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Percolation, Bose-Einstein condensation, and string proliferation
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The close analogy between cluster percolation and string proliferation in the context of critical phenomena
is studied. Like clusters in percolation theory, closed strings, which can be either finite-temperature worldlines
or topological line defects, are described by a distribution parametrized by only two exponents. On approach-
ing the critical point, the string tension vanishes and the loops proliferate, thereby signalling the onset of
Bose-Einstein condensatidim the case of worldlinesor the disordering of the ordered stdte the case of
vortices. The ideal Bose gas with modified energy spectrum is used as a stepping stone to derive general
expressions for the critical exponents in terms of the two exponents parametrizing the loop distribution near
criticality.
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[. INTRODUCTION the critical exponents of the phase transition to the two ex-
ponents parametrizing the worldline loop distribution near

The quest for a geometrical description of phase transieriticality. Using general scaling relations, these results can
tions has a long history going back to ideas first put forwardhen be generalized to interacting loop gases representing
by Onsagef1] in the context of thex transition in liquid  statistical models. Each universality class is defined by a
“He. The relevant geometrical objects in this transition ardoop distribution with specific values for the two exponents
topological line defects. The description envisaged by onfrom which all the critical exponents follow. o
sager is one entirely in terms of these one-dimensional ob- T0 close the circle, the resulting loop gas description of
jects, with their geometrical properties such as fractal dimencritical phenomena can also be applied to phase transitions
sion and configurational entropy. The phase transition idnvolving (interacting vortex loops—like the\ transition in -
characterized in this picture by a fundamental change in théquid “He. As for worldlines, vortices cannot terminate in
typical string size. Whereas in the superfluid phase only fithe system, and therefore, form closed loops too. When the
nite strings are present, at the critical point infinite stringsword string is used in the following, the two different one-
appear_sim“ar to the Sudden appearance Of a perco'atir@me-nsional ObjeCtS worldlines and vortices ShOUId be kept
cluster in percolation phenomena at criticality. in mind. _ _

The analogy between percolation of clusters and prolif- As an aside, we believe that the theory of vertex loop
eration of strings has been noted by various autfiprss].  gases discussed here has also a bearing on homogeneous
As we will see, it derives from a similarity in the cluster and superfluid turbulence.
string distribution. Both have the same form containing two  The paper is organized as follows. In the next section
factors, one related to the entropy of a given cluster or strin%hose essentials of percolation theory are recalled, which
configuration and the other related to the Boltzmann weightater on in the paper become important to establish the con-
assigned to the configuration. Close to criticality, each offection with the proliferation of strings. In Sec. Ill, Bose-
these factors is parametrized by a Sing|e exponent. OnginStEin condensation in an ideal Bose gas with a modified
specifies the algebraic behavior of the distribution at critical-energy spectrum is studied from the perspective of world-
ity, while the other describes how the Boltzmann factor tenddines. In Sec. IV, numerical work on random string networks
to unity upon approaching the critical point. Physically, thels discgssed .in relation to uncorrelated_ percolation, followed
unity of the Boltzmann factor implies that clusters or stringsPy @ discussion of correlated percolation in Sec. V. In Sec.
can grow, and thus, gain configurational entropy without enV!, thermal phase transitions are formulated in terms of pro-
ergy cost. When the Boltzmann factor is not unity, the clusdiferating worldlines. In Sec. VII, a similar formulation is
ters and strings are exponentially suppressed. In the contefscussed for phase transitions involving proliferating vorti-
of strings, the transition between a phase consisting of finité€s. The paper ends with conclusions in Sec. VIII.
strings only and one having infinite strings, is called a Hage-
dorn transition. We will refer to the appearance of infinite
strings as proliferation.

A central position in our arguments is taken by an ideal In this section, we briefly recall some basic aspects of
Bose gas with modified energy spectrum. The reason is thatercolation theon|6] that are important for our purposes.
although noninteracting, the model has nontrivial critical ex-Consider a lattice, with each lattice site being randomly oc-
ponents, which are known exactly, while at the same time itupied with a probabilityp, say, independent of its neigh-
can also be mapped onto a loop gas of worldlines in an exadtors. Islands of next-neighboring occupied sites form clus-
way. The worldlines form closed loops, because in the abters. The properties of these clusters as a functiop fofm
sence of external fields and sources they cannot terminate the subject of percolation theory—or more preciselypof
the system. The map onto the loop gas allows us to connecbrrelatedpercolation theory because the occupations of dif-
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ferent lattice sites are uncorrelated. psncreases, clusters )
become bigger, and at some critical vajyg a cluster span- 2 Gper(X)OCES ss(p), (4)
ning the entire lattice first appears. Near this percolation

threshold, various quantities show power-law behavior. Asyhere the sunt, is over all lattice sites. Physicallpe(X)

for thermal critical phenomena, this behavior can be charagy the probability of finding at a distanagfrom the origin an
terized by a set of critical exponents of which two are '”de'occupied site belonging to the same cluster as the origin

pendent. _ , does. At criticality, it has ird space dimensions the algebraic
Of interest to us is the so-called percolation strengthyenavior

P(p)~ (p— p.)Prerdefined forp> p, as the probability that a

randomly chosen site belongs to the percolating cluster, the

average cluster siz8(p)~|p.— p|~ ¢, and the correlation Cpel X)~ STz 750 (5
length £(p)~|p.—p|~". We give some quantities a sub-

script “per” to avoid confusion later on, where similar, but with Tper @ Critical exponent.

different quantities appear. The percolation strength is analo- To obtain a similar expression for the percolation strength

gous to the magnetization in spin models, while the averaggs given in Eq(2) for S one uses the identity
cluster size corresponds to the magnetic susceptibility.

The number density of clusters having sge.e., withs _
occupied sites, is assumed to be distributed according to P= P(p)+§S: sls(p), (6)

ls(p)cs™ "exp( —cs), (1) stating that an occupied site either belongs to the percolating
cluster or to a finite one. Hence, fpr>p.,
where the coefficient vanishes with an exponentd.ivhen
the percolation thresholg. is approached from belowg o
*(p.—p)¥?. At criticality, the cluster distribution becomes P(P) z sls(P). )
ls(pc)ocs™ 7 and falls off algebraically. This factor measures
the configurational entropy of clusters, while the exponentiagnd
is a Boltzmann factor. Together with the so-called Fisher
exponentr, the exponentr determines the critical exponents, B :T;Z ®)
such asBper, Yper:» @andv through scaling relations. T g
In terms of the cluster distributiohy, the average cluster
size is given by Below the percolation threshol®,(p) =0, so that the iden-
tity becomesp=2sl(p).
Given the analogy with spin systems, it should be possible
> s?l4(p) to define a partition functio from which the percolation
S(p)= S—’ 2) strerjg'th(magnetizatioh'and the average gluster siteus—'
S siip) ceptibility) can be obtained by differentiation. Indeed, with
~ Sls(P the definition

where only finite clusters are included in the sum. To under- In(Z) >, I, 9
stand thatSthus defined indeed is a measure for the average s

cluster size, note that the combinatisi(p) in the denomi-
nator is the probability that a randomly chosen site belong
to a cluster of sizes. When summed oves, this gives the
probability that the randomly chosen site belongs to a cluster
of arbitrary (finite) size. The raticsly(p)/Zssls(p) is there- Jc
fore the probability that the cluster to which the randomly
chosen site belongs is of siseWhen this ratio is multiplied ) .
with the cluster size and summed owi0ne obtains indeed number density of finite clusters.

a measure of the average cluster size. With the explicit ex-h Th?_tw? critical exp%nentsfpe_r "’_‘ndﬁrr])er c?n ge _relstid to
pression forS, one easily finds that the critical exponentr characterizing the algebraic behavior

of In(2)~|p.—p[> “ close to the percolation threshold as fol-
lows:

gne finds

dln(Z) 3%In(Z)
P= y S= T, (10)

as required by the analogy. Physically,Anflenotes the total

73
- 'Yper:T- (€©)) —1
2—a= o = zﬂper"' Yper- (11
For later reference, recall that the susceptibility also equals
the integral over the correlation functi@,.(x) of the sys-  On dimensional grounds, one expects that near the percola-
tem under consideration. Because of E2), one finds for tion threshold InZ)~¢& %~|p—pJ®, so that one arrives at the
percolation hyperscaling relation
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dv=2—a, (12 .
involving the dimensionalityl of the lattice. In the context of 25
thermal critical phenomena, relationdl) and (12) are 2.4
known as Rushbrook’s and Josephson’s scaling law, respec- )3
tively. A hyperscaling relation in general breaks down at the "
upper critical dimension. Beyond the upper critical dimen- 2.2
siond,,, the critical exponents are locked in their values at 2.1
d=d,. For percolation, as we will see below, the upper
critical dimension isd,=6. 2 3 4 5 6 d
Another scaling relation between the various critical ex-
ponents is obtained from the expressighsand(5) involv- o
ing the correlation function. Using as lower cutoff in the
integral, one finds 0.50
Yper= Y(2— Mper), (13 0.46
which in the context of thermal-phase transitions is known as 042
Fisher's scaling law. 038
The correlation length exponent is known to have a ’

geometric meaning, being related to the Hausdorff, or fractal 2 3 4 5 6 d
dimensionD at criticality. The latter can be defined through

the average squared distance between the sites of a cluster, FIG. 1. The Fisher exponentand the exponent parametrizing
the cluster distribution of uncorrelated site percolation as function

1.8 1 S of the dimensionalityd of the lattice. The points represent results
Rgz_z (X _;)2:_2 > (X; _Xj)Z, (14) [6] obtained by lattice simulationsl& 3,4,5) and analytic methods
Si=1 257171 (d=2,6), while the line in the top panel is based on de Gennes’s

estimate(20) that can be given for any dimensios<2i<6, not just

with R, the so-called radius of gyration, anc  integer values.

— S . . . .
=(1/5)Z7_,X; the center of mass of the cluster with its sites Combined with this relation, the hyperscaling relatid®)

atx;, as leads to the well-known expression for the Fisher expoment
Ry~ 1P (15) in terms of the fractal dimension,
for large enough clusters. A standard definition of the corre- ™D +1. (19
lation length in terms of the correlation functi@(x), with
x=|x|, reads Using a Flory-typd 7] argument known from polymer phys-
ics and the theory of self-avoiding walk8], de Genne$9]
2 X2G(x) estimated the fractal dimension for uncorrelated site percola-
= tion to be
EPot ———, (16)
X

In Fig. 1, the Fisher exponentwith this estimate is com-

It measures the average distance between two sites in tig@red with numerical d=3,4,5) and analyticd=2,6) re-
same cluster. Because of the observatién this definition ~ Sults taken from Ref.6].

can be transcribed in terms of the cluster distribution as Considering Eq(4) at criticality with a long-distance cut-
off Xmax=L, corresponding t&,=LP, we obtain a relation

between the fractal dimension and the critical expongft

Z Rgszls(p) characterizing the algebraic behavi@) of the correlation
gzmzs—_ (17)  function,
zszl(p) D=1(d+2— 7pe). (21)

) ) ) The de Gennes’s estimatg0) is equivalent to settingy,e, to
With Eq. (15), the relation between the correlation length ,orq here.
and the fractal dimension is then easily found to be To determine the upper critical dimension, it is prudent to
consider uncorrelated percolation on a Bethe lattice, which is
exactly solvable. Because of the absence of closed paths on
such a lattice, it mimics an ordinary lattice with high dimen-

L. 18
D=V (18
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sionality, where one expects the same critical behavior as iso that

the upper critical dimension. The cluster distribution on a

Bethe lattice is given by Eqd) with 7=3 ando=3, cor- 1

responding to the critical exponents G(0)= F%“ wly, (28)

a=-1, Bper= 1, 'Yper:la V:% 77per:01 (22 and

and the fractal dimensioD =4. These values are consistent
with the scaling laws ird=6, which can thus be identified as f d G(x) = 2 erwikgT (29)
the upper critical dimension. w '

To summarize, percolation near criticality is specified by

the. two exponentsr and 7 parametrizing the cluster distri- \where the left side of the last equation dend®&®), with
bution, both of which are related to the fractal dimensibn é(k) indicating the Fourier transform &&(x). Physically,

via Egs. (18) and (19). Given the value ofr and o, the 0" oo oion functiorG,,(x) denotes the probability for a
crltlce_ll_ exponents can be obtained using scaling relatlonsBrownian random walk starting at the origin to end up at a
Specifically, distancex from the origin aftemw steps, whileG,,(0) denotes
—1 r—2 3— thg probability for the random walk to return to its starting
a=2— et ,G'per:T, Yper=—"" point afterw steps. . _
As last quantity, we need the correlation lendtthat is
q given by £2=\%kgT/(—4mu), ie., éxu Y2 as also fol-
_ lows from definition(16). The chemical potential is negative
, D @23 : : »
do 71 in the normal state and vanishes on approaching the critical
temperaturel ., which is determined by the condition

I1l. IDEAL BOSE GASES
. . . . n=G(0)|,-o, (30)
In this section, we wish to point out a close analogy be-
tween percolation and Bose-Einstein condensation in aheren is the particle number density. This equation is valid
ideal Bose gas. The partition functi@h describing this sys-  for any <0 and thus for any temperatufe>T,. However,
tem ind space dimensions, can be written as an integral ove starts to break down at the critical temperature where the

momentum a$10] condensate starts to form in the=0 state, which has been
di ignored in Eq.(24). The critical temperature is, in other

In(Z)= _VJ —In(1—e EM/keT), (24) Wo_rds, the Iowes'F temperature wh_ere this equation is still
(2m) valid. From the criticality condition it follows that upon ap-

) . o } proaching the critical temperature from above, the chemical
ignoring thek=0 cpntrlbutlon. In Eq(24), Vv is the volume potential tends to zero in a-dependent way as(T)

of the system, whileE(k) =k?/2m— u is the single-particle ~—(T-T)?4=2) Below this temperature, in the con-
spectrum, withm the mass of the particles apdthe chemi-  gensed state, the chemical potential remains zero dTde

cal potential that accounts for a finite particle number denyendence here distinguishes an ideal Bose gas from a Gauss-
sity. In deriving this, the time coordinate was analytically j5, theory, whereu tends to zero asu(T)~|T—T,|
continued to the imaginary axis, where it becomes a cycliGrespective of the dimensionality. The critical exponents of

variable taking values only in the interveDA/kgT], With 55 jdeal Bose gas, which can be extracted from the informa-
kg Boltzmann's constant. After a Taylor expansion of theyigp, given above, are8=1/2, v=1/(d—2), and y=2/(d

logarithm, the partition function takes the familiar form of a —2). As noted a long time ago by Gunton and Buckingham

fugacity [ =exp(u/ksT)] series[10] [11], these exponents are the same as for the spherical model
Vv in d dimensions. This model corresponds to the limit«
IN2)=—g> lw, (25)  of the OM) spin model. . .
AW They continued to show that an ideal Bose gas with the

modified energy spectrura(k)=<kP, is in the same univer-
where sality class as the spherical model with long-range interac-
tions considered by Joyde2]. The critical exponents for

lu(T)=w" " exp(uw/kgT), (26 p<d<2D, with d=2D the upper critical dimension, are
with 7=d/2+1 and\ =%+ 27/mkgT the de Broglie thermal given by
wavelength. d—2D D
The correlation functiorG(x) written as a sum ovew a= B=% y=—
reads d-D’ 2 d—D’
1 X2 1
G(X)==§ GW(X)=F% wlyexg =3z, (27) v=g—p» 7=2-D. (3D
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The critical exponents of the standard ideal Bose gas are Y
recovered by settindd=2. As will be shown shortly, the

energy spectrum inde® equals the fractal dimension.
The partition function of the ideal Bose gas with a modi-
fied energy spectrum can again be represented in the form %
(25), with 7=d/D+1 and u=(T—T.)¥, whereo=1/vD
===/

as for percolation[see Eqgs.(18) and (19)]. The thermal
wavelength\ for the generalized Bose gas is defined in a
way that the spectrum can be written as @

e/kgT=Ccp\PKP, (32 4

with the constantp conveniently chosen such that

1 2 TI(d/D) /

d/D _ (33)

" T@m™D T(d2)

whereI'(x) is the Euler gamma function. The correlation %
function G(x) atx=0 is again given by Eq.28) while also
the integral of this function over space yields the same result

as forD =2 given in Eq.(29). From the criticality condition oy

(30), it follows that the correlation length scales with the @
chemical potential ag= u~ P, where—as already indicated 5\ =4

by our choice of notation-B denotes the fractal dimension

as calculated from its definitio(15). The critical exponents
(31) now follow easily. Z
As detailed in Ref.[13]', the fUQaC,'W $ene$25) fePre' FIG. 3. Worldline loops of 20 particles in two space dimensions.

sents a sum over loops with the distributic®), or, equiva-  gome of the worldlines are grouped together in single rings. The

lently, beats in the top panel represent particles moving in imaginary time
along the strings towards their own initial position, in case of a

lwW(T)=(/1a) " "exp(— 0/1kgT), 6x(T—T)™, (34)  single particle in a ring, or towards that of the neighboring particle
in front of them. After an imaginary tim&/kgT, these positions are

with | =wa the “length” measured in units of the character- reached and the particles cyclically permuted. In the bottom panel

istic “length” scale a=#kgt, and = — ukgT/% the string the beads are omitted, leaving behind a loop gas of worldlines.

“tension.” The first factor in Eq(34) measures the configu- (After Ref.[13].)

rational entropy of loops, while the second is a Boltzmann

factor. Each loop is characterized by the winding number from Feynman’s theory of th transition in“He [14]. Par-

telllng how often it wraps around the Imaginary time axis. jjqoq jn the same ring are cyclically permuted after an imagi-
Physically, a loop represents the worldlines in imaginary

time of w particles grouped together in a single ring known' &Y time 2/kgT (see Fig. 2 for an illustration involving
P group 9 g g three particles With increasing imaginary time, the particles

move along closed strings towards the initial position of the

] A , particle in front of them(see Fig. 3 When only one patrticle
[ S ! is contained in a ring, the particle returns to its own initial
=3 3 '3 position after an imaginary tim&/kgT. On approaching the
) : critical temperature from above, the chemical potential and
| thus the string tension become smaller, and loops with larger
d 2 2 winding numbers start to appear. At, the string tension
o 1 1 vanishes and long loops containing arbitrarily many cycli-
o E cally permuted particles appear in the system, signalling the
! onset of Bose-Einstein condensation. Above the critical tem-
T T . perature, long loops are exponentially suppressed. Because
QL_D h/ksT the loops are worldlines embedded in spacetime and param-

eterized by Euclidean timé,and a have the dimension of
FIG. 2. A worldline loop involving three particles projected time, not of length—hence the quotation marks used below

onto the finite imaginary time interval<9r<#/ksT (left pane).  EQ. (34).

The loop, which has winding numbev=23, can be equivalently From this and also from comparing the partition function

represented as the worldlines of three cyclically permuted particle§25) of an ideal Bose gas with the one for percolation, Eq.

(right pane). (After Ref.[13].) (9), we observe a close connection between the two phenom-
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ena. The rings of cyclically permuted particles in a Bose gasame for the two, as can be easily checked repeating the
correspond to the clusters of percolation theory. The numbederivation of this relation with the correlation function of an
of Bose particles contained in a ring corresponds to the numideal Bose gas.
ber of sites contained in a cluster. In the same way that A more fundamental difference between percolation
clusters grow when the percolation threshold is approachetheory and the string picture of an ideal Bose gas is that in
from below, rings with larger winding numbers appear in athe latter, the number of particles is fixed, while in the
Bose gas on approaching the critical point from above. Irformer there is no condition on the number of occupied sites.
both cases, the behavior at the critical point is algebraicThe fixed number of particles in an ideal Bose led to the
rather than exponential. The percolating clustgvap, cor-  criticality condition(30) with G(0) given in Eq.(28) that in
responds to the Bose-Einstein condensatd &ff.. [The turn determined the critical exponent In percolation
reason for ignoring th&=0 contribution in Eq(24) was to  theory, where there is no such conditionis not determined
bring out this analogy as clearly as possibBut there are that way. As a result, although the two phenomena are de-
also differences. scribed by essentially the same theory specified by a loop or
Although the exponent&1) satisfy the scaling relations, cluster distribution, they in general are not in the same uni-
B, v, and 5 are not related to the exponentsand r param-  versality class. Only the special case of percolation in the
etrizing the loop distribution(26) in the same way as in upper critical dimensionl,=6, whereD=4, or on a Bethe
percolation theorysee Eq(23)]. Using these equations with lattice is in the same universality class as an ideal six-

the ideal Bose gas values ferand o, we find instead dimensional Bose gas with fractal dimensionr-4.
However, in the absence of a criticality condition, we ex-
d—2D pect uncorrelated percolation and strings of the type appear-

Boe=1, Ype= =T e 2+d-2D, (39 ingin the description of an ideal Bose gas to be described by
exactly the same theory. This is indeed what has been ob-

) ) served in numerical simulations on random string networks
where we have given the exponents also the subscript “per’i15]_

to indicate that we used the percolation formulas for them.

Despite the differences in form, these exponents too sat-
isfy the scaling relations 2pe+ ¥per=2— a and ype=v(2 IV. RANDOM STRING NETWORKS
— 7pen » With a andw given in Eq.(31). Apparently, there are
two different sets of critical exponents, both satisfying the
scaling laws.

To understand this, let us compare the sum ri#esand
(29) satisfied by the correlation function of percolation and
an ideal Bose gas, respectively. There is no obvious conne
tion between the two, implying that the “susceptibility” and
also the “magnetization” are defined differently in the two
systems. In percolation theory, they were defined in terms
the partition function in Eq.(10). With c replaced by
— ulkgT to map the cluster distribution of percolation theory
onto the loop distribution of an ideal Bose gas, it follows that
P and S correspond to the condensate densityand the
compressibilityx of an ideal Bose gas, respectively, with

These simulations describe theories with a globé&l)U
gauge symmetry, which undergo a phase transition from a
symmetric state to one where thé1y symmetry is sponta-
neously broken. The ordered state, which is characterized by
a complex order parameter, can have topological line
defects—known as cosmic strings in the context of cosmol-
ogy, and as vortices in the context of condensed matter. The
0¥”e defects are either closed or terminate at the boundary;
they cannot terminate inside the system. Upon circling a vor-
tex of unit strength, the phasé& of the order parameter
changes continuously bym2

To numerically study line defects, Vachaspati and Vilen-
kin [16] considered a cubic lattice with periodic boundary
conditions. They discretized the vacuum manifold of the or-
dered state by allowing) to take on only certain discrete

No~(Te—T)Prer  k~[T—T| e (38 values in the interval & 9<2. The restriction to this in-

terval assures that only vortices of unit strength are gener-

The exponent@ andy featuring in Eq(31) are, on the other ated. Each lattice site is assigned one of the discrete values at
hand, connected to the order parameter of an ideal Bose gasandom. Phases at different lattice sites are therefore uncor-
which is the fieldg, describing the condensate, wilttho|? related. Vortices are traced by going around each plaquette
=ng. This last equation relates the tygexponents, giving of the lattice once. If a phase difference af & found upon
Bper= 2. Since Bpe=1, it also follows thaty,e~—a, as  returning to the site one started at, it is concluded that a
one would expect naively. It should be noted that the expovortex penetrates the plaquette. In going from one lattice site
nentsv and « are not sensitive to the nature of the orderto a neighboring one, the geodesic rule introduced by Kibble
parameter describing the transition. Given the presence of [d7] is implemented, assuming that tf@iscrete changes in
single diverging length scale, any sensible definition of thed are minimal. When two instead of just one vortex are
correlation length leads to the same exponentAnd «  found to penetrate a unit cell, the two incoming and two
merely characterizes the algebraic behavior of the logarithnoutgoing vortex segments are randomly connected. There are
of the partition function, which is essentially the pressuredifferent ways to do this, the simplest one being to choose
Despite the difference in the correlation function of percola-equal probabilities as was done in REE6]. But there are
tion and an ideal Bose gas, the relatiiB) between the other choices, such as favoring those possibilities that gener-
correlation length exponemtand the fractal dimension is the ate longer loop$18]. In this way, a whole random network
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of vortices(of unit strength can be traced out. errors—values similar to those for three-dimensional uncor-
Such a random string network is of relevance to the for+elated site percolation, which has=0.45, 7=2.18 andD

mation of topological defects after a rapid phase transitior=2.53[6]. For the vortex loops, the valug>2 means that

involving the spontaneous breakdown of some symmetryhey are self-seeking. The conclusion that the phase transi-

[19]. As was first proposed by KibblgL7] in the context of tion of a random string network is identical to the uncorre-

cosmology, causally disconnected pieces of the early unidted percolation transition is precisely what one would ex-

verse may after a rapid temperature quench end up in diffetF-)eCt given our observations of the last section.

ent, but degenerate states of the broken-symmetry vacuum, V. CORRELATED PERCOLATION

characterized by different values for the phaksef the order

parameter. When these regions come together, the resulting Up to this point we considered onlyncorrelatedsite per-

frustration at the boundaries may lead to the formation offolation, where lattice sites were occupied at random, and

topological defects. Zurek20] noted that a similar mecha- nearest-neighboring occupied sites grouped together in clus-

nism might operate in the context of condensed-matter phyd€rs- However, as is known from work on the Ising model

ics and developed a qualitative theory, based on scaling a -6]'| tThS is nott trt1e fV\t’EOIIe story. del it iate t
guments, of the formation of topological defects in time- n the context of the 1Sing model, 1t IS more appropriate to

dependent phase transitions. To test this scenario, superﬂuﬁ fer to occupied sites as sites with spin up, say. In general,

3He-B in rotation was radiated with neutrofl]. After a the percolation threshold temperature is below the critical
neutron-absorption event, in which a small region is briefly?"€- That is to say, already before the thermal phase transi-

heated up to the normal phase, a vortex network was prot_|on is reached,_cluste_rs of spin-up sites percol.ate the Iatt!ce.
nly on a two-dimensional square lattice, the site percolation

duced. Under the action of the Magnus force, some of th hreshold t N incid ith the critical t i
vortex loops in the network expand and connect to the con- resnoid temperature coincides wi € critical temperature.
Despite this, the Ising model and percolation critical expo-

tainer wall. They are then, still under the action of the Mag- ; difs ; i higher di . The situation i
nus force, pulled straight, and finally, end up in the center O]n_en_ls atre tr'] eren Eas In 'g etrthlmenjlo?ss. e”IS' ugﬂl]otnhls
the cylindrical container aligned parallel to the rotation axis,Slmlar 0 the one discussed at the end of Sec. 11, wi €
where they can be detected by means of NMR. The numbé?ercolatlon translation being in a different universality class
of vortices produced in the neutron irradiation experiments.as the thermal one.

was in agreement with Zurek’s predictions. The vortex net-t Itis nevirthelesstﬁots?;]ble t(_)t_mcl)c:;fyhthe_z deflfn:';]lon of(;:_lfgs(—j
work was numerically simulatef22] with the Vachaspati- €rs in such a way that thé critical behavior ot the moditie

Vilenkin algorithm discussed above clusters becomes identical to that of the Ising md@d|.

Besides finite vortex loops, also infinite vortices appear inThIS approach goes back to seminal work by Fortuin and

a random network with high enough vortex densities. TheKasteIeyn[24], who mapped the partition function of the
division between finite vortex loops and infinite ones is of ISiNg model onto @orrelatedpercolation problem. To obtain

course somewhat arbitrary on a finite lattice. A possible? Modified cluster, take two nearest-neighboring sjjasf a

choice is to classify vortices with a length larger thao?? standard cluster Wi.th all the spins up, and adq .the pair to the
whereL is the lattice size, as infinite. Universal quantities, "W  cluster  with — the bond  probability p;;=1

such as the critical exponents should be independent of thE.eXp(—Z(;]/TBnH v¥hereJ Is the _spink;spin coupling dOf thi
precise choice. The fractal dimension found in the initial_ISIng model. The factor 2appearing here corresponds to the

simulations[16] were consistent with that of a Brownian Increase i_n energy when one_of the two spins involved in th_e
random walk,D=2. This result can be understodd] by bond is flipped. The upshot is that the bond clusters are in

realizing that a dense random network was simulated, Whergeneral smaller than the standard ones and also more loosely

a single vortex experiences an effective repulsion from thét:onnect?d. Thed t:jqndl cIust_(te'rs Ipt;arﬁole}te .réghtt.at It?etﬁ”?c?l
neighboring vortex segments as the volume occupied b mpeérature and display critical behavior identical to that o

- : St Ising model.
these segments is not available anymore. The situation i € .
similar to a polymer in a dense solution, which also displays The method has been turned into a powerful Monte Carlo

the structure of a Brownian random walk. algorithm by Swendson and Waig5], and by Wolff[26],

Without any external field, all phase values of the Orderwhere no individual spins are updated, but entire clusters.

parameter have equal probability. Vachaspatilifted this The ma}in advantage of the nonloc;al clqster algorith'm in
degeneracy of the vacuum manifold by giving some Valuesjompanson to a local update algorithm, like Metropolis or

bias, thus obstructing the formation of vortices and decrea eat bath, is tha; .it dras_tically reduces the critical slowing
ing the vortex density. When studying the statistics of thedown near the critical point. . .
Very recently, also the critical behavior of the three-

random network as function of the bias, a threshold was.. . . : .
dimensional Of) spin models, witm=2,3,4, was described

found, above which infinite vortices are absent and finite :
loops exponentially suppressed. The sudden appearance 3z a correlated percolation proc¢2g]. The relevant clusters

infinite vortices as the threshold is approached from the lowPercolate at_the critical temperature, and were _shown to have
density side, was interpreted as a percolation process. the same critical exponents as the corresponding models.

Strobl and Hindmarshl5] carried out more extensive nu-
merical simulations on the transition of a random string net-
work triggered by changing the bias. Using the percolation In the same way that correlated percolation can describe
set of critical exponents, they measured—within statisticathermal phase transitions of interacting systems also corre-

VI. WORLDLINE LOOP GASES
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lated worldline loop gases can. Recall that the loop gas de- TABLE I. Critical exponents for Brownian and smooth random
scription of an ideal Bose gas hinged on the representationalks together with the exponenésand = parametrizing the loop
(25) of the partition function in terms of the loop distribution distribution(34).

(34), which derived from the representati¢?4) as an inte-

gral over momentum. If we assume that near the criticaR

andom walk o T a B v D

Y 7

point, the partition function of an interacting system can beg;vnian

put in a similar form, but withE(k) replaced by the single-

particle spectrum of the excitation that becomes critical at

1 1+d2 2-d/2 di4—1/2 1 0 1/2 2

T., the integral can in principle be done, yielding some loop
distribution |, with w physically denoting the number of
times a world-line loop wraps around the imaginary time
axis. As for the ideal Bose gas, this distribution is param-
etrized by two exponents and 7, and can be put in the
general form(34), with values characteristic for the univer-

sality class under consideration. The string tension of the

worldline loops vanishes af., and loops with arbitrarily
large winding numbew appear in the system, signalling the
onset of Bose-Einstein condensation in the low-temperatur
phase. Note that the representati{@d) of the partition func-
tion as an integral over momentum does not require a no
relativistic theory. Also relativistic theories lead to a similar
form for the (equilibrium) partition function at finite tem-
peraturg[28], as it is essentially fixed by Bose statistics.

The generalization of the sum rul@9) to correlated
worldline loop gases reads

f d9% G(X):% e—ﬁ//kBT’ (37)

where we recall that the string tension behaves near the crit
cal point asfoc(T—T,)¥. The sum rule leads directly to the
relation

y=1o, (39
while at criticality, with the long distance cutof, =L,
corresponding tav,,,,=LP as before, it gives the relation

n=2-D. (39

These two relations generalize the corresponding results i

Eqg. (31) for an ideal Bose gas with modified energy spec-
trum. The valuen=0 separates self-avoiding worldlines

(D<2) from self-seeking ones. Since the fractal dimension

has to be positive and smaller than the dimengioof the

embedding spacg29], 2—d< »<2. Translated in terms of
limits on 7, it follows that 2<r<d/2+1 for self-seeking
worldlines, while 7>d/2+1 for self-avoiding ones. Note

that in two space dimensions and below, no self-seeking

strings are possible.

n_

Smooth 1 Hd 2—d da2-12 1 1 1 1
_, —1 _7'—2 _, d
- o’ p= 20 T TS
LN 40
P -1 (40

Since only general scaling laws are used in deriving these
results, we believe they hold for any critical theory specified
Sy a loop distribution(34) with exponentsr and 7. It can be
easily verified that for an ideal Bose gas witl+d/D —1

and r=d/D+1, Eq. (40) reduces to the correct valuf&q.
(3D].

As an illustration, let us discuss the worldline loop distri-
bution of some well-known statistical models. We start with
random walks. In Table | the critical exponents of two dif-
ferent types of random walks are given together with the
corresponding values far and 7 parametrizing the loop dis-
tribution (34). Both have the valuegr=1 in common. The
first one is the Brownian random wallK], which has a frac-
tal dimensionD =2, while the second one is the so-called
Bmooth random walk30,31], which hasD=1 and is there-
fore self-avoiding. Whereas a Brownian random walk can be
understood as a particle hopping through a lattice with its
next(nearest-neighboringite chosen randomly at each step,
a smooth random walk can be understood as a particle hop-
ping through the lattice with its velocity rather than its posi-
tion being changed randomly at each step. As a result,
whereas a typical path of a Brownian random walk is con-
tinuous but not differentiable, a typical path of a smooth
random walk is differentiable while only the first derivative
is not. The reluctance to change directions is typical for fer-
mionic particles. To understand the valye- 1 for a smooth
fandom walk, note that the correlation function of a Brown-
ian random walk is given in the continuum by

d

G(X):JwGB(k)eik'x. (41
with
1
GB(k)=k2+—§_2, (42)

As in Sec. Il the exponents here are those for describing

the thermal-phase transition of a loop gas of strifwgsrld-

leading to the algebraic behavid@b) at criticality with #

lines). They are to be distinguished from the ones defined in=0. A smooth random walk, on the other hand, has a corre-

the context of percolation theory given in E&3). The two
sets have, however, the exponeatand v in common, im-
plying that the present set can also be expressed entirely
terms of the exponents and r parametrizing the loop dis-
tribution (34). Indeed, we find
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TABLE II. Critical exponents for the two-dimensional @) spin model, withn=—2,0,1,2%, respec-
tively, together with the exponents and = parametrizing the loop distributiof84).

Model n o T a B y n v D
Gaussian -2 1 2 1 0 1 0 1/2 2

SAW 0 32/43 91/43 1/2 5/64 43/32 5/24 3/4 43/24
Ising 1 a7 15/7 0 1/8 714 1/4 1 714
XY 2 0 15/7 1/4 714
Spherical s 0 2 1/2 0 2

wheree is some unit vector. At criticality, this again gives exponentsg’ and 7'. Since there is only one correlation

the algebraic behavid), but now with =1. length in the system, the cluster and perimeter exponents
In two space dimensions, the critical exponents of variousatisfy[34]

models are known exactly. For example, fompEpin mod-

els with n=—2 cos(27/t) and 1<t<2 they are given by (r=1)/o=(7"=1lo, ola’=D’'ID. (46)
[32] :
The perimeter valueg35]
_ 2t-3 _(t=1)(t=3) 3 t>+3 ) ) ;
T2 P Teit—2) YT T at-2) o'=3/1, 7'=1517, (47
leading toD' =7/4 indeed fulfill the relation$46).
— _ 2
p=— L . p=— w D:t +3, Recent high-precision Monte Carlo studies of the three-
2(t-2) 2t 2t 44 dimensionalXY universality class gavgs6]
=0.64233), =0.03812). 48
corresponding to v 33), 7 12) 48
At(t—2) (t+1)(t+3) '(Ij’ik;?ritr)i?ilélrglnfﬁeexponents parametrizing the worldline loop
A T

) ) . 0=0.7582, 7=2.5291, (49

For special values of the parameteuch than is an integer,
one obtains the critical exponents for the Gaussian model &forresponding to a fractal dimensi@n= 1.9619 very close
the Brownian random walkn(= —2), the self-avoiding walk o 2 in accordance with the smallnessspfSinceD <2, the
(SAW) (n=0), the Ising modelif=1), and theXY model  worldline loops of the three-dimension&l model are self-
(n=2). The critical exponents for these models togetheryoiding.
with those of the spherical model are collected in Table II.

A few points may be worth noting.

(i) Both the Ising = 2) and theXY model ¢=2) have VIl VORTEX LOOP GASES
the same fractal dimension. This is made possible by a mini- Let us next turn to interacting systems with a glob&lU
mum in D(t) at t=v3 located between the two models, gauge symmetry, which have vortices as topological defects
whereD =v3. in the ordered state. Thermal phase transitions in systems of

(i) In the literature, the fractal dimension is often equatedtis type have, besides the conventional Landau description,
to 1/v rather than to v as in Eq.(18). We believe, the an alternative description in terms of proliferating vortices
result(18) is more general. [37]. Such a scenario was first put forward by Onsddér

(iii) The special character of the two-dimensioKdand  and later by Feynmah38] to describe the\x transition in
also of the spherical model is seen in the loop gas picture b§He. In the ordered, superfluid state, where th&)ldymme-
the vanishing of the exponent implying the absence of the try is spontaneously broken, only finite vortex loops are
Boltzmann factor in the loop distribution functiq84). present. Because of the finite string tension, the loops are

(iv) Besides the two-dimensional Ising antY model  exponentially suppressed. Upon approaching the critical tem-
there is at least one other one-dimensional object embeddegxrature from below, the string tension vanishes, and vorti-
in two space dimensions with the same fractal dimensionces start to proliferate. For vanishing string tension, vortices
Surprisingly, it is the perimeter of the percolation cluster ofcan gain configurational entropy by growing without energy
standard, uncorrelated percolation in two dimensif8®, cost. The resulting infinite vortices disorder the system and
which can also be mapped onto various types of randonthereby restore the spontaneously brokefl)Usymmetry.
walks. Close to criticality, the perimeter of the percolating The importance of vortex loop excitations in triggering the
cluster is again distributed according to Kty but with dif-  phase transition has since then been emphasized by various
ferent values for the exponents. To avoid confusing with theauthorg39]. Early numerical evidence for this picture based
two-dimensional cluster exponentsr=36/91 and 7 on Monte Carlo simulations of the three-dimensioxal
=187/91 corresponding tB =91/48, we call the perimeter model was given by Janke and Klein¢&7,40. Analytic
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methods to describe the transition using vortex loops in a@xistence of a unique, yet to this date unknown, algorithm to
gualitative way were developed by Willianjg1], and by construct the string network that would give precisely the
Shenoy and collaboratofg42]. expectedXY critical behavior. The situation would then be
Like worldline loops, vortex loops are specified by a loop similar to that found for correlated percolation and thermal
distribution as in Eq(34) parametrized by two exponenis phase transitions in @) spin models discussed in Sec. V.
and 7’ [43]. These determine the critical exponents of the
system again through E0), with o and 7 replaced byo’
and 7’. The result that the exponentol/ parametrizing the
vanishing of the vortex string tension directly gives the criti-  In this paper, we discussed the close analogy between
cal exponenty—and not 2 as is often claimed in the litera- percolation of (correlated clusters and proliferation of
ture, also by the present authdr3,44—was first observed strings at thermal-phase transitions of interacting systems.
by Nguyen and Sudbp45], while the connectiom;p=2—D  Two types of strings were considered: worldlines and topo-
for vortex loops was very recently derived independently inlogical line defects. Both are described in a way similar to
Ref.[29]. clusters in percolation theory, being specified close to the
In the past few years, various groups have continued teritical point by a distribution parametrized by only two ex-
numerically investigate the three-dimensiond¥Y model ponents. At the critical temperature, the string tension van-
from the perspective of vortices, in particular their loop dis-ishes and loops proliferate in the same way as clusters per-
tribution [18,45,44. Let us discuss the numerical values for colate. If the loops are finite-temperature worldlines, their
the exponentsr’ and 7' obtained in these studies from the proliferation signals the formation of a Bose-Einstein con-
present perspective, concentrating on insights not availablg¢ensate that spontaneously breaks the global symmetry char-
before. acteristic of the phase transition under consideration. If, on
Irrespective of the description chosen, either with the helghe other hand, the loops are vortices, their proliferation sig-
of worldline loops or vortex loops, the expression for thenals the disordering of the ordered state in which these vor-
correlation length exponent is formally the same. Since alstices are topologically stable.
the numerical value of this critical exponent is independent In deriving our results, we used the ideal Bose gas with
of the description, the exponentsand r parametrizing the modified energy spectrum as a stepping stone. The model,
worldline loop distribution andr’ and 7' parametrizing the despite being noninteracting, has nontrivial critical expo-
vortex loop distribution satisfyf—1)/o=(7'—1)/0’ asin  nents that are known exactly. It also has the virtue that it can
Eqg. (46). They should both lead to the same numerical valuebe mapped onto a loop gas in an exact way. The resulting
for v given in Eq.(48). Using foro’' and 7’ the numerical relations between the exponents parametrizing the loop dis-
values[47] tribution and the critical exponents describing the thermal-
, , hase transition of the system, were shown to be easily gen-
Vo'=1485), r'=241) (50 zralized to interacting Iogp gases using general scalingylgws.
reported by Nguyen and Sutlb45], we find from Eq.(40) a  As for percolation, the two exponents parametrizing the dis-
result v=0.68 very close to the expected ofieq. (48)].  tribution were shown to encode the entire set of critical ex-
Since X7’ <d/2+1, vortex loops in theXY model are ponents.
(slightly) self-seeking. The numerical values fot and r’ Various statistical models with exactly known critical ex-
reported by the other groups give the results 0.62[46] ponents were discussed from the perspective of a worldline
and »=0.60[18], which are within about 10% of the ex- loop gas. Also recent numerical studies on the statistical

VIIl. CONCLUSIONS

pected result. properties of the vortex loop gas in the three-dimensiohal
It was noted by William$41] that the fractal dimensiob ~ model were discussed.
extracted from the value’ =2.23(4) reported in Ref46] It was shown that a random string network is to thermal-

was close to the estimatB=(d-+2)/2 obtained from a Phase transitions involving correlated strings as what uncor-
Flory-type of argumenf42]. This estimate is identical to de related site percolation is to thermal phase transitions in
Gennes’s ongEq. (20)] for uncorrelated percolation that was O(n) spin models.
also based on a Flory-type argument. It should be noted, A possible connection of the approach discussed in this
however, that de Gennes’s modification of the original Florypaper with the Monte Carlo loop algorithm introduced by
argument was motivated in part to arrive at the correct uppelveretz[49] is presently under investigation.
critical dimensiond,=6 for percolation rather thad,=4 Note added in proofRecently I received a copy of Ref.
for random walks and thXY model. [51] where the connection between Bose-Einstein condensa-
Kajantie and collaboratorgl8] investigated different al- tion in a Bose gas and percolation was considered previ-
gorithms to construct the string network. Depending on thedusly. I kindly thank the author for sending me the reprint.
algorithm chosen, they obtainéslightly) differing quantita-
tive results. None of the algorithms used yielded a percola-
tion threshold precisely at the critical temperature. From this
observation they concluded that “geometrically defined per- | would like to thank M. Krusius for the kind hospitality
colation observable need not display universal properties reat the Low Temperature Laboratory in Helsinki, K. Kajantie,
lated to the critical behavior of the system.” It has beenT. Neuhaus, and A. Nguyen for helpful discussions, H. Satz
suggested48] that this discrepancy might instead hint at the for inspiring lectures at the Zakopane summer sch860l,
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