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Creep motion in a random-field Ising model
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We analyze numerically a moving interface in the random-field Ising model which is driven by a magnetic
field. Without thermal fluctuations the system displays a depinning phase transition, i.e., the interface is pinned
below a certain critical value of the driving field. For finite temperatures the interface moves even for driving
fields below the critical value. In this so-called creep regime the dependence of the interface velocity on the
temperature is expected to obey an Arrhenius law. We investigate the details of this Arrhenius behavior in two
and three dimensions and compare our results with predictions obtained from renormalization group ap-
proaches.
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[. INTRODUCTION fields H well below the critical threshold at sufficiently low
temperatures. Here, the interface velocity is expected to be
In recent years the understanding of driven interfaces hagharacterized by an Arrhenius behavior
improved considerably. Well known models of such inter- CE(H)IT
faces are the equations of Edwards and Wilkingldras well v~e @
as of Kardar, Parisi, and Zhahg]. Of particular interest are . -
driven interfaces moving throgg]h a qFl)Jenched disordered mé’y'th a certain field dependent energy barteH). Creep

dium, which exhibit a so-called depinning phase transition.mmion was investigated, for instance, within the theory of

Without disorder the velocity of a driven interface grows ﬂLrj())( cre:p ?Qggﬁgent%lo]thindég S;‘éii%.{fﬂg;?algat'gpon
linearly with the applied driving force or driving field, re- group - approc W Kl quat
spectively. This behavior changes in the presence ogll,lﬂ. Experimentally, the Arrhenius behavior of the creep

quenched disorder. For small driving fields the interface igco' e Was observed for magnetic domain wall motion in

pinned by the disorder. The interface moves only if the driv'::‘thin film_s composed of C.O and PF laydr3). . .
In this paper we consider the interface motion occurring

ing field exceeds a critical value, i.e., on increasing the driv-.n a driven random-field Ising modéRFIM) in the cree
ing field a continuous phase transition from a pinned to e{re ime. In the next section \?ve describe the details o? the
moving interface takes pladsee, for instancd,3] and ref- gime.

erences therejn The expected dependence of the interfacemOdel and the simulations. In Secs. Il and IV we investigate

velocity on the driving field is sketched in Fig. 1. For very numerically the creep motion of the interface in the two and

large driving fields the disorder can be neglected and cons hree dimensional RFIM. In particular, we show that the ve-

guently the velocity depends linearly on the driving field. ocity behavior can be described by an Arrhenfirsatzand

The depinning transition happens due to the competition pave investigate the temperature and field dependence of the

tween the disorder and the driving field. The disorder in-
duces some effective energy barriers that suppress the inter-
face motion. The driving field reduces these energy barriers
but they are overcome only if the driving field exceeds the
critical value. Examples of systems exhibiting a depinning V(H=H)T"
transition are charge density waves5] or field driven do-
main walls in ferromagnet6].

However, in the above scenarios thermal fluctuations are
neglected. In real systems these fluctuations occur and no
critical behavior is observed for finite temperatures. The rea-
son is that even below the critical driving field the energy
barriers can be overcome due to thermal fluctuations, result-
ing in a moving interface. A striking effect of thermal fluc-
tuations occurs at the critical field where the interface veloc-
ity v depends on the temperatdfeccording ta ~ T with =
an exponent=1 [5,7-9. Another effect of thermal fluctua- ’ H
tions is the so-called creep motion that occurs for driving  FiG. 1. Schematic sketch of the interface veloaityf the pin-

ning phase transition and its dependence on the drivinglflelthe
bold line corresponds to zero temperatufe; 0. For small but fi-

v

v(H>>H )~H

WT=0)~(H-H,)’

v(H<H )~exp(-E/T)

*Email address: lars@thp.uni-duisburg.de nite temperatures the critical behavior is smeared (thih solid
"Email address: sven@thp.uni-duisburg.de line). The creep regime for small driving fields is characterized by
*Email address: usadel@thp.uni-duisburg.de an Arrhenius like behavior with an effective energy barker
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prefactor of the Arrhenius law and study the energy barrierlll. CREEP MOTION IN THE TWO DIMENSIONAL RFIM
E(H). In Sec. V we summarize and discuss our results. MODEL

We measured the velocity of the interface in the creep

Il. MODEL AND SIMULATIONS motion regime. Since the creep regime is “far away” from

the critical point, we expect that finite-size effects can be

To study the creep regime we consider the RFIM on aneglected. Investigations of various system sizes confirm this
square or simple cubic lattice of linear size The Hamil-  assumption and we use therefore in our simulations a large
tonian of the RFIM is given by number of update steps instead of large system sizes. We
performed for each temperature and field value at least 10

J Monte Carlo steps. Additionally we focus our analysis on

H=-> 2 SS-HX S—> hsS, (2)  one value of the disorder strength € 1.2). We have also
2.4) : : performed some spot checks at different valuea af order
to confirm that the results are not sensitive to the disorder

where the first term characterizes the exchange interaction trength.

neighboring spins$ = +1). The sum is taken over all pairs  As mentioned above the velocity is expected to obey an
of nearest neighbor spins. The spins are coupled to a homd\rhenius law

geneous driving fieldH and to quenched random fieldhs YT

which we choose to be uncorrelateth(h;)e ;) with (h;) v(H,T)=C(H,T)e (4)

=0. Throughout this paper we consider uniformly distrib-

uted disorder, i.e., the probability densitythat the random in the creep regime. The effective energy bariigiH) is
field takes some valuk; is given by independent of the temperature and tends to zeroHor
—H,.. Following a renormalization group analygitl] we
1 assume that the temperature dependence of the prefactor of
_ (24) for [hij<A the Arrhenius law is characterized by a power-law behavior
p(h)= . ()
0 otherwise.
C(H,T)=c(H)T™* )

Using antiperiodic boundary conditions an interface is in-

duced in the system which can be driven by the fidisee : . -
[9] for detailg. Starting with an initially flat interface we value ofx the m_terface mqt|on st(_)p_s for any finite value of
a00lv a Glauber dvnamics with dom sequential dat(tehe energy barrier<H,) in the limit T—0.

pg)r/] t batl?} i Yt.a : SbW;)'I't'g f s qtu nelg;im]u)p In the first step of our analysis we determine the exponent
and heat-barn fransition probabilitiesee, for Instanc " X Inan Arrhenius plot InT* vs 1/T the exponenk is varied

I[rilciajrd_SImltJ.Iatlor}s th? m'lterfact? rr:og:_es a$h09 .ﬂm] antd | until straight lines are obtained. Good results are found for
+ direction of a simplé cubic fatlice. This 1S a hatural \ _ 4 g9+ 17 and the corresponding curves are shown in
choice since in the absence of disorder interface motion Oclfig >

curs for any f|n_|te d_rlvmg field 8]. Th|s property Is an ad- . Aregression analysis of these curves then yields the value
vantage, espemallym th? creep regime where the interface 6 the prefactorc(H) and the value of the energy barrier
driven by small driving fields at low temperatures.

The basic quantity in our simulations is the velocity of the.E(H) [Egs.(4) and(5)). The resuits are plotted in Fig. 3. On

S o . . i increasing the driving field the effective energy barrier de-
moving interface, which is determined in the following way. :

. . ; creases as expected. But the prefactor of the Arrhenius law
The interface movement corresponds to an increasing mags

S L : X : : isplays no significant field dependence, i&{H)=const.
netization which is monitored as a function of time, i.e., the.l_his is confirmed by Fig. 4 which was obtained by plotting

number of Monte Carlo steps per spin. Starting from a flaé X . d
interface the system after a certain transient regime reache %UT as a funcppn O.fE(H)/T' The curves for dlfferer_lt
lues of the driving field are seen to coalesce to a single

steady state where the average magnetization grows linear lirve, which happens only #(H) = const,

with some particular exponent Independent of the actual

. (6)

in time. The velocity of the interface is defined as the time W I the field d d fth barri
derivative of this magnetization. Spin flips outside the inter- t'e a}nayze € tlle ?pen dence 0 I'e (tgnergy arrier
face may also occur, caused by the finite temperature. Theég.\""r mr?[lrlcim a recently performed renormalization group ap-
isolated, rare spin flips are unstable for sufficiently smallProac » assuming
temperatures, i.e., they flip back in the next update. Thus

. . H M
these spin flips do not affect the measurement of the global E(H)=E (_C) -1

. . . 0

average magnetization time dependence and therefore do not H
affect the determination of the interface velocity.

During its motion the originally flat interface roughens On approaching the critical field of the depinning transition
due to the disorder. The width of the interface increases antl; the energy barrier vanishes. The value of the critical field
finally reaches a stationary state. For the data presented h.=1.12+0.02 is obtained from an independent simulation
this paper we have verified that the interface width remainst zero temperature. Thus we plotted the rescaled velocities
small as compared to the extension of the system perpems a function of H./H)#—1 and tried to obtain a coales-
dicular to the interface. cence of the data similar to Fig. 4 by varying the exponent
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FIG. 2. The interface velocity as a function of the temperature FIG. 4. The rescaled interface velocitydi* vs E(H)/T. The
T for various values of the driving field H values of the energy barriég¥(H) are obtained from a regression
€{0.25,0.3,0.35...,0.6} from bottom to top and A=1.2. Ac-  analysis of the corresponding curves of Fig. 2. The data collapse
cording to Eq.(4) we plot InuT* vs 1/T. On varying the exponent confirms that the prefactor displays no significant field depen-
X we obtained nearly straight lines for=0.89+0.17. The cutoffs at  dence[Egs.(4) and (5)].
low and high temperatures are caused by different effects. At low
temperatures the interface can be pinned for finite time intervals IV. THE THREE DIMENSIONAL MODEL
depending on the particular disorder configuration. In this case the
interface displays a stop and go behavior which results in strong We next analyze the interface velocity of the three dimen-
velocity fluctuationgnot shown for clarity. The cutoff for largev sional model forA=1.7. For this value of the disorder the
occurs because the creep regime is exited at high temperatures eritical behavior has been investigated and the corresponding
high driving fields. critical field has been found to bé.=1.37+0.01[9]. As for
the two dimensional model we have also performed some
(See Fig. 5. Our analysis shows that only a logarithmic field Simulations for values different from =1.7 to ensure that
dependence fop.— 0 fits the data, i.e., the main results discussed below do not depend on the par-
ticular choice ofA.
By driving the interface at finite temperatures and fields
c below the critical threshold we measured the velocity
) () u(H,T). Again, we fitted the simulation data to Eqé) and
(5) by varyingx to get straight lines in the il * vs 1T plot.
A good fit is obtained using=0.79+0.09 (Fig. 7).
(see Fig. 6. As one can see in Fig. 6 the logarithnfiasatz The result of the regression analysis f(H) andc(H)
yields a quite convincing fit. Our analysis therefore suggesté shown in Fig. 8. As in the two dimensional caSéH)
that the effective energy barrier displays a logarithmic fielddecreases with increasing driving field and the prefactor is
dependence.

I

E(H)=E0In(

T
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0.20 0.80 O'4OH 0-580 0.60 FIG. 5. The rescaled interface velocitydm* as a function of

[(H./H)*—1]/T [see Eq(6)]. No coalescence of the data could be
FIG. 3. The energy barrieE and the prefactoc [see Eqs(4) obtained for any finite value gf. But with decreasing exponept
and (5)] as a function of the driving fieltH. To avoid an overlap the coalescence becomes better. The figure shows the correspond-
between the two curves we plot-1 instead ofc. ing curves foru=0.05.
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FIG. 6. The rescaled interface velocitydm* as a function of .
; N : . o FIG. 8. The energy barridf and the prefactoc [see Eq(5)] as
In(H./H)/T. This logarithmicAnsatzyields a quite convincing data a function of the driving fielcH.

collapse, i.e., this result suggests that the field dependence of the
energy barrier is given by E@6) in the limit u—0.

He)
E(H)=Eo(—) ®

essentially independent of the driving field. On plotting the H

rescale_d interfac_:e velocities VB(H)/T the data coalesce for H<H.. Note that Eq(8) agrees with the one discussed
(see Fig. 9 only if c(H)=const. above [Eq. (6)] for sufficiently small driving fields. The

~ We consider now the field dependence of the energy bargpoyeAnsatzwas derived within a theory of flux creep be-
rier. In analogy to the previous section we check the conjechayior[10] and is expected to hold for the present situation
tured field dependence obtained from a renormalizationy driven interfaces. In this case the expongnis given by
group approach. Applying the data of the interface velocities, = (274 D —3)/(2— ¢) with ¢ denoting the roughness ex-
to the ansatz Eq6) yields a similar result as in two dimen- ponent of the interface at the depinning transititsee
sions, i.e., the accuracy of the data collapse increaseg for [12,13 and references therginFor the Edwards-Wilkinson
—0. Therefore we again assume that the dependence of thguation with quenched disordgr= (5— D)/3 has been de-
energy barrier on the driving field displays a logarithmic termined by are expansion within a renormalization group
behavior[Eq. (7)]. The corresponding curves are shown inschemd15]. This value is believed to be exact to all orders

Fig. 10. As can be seen the logarithiiosatzyields a good  of ¢ [16], and inserting it into the formula above yielgs
fit of the velocity data in the creep regime. =1, independent ob.

But we have to admit that in contrast to the two dimen-  Fitting our data according to Eq8) yields x=0.825
sional case we observe here that differémsaze for the  +0 1 (Fig. 11). The accuracy of the fit is similar to the one
field dependence of the energy barrier may also lead to a fptained from the logarithmidnsatzof E(H). Thus, in the
of the data. For example, several authors conjectured that thgree dimensional case one cannot infer the correct expres-
energy barrier is given by sion of the energy barrier from the accuracy of the data fit.
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FIG. 7. Interface velocities of the three dimensional model for

FIG. 9. On rescaling the interface velocities with the numeri-

different temperatures and driving fieldd € 0.3,0.35,0.4. . .,0.6,
from bottom to top. On varying the exponentwe obtained nearly
straight lines forx=0.79+0.09.

cally determined energy barrid¢g(H) the data shown in Fig. 7
coalesce onto one single curve. As in the two dimensional case this
behavior shows that(H)~const[see Eq.(5)].
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FIG. 10. Equatior{6) results in a logarithmic dependence of the
energy barrier on the driving field fqg — 0. The figure shows the
interface velocities, which are rescaled according to (2.

On the other hand, the driving fields considered (
=0.3,...,0.6) are of the same order as the critical value
(He~1.37) while Eq.(8) is believed to be valid only in the
limit H<H..

V. DISCUSSION AND CONCLUSION

We investigated numerically the creep motion of a driven
interface of a RFIM model in the limit of low temperatures
and small driving fields. We found that the interface velocity
obeys an Arrhenius law, which was investigated in detail.

We assumed that the prefactor of the Arrhenius law can b&

written asC(H,T)~c(H)T *. Applying this Ansatzto the
numerically determined interface velocities, we find a pos
tive exponentx for the two and three dimensional models.
Additionally, our results suggest thatH) is independent of

the driving field in both cases. These results are in contradicE"

tion to a renormalization group analy$ikl] in which (i) x is
claimed to be negative an@i) c(H) is found to exhibit a
significant field dependeng¢e(H)~H? with o>0]. In par-
ticular, the opposite sign of the exponenis remarkable.
Knowing the prefactoiC(H,T), it is possible to investi-
gate the driving field dependence of the energy baEigt).
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FIG. 11. Scaling plot for théAnsatzof the energy barrier ac-

cording to Eq.(8). From the data collapse one obtains-0.825
+0.1.

Our numerical results are in agreement with the assumption
that the energy barrier depends logarithmically in both di-
mensions on the driving field. Again this result is in contra-
diction with both phenomenological theories and renormal-
ization group approaches, which conjecture an algebraic
behavior[11-13. The logarithmic behavior can can be ex-
plained if one assumes that the exponent of the algebraic
behavior tends to zero. But {ri1-13 a finite value of the
corresponding exponent is predicted.

Thus our analyses reveal that the driven interface of a
RFIM displays creep motion in the limit of low temperatures
nd small driving fields characterized by an Arrhenius law as
predicted by phenomenological and renormalization group
approaches. The details of the Arrhenius Ilgefactor and
energy barrierdiffer, however, from the predicted behavior.
Further investigations are needed to understand these differ-
ces.
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