‘‘geometrically defined p
colation observable need not display universal properties
lated to the critical behavior of the system.’’ It has be
suggested@48# that this discrepancy might instead hint at t
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existence of a unique, yet to this date unknown, algorithm
construct the string network that would give precisely t
expectedXY critical behavior. The situation would then b
similar to that found for correlated percolation and therm
phase transitions in O(n) spin models discussed in Sec. V

VIII. CONCLUSIONS

In this paper, we discussed the close analogy betw
percolation of ~correlated! clusters and proliferation o
strings at thermal-phase transitions of interacting syste
Two types of strings were considered: worldlines and to
logical line defects. Both are described in a way similar
clusters in percolation theory, being specified close to
critical point by a distribution parametrized by only two e
ponents. At the critical temperature, the string tension v
ishes and loops proliferate in the same way as clusters
colate. If the loops are finite-temperature worldlines, th
proliferation signals the formation of a Bose-Einstein co
densate that spontaneously breaks the global symmetry c
acteristic of the phase transition under consideration. If,
the other hand, the loops are vortices, their proliferation s
nals the disordering of the ordered state in which these v
tices are topologically stable.

In deriving our results, we used the ideal Bose gas w
modified energy spectrum as a stepping stone. The mo
despite being noninteracting, has nontrivial critical exp
nents that are known exactly. It also has the virtue that it
be mapped onto a loop gas in an exact way. The resul
relations between the exponents parametrizing the loop
tribution and the critical exponents describing the therm
phase transition of the system, were shown to be easily g
eralized to interacting loop gases using general scaling la
As for percolation, the two exponents parametrizing the d
tribution were shown to encode the entire set of critical e
ponents.

Various statistical models with exactly known critical e
ponents were discussed from the perspective of a world
loop gas. Also recent numerical studies on the statist
properties of the vortex loop gas in the three-dimensionalXY
model were discussed.

It was shown that a random string network is to therm
phase transitions involving correlated strings as what unc
related site percolation is to thermal phase transitions
O(n) spin models.

A possible connection of the approach discussed in
paper with the Monte Carlo loop algorithm introduced
Everetz@49# is presently under investigation.

Note added in proof.Recently I received a copy of Ref
@51# where the connection between Bose-Einstein conde
tion in a Bose gas and percolation was considered pr
ously. I kindly thank the author for sending me the reprin
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