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Glass transition of a particle in a random potential, front selection in nonlinear renormalization
group, and entropic phenomena in Liouville and sinh-Gordon models
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We study via renormalization group~RG!, numerics, exact bounds, and qualitative arguments the equilib-
rium Gibbs measure of a particle in ad-dimensional Gaussian random potential withtranslationally invariant
logarithmic spatial correlations. We show that for anyd>1 it exhibits a transition atT5Tc.0. The low-
temperature glass phase has a nontrivial structure, being dominated bya few distant states~with replica
symmetry breaking phenomenology!. In finite dimension this transition exists only in this ‘‘marginal glass’’
case~energy fluctuation exponentu50) and disappears if correlations grow faster~single ground-state domi-
nanceu.0) or slower~high-temperature phase!. The associated extremal statistics problem for correlated
energy landscapes exhibits universal features which we describe using a nonlinear Kolmogorov~KPP! RG
equation. These include the tails of the distribution of the minimal energy~or free energy! and the finite-size
corrections, which are universal. The glass transition is closely related to Derrida’s random energy models. In
d52, the connection between this problem and Liouville and sinh-Gordon models is discussed. The glass
transition of the particle exhibits interesting similarities with the weak- to strong-coupling transition in Liou-
ville (c51 barrier! and with a transition that we conjecture for the sinh-Gordon model, with correspondence
in some exact results and RG analysis. Glassy freezing of the particle is associated with the generation under
RG of new local operators and of nonsmooth configurations in Liouville. Applications to Dirac fermions in
random magnetic fields at criticality reveal a peculiar ‘‘quasilocalized’’ regime~corresponding to the glass
phase for the particle!, where eigenfunctions are concentrated overa finite numberof distant regions, and allow
us to recover the multifractal spectrum in the delocalized regime.@S1063-651X~00!11510-7#
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I. INTRODUCTION

Despite significant progress in the past two decades,
ordered systems continue to pose considerable theore
challenges. Two important questions still largely open, a
respectively, to which extent the~better understood! mean-
field models are relevant to describe low-dimensional ph
cal systems, and, in the special case of two dimensions
what extent the powerful field-theoretic treatments dev
oped for pure models can be adapted to treat disord
models.

A celebrated controversy is whether the structure found
the solution of mean-field models for spin glasses and o
complex disordered systems, both in the statics@1# and in the
dynamics@2#, has any counterpart in the world of experime
tally relevant low-dimensional models. Specifically, it h
been vigorously questioned@3# whether the breaking of the
phase space in ‘‘many pure states,’’ predicted to occur
mean field, may also occur in short-range models, and ho
can be properly defined@4,5#. The unusual nature of the tech
nique used to solve the statics, i.e., the replica method wi
hierarchical breaking of the permutation symmetry betwe
replicas in the limitn→0 ~RSB!, did not contribute to make
the physics transparent. A distinct structure, which rema
ably parallels the one in the statics, has been found@2# to
occur in the nonequilibrium dynamics. The dynamical pro
lem can be studied bya priori better defined methods an
leads to predictions which are in principle directly testable
experiments, such as a nontrivial generalization of the fl
1063-651X/2001/63~2!/026110~33!/$15.00 63 0261
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tuation dissipation relations. Even so, it has been emphas
that mean-field models, which usually involve infinite ran
or an infinite number of component limits, may not captu
physical processes important in low dimensions. The al
native ‘‘droplet picture’’ in its simplest form@3# postulates
the existence of a single ground state with excitations~drop-
lets! of ~free! energyDE scaling with their sizex as DE
;xu, u.0. It provides a more conventional scaling d
scription of the glass physics, as being controlled by ze
temperature RG fixed points where temperature is form
irrelevant~with eigenvalue2u).

Another important advance was the exact solution of s
pler prototype models, such as the random energy mo
~REM! @6#, where one considers simply a collection of ind
pendently distributed energy levels, as well as its general
tion, the GREM@7#, or the directed polymer on the Cayle
tree ~DPCT! with disorder@8#. These solutions being direc
with no use of replica, their results can be fully relied upo
They exhibit a similar physics, with a glass transition, and
the glass phase they exhibit an exponential tail for the dis
bution of the free energyP( f );ebcf for negativef. This
feature is crucial to recover the same physics, and ind
many observables were found to be similar@9#. In fact, the
alternative solution of the REM using replicas, given in@6#,
or that of the DPCT@10# do involve RSB. In the REM model
the structure of the glass phase is particularly transparen
being dominated bya fewstates@6,9#.

It is important to go beyond models defined in mean fie
or on hierarchical~or ultrametric! structures and to study
©2001 The American Physical Society10-1



d

-

ev
l
e
a

or
-
o

nn

u
tiv

se
em
su
p
d

m

th
he
s
ng
ex
de

t
r-
e

ex
a
s,

m

th
ia
en
ed
ia

to
l

ns

se
for
lts
e

i-
ri-
u-

to
ing

ch
r of

,
and
ch.
he

ua-
nt
e
c-

rs
es

ils
sics

us
n in

ion

-

lly

g
on
ll
at-

ar,
of

RG
re-
of
nt
ly

was
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simple yet nontrivial~and nonartificial! finite d models with
full statistical translational invariance. In this paper we stu
the model of a particle in a Gaussian random potentialV(r )
with spatial correlations which areinvariant by translation
and which grow as thelogarithm of the distance. We con
sider this model in any dimensiond, but in d52 it has also
been studied recently since it is of direct relevance for s
eral physical systems@11–20#. One example is a spin mode
with XY symmetry and random gauge quenched disord
which arises naturally in describing Josephson junction
rays@21# or two-dimensional~2D! crystalline structures with
smooth disorder, e.g., flux lattices in superconductors@22#,
or electrons at the surface of helium@23#. In this model, a
single topological defect~an XY vortex! or a single neutral
pair sees precisely a random potential with logarithmic c
relations@14–19#. Another example arises in a model of lo
calization of Dirac fermions in a random magnetic field, m
tivated by quantum Hall physics. There, the zero-energyE
50 normalized wave function is identical to the Boltzma
weight of the particle studied here@11–13#. This wave func-
tion is ‘‘critical’’ in a sense discussed below.

Here we study this model using a renormalization-gro
~RG! approach, bounds, numerical methods, and qualita
arguments. We show that it exhibits a transition atT5Tc
.0 in anyd>1. We find that in the high-temperature pha
the particle is essentially delocalized over the whole syst
while in the low-temperature glass phase the Gibbs mea
is concentrated in a few minima. The fact that such a sim
~finite d) model exhibits a genuine glass transition is alrea
surprising. Indeed, as we argue, this transition existsonly for
such a ‘‘marginal’’ type of correlation~which corresponds to
u50 in the glass scaling mentioned above@24#!. It disap-
pears@for GaussianV(r )# if correlations grow faster~with
only a low-temperature phase and single ground-state do
nance! or slower ~with only a high-temperature phase!.
Logarithmic growth of correlations thus produces exactly
right balance between the depth of the energy wells and t
number~entropy!. Note that for slower growing correlation
one can recover a transition but only by artificially rescali
the disorder variance with the size of the system: in the
treme case of uncorrelated variables, it is the REM mo
Here, by contrast, there is a genuine phase transition in
thermodynamic limit, with no need for rescaling. Most inte
estingly, the glass phase is nontrivial. The Gibbs measur
concentrated ina few distant minimawhich remain in a finite
number in the thermodynamic limit. This is because the
trema of random variables with such correlations exhibit
interesting property of ‘‘return near the minimum’’: there i
with a finite probability in a sample of sizeL→1`, at least
one second minimum far away~at distances of orderL), and
with a finite energy difference with the absolute minimu
And there are not too many~a thermodynamic number! of
these secondary minima, leading to a zero entropy. As in
REM, this property leads here naturally to a nontriv
ground-state structure, reminiscent, as we discuss, of a g
ine property of replica symmetry breaking in the replicat
theory. The low-temperature limit corresponds to a nontriv
problem of extremal statistics ofcorrelatedvariables, stud-
ied here.
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Another interesting property of this model is its relation
the Liouville model ~LM ! and the sinh-Gordon mode
~SGM! in d52 ~and their boundary restriction ind51):
V(r ) turns out to be the Liouville field while the LM and
SGM partition functions arise simply as generating functio
of the probability distribution of the partition sumZ@V#
5* re

2bV(r ) of a single particle. The high-temperature pha
for the particle corresponds to the weak-coupling regime
the LM and SGM, where we find that known exact resu
compare well with results for the particle. In the SGM w
predict here the existence of a transition~more appropriately,
a ‘‘change of behavior’’!. It corresponds to the glass trans
tion for the particle, which also exhibits interesting simila
ties with the weak- to strong-coupling transition in the Lio
ville theory ~and the so-calledc51 barrier!. The glassy
freezing of the particle is associated, in the LM and SGM,
new local operators and nonsmooth configurations be
generated under RG.

To study the model, we will introduce a RG approa
based on a Coulomb gas renormalization in the manne
Kosterlitz. It leads to a nonlinear RG equation@of the so-
called Kolmogorov-Petrovskii-Piscounov~KPP! type# for the
full probability distribution of the ‘‘local disorder.’’ Indeed
a separation between the long-range part of the disorder
the local, short-range part arises naturally in our approa
The RG equation has traveling-wave types of solutions. T
corresponding well-known problem, in such nonlinear eq
tions, of the selection of the velocity of the traveling fro
and its freezing forT<Tc is related to glassy freezing of th
particle free energy and, in the LM or SGM, to the ‘‘sele
tion’’ of the anomalous dimensions~and at the transition
dimension degeneracy it leads to logarithmic operato!.
When temperature is lowered, the local disorder becom
broadly distributed and the freezing occurs when its ta
become relevant. Our RG method indicates that the phy
depends only weakly ond. We will take advantage of this
fact and check our results using simulations ind51.

It is important to compare the present work to previo
studies of the model. The existence of a freezing transitio
d52 has been conjectured previously@18,16,17,13#. In Ref.
@18#, the analysis was based on an explicit approximat
which neglects spatial correlations~called here and below the
REM approximation!. Various efforts to include spatial cor
relations were made in Refs.@16,17,13#; some are described
below. Although very interesting, none of these works fu
established the existence of a transition~which is done here
in Appendix A!, nor developed analytical methods allowin
to obtain results beyond the simpler REM approximati
@25#, or to prove their validity. The problem is thus sti
largely open and the present work contains some new
tempts to go beyond the REM approximation. In particul
one wants to know what is the precise universality class
the model, which we hope can be determined from the
method introduced here. This RG method yields some
markable universal features of the probability distribution
the free energy and of its finite-size corrections, differe
from the REM. It shows that the problem is more close
related to the directed polymer on a Cayley tree. Aqualita-
tive analogy between the present model and the DPCT
0-2
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GLASS TRANSITION OF A PARTICLE IN A RANDOM . . . PHYSICAL REVIEW E63 026110
in fact cleverly guessed recently in Refs.@17,11#. It is based
on the observation that the energy of polymer configurat
on a tree also scales logarithmically with the overlap dista
defined on the tree~see Fig. 1!. It is remarkable that this
connection naturally emerges here from the Kosterlitz-ty
RG performed on this problem, via the KPP equation. It is
the more surprising, since the model studied here has st
tical translational invariance, while a tree has a hierarch
structure. The solution of Derrida and Spohn@8# ~and the
mapping onto the DPCT proposed in@17,11#! would be exact
for random variablesV(r ) correlated with ahierarchical
~i.e., ultrametric! matrix of correlation. Here instead the co
relations are translationally invariant and it is thus import
to understand the origin of the analogy with the DPCT and
which extent it holds. The RG procedure developed in t
paper is an attempt to address these questions. The res
that we can make the mapping precise: at least for the
versal observables studied here~e.g., the tails of the free
energy distribution!, the mapping is onto acontinuum
branching process, i.e., a continuum limit of a Cayley tre
~whereas@17,11# could not be so specific!.

The present model has also been studied in the conte
random Dirac problems and localization. An early study@26#
of theE50 wave function established that it was critical~in
the sense of corresponding to a ‘‘delocalized’’ wave fun
tion, while E5” 0 has finite localization length!. However,
this study missed the glass transition. Later studies@13# com-
puted the multifractal spectrum based on the REM appro
mation ~in the sense defined above@25#! and noticed the
existence of a strong disorder regime. These and other s
ies @11,12#, however, focused on properties of the hig
temperature phase: it was conjectured@12# that the~confor-
mal! Liouville field theory ~LFT! ~i.e., a continuum limit of
the LM! was able to describe all spatial correlations of t
model in the high-temperature phase. These works call
more investigations. First, theglass transitionand the pecu-
liar physical properties of the lowT ~i.e., strong disorder!
phase have not been addressed, even at the most quali
level. We thus find it useful to present the problem from
different perspective by comparing with other types of c
related disorder, or by recasting it as a problem of extre
statistics. Although well known properties@27# of extremal
statistics ofuncorrelatedvariables were often used to stud

FIG. 1. Directed polymer approximation: sites are the tree
points. Thevq

p are uncorrelated of variance 2s. The random poten-
tial at i is Vi5v1

(1)1v1
(2)1v2

(3) and atj it is Vj5v1
(1)1v2

(2)1v4
(3) .

Thus (Vi2Vj )
254sd( i , j ), whered( i , j ); lnui2ju is the distance

~in generations! on the tree.
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model disordered systems~see, e.g.,@28–30#!, a lot remains
to be understood about the~more realistic! case of correlated
variables. Second, the question of the universality class i
our opinion far from established. Evidence for the LFT d
scription mostly comes from reproducing the multifrac
spectrum as given by the REM approximation and one wo
like to check it against more detailed predictions. T
present RG procedure is a step towards clarifying the c
nection between this model and solvable models such
Derrida’s REM and Derrida-Spohn DPCT. In this respe
finite-size corrections are important to understand, as t
are found to exhibit universal prefactors allowing to disti
guish between various universality classes. In addition, t
determine the anomalous dimensions, and thus control
critical behavior, in the full disorderedXY model as shown
in @19#. Since they are found to be very large, they are a
crucial in order to analyze the results of numerical simu
tions. In particular, although we confirm the result of@11#,
we also conclude that the sizes used in the numerical s
of @11# were in fact vastly insufficient for drawing firm con
clusions: we do perform here a more detailed finite-s
analysis on much larger samples to confirm analytical p
dictions.

The model studied here is thus related to a surpris
number of interesting problems. Let us mention for co
pleteness that it also has connections to problems suc
two-dimensional interfaces, or films, confined between t
walls ~for b51` it is the confinement entropy of a film!,
wetting transitions@31#, extremal statistics of correlated var
ables useful, e.g., for problems of ‘‘persistence’’ in noneq
librium dynamics@32#, and finally, to the clumping transition
of a self-gravitating planar gas@33#. We will not explore
these connections in detail here.

This paper is organized as follows. In Sec. II A, th
single-particle model is defined and in Sec. II B, the rand
energies approximation~REM! is applied, which amounts to
neglecting the spatial correlations of the random potent
The full problem, with correlations taken into account,
related to the description of extremal statistics in Sec. II
and three different classes of correlations are identified
Sec. II D from qualitative arguments. A new renormalizati
~RG! technique is applied to this problem in Sec. III. Th
resulting nonlinear scaling equation for the distribution
the local disorder is studied in Sec. III C, and is found to
related to the Kolmogorov KPP equation, which admits fro
solutions. This connection between front solutions of nonl
ear equations and the renormalization of disordered mo
is pursued in Sec. III D, where a solution to the REM
found via a similar nonlinear RG~details in Appendix C!.
The nontrivial nature of the glass phase is discussed in S
III E together with its relations to replica symetry breakin
In Sec. IV we present a numerical analysis of the problem
the particle in a random potential ind51. Section V is de-
voted to the connection between the particle model~and its
transition! and entropic phenomena in the Liouville and sin
Gordon models. A direct RG analysis in Sec. V C allows
to recover the corresponding change of behaviors in th
models. Section VI contains the applications to the proper
of the critical wave function of a Dirac fermion in a rando

d
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DAVID CARPENTIER AND PIERRE Le DOUSSAL PHYSICAL REVIEW E63 026110
magnetic field, in particular the multifractal properties a
the property of quasilocalization. Appendix A contains
outline of the proof of the existence of a transition, Append
B is a review of well-known~and not so well-known! results
about extremal statistics, and Appendix D contains an
tended model which exhibits three phases.

II. MODEL AND QUALITATIVE ANALYSIS

In this section, we define the model of a single particle
a correlated random potential. Then we describe the ran
energy model~REM! approximation used in previous stud
ies, which consist in neglecting correlations. We then p
the new questions which we want to address here for the
model and present a qualitative analysis showing physic
why we expect that logarithmic correlations~as opposed to
faster growing or slower growing correlations! are the only
case which leads to~i! a glass transition and~ii ! a low-
temperature phase with a nontrivial structure of quasideg
erate distant minima

A. The model

The equilibrium problem of a single particle in
d-dimensional random potential is defined by the canon
partition function

Z@V#5(
r

e2bV(r ), ~1!

where b51/T is the inverse temperature, in a sample
finite sizeL ~and total number of sitesLd) and for a given
configuration of the random variablesV(r ). The equilibrium
Gibbs measure, or probability distribution for the position
the particle, is

p~r !5e2bV(r )/Z@V#. ~2!

We are interested here in cases where the random
ablesV(r ) can be correlated. As discussed below, the sta
~and dynamics! of this problem in the limit of large size
depends on the type of correlations, the distribution of
disorder, and the dimensionality of spaced. Some of these
cases and their dynamical aspects~such as the Sinai mode!
have been extensively studied, e.g., in the context of di
sion in random media@34#. Even logarithmic correlations in
d52 were studied then@35#, but it was not realized at tha
time that a static glass transition could exist in that case

Correlated random potentialsV(r ) are most conveniently
studied for Gaussian distributions, on which we focus,
rametrized by the correlatorG(r ,r 8)5V(r )V(r 8) @and we
chooseV(r )50#. Non-Gaussian extensions will be me
tioned. Unless specified otherwise, the correlations will
chosen translationally invariantG(r ,r 8)5GL(r2r 8) with
cyclic boundary conditions, or in~discrete! Fourier space
V(q)V(p)5G(q,p)5G(q)dp,2q . We will often denote

@V(r )2V(r 8)#25G̃(r2r 8)52*qG(q)„12cos@q•(r2r 8)#…
@with *q51/L(q→*ddq/(2p)d#.

One important quantity is the free energy,
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F@V#52T ln Z@V#, ~3!

and, since it fluctuates from configuration to configuratio
asF@V#5F@V#1dF@V# we will be interested in its averag
F5F@V# and in its distribution. From the convexity of th
logarithm follows the well-known exact bound forF in terms
of the annealed free energyFA :

2T ln Z5F>FA52T ln Z̄, ~4!

F>2S Td ln L1
1

2T
V~r !2D ~5!

for the Gaussian case.
In this paper we will mainly focus on the case of corre

tions growinglogarithmically with distance:

@V~r !2V~r 8!#2;4s ln
ur2r 8u

a
, a!ur2r 8u!L ~6!

which also requires a small distance ultraviolet~uv! cutoff a
~we can set herea51 in accordance with the definition 1 o
a discrete model, but in the following sections we will co
sider a continuum version and varya). This behavior is
achieved ind dimension by choosing a propagator in Four
spaceG(q);2s(2p)d/Sdqd. The d52 case is also of spe
cial interest as the propagator is the usual Coulomb one

G~q!;
4ps

q2
~7!

and boundary conditions must be specified later on. It
important to note that for LR correlations the single site va
anceV(r )25GL(0) diverges with the system size, e.g., f
Eq. ~6! one hasGL(0);2s ln(L/a).

For such logarithmic correlations~as well as for weaker
correlations@36#! one will find thatF scales asd ln L ~con-
sistent with the number of degree of freedom beingLd in this
problem!. Thus it is natural to define the intensive free e
ergy,

f ~b!5 lim
L→1`

F@V#

d ln L
, ~8!

which will be found to be self-averaging. The above bou
gives

f ~b!>2S 1

b
1

s

d
b D . ~9!

Thus we will find thatF@V#; f (b)d ln L with subdominant
corrections. These corrections have a nonfluctuating uni
sal O„ln(ln L)… piece as well as anO(1) fluctuating part
dF@V# both of which we will study.
0-4
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B. The REM approximation

A useful approximation to the problem studied here
which can be called the REM approximation, consists in
glecting all correlations but keeping the on-site variance
act @18,13#:

GL~r !→GL
REM~r !5GL~0!d r ,r852s lnS L

aD d r ,r8 . ~10!

The corresponding Gaussian REM model can then be sol
being identical to@6#, and one finds that it exhibits a trans
tion at bc5Ad/s with

f ~b!52S 1

b
1

s

d
b D , b,bc , ~11a!

f ~b!52
2

bc
, b.bc . ~11b!

Most previous studies of the original model~all in d52)
amount to studying the REM approximation and argue tha
is a good approximation. Indeed, as we will also find he
this REM approximation appears to give the exact result
some observables@e.g., for f (b)#. In particular, it does seem
to give correctly the transition temperaturebc .

C. Beyond the REM approximation: Extremal statistics
of correlated variables

Since it is not obviousa priori why logarithmic correla-
tions can be considered so weak as to be neglected,
would like to go beyond the REM approximation and d
scribe the effect of the neglected correlations@37#. One
would like to understand why this approximation works f
some observables~and for which ones! and whether it gives
exactly the universality class of the model~i.e., all universal
behavior of observables!. The answer to the latter is nega
tive: as our analysis will reveal, the correlations do matter
the more detailed behavior and the original models~1! and
~6! arenot in the same universality class as the REM mod

In fact, the problem at hand is related to describing u
versal features of the extremal value statistics for a se
correlated random variables. Indeed, the zero-temperat
limit ( T50 for fixed L! of the problem defined by Eq.~1!
amounts to finding the distribution of theminimum
2 limT→0T ln ZL5Vmin5minr($Vr%) of a set of correlated
random variables. In the case of uncorrelated~or short-range
correlated! variables, a lot is known in probability theory o
this problem~see, e.g.,@38#!, some of which is summarize
in Appendix B. For the type of distributions considered he
~Gaussian and some extensions!, the distribution of the mini-
mumVmin has a strong universality property, being given,
to nontrivial rescaling and shift~see Appendix B and below!,
by the Gumbell distribution:

Prob~y,x!5G~x!5exp~2ex!. ~12!

The Gumbell distribution thus appears as the distribution
the zero-temperature free energy in the REM. For the cas
02611
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a Gaussian distribution, the standard probability theory
sults are usually given in terms of a variableXr such that
Xr

251. One can simply rescaleVr5A2s ln LXr from Appen-
dix B and get

Vmin522Asd ln L1
1

2
As

d
ln~4pd ln L !1As

d
y,

~13!

wherey is distributed as in Eq.~12!.
Much less is known in the case of variables with strong

correlations studied here, though it is more important
practice. The statistics ofVmin in the logarithmically corre-
lated case is thus one of the open issues discussed here
key question is to determine what is universal in the dis
bution of the minimum of correlated variables. Here, we c
formulate the question as follows: given Gaussian rand
variables satisfying Eq.~6!, what in the distribution of the
minimum ~i.e., of the ground-state energy for fixed largeL)
is universal, i.e., depends only ons and not on the details o
the correlatorG(r ) at short scale. Writing

Vmin;Vmin1dVmin ~14!

one finds, for the logarithmic correlator, that the averag
ground-state energy must satisfy

Vmin>22Asd ln L ~15!

which follows from the above annealed bound, together w
the fact that] f /]T52S<0. Furthermore, one will find here
that Vmin;emind ln L up to a positive subdominant—
universal—piece and thatemin522As/d saturates the
bound. In the distribution ofdVmin;O(1) we can clearly
expectlessuniversality than in the problem of random var
ables with short-range correlations@39#.

D. Qualitative study of a particle in a random potential

Before describing the RG method, which allows us to
beyond the REM approximation, let us give some sim
qualitative arguments and numerical results which illustr
the main physics of the thermodynamics of a particle in
correlated random potential. To put things in context,
discuss several types of correlations~short range, long range
and marginal!. We focus ond51 for simplicity but the ar-
guments extend to anyfinite d.

Whether there is a single phase or not here comes sim
from whether the entropy of typical sites wins or not over t
energy of the low-energy sites. When there is a lo
temperature phase, to decide its structure one must pay
cial attention to distant secondary local minima.

Indeed, when there is a low-temperature phase, it is c
trolled by the regions with most negative potential. To inve
tigate its structure one can start, for a given system of sizL,
with the T50 state, which is determined by the absolu
minimum over the system, denotedVmin and located atrmin .
At T very small but strictly positive, each~low-lying! sec-
ondary local minimumV will also be occupied with a prob
ability ;e2(V2Vmin)/T, which is very small except whenV
0-5
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2Vmin;O(T). Thus to characterize the low-temperatu
phase, we need to know how many of these second
minima exist and where they are located. For a smo
enough disorder~see, e.g., Fig. 3! there will always be
‘‘trivial’’ secondary local minima in the vicinity ofr min . To
eliminate these, we defineVmin2(R) as the next lowest mini-
mum constrained to be at a distance at leastR of the absolute
minimum. An interesting quantity to study is then the dist
bution PR,L(DE) of DE(R,L)5Vmin2(R)2Vmin over envi-
ronments~which a priori depends onR andL).

We now distinguish three main cases, according to

behavior of the correlator@V(r )2V(r 8)#25G̃(r2r 8) at
large scale~we restrict to Gaussian potentials@40#!. In these
three cases the distributionPR,L(DE) has markedly different
behaviors as illustrated in Fig. 2.

~i! Short range correlations. G̃(r )→Cst at large r ,
equivalentlyGL(r )→0 at larger ~or, e.g.,Gq;q2d1d with
d.0). In this case it is clear thatthere is only a high-
temperature phasein any finite d and no phase transition
The entropyTd ln L of typical sites @of energy typically
;O(1)# always wins over the energy of optimal site
(Vmin;A2sd ln L for Gaussian distributions with on-sit
variances). The optimal energyVmin can be estimated usin
1/Ld5*

2`
VminP1(V)dV in terms of the single site distributio

FIG. 2. Three cases for the distribution of energy differenceDE
between absolute and secondary minimum~separated at least b
R;Lc) in a system of sizeL: ~a! short-range correlated potential
DEtyp→0 logarithmically with size;~b! algebraically growing cor-
relationsDEtyp→1`; ~c! logarithmic correlations.DEtyp remains
constant as the system size increases.

FIG. 3. A typical random potential configuration for algebr
ically growing correlations.
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P1(V), which yields the exact leading behavior for uncorr
lated disorder@41# ~and also for weak enough correlations—
see Appendix B!. Thus, the particle is delocalized over th
system for allT.0. One estimates the number of stat
within DE of the minimum as N(DE)
;Ld*Vmin

Vmin1DEP1(V)dV;exp(DEA2d ln L/As) for a Gauss-

ian distribution. Thus there is a large number of sites alm
degenerate with the absolute minimumVmin , separated by
finite barriers, andDEtyp decays to 0 as a power o
1/lnL(1/Aln L for a Gaussian! @42#. These minima, however
are irrelevant for the thermodynamics of the system at a fi
finite temperature.

For these minima to play a role and to obtain a transit
even for SR disorder, one needs to perform someartificial
rescaling, as in the REM model@6#, either at fixed size to
concentrate on the very lowT region ~e.g., takeb; ln L in
the Gaussian case!, or equivalently, to rescale disorder wit
the system size. By making disorder larger as the sys

increases, for instance usingP1(V);e2uV/Vtypua with Vtyp

;(ln L)121/a, one recovers artificially a transition@30#. For
a52 and uncorrelatedV(r ) this is exactly the REM studied
in @6#. There, the simple argument for the transition is th
the averaged density of sites at energyE5V is V(E)
5Lde2E2/(2sL)/A2psL @related to the annealed partitio
sum via Z̄5*Ee2bEV(E)#. If sL5s is not rescaled, the
average energy isO(1) and the huge entropy of these stat
always wins. Ifs scales withL assL;2s ln L, then there is
a transition at bc5Ad/s. Indeed, V(E);exp„d ln L@1
2(e/emin)

2#…, where e5E/(d ln L) and emin5Emin /(d ln L)
522As/d and there is a saddle point inZ̄ at ^E&/(d ln L)
5esp52bemin

2 /2: since esp must be larger thanemin @as
V(^E&) cannot become smaller than 1#, the saddle point
cannot be valid belowTc51/bc52emin/25As/d and the
system freezes in low-lying states. Although this argum
implicitly relies on using lnV(E) instead ofln V(E), it does
give the correct picture for the REM, as shown in@6#.

This picture generalizes to correlated potentials provid
GL(r ) decreases fast enough at larger. The decay must be
faster than 1/lnr ~which is a rather slow decay! as indicated
by the theorems recalled in Appendix B or also by a sim
argument given in Appendix B 2 c. Finally, let us point o
also that another way to obtain a transition for SR disorde
to take thed5` limit before taking the largeL limit: there
the model~even without rescaling! always exhibits a transi-
tion ~in the statics and in the dynamics!.

~ii ! Long range correlations. When the typicalV(r )

2V(r 8) grows with distance as a power lawG̃(r );ur ud,
there is only a low-temperature phaseand no transition. The
particle is now always localized near the absolute minim
of the potential in the system atrmin . The typical minimum
energyVmin grows as;2Ld/2 and thus overcomes the en
tropy ;Td ln L which is never sufficient to delocalize th
particle. The structure of this single low-temperature phas
simple: there are no quasidegenerate minima separate
infinite distance~and thus also by infinite barriers! in the
thermodynamic limit. As can be seen in Fig. 3, there is ty
0-6
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GLASS TRANSITION OF A PARTICLE IN A RANDOM . . . PHYSICAL REVIEW E63 026110
cally a single minimum, with many secondary ones near
but none far away. More precisely, asL→`, the probability
that the lowest-energy excitationDE(R,L) above the ground
state~a distance at leastR;Lc from rmin) will be smaller
than a fixed finite~arbitrary! value decays algebraically to
with L ~and DEtyp and DE increase algebraically withL).
This is the familiar scenario from the droplet picture@3#,
with Prob(DE,T);TL2d/2 ~i.e., in some configurations
which become more and more rare asL→1`, there are two
far away quasidegenerate ground states!. In some cases, e.g
in Sinai’s model (d51), the distribution of rare events wit
quasidegenerate minima has been studied extensively@43–
45#. For instance, it has been shown@43,44# that there is a
well defined limit distributionQ(R)dR ~when L→1`) to
find quasidegenerate minima@46# at a fixed distance betwee
R andR1dR, with Q(R);R23/2 at largeR.

~iii ! Marginal case, logarithmic correlations. The most

interesting case is when correlations grow asG̃(r )
;4s lnur u. A typical logarithmically correlated landscape
illustrated in Fig. 4. One can already see that, contrary to
3, it has states with similar energies far away.

Given the growth of correlations, one sees that thetypical
energy differences over a distanceL scale as @V(0)
2V(L)# typ;6A4s ln L. Computing the minimum energy i

FIG. 4. A typical random potential configuration for logarithm
correlations.

FIG. 5. Gibbs measure in a typical sample in the hig
temperature phase (b50.5,bc51), L54096.
02611
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a harder task here, but if one estimates it as in@18# through
the REM approximation 1/Ld5*

2`
VminP1(V)dV ~which ne-

glects correlations!, one finds that it behaves asVmin

;22Asd ln L ~for Gaussian disorder!. This estimate ap-
pears rather uncontrolled here since correlationsgrow with
distance, while the theorems for uncorrelated random v
ables applya priori only for correlationsdecayingslower
than 1/lnr. In fact, the situation is a bit more complex, and
we will find below from the RG and our numerics, the lea
ing behavior ofVmin with ln L is still correctly given by the
REM approximation, although the next subleading
universal—correction is not. Thus the energy of the mi
mum
22Asd ln L can now balance the entropy of typical sit
Td ln L, which yields the possibility of a transition. Th
REM approximation of the model indeed yields a transiti
at Tc5As/d between a high-temperature phase forb,bc

5As/d and a frozen phaseb.bc . This scenario is con-
firmed by various approaches in the following sections.

An interesting feature of this model is that the low
temperature phase exhibits a nontrivial structure. Unl

-

FIG. 6. Gibbs measure in a typical sample in the lo
temperature phase (b53.0.bc51), L54096. Only points such
that pi.1027 are indicated.

FIG. 7. Averaged energy differenceDE between the absolute
minimum atr min and the constrained secondary minimum~i.e., the
minimum over the setur 2r minu.L/3), as a function of the system
size.
0-7
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DAVID CARPENTIER AND PIERRE Le DOUSSAL PHYSICAL REVIEW E63 026110
long-range disorder discussed above, for logarithmic co
lations we find that the low-temperature phase is domina
not by one, but bya fewstates in the thermodynamic limit
This is in stark contrast with the standard droplet picture a
is reminiscent of the replica symmetry breaking pheno
enology, even though we are dealing here with a very sim
finite-dimensional system.

One can visualize the transition, and the peculiar nature
the low-temperature phase in Figs. 5 and 6, where a typ
Gibbs measurep(r ) is shown in both phases, is fairly delo
calized atT.Tc ~Fig. 5! but peaks around a few states whe
T,Tc ~Fig. 6! separated by a distance of the order of t
system size.

This peculiar nature of the frozen phase can be tested
showing that distant secondary local minima with a finiteDE
exist with finite probability in the thermodynamic limit. Thu
we have investigated numerically the distributionPR,L(DE)
of the lowest excitation. As illustrated in Fig. 2, if the pha
is nontrivial, we expect that this distribution has a we
defined limit for, e.g.,R5L/3 whenL→` with a finite typi-
cal DE. Contrary to the LR disorder, we expect the probab
ity that, e.g.,DE(L/3,L) will be smaller than a fixed numbe
to saturate~not to decrease! as L→`, i.e., that there is a

FIG. 8. Distribution ofDE, the energy difference between th
absolute minimum atr min and the constrained secondary minimu
~i.e., the minimum over the setur 2r minu.L/3) for different system
sizes.

FIG. 9. Distribution ofDE in log scale.
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fixed probability that a second state withinDE exists far
away~as was already apparent in Fig. 4!. We show in Fig. 7,
Fig. 8, and Fig. 9 numerical evidence that this distributi
has a well-defined limit~the details of the simulation ar
discussed in Sec. IV!. Finite-size effects are clearly impor
tant in this system, but their magnitude appears compat
with the predictions of our RG approach, as discussed be
Thus we conclude that the numerics are consistent with
existence of such a limit distribution and hence with a froz
phase with a nontrivial structure.

III. RENORMALIZATION-GROUP APPROACH

A. Idea of the method

We now study the models~1! and ~6! using a renormal-
ization approach introduced by us to studyd52 disordered
XY models@19,20#. There, one is led to study a neutral co
lection of interacting61 charges (XY vortices! in a random
potential 6V(r ) with Eq. ~6!. The single-particle problem
studied here amounts to restricting the Coulomb gas RG
@19,20# to the sector of a single11 charge. Here, however
there is no charge neutrality and one must be careful to st
a system of finite sizeL, as some quantities@such asV(r )2#
explicitly depend onL, while appropriately defined quanti
ties have a well-defined thermodynamic limit.

The idea is first to formulate the problem in the co
tinuum, with a short distance cutoffa,

Z5E ddr

ad
e2bV(r ), ~16!

and an appropriately defined cutoff-dependent distribut
for V(r ), and second, by coarse graining infinitesimally,
relate the problem defined with a cutoffa85aedl to the
problem with a cutoffa. In general, this implies being able t
follow under this transformation the full probability measu
of the potentialV(r ), which is quite difficult, as complicated
correlations can be generated under coarse graining. In s
very favorable cases, for instance in thed51 Sinai land-
scape@whereV(r ) performs a random walk as a function o
the r cased51#, it is possible to follow analytically an as
ymptotically exactRG transformation~in the statics and in
the dynamics@45#!. There a very specific real-space decim
tion procedure is required, which can in principle be e
tended here, although it may not be tractable beyond num
ics. The present case of the logarithmically correla
potential is thusa priori less favorable but still, thanks to
some known properties of the Coulomb potential, a R
method in the manner of Kosterlitz can be construc
which, we argue, should describe correctly all the univer
properties of the model. There are two possible derivatio
one which uses replicas and is more precise, and the o
one without. We start with the latter, which is physical
more transparent.

The key observation is that before~and also after! coarse
graining, the logarithmically correlated disorder studied h
can naturally be decomposed into two parts as

V~r !5V.~r !1v~r !, ~17!
0-8
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whereV.(r ) is a smooth Gaussian disorder with the sa
LR correlations as the initialV(r ) which represents the con
tribution of the scales larger than the cutoffael , andv(r ) is
a local short-range random potential which represents
contribution of scales smaller than, or of the order of,
cutoff ael . In the starting modelv(r ) appears naturally as
Gaussian variable~see below!. After coarse graining,v(r )
does notremain Gaussian, but itdoesremain uncorrelated in
space~i.e., correlations of short rangea). The decomposition
~17! allows us to follow the distribution of theV(r ) under
coarse graining in a tractable way.

The precise way of decomposing the disorder in Eq.~17!
depends on the details of the cutoff procedure, but should
matter as far as universal properties are concerned. For i
tration, let us indicate a simple way to do it; a more detai
discussion is given in@20#. It starts with the well-known
continuum approximation ind52 of the lattice Coulomb

potential G̃(r2r 8)'4s@ ln(ur2r 8u/a)1g#@12d (a)(r2r 8)#,
where d (a)(r2r 8)51 for ur2r 8u,a and 0 otherwise@g
5 ln(2A2eC) andC50.5772 is the Euler constant#. This de-
composition can be performed more generally, e.g., w

other short-distance regularization of the potentialG̃(r )
~which preserves the large distance logarithmic behav!
and in anyd, which amounts to modifing the value ofg.
Using this approximation, the bare disorder~6! can indeed be
rewritten equivalently as a sum~17! of two Gaussian disor-
ders V.(r ) and v(r ) with no cross correlations and wit
respective correlators:

@V.~r !2V.~r 8!#254s ln
ur2r 8u

a
@12d (a)~r2r 8!#,

~18!

v~r !v~r 8!52sgd (a)~r2r 8!. ~19!

With this definition, the problem to be studied is rewritte
as

Z5E ddr

ad
z~r !e2bV.(r ), z~r !5e2bv(r ). ~20!

We can now study the behavior of the model unde
change of cutoff. There are two main contributions fro
eliminated short length scale variables. The first one can
seen most simply by rewriting the correlator in Eq.~18!,

@V.~r !2V.~r 8!#254s ln
ur2r 8u

a8
@12d (a8)~r2r 8!#

14s dl@12d (a8)~r2r 8!#, ~21!

explicitly as the sum of a new LR disorder correlator w
cutoff a85aedl and a SR disorder correlator@we have dis-
carded terms of orderO(dl2)#. Thus the original problem
with cutoff a can be rewritten as one with cutoffa8 with ~i!
a new Gaussian LR disorder with identical form of the c
relator~18! with a replaced bya8 and~ii ! a new short-range
disorder v(r )→v(r )1dv(r ) with dv(r )dv(r 8)
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52s dl d (a)(r2r 8) since it is clear from Eq.~21! that when
a→aedl the LR disorder produces an additiveGaussiancon-
tribution dv to the SR disorder.

The second contribution resulting from a change of cut
is that neighboring regions will merge. Pointsr1 andr2 pre-
viously separated asa,ur12r2u,aedl should now be con-
sidered as within the same region. The second important
servation is that the resulting transformation can only aff
the SR partv(r ) of the disorder. Indeed, in the regiona
,ur12r2u,aedl the LR partV.(r ) can be considered a
constant up to higher-order terms of orderdl. One must view
this coarse graining as resulting in a ‘‘fusion of local env
ronments:’’ the two local partition sum variablesz(r1) and
z(r2) combine into a single onez(r ) according to a rule
which we will write asz(r )5z(r1)1z(r2). The exact choice
of the form of this fusion rule is again dependent on t
cutoff procedure and thus to a large extent arbitrary.

Putting together these two contributions, we obtain
following RG equation for the distributionPl(z) of the local
disorder z5e2bv variable ~also called ‘‘fugacity’’ in the
Coulomb gas context!:

] l P~z!5b2s~11z]z!
2P2dP~z!

1dE
z8z9

P~z8!P~z9!d„z2~z81z9!…. ~22!

This equation also describes the evolution of the unive
part of the total free-energy distribution with the system si
Indeed, the total partition function can be written at any sc
as

Z~b!5E ddr

ad
e2bV(r )'E ddr

~ael !d
zl~r !e2bVl

.(r )'z( l* ) ,

~23!

where thezl(r ) are independent variables distributed wi
Pl(z) and theVl

.(r ) are Gaussian distributed as Eq.~18!. In
the last equality we have coarse grained up to the sys
size: L5ael* . At this scale, there remains a single site
~random! fugacity zl* . Thus the distribution function of the
partition functionZ(b) can be deduced from the distributio
of the random fugacities at scalel * . The distribution of the
free energyF52T ln Z is thus given byP̃l* (v5F) @where
P̃(v)dv5P(z)dz from the change of variable fromz to v
52T ln z#. Note that the' in Eq. ~23! means that these
distributions are the samea priori only up to subdominant
nonuniversal terms~multiplicative for Z and additive for
ln Z).

For a fixed system sizeL, the above RG equation de
scribes the evolution with the scalel smaller than thatl * of
the distribution ofz(r ), which is the local partition sum ove
scales aroundr smaller than or equal toael @i.e., of a ‘‘local
free energy’’ 2T ln zl(r )5v l(r )#. The remaining long-
wavelength disorder at that scale,Vl

.(r ), should still be
taken into account when computing the total partition sum

It is striking that Eq.~31! is identical to the RG equation
for the partition function of a continuum version of a d
0-9
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DAVID CARPENTIER AND PIERRE Le DOUSSAL PHYSICAL REVIEW E63 026110
rected polymer on a Cayley tree~a so-called branching pro
cess@8#!. We note that it has been derived here for a probl
with complete~statistical! translational invariance, with no
ad hoc assumption about an underlying tree structure
simply adapting to the present problem the Coulomb
renormalization in the manner of Kosterlitz. That the cor
spondence between the two problems naturally app
within the RG with no additional assumptions is even mo
apparent on the derivation using replicas of the next sect
Thus we consider that this establishes on a firm footing
strong connection between the two problems.

Before analyzing the consequences of the above RG e
tion, let us sketch the more precise derivation using replic
Other derivations without replicas are also possible and
refer the reader to@20# for more details.

B. Derivation of the RG equation using replicas

Let us consider the whole set of momentsZm̄ which en-
code for the distribution functionP@Z#. They can be written
as

Zm5E ddr1

ad
•••

ddrm

ad
e~b2/2!@( i 51, . . . ,mV(r i )#

2
. ~24!

This can be rewritten as

Zm5E ddr1

ad
•••

ddrm

ad
e2~b2/4! ( i 5” j 51, . . . ,mG̃(r i2r j )

3em2sb2 ln(L/a). ~25!

We have used thatG(r ,r )5GL(0)52s ln(L/a). One can
choose a regularisation, e.g.,G(r2r 8)5V(r )V(r 8)
52s ln(ur2r 8u21a2)/L2. Notice that only the large dis
tance behavior of the above correlator is important for
following renormalization.

We now switch to another representation of the repl
partition sum. Equation~25! is a partition sum ofm particles
located atr1 , . . . ,rm corresponding tom replicas. Now in-
stead we will index the configurations using~vector! colum-
nar replicated charges. To each pointr , within a hard core
size a, we associate anm-component vectorn whose com-
ponentsni(r ) are either 1 or 0 depending on whether t
particle corresponding to thei th replica is present withina of
r (ur2r i u,a) or not. These charges thus correspond ton
5(0,1,0, . . . ,0,1,1) since several replicas can be pres
near a given point. Choosing a columnar hard core for
vector charges corresponds to a choice of cutoff, which
arbitrary, but the universal features of the renormalizat
should not depend on it@47#.

The mth moment ofP@Z# then reads

Zm5S L

aD b2sm2

( 8
$na

i %
)
a

Y@na#E
ura2ra8u>a

ddra

ad

3expF22b2s (
a,a8

nana8 lnS ura2ra8u
a D G , ~26!
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where the primed sum correspond to a sum over all dist
nonzero configurations of replica chargesna at sitesra . We
have definedna5( ina

i as the total number of replica
present in a given charge (na

i 51). The quantitiesY@n# are
functions of the local vector charge and are the so-ca
vector charge fugacities. In the bare model they appea
soon as the continuum approximation to the lattice Gre
function is used and readY@n#5e22sgn2

. Since we are
studying a single-particle problem, there is also an import
global constraint on the configuration sum that only one p
ticle in any replicai be present in the system, i.e.,

(
a

na
i 51, ~27!

which is preserved by the RG.
The RG equations for this model read

] lY@n#5~d1b2sn2!Y@n#1
Sd21

2 (
n81n95n

Y@n8#Y@n9#,

~28!

where the sum is overn8 and n9 nonzero vector charge
~alson is nonzero! andSd21 is the volume of the unit spher
in dimensiond. We recall thatn5( i 51

m ni . These equations
are obtained by a generalization of the Kosterlitz proced
@48# as follows. The first term comes from an explicit cuto
dependence in Eq.~26!. Upon increasing the cutoff infini-
tesimally a→a85aedl, the integration measure and thea
dependence in all logarithms combine to giveY@na#

→Y@na#edl(d1sb2na
2). We have used that 2(a,a8nana8

5m22(ana
2 , which holds due to Eq.~27!. The last term in

the above equation~28! comes from the fusion of replica
charges upon increase of the cutoff. The above RG equat
hold for anym.

We should now look for solutions of this set of equatio
analytically continued tom→0. One way to do that is to find
a convenient parametrization for the set ofY@n#. Here we
preserve replica permutation symmetry within the RG a
we can thus chooseY@n# to be a function ofn5( ini only.
Then we define the parametrizationY@n#5*dz F l(z)zn

5*du F̃ l(v)e2bnv. The different terms in Eq.~28! then
translate into

n2Y@n#5E dve2bnv~b21]v!2F̃ l~v !, ~29!

(
n(1)1n(2)5n

Y@n1#Y@n2#5E
z8,z9

F l~z8!F l~z9!d~z2z82z9!

22NF l~z!1d~z!N 2, ~30!

where N5*zF l(z). One then easily converts the equatio
for F l(z) into an equation for a normed functionPl(z)
5F l(z)/N. defined only forz.0, with N.5*z.0F l(z)
~see@20# for details!, by noting thatN. converges quickly to
N.52d/Sd21. The resulting equation forPl(z) is exactly
the one~22! given above, and its physical interpretation
0-10
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GLASS TRANSITION OF A PARTICLE IN A RANDOM . . . PHYSICAL REVIEW E63 026110
terms of the probability distribution of the fugacity~i.e., the
local partition sum! was given in the preceding section.

What is the small parameter which controls the validity
the above RG equations~with and without replicas!? In a
conventional Coulomb gas context, these RG equations
known to become exact in the dilute limit of nonzero~vec-
tor! charges@48#. It is easy to see that this corresponds to
tail of the distributionP(z) for largez ~or equivalently small
v). This is further confirmed,a posteriori, by the remarkable
universality properties of the resulting nonlinear RG eq
tion ~22!, analyzed in the following section, which arise
precisely in this region ofz. So to obtain the universal be
havior ~e.g., of the distribution of free energy!, we are work-
ing with sufficient accuracy. On the other hand, the bulk
the distributionPl(z) seems to be sensitive to details of t
cutoff procedure~e.g., details in the fusion rule!, and as dis-
cussed below it is thus likely~unless proven otherwise! to be
nonuniversal.

C. Analysis of RG equation and results

1. KPP front propagation equation and velocity selection

Let us analyze the solutions to the RG equation~22!. In
terms of the~local free! energy variablev(r )52T ln z(r )
@from Eq. ~20! and its distribution Pl(v)5Pl(z
5e2bv)be2bv# it has a well-defined zero-temperature lim
since then the fusion rule simply becomes the extremal
v85min(v1 ,v2) leading to

] l P~v !5s]v
2P1dP~v !S 2112E

v

1`

P~v8!dv8D .

~31!

To be able to work at all temperatures, it is in fact useful
trade the distributionsPl(z) or Pl(v) for the generating
function @8,49#:

Gl ;b~x!5^e2zebx
&Pl (z)5^e2eb(x2v)

&Pl (v) . ~32!

We will sometimes drop the indexb. At zero temperature
the double exponential becomes au function andGl(x) sim-
ply identifies with the distribution function:

Gl ;b51`~x!5E
x

1`

Pl~v !dv5Prob~v.x! ~33!

and for all b it is a decreasing function ofx with Gl(x
→2`)51 and Gl(x→1`)50. Note the asymptotic be
havior @50# at very large negativex, 12Gl(x);^z&Pl

ebx.
The temperature appears only via the initial condition@8# and
the problem at hand is thus to determine the largel behavior
of Gl(x) for a given initial condition.

Equation~31! is easily transformed, at all temperature
into the Kolmogorov~KPP! nonlinear equation

1

d
] lG~x!5

s

d
]x

2G1F@G#, ~34!

F@G#52G~12G!, ~35!
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which describes the diffusive invasion of a stable stateG
50 into an unstable oneG51. This class of equations ad
mits a family of traveling wave solutions Gl(x)5g@x
1m( l )# which describe afront moving towards negativex
and located aroundx;2m( l ). This is readily seen by plug
ging this form in Eq.~34!, and assuming that] lmb( l )→c
one obtains the equation for the front shape:

1

d
cg8~x!5

s

d
g9~x!1F@g~x!#. ~36!

The family of such traveling-wave solutionsgc(x) can thus
be parametrized by the velocityc. Equation~36! simplifies
for large negativex wheng'1. Denotingg̃512g and us-
ing that F@g#;2g̃ for g'1, one finds the linearized fron
equation forg̃c :

1

d
cg̃85

s

d
g̃91g̃. ~37!

This equation allows us to relate the speed of the frontc to
the asymptotic decay of the front, since ifg̃(x);eax for
large negativex one finds

c

d
5

s

d
a1

1

a
. ~38!

The problem at hand now is to determine toward which
these front solutionsgc(x) will Gl(x) converge at largel,
and thus what will be the asymptotic front velocity. Th
velocity will determine the intensive free energy of the orig
nal problem. Indeed, the convergence at largel of the solu-
tions of nonlinear equations of the type~34! ~with a general
F@G#) towards one of such front solutions, and the cor
sponding problem of the selection of the front velocityc, is a
famous problem, still under current interest in nonline
physics@51–55#.

The simplest argument is to use the fact that for very la
negativex, one must haveg̃(x);ebx and thusa5b. This
seems to imply that the front velocity is

c5c~b!5S s

d
b1

1

b Dd. ~39!

This, however, is not always true. First note that the cu
c(b) has two branches, i.e., in this naive estimate two d
ferentb would correspond to the same velocity. The spec
point bc5Ad/s corresponds toc5c* 52dAs/d. For more
general nonlinear equations one usually relies on the
called marginal stability criterion~e.g., which shows that the
large b branch is unstable and can be eliminated! @51,8#.
Here there are rigorous results available: the Bramson th
rem @56# ensures the following results, which areindepen-
dent of the precise form ofF@G# ~up to some rather weak
conditions onF@G# @56#!.

~i! At high temperature,b,bc5Ad/s, the asymptotic
front is indeed an exponential for large negativex andGl(x)
uniformly converges towards the traveling-wave soluti
0-11
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gc(b)@x1m( l )#, where the velocity is given by Eq.~39!, thus
it is continuously dependent on temperature.

~ii ! At low temperature,b>bc , the velocityfreezesto the
valuec5c* and the front decays as

g̃~x!;2xebcx ~40!

for large negativex, thus independent of the temperatu
The solution Gl(x) uniformly converges towards th
traveling-wave solutiongc* @x1m( l )#. Thus in that regime,
one must then distinguish two regions inGl(x) at largel, the
front region and the region very far ahead of the front@x
1m( l )@Al # where the decay is again asGl(x);exp(bx) as
it should be: this will be discussed again below.

There are additional rigorous results from@56# and in par-
ticular the remarkable fact that not only the velocity but a
the corrections to the velocityareuniversal~independent of
F@G#), i.e., one has for the position of the traveling wa
mb( l ) at ‘‘time’’ l,

m~ l !5S s

d
b1b21Ddl1Cst, b,bc5Ad

s
, ~41a!

m~ l !5As

dS 2 dl2
1

2
ln l D , b5bc , ~41b!

m~ l !5As

dS 2 dl2
3

2
ln l D , b.bc . ~41c!

2. Results for the fugacity and free-energy distribution and
extremal statistics

These results on the KPP equation~34! can now be trans-
lated @via Eq. ~32!# into results for the fugacity distribution
Pl(z) and for the distribution of free energyP̃l(v). One finds
that Pl(z) and P̃l(v) also take the form of a front at largel,
e.g.,

P̃l~v !→p„v1m~ l !… ~42!

with p(v8) related tog(x) by g(x)5*v8p(v8)e2eb(x2v8)
.

Thus we obtain that the local free energy is

2b21^ ln z&;2mb~ l ! ~43!

up to a finite constant, where the position of the frontmb( l )
is given above in Eq.~41a!. Using the result~23!, N
5d ln(L/a)5dl* , we obtain using the RG that the free ener
F@V# of the system of sizeL reads

F@V#5 f L~b!d ln L1dF, ~44!

wheredF is a fluctuating part ofO(1) of probability distri-
bution p(dF) and the intensive free energy reads

f L~b!52S b

bc
2

1
1

b D 1OS 1

ln L D , b,bc5Ad

s
,

~45a!
02611
.

f L~b!52
1

bc
S 22

1

2

ln~ ln L !

d ln L D1OS 1

ln L D , b5bc ,

~45b!

f L~b!52
1

bc
S 22

3

2

ln~ ln L !

d ln L D1OS 1

ln L D , b.bc ,

~45c!

where the factors12 and 3
2 , which arise in the finite-size cor

rections, areuniversal.
Thus we have found using our RG method that in a

dimensiond>1 the original models~1! and ~6! exhibit a
phase transition atb5bc(d). This transition is very similar
to the freezing transition of the continuous version of t
random directed polymer on the Cayley tree. Our RG th
confirms that the REM approximation~10! to the model does
give the transition at the samebc , and with same asymptotic
intensive free energies~11b! as Eq.~45c!. It allows, how-
ever, for a more detailed study and shows that the unive
finite-size corrections differ in the two models. In the REM
the above formula with the factor12 holds in all the low-
temperature phase, which is not the case for the pre
model. Thus the present model is in a different universa
class than the REM. The physics that we find here is m
closer to the one of the directed polymer on the Cayley tr
it remains to be seen whether this can be extended to o
observables.

The RG method also yields the distribution of theO(1)
fluctuating partdF of the free energy, and in particular a
T50 it gives a result for the extremal statistics of the cor
lated variables. We must now carefully distinguish betwe
what is clearly universal~and thus for which we can be con
fident that the RG approach gives the exact result! and what
may not be~as it depends on the details of the cutoff proc
dure, yielding, e.g., a different KPP nonlinearityF@G#).

Let us start withT50. We find@cf. Eqs.~44! and ~45c!#
that the minimumVmin of Ld logarithmically correlated vari-
ables behaves as

Vmin522Asd ln L1
3

2
As

d
ln~ ln L !1dV ~46!

anddV is a fluctuating part of orderO(1). Since atT50 one
hasp(v)5g̃8(v), from the result~40! we get that the tail of
the distribution ofu5dV2^dV& for u→2` is universal
and behaves as

p~u!;2uebcu ~47!

with bc5Ad/s. Thus we find a distributiondifferent from
the Gumbell distribution, and thus correlations do matter.

The question of what is universal in this distribution
nontrivial. We find from our method that the full distributio
of P(u) depends on the detailed form of the front~and thus
on F@G# and a priori on the cutoff procedure! and is thus
less likely to be universal~although this remains to be inves
tigated!. Hence we believe that universal features includeat
least the tail of the distribution~47!.
0-12
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The above result~47! carries through the tail of the dis
tribution of the free energyu5F2^F& for u→2` for T
,Tc and it was shown in@8# that for T.Tc one has

p~u!;eubc
2/b, b,bc. ~48!

D. More on fronts, REM via nonlinear RG,
and extremal statistics

To illustrate how the previous results fit in a broader co
text, let us show how the simpler properties of extremal s
tistics of uncorrelated variables and of the random ene
model can be recovered within the same RG framewo
This provides, in passing, yet another solution of the RE

1. Uncorrelated variables with fixed distribution:
Gumbell via RG

Let us considerN5eld5(L/a)d independent random
variablesV(r) r 51, . . . ,N with a fixed distributionP(V) (d
here does not play any role as the true variable isld but we
keep it for the sake of comparison!. The generating function
of the distribution of the partition functionZ@V#
5( re

2bV(r ) of model ~1! reads

Gl~x!5^exp~2Z@V#ebx!&P(V)

5S E dVP~V!exp~2eb(x2V)! D eld

. ~49!

It satisfies the equation

1

d
] l ln ln

1

G
51. ~50!

Or, interestingly enough, it obeys a KPP-type equat
with no diffusion term:

1

d
] lG5F@G#, ~51!

F@G#5G ln G. ~52!

The Gumbell distribution now emerges naturally from t
front solutions of this equation. WritingGl(x);g„a l(x
1ml)… and assuming] l(a lml)→c yieldscg85g ln g, whose
solutions with the above boundary conditions areg(y)
5exp(2gey/c) (g being a positive constant!. We have as-
sumed] la l→0. Since there is some freedom of choice f
a l andml , one can always setc5g51. The determination
of the rescaling factorsa l andm( l ) is performed in Appen-
dix C. At T50 one hasP(Vmin)52G8(Vmin) and one re-
covers the known results from probability theory for the co
vergence to the Gumbell distribution detailed in Appendix
but the generating functionGl(x) takes a Gumbell form also
at finite T.

2. REM via RG

We now turn to an alternative derivation of the solution
the Gaussian REM model using a RG approach an
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traveling-wave analysis. This allows us to make some c
nections with the correlated case studied previously. Lel
5 ln L and lnN5ld.

We want to write a RG equation for

Gl~x!5~^e2eb(x2V)
&Pl (V)!

eld
, ~53!

where the single site distributionPl(V) is now scaled withl.
We introduce

G̃l~x!5^e2eb(x2V)
&Pl (V)5exp„e2 ld ln Gl~x!…. ~54!

Let us choose the single site distributionPl(V) which corre-
sponds to the REM approximation~10! of the model studied
here@~1! and ~6!#, i.e., the Gaussian:

Pl~V!5
1

A4ps l
e2V2/4s l . ~55!

It satisfies

] l Pl~V!5s]V
2 Pl~V!. ~56!

One easily checks that it implies that

] l G̃l~x!5s]x
2G̃l~x!. ~57!

This leads to the equation forGl(x):

] lG5s]x
2G1dG ln G2s~12e2 ld!

1

G
~]xG!2. ~58!

Thus the RG equation of the REM, for largel, reads

] lG5s]x
2G1dG ln G2s

1

G
~]xG!2 ~59!

and is almost a KPP equation, except that it has an additio
gradient~KPZ-type! term. This term here plays an importa
role and yields a different universality class from KPP. W
now search for the front solutions.

Let us rewrite the exact equation~58! using the function
h52 ln G ~remember that 0,G,1):

] lh5dh1sh91se2 ldh82. ~60!

For largel we can neglect the decaying nonlinear part, a
we now look for a solution of the linear equation. The on
front solution of the formh(x)5h̃„x1m( l )… with ] lm( l )
→c which satisfies the boundary conditionsh(2`)50 and
h(1`)51` is the exponential

hl~x!5ea„x1m( l )…, ~61!

] lm~ l !5c5
d

a
1sa. ~62!

By using again thehl(x);ebx boundary condition at
x→2`, we finda5b and
0-13
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c~b!5
d

b
1sb ~63!

as in Eq.~39!. This is correct in the high-T phase and yields
the correct REM value for the intensive free energyf (b)
5c(b)/d1O(1/lnL) as in Eq. ~11b! ~and also correctly
yields the absence of nontrivial finite-size corrections!. Thus
for the REM in the high-T phase we find

Gl~x!'exp~2eb„x1m( l )…! ~64!

thus again a Gumbell form, witha l5b and m( l )5@(d/b)
1sb# l .

To see the transition to a low-T phase forb>bc5Ad/s
and the freezing of the velocity atc5c* 52Ads, one needs
to carry a slightly more detailed analysis~discarding again
the decaying nonlinear part!. The general solution of the lin
ear part of Eq.~60! is

hl~x!5E dx8
1

A4ps l
eld2[(x2x8)2/4s l ]h0~x8!, ~65!

whereh0(x8) can be interpreted as thehl(x8) at earlier time
l 0 such that the nonlinear terms can already be neglected
decay ash0(x8);ebx8 for x8→2`.

This formula nicely exhibits the REM transition. In th
high-T phase, using the asymptotic formh0(x8);ebx8 we
find that there is a saddle point atx85x12sb l . This gives
hl(x);eb„x1c(b) l … with c(b) given in Eq. ~63!. The front
hl(x) is centered atx* 52c(b) l and consistency require
that the corresponding saddle pointx8* moves to2` so that
the asymptotic form ofh0(x8) can indeed be used. Hence w
have x8* ;@sb2(d/b)# l . Thus the saddle point become
inconsistent and the high-T solution ceases to hold, forb
>bc5Ad/s.

The solution in the low-T phase is easy to find. Settin
x52m( l )1y one finds for largel

hl~y!;eld2(1/4s l )m( l )22(1/2)ln(4ps l )e(c* /2s)y

3E dx8e2(c* /2s)x8h0~x8!, ~66!

where we have denotedc* 5 lim l→1`m( l )/ l and neglected
the additional factore2x82/(4s l ) in the integral. This is correc
provided the integral

E dx8e2(c* /2s)x8h0~x8! ~67!

is convergent, i.e.,c* ,2bs. The consistent choice forc*
andm( l ) must be

c* 52Asd, m~ l !5As

dS 2ld2
1

2
ln~4ps l ! D1O~1!,

~68!
02611
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which ensures that Eq.~66! has a proper limithl(y)

;Ae(c* /2s)y5Aebcy, which is again a Gumbell form for
Gl(x) but now is temperature-independent. This holds
b>bc5Ad/s.

From this method of solving the REM we have recover
the result of@6#, namely that forb>bc the free energy be-
haves as

f L~b!52
m~ l !

dl
52

1

bc
S 22

1

2

ln~ ln L !

d ln L D1OS 1

ln L D .

~69!

In addition, we recover forT50 the result for the minimum
Vmin in the REM approximation:

Vmin522Asd ln L1
1

2
As

d
ln~ ln L !1dV ~70!

with u5dV2^dV& distributed with a Gumbell distribution:

Prob~u.x!5exp~2Aebcx!, ~71!

whereA is a constant.

3. Conclusion on RG fronts and extremal statistics

Thus we have seen in two examples that extremal sta
tics problems~and theirT.0 thermodynamic model coun
terpart! can be studied using the nonlinear RG equation w
traveling-wave solutions. In one example~uncorrelated
rescaled variables, i.e., the REM! the RG equation is exact
while in the second~logarithmically correlated variables! we
only know it presumably in the tails. The front position re
resents the typical value of the minimumVmin as a function
of l 5d21 ln N while the shape of the front gives the distr
bution of theVmin ~respectively of the free energyF). This
suggests that a broader class of such models can be
proached by these methods, and raises the question of
versality.

Studies of such nonlinear equations@55# usually distin-
guish between pushed fronts where the velocity relaxes
ponentially in l ~velocity selection by nonlinear terms! and
pulled fronts~velocity selection by the marginal stability cr
terion!. The extremal statistics~and the glassy phase! corre-
spond to the pulled fronts. There one expects a very br
universality as stressed in@53,54#: not only is the asymptotic
front universal, but also the velocity and its corrections. In
nutshell, the argument for the universal3

2 ln l corrections to
the front position comes from matching of the universal t
of the front g(y);(Ay1B)ebcy with y5x1m( l ) with the
far tail region, so far ahead of the front that one can linear
the KPP equation and get

12Gl~x!'ebcyc~y!, ] lc l~y!5s]y
2c l~y!. ~72!

The only matching solution isc l(y)5y/ l 3/2e2y2/(4s l ). Insert-
ing y5x1m( l )5x1c* l 1C ln l immediately yieldsC5 3

2

for proper matching. As discussed in@54#, this universality
extends forpulled frontsin a very broad class of nonlinea
0-14
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~or coupled nonlinear! equations and holds for steep enou
initial conditions~i.e., in the glass phase in our language!.

This argument fails in some cases, such as at the bifu
tion between pushed and pulled fronts~e.g., at the glass tran
sition b5bc or equivalently when the initial condition ha
slow decay;exp(bcx)# ~see, e.g., the analysis in@52#!. In-
terestingly, it clearly fails also for the nonlinear equati
corresponding to the REM model, which is thus in a differe
universality class~this may be related to the fact that fron
are unbounded here@57#!. Presumably what happens there
that the coefficientA vanishes, and the solution is exact
ebcy, hence the1

2 ln l @since the above matching function

now c(y); l 21/2e2y2/(4s l )#.
Next is the question of universality. We will address

only for our model of Gaussian variables with logarithm
correlations. We have recast the RG equation~22! into a
KPP equation with a specific nonlinear termF@G#. From our
RG we have obtainedF@G#52G(12G). The structure of
the RG derivation suggests that we have obtained corre
the two lowest orders ofF@G#. From the above discussio
this is enough for the universality. Thus, and we call it t
restricted universality scenario, it is likely that higher-ord
terms F@G#52G(12G)1O„(12G)3

… are nonuniversa
and thus that only the tail of the distribution of the minimu
of log-correlated variables is universal.

Let us mention, however, that we were not able to rule
another scenario, the broad universality scenario, such
the true distribution of the minimum of log-correlated va
ables is indeed universal. If this were true, the followi
conjecture would be tempting: since we know that foruncor-
related variables the KPP RG equation is exact withF@G#
5G ln G and s50 ~and is asymptotically exact even fo
weakly correlated ones—see Appendix B!, one could conjec-
ture an interpolating KPP equation~34! with F@G#5G ln G
and s.0, which would give exactly the distribution of th
minimum of log-correlated variables. Unfortunately we ha
been unable to confirm~but also to strictly rule out! numeri-
cally this conjecture, due to the very large finite-size corr
tions, as discussed in Sec. IV.

E. Structure of low-temperature phase and replica
symmetry breaking

Let us now return to the structure of the low-temperat
phase for the particle in thed-dimensional random potentia
with logarithmic correlations. We argue that~i! it has a non-
trivial structure, with a few states, and~ii ! this structure is
reminiscent of the so-called ‘‘replica symmetry breaking
@5#. This nontrivial structure can be characterized more p
cisely here as the various states of the model correspon
the different positions of the particle, and have thus a nat
meaning in real space. In particular, the minima of the ‘‘e
ergy landscape’’~or metastable states! are nothing but the
local minima in the sample of the random potential for o
problem. A precise characterization of these ‘‘local minim
is given below. Also, approximate replica solutions of o
model are shown in the following to exhibit RSB at lowT.
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1. Spatial distribution of secondary minima

Let us start with a simple argument: for a given realiz
tion of disorder, we divide our system into two subsyste
of sizeLd/2, and callVmin1 andVmin2 the two corresponding
minima in each subsystem.

Within the REM approximation, we know from Eq.~13!
that Vmin12Vmin2;(y12y2)As/d;O(1), wherey1 and y2
have independent Gumbell distributions. Thus clearly in t
case there is a nontrivial structure: the secondary minim
~defined as being constrained to lie within the other s
system! is typically within DE5O(1) in energy of the ab-
solute minimum~and within this approximation the distribu
tion is also easily computed!.

The RG analysis performed in this paper indicates t
adding correlations will not change this conclusion. Inde
one first coarse-grains up to scalel 05 ln(L)2(1/d) ln 2. At
this scale, the system can be described by two local ener
~one for each half! of minima v1 andv2 distributed accord-
ing to Pl 0

(v), to which should be added a termdV which
correlates the two halves and is Gaussian of varia
;(2s/d)ln 2. This, however, does not change the fact th
the differenceVmin12Vmin2;O(1). Thus one still finds that
there exist secondary minima ofO(1) in energy from the
minimum, and a typical distanceL away from the absolute
minimum. As discussed in Sec. II D, this property was a
confirmed by numerical simulations.

It is natural, in view of the analogy with the directe
polymer on the Cayley tree, to introduce the ‘‘overlap’’ b
tween two different states~i.e., positions of particles! r1 and
r2 as

q~r1 ,r2!512
ln~a1ur12r2u!

ln L
. ~73!

We expect it to be non-self-averaging and characterized
the ‘‘overlap distribution:’’

P2~q!5 (
r1 ,r2

p~r1!p~r2!d„q2q~r1 ,r2!…. ~74!

Although we have not attempted to compute this funct
directly using our RG, it is natural to expect that, as in t
REM and the DPCT, it is nontrivial forT,Tc and reads

P2~q!5
T

Tc
d~q!1S 12

T

Tc
D d~12q!. ~75!

Similarly one expects that in a given disorder environme
the probability of finding an overlapq between two therma
realizations becomes in the large-L limit

Ỹ~q!dq5~12Y!d~q!1Yd~q21! ~76!

with Ȳ512T/Tc and Y has the same distribution as in th
REM. Thus the natural expectation, from the DPCT analo
is that the overlap in the low-T phase will be either 1 or 0
@i.e., secondary minima—of energy difference of ord
T—will be either near the absolute one lnr12/ln L→0, or a
distancer 12;O(L) typically a fraction of the system siz
0-15
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away#. It would, however, be of interest to investigate furth
these properties in the present model, in particular to ob
more detailed information at intermediate scales, e.g., co
lations probing the whole range lnr12;(ln L)a with
0<a<1.

2. Approximate replica symmetry breaking solutions
of the model

Let us now turn to the replica representation and disc
how the present model exhibits a form of ‘‘replica symme
breaking.’’ The replicated partition sum reads

Zm5E ddr1

ad
•••

ddrm

ad
e22sb2( i , j lnur i2r j u/aem2sb2 ln(L/a).

~77!

It turns out that various approximations of this partition fun
tion ~specifically the REM and the DPCT approximation!
are dominated, in the limitm→0, by replica symmetry
breaking configurations.

In the context of 2d Dirac fermions with random vecto
potential~see Sec. VI!, an estimate of Eq.~77! was given in
@26#. For smallb it is clear that the exponential containin
the logarithmic attraction between replicas does not de
fast enough and thus the integral is dominated by the c
figurations where the replicas are allO(L) far apart, thus

Zm;S L

aD b2sm21dm2b2sm(m21)

5S L

aD md„11(s/d)b2
…

.

~78!

This estimate of Ref.@26# is in fact incorrect as it misse
the glass transition. Indeed, one can redo this argument u
configurations wherem/p packets ofp replicas areO(L) far
apart @while in each packet the replicas~independent par-
ticles! are close to each other#. This estimate was performe
in Ref. @59# and gives instead

Zm;S L

aD b2sm21d(m/p)2b2sm(m2p)

. ~79!

The interaction term is proportional to the number of pairs
replicas in different packets, which ism(m2p)/2. In the
limit m→0, one can then optimize over 0,u5p,1, i.e.,

Zm;expFd ln
L

a
max

0,u,1
S 1

u
1

s

d
b2uD G . ~80!

For b,bc5Ad/s the saddle is forp51 and one recovers
the above expression. Forb.bc5d/s one finds that the
saddle is foru5bc /b5T/Tc , which gives

Zm;ed ln(L/a)2(b/bc). ~81!

Thus this calculation yields a transition. In Ref.@59# it was
claimed that it does not correspond to replica symme
breaking. We believe that this is incorrect and that thisis a
~one-step! RSB estimate of the above partition sum. This
clear since this calculation exactly amounts to the co
02611
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sponding one for the REM approximation of the model, i.
replacing in Eq. ~78! ( i , j lnur i2r j u/a by ( i , j (1
2d r i ,r j

)ln(L/a). In the REM we know from Ref.@6# that the

correct solution forT,Tc can be obtained by performing th
analytical continuation tom→0 on a RSB saddle point~note
that the REM finite-size correction12 ln ln L is also obtained
from the saddle integration!.

One can go one step further and use an argument base
universality, which puts the present problem in the DPC
universality class~for some observables such as the fre
energy distribution!. For the DPCT, it was shown in Ref
@10# that one can also recover the correct result for the av
aged free energy by considering directed polymer configu
tions which break replica symmetry asm→0. It remains to
be demonstrated how to obtain other universal quantit
e.g., the3

2 ln ln L finite-size corrections, via a RSB saddl
point calculation.

It is interesting to see how the features associated to R
arise from the RG developed here, despite the fact that
explicitly replica symmetric. Quite generally, if one can find
independent local free-energy variables with an exponen
distributionP( f );ebcf , one naturally obtains a RSB picture
This is the case here, up to some more detailed unive
preexponential structure inP( f ). The important feature of
our RG is thus that it follows the full distributionPl(z) of
local disorder~i.e., of local Boltzmann weightsz) which
becomes algebraically broad asl→1`. Here this property is
sufficient to show that the low-T phase has a structure rem
niscent of RSB. Indeed, let us again coarse-grain the sys
up to an already large scaleL05ael 0 but still much smaller
than L, the ratioL/L05el 15M being large but fixed as L
→1`, assuming thatL0 is so large thatPl 0

(z) has reached
its fixed point already~except in a remote tail region corre
sponding to very rare events!. Since one has the decompos
tion ~17!, the RG tells us that the sample is divided inM
subsystems with free energiesFi5v i1Vi

. , i 51, . . . ,M
where the variableszi 51, . . . ,M5e2bv i are independently
drawn from the common distributionPl 0

(z) and theVi
. are

still correlated but Gaussian. Neglecting first theVi
. , we are

FIG. 10. Zero-temperature limit: finite-size corrections to t
minimal energy. Plotted is 2l 2uVminu versus lnl(l5ln N).
0-16



ls

a

e
re

e

e

rge
ni-
u-
nd
cal
-

av-
us

ns

oss
der

av-
s of
e

for

on

-

r

GLASS TRANSITION OF A PARTICLE IN A RANDOM . . . PHYSICAL REVIEW E63 026110
left with a system ofM subsystems of Gibbs measure:

zi

(
j

zj

. ~82!

Since thezi are drawn from a distribution with algebraic tai
P(z);1/z11m with m5T/Tc , one haŝ z&51` for T,Tc
and, as is well known, the partition sum~82! is dominated by
a few of the zi variables @9,58# ~which in essence is the
physics associated to RSB!. Since the correlatedV. vari-
ables are in finite number and with Gaussian tails, they c
not change the exponential tails of theFi and thus adding
them back should not change the above conclusions.

Thus here, although the RG is replica symmetric, sinc
allows for generation of broad tails, it can capture featu
usually associated with RSB.

IV. NUMERICAL STUDY

Since we found via the RG and other arguments that th
should be a transition in any dimensiond>1, it is particu-
larly convenient to perform numerical simulations in th
‘‘extreme case’’ ofd51 ~i.e., the farther away from mean

FIG. 11. Distribution ofEmin .

FIG. 12. Plot of Y25( rpr
2 as a function of temperature fo

different system sizesL52N.
02611
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field!. However, even ind51 numerical simulations are
delicate because the finite-size corrections are very la
~and interesting to study, in order to distinguish various u
versality classes!. Indeed we have found that the main n
merical uncertainties come from the finite-size effects a
not from the number of averages. In most of the numeri
work, averaging over;104 realizations of disorder was suf
ficient, while a simulation of a system of size 221;23106

leads to important corrections to the thermodynamic beh
ior of the model. In view of this, we believe that the previo
numerical investigation@11# was at best approximate.

We have considered a lattice model ind51 with L52n

sites. The potentialV(r ) on each site (r 51, . . . ,L) was
computed from its Fourier componentsV(r )5wL/2(21)r

1(k51
L/221wk cos(2pkr/L2fk), eliminating the k50 mode,

with wk independent Gaussian variableswkwk8
5D(k)dk,k8 (k,k851, . . . ,L/2) and eachfk independently
distributed uniformly in@0,2p#. We chooseD(k) such that

G~r 2r 8!5V~r !V~r 8!

5s
2p

L
(
k51

L21 cosS 2pk

L
~r 2r 8!D

UsinS pk

L
D UA622cosS 2pk

L
D
~83!

so that @V(r )2V(r 8)#254s ln(r2r8) for 1!r 2r 8!L/2.
This is the choice which also corresponds to correlatio
along the axisy50 on a 2d square lattice.

The behavior of the model has been studied, without l
of generality, at zero and at finite temperature for a disor
strengths51 ~other values ofs can be incorporated in the
definition of the temperature scale!. We have first computed
the average minimumemin5Vmin/ln N ~with N5L) for sys-
tem sizes ranging fromL5275128 toL5221;106 and for
each size we have taken the average over 104 realizations of
disorder. An estimate of the uncertainty on the disorder
erage was made by measuring the variance of a serie
average over 104 realizations. This variance was found to b
of the order of 1023 for all the value ofVmin. The results are
plotted in Fig. 10. We recall that the RG prediction reads
s51

1

ln N
uVminu52 lnN2

3

2
ln~ ln N!1O~1!. ~84!

We should first note that if one does not assumeanything
about the finite-size corrections, the resulting uncertainty
the ratio emin5Vmin/ln N is very large even for sizesL
5221 since the ratio3

2 ln(ln N)/ln N'0.3. Hence with no as-
sumption it is hard to estimateemin to better than 10% accu
racy.

However, if one assumes thatemin522, the plot in Fig.
10 shows the existence of the ln(lnN) corrections with a
slope definitely larger than 1 and consistent with3

2 ~although
0-17
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the accuracy is not excellent!. It is, however, sufficient to
rule out a REM-type behavior and is consistent with the R
prediction~84!.

Next, we have plotted the distribution ofVmin in Fig. 11
and compared with the prediction of the RG for the ta
Here also the agreement is satisfactory.

Finally, we have plotted the ‘‘glass order parameter’’Y2

5( rpr
2 which is nonzero when the system is dominated b

few states~see Fig. 12!. It is consistent with a very slow
convergence towardsY25(12T/Tc)u(Tc2T) but clearly
other forms cannot be ruled out.

V. RELATIONS WITH LIOUVILLE AND SINH-GORDON
MODELS

In this section we describe the relation between the pr
lem of the particle in the log-correlated random potential a
the Liouville and sinh-Gordon models. Exact results on
sinh-Gordon model are compatible with~and also point out
towards! the existence of the transition atb5bc .

A. Relations with the sinh-Gordon model indÄ2 and dÄ1

Let us start with the correspondence with the sinh-Gord
model. Although less direct, it is also simpler to analyze,
the model does not contain subtle boundary condition pr
lems. The interesting thing about the connection is that
sinh-Gordon model is integrable ind52 andd51 ~bound-
ary sinh-Gordon! @60–62#.

The connection requires introducing a slightly differe
version of the initial problem, defined by the partition fun
tion,

Zsh@V#5Z@V#1Z@2V#5(
r

~e2bV(r )1ebV(r )!, ~85!

which corresponds to a particle in a random potential wh
can explore bothV(r ) and 2V(r ). A physical realization
would be a particle with an Ising spin in a random field. A
it turns out, the physics of this disordered model is ve
similar to the original problem. At low temperature, it is no
related to the distribution of the minimum of2uV(r )u.

We define the generating function of this modelGsh(x)
5^exp(2mZsh@V#)&, with m5ebx, which is related to the
distribution of the free energy of the particle. In the co
tinuum limit and ind52, it can be rewritten as

Gsh~x!5Hsh@m#5E DVe2Ssh[V] , ~86!

Ssh@V#5E
2`

1`E
2`

1`

dx dyS 1

8ps
~¹V!212m cosh„bV~r !…D ,

i.e., the partition function of the sinh-Gordon model ind
52. Similarly, thed51 version of our model is related t
the well-studied boundary sinh-Gordon model@61# defined
as
02611
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GshB~x!5HshB@m#5E DVe2SshB[V] , ~87!

SshB@V#5E
0

1`

dyE
0

L

dxS 1

4ps
~¹V!2

12m cosh„bV~x,0!…D . ~88!

Indeed one has, as required, that@V(x,0)2V(x8,0)#2

;4s ln ux2x8u/a at large ux2x8u, and one only studies
~boundary! observables defined aty50.

In the limit of b51` one has in both cases

Gsh~x!5Prob„x,min~Vr ,2Vr !…, ~89!

5Prob~x,2maxr uVr u!, ~90!

and thus the~properly discretized! partition function of the
~boundary! sinh-Gordon model becomes related, in th
limit, to the distribution function of the maximum of the se
of positive random variablesuV(r )u. The results described in
the preceding sections about the statistics of extrema of s
variables imply that some transition must occur as a funct
of b corresponding to a related ‘‘change of behavior’’ in th
sinh-Gordon and boundary sinh-Gordon models as well. T
is a prediction, as we are not aware of such a change
behavior atb5bc being mentioned in the literature. As w
now discuss, examination of known results is perfectly co
patible with the transition atb5bc .

Let us first describe the known exact results both ind
52 andd51. The extensive free energy of the bulk sin
Gordon model is defined as

f sh5 lim
L→1`

2L22 ln Gsh, ~91!

where the model defined in Eq.~87! is considered in finite
size L. The model is studied usually using the fieldf
5VA2/s, the nonlinear term being 2m cosh(bV)
52m cosh(bf) and its free energy depends on the single va
able b5bAs/25b/bc , where bc5Ad/s is dimension-
dependent. Using the variableb, its exact expression, pro
posed in Ref.@60#, reads when explicited@63#,

f sh~m!5C2~b!m (1/11b2), ~92a!

C2~b!5
2p

S GF 1

212b2G D 2S GF11
b2

212b2G D 2

sinS b2p

11b2D
3S pG@11b2#

2G@2b2#
D 1/(11b2)

. ~92b!

These results area priori only valid for b,1 (ubu,1), as
they were obtained in@60# from an analytical continuation o
the sine-Gordon model~performing m→2m and b2

→2b2, M being the soliton mass!. The constantm was de-
0-18
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fined in the continuum model by fixing the normalization
the field ^cos„bf(r )…cos(bfr 8)&5 1

2 ux2yu24b2
of the sine-

Gordon model.
The d51 version corresponds to the boundary sin

Gordon model usually studied usingf5V/As and
2m cosh(bV)52m cosh(bf), with again b5b/bc (bc

51/As). The analogous expression for the free ene
reads, from@61#,

f shB~m!5 lim
L→1`

2L21 ln GshB5C1~b!m (1/11b2), ~93!

C1~b!5
1

8p3/2
GF112b2

212b2GGF 2b2

212b2G S 2
2p

G@2b2#
D 1/(11b2)

.

Let us now comment on these results. The power-
dependence inm of the free energy is just the naive dime
sional result;m1/(11b2) in both cases. This result shou
hold for b,bc . However, there is clearly, in bothd52 and
d51 cases, a singularity asb→bc

2 as the amplitudeC(b)
diverges asb5b/bc→12. This is thus in perfect agreemen
with the existence of a phase transition in the particle mo
In the sinh-Gordon model itself, we do not expect stric
speaking a phase transition, as the model is massive
below and aboveb51, however we do expect som
‘‘change of behavior,’’ which may be related to a change
nature of the excitations around the ground state. This is
ruled out by exact results@64# as it clearly comes here from
the physical mass acquiring a nontrivial dependence in
bare mass parameterm ~contrary to the sine-Gordon mode
for the sinh-Gordon model there is no presently known ex
solution of a lattice version!.

Let us now interpret these results for our model. Th
mean that the generating functionGsh(x) of the free-energy
distribution, withm5ebx, takes indeed the form of a trave
ing wave:

Gsh;expS 2L2CdS b

bc
Dm2/[11(b/bc)] 2D5g~x1cl1g!

~94!

with l 5 ln L and a velocity

c5
d

b
1sb. ~95!

This is exactly the velocity given by the KPP equation f
the particle model, in the high-temperature phase. It a
yields a front g(y)5exp(2eay) with a5b/@11(b/bc)

2#
and g5b/@11(b/bc)

2# ln Cd(b/bc). This form, however,
should be taken with caution as strictly speaking form
~94! is valid only in the limit whereL goes to infinity first~at
fixed m5ebx). It should be compared with the asymptot
behavior of the front in the region of large positivey. We
expect universality in the other region of the front~of very
negativey, i.e., x!cl) and exact knowledge about this r
gion would be equivalent to exact knowledge of the sin
Gordon model at finite size, which is not yet available.
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The physics of the problem of the particle in the rando
potential leads us to conjecture that the 2d sinh-Gordon
model ~as well as the boundary sinh-Gordon model! will
exhibit a change of behavior; the algebraicm dependance of
its free energy will freeze forb>bc , which corresponds to
the low-temperature glassy phase of the particle model.
thus expect

f sh~m!;ma, ~96a!

a5
1

11~b/bc!
2

, b,bc5Ad/s, ~96b!

a5
1

2
, b.bc5Ad/s, ~96c!

and presumably log corrections~at least atb5bc , and
maybe for allb.bc!.

This is confirmed by a renormalization-group analysis
rectly on the sinh-Gordon and Liouville models discuss
below.

B. Relation with the Liouville model in dÄ2

The relation between our original model~1! of the particle
in the random potential and the Liouville model proceeds
the generating function,

G~x!5^exp~2ebxZ@V# !&V

5K expS 2(
r

eb„x2V(r )…D L
V

, ~97!

which encodes the full probability distribution of the fre
energy of the particle. In the case of thed52 potential with
logarithmic correlations it is identical to the partition fun
tion of a Liouville model, which one can write either on th
original lattice or in the continuum~with uv and ir cutoffsa
andL) as (m5ebx):

G~x!5H@m#5E DVe2S[V] ,

S@V#5E d2r S 1

8ps
@¹V~r !#21me2bV(r )D , ~98!

where the functional integral is normalized such thatH@m
50#51 ~equivalently one redefinesH@m#→H@m#/H@m
50#). We call it the Liouville model~LM ! since it is impor-
tant to distinguish it from thecontinuum Liouville field
theory ~LFT! whose~formal! definition is recalled below. A
relation also exists between the correlation functions of
Gibbs measure and some correlation functions in the Li
ville model:

^p~r1!•••p~rn!&5E
m.0

mn21e2b„V(r1)1•••V(rn)…e2S[V] .

~99!
0-19
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Strictly speaking, the model~98! above is not well defined
because of the zero modeV(r )→V(r )1w and must be
complemented with boundary conditions. In the parti
problem studied here, we have chosen periodic bound
conditions with the additional constraint( rV(r )50 to pin
the zero mode.

On the other hand, many results are known for the~re-
lated! continuum Liouville field LFT, of great interest in
quantum gravity@65–68#. It is usually defined on an arbi
trary genush manifold with background metricg and asso-
ciated curvatureR by the action@70#

SLFT5E d2xS 1

4p
~]af!21me2bLf1

Q

4p
RAgf D

~100!

in conventional notations. The~formal! correspondence to
the LM notations above is viaf52V/A2s and bL5b
5b/bc ~only for b,1, see below!. The ~standard! choice is
Q5bL11/bL , for which the theory is critical and has loca
conformal invariance~with a central chargecL5116Q2

5251c! @70#. It can also be formulated as the theory
~liquid! random surfaces@68,71#, e.g., as random triangula
tions. There one defines the total areaA5* re

22bLf(r ), which
is merely the partition functionA5Z@V# of the particle
problem, and studies the distributionZ(A);e2mcAAgstring23,
which is merelyP(Z).

The particle model allows us to make precise stateme
on the Liouville model defined above. The LFT allows f
exact calculations~e.g., of correlation functions! and in prin-
ciple one could hope to translate those in the particule mo
~Gibbs measure correlations!. The relation between the two
however, is rather subtle. For instance, the boundary co
tions chosen in the particle problem would correspond
Liouville on a torush50, except that the additional pinnin
condition spoils it. We will thus not explore here all the
intricacies but give a few general remarks, mostly about
behavior of the Liouville model under coarse graining.

First we know thatGl(x) satisfies a RG equation of th
KPP type. Thus upon coarse graining@i.e., as a function of
l 5 ln(L/a), see Sec. III# the Liouville model partition func-
tion satisfies a KPP nonlinear RG equation. The correspo
ing front velocity gives the scaling of the partition functio
with m. The glass transition, with freezing of the front v
locity, corresponds exactly in the Liouville model to the tra
sition between two regimes~the so-calledc51 barrier in the
LFT!.

~i! Weak coupling Liouville: bL5b5b/bc,1. In that re-
gime there is no problem to define a continuum limit. T
KPP nonlinear RG front solution of velocityc(b)
52@(1/b)1(b/bc

2)#[c(b) yields Gl(m);m1/(11b2) and in
the Liouville model the scaling dimensions are the one
tained by naive dimensional counting, e.g.,

mE d2r e2bV(r )5meln Z[V];mLbc(b)5mL2(11b2).

~101!
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Note that while the continuum LFT has a formal dualitybL
→1/bL , the discrete LM naturally selects, asl→1`, the
branchbL5b,1. This phenomenon is analogous to the s
lection of one branch of the curve inverse toc(b) in the KPP
equation, whereb(bL) plays the role of the spatial decay ra
of solutions andc the scaling dimension.

The regimebL5b<1 is the one where the continuum
LFT is well defined: there the role of theQ term in Eq.~100!
is to shift the conformal dimension of the fieldse2af to
D(a)5a(Q2a) @while the naive power counting dimen
sions in the LM areD(a)52a2, see above# which renders
the Liouville term *e2bf exactly marginal~and thus the
theory critical!. It was argued in@12# that the LFT gives the
correlations of the Gibbs measure, the operatorp(r ) @Eq.
~2!# corresponding to the Liouville fielde2bf, and is thus of
conformal dimensionD(b)51 @i.e., p(r );L22#. A hint in
favor of this conjecture was that the corresponding LFT c
formal dimensions of the composite fieldsp(r )q;e2qbf are
simply D(q)5q(11b22b2q), which correctly reproduces
the multifractal spectrum:

E d2r p~r !q;L2„12D(q)… ~102!

given in @11# and Sec. VI~in the weak disorder regimeq
,qc). This is not a very strong test since the same multifr
tal spectrum can also be obtained within the LM model
considering the dimension of the normalized Gibbs meas
~rather than the unnormalized onee2bV). Indeed the effect
of the Q term is to shift

e2bqf→L2bqQe2bqf;Z@V#2qe2bqf. ~103!

To convincingly establish the conjecture of@12#, the effect of
the additionalQ term should be checked on the many-po
correlations@70#, where it is rather more subtle, and furth
investigation is needed. In particular, the RG described h
suggests by extension that the Gibbs measure correlation~or
at least some limits of them! should also be computabl
within the DPCT model. This suggests a direct relation b
tween LFT and DPCT, a check of which would be of gre
interest. Note also that a critical model, which mimics t
effect of theQ term ~as adding an average value tof @70#!,
is studied in Appendix D.

~ii ! Strong coupling Liouville: b5b/bc.1. This corre-
sponds to the glass phase for the particle which, inter
ingly, has a nontrivial structure. As is well known, there a
serious difficulties in defining the continuum LFT in th
regime. The Liouville parameterbL is undefined and canno
equalb anymore@69#. Using what we know from the particle
problem, we can gain some idea of what happens in
Liouville theory. First let us note that sinceG(x) is such that
for b51` and fixedL it is equal to the distribution function
of the minimum of the set ofV(r ),

G~x!5Prob„x,minrV~r !…. ~104!

The ~infinitely strong coupling! Liouville model can be re-
cast asan extremal statisticsproblem in that limit. The par-
tition sum Z@V# of the particle model being dominated, fo
0-20
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b.1, by a few regions of space whereV(r );Vmin @with
little dependence inb, i.e., the Liouville wall becomes a har
wall for all b,bc with thickness of orderO(1)#, we expect
this spatial heterogeneity to show up in LM as well. Fro
what we have learned in the previous sections, we know
upon coarse-graining the followingeffective Liouville mode
actionSeff is generated:

Gl~x!5Hl@m#5E DṼ^e2S[ Ṽ,z]&P(z) , ~105!

Seff,l@V#5E d2r S 1

8ps
@¹Ṽ~r !#21z~r !e2bṼ(r )D ,

~106!

i.e.,a new field z(r ) is dynamically generated, and has short-
range correlationsbut has a broad power-law distribution,

P~z!dz;z211(1/b), ~107!

while Ṽ[V. is the smooth field introduced in Eq.~17!. For
b,1, this dynamically generated local field can be avera
out without changing significantly the action~note that even
for b,1 it changes properties of operatorse2qbV for q
.qc), while for b.1 it changes crucially the physics. On
can define the effective Liouville potentialU@V# for the
smooth fieldṼ after averaging over thez field as

Ul@Ṽ#52 ln^exp~2ze2bṼ!&Pl (z)52 ln Gl~x52Ṽ!,
~108!

the bare Liouville potential beingU@V#5m exp(2bV). We
can now use the front solution of the KPP equation~i.e., the
scaling region in the largeL/a limit ! described in the previ-
ous sections. Forb,1, since^z&P(z),1`, we have that for
largeV

Ul@V#'cme2(11b2) l exp~2bV! ~109!

and thus the coarse-grained potential is similar to the b
one. However, forb.1 one has for largeV

Ul@V#'cme4lV exp~2bV! ~110!

because of the broad distribution of thez field.
Since thez(r ) are highly heterogeneous on short scales

is not surprising that a continuum limit is hard to obtain f
b.1. These heterogeneities are linked to the structure of
glass phase reminiscent of replica symmetry breaking. I
tempting to conjecture that it may also be related to
branched polymer structure which appears in LFT forb.1,
i.e., beyond thec51 barrier@68#, or to the spike instability
@71# of fluid membranes.

Furthermore, let us notice that the LFT theory atb51 is
known to have two marginal operators whose dimensi
are degeneratee2bf andfe2bf. This is in exact parallel with
the behavior of the KPP front solution, which develops
b51 two degenerate linear eigenmodes exp(2bV) and
Vexp(2bV).
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Thus we have seen that the Coulomb gas RG can be u
to understand the behavior of the Liouville model. A sc
nario is obtained where forb>1 new short scale degrees o
freedom are generated~short scale instability!. Averaging
over these changes the effective Liouville potential. The p
allel with the particle model suggests that the short sc
instability in Liouville may be related to the generation o
strong inhomogeneities in the Gibbs measurep(r ), analo-
gous to structures discussed in the context of replica sym
try breaking. Thus, if the mapping onto the LFT is co
firmed, it suggests to also investigate RSB-type effects
strong-coupling LFT.

C. Direct renormalization-group analysis of sinh-Gordon and
Liouville models and traveling waves

Let us now illustrate how one can see explicitly the free
ing of the free-energy exponent in the strong-coupling ph
from renormalization-group approachesdirectly on the sinh-
Gordon and Liouville models. Such functional RG metho
have been applied to study the analogous problem@31# of the
wetting of an interface of heightV. Related exact RG meth
ods, with various truncation schemes, have also been app
to the Liouville model, and in the context of quantum gravi
to the LFT@72#. In all cases we will illustrate how the main
physics lies in the selection mechanism for the travelin
wave solutions of the nonlinear RG equation.

The study proceeds as follows. We consider

G~x!5H@m5ebx#5E DVe2S[V]

with S@V#5E d2r S 1

8ps
@¹V~r !#21U@V# D .

~111!

FIG. 13. Liouville wall moving under RG as a traveling wave
Represented isU@V# on the negativeV side, of original form
U@V#5e2b(V2x) and also~dashed line! G(x)5exp(2U@V#). Both
move under RG forming a traveling front, whose velocity dete
mines the ‘‘free-energy’’ exponent. For sinh-Gordon a seco
mirror-image wall is also moving symmetrically towards 0. Free
ing in the front velocity occurs at and below the transition
b5bc .
0-21
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One can perform a Wilson RG analysis~or, if one prefers, a
suitably truncated exact RG analysis!, and one finds ind
52 the flow for the local partUl@V# as

] lU52U1sU91O~U2!. ~112!

There may also be corrections tos to O(U2) ~in the sinh-
Gordon model!, but we focus for now on the RG to linea
order. Let us recall that the initial condition isUl 50@V#
5me2bV for Liouville and Ul 50@V#5me2bV1mebV for
sinh-Gordon, and that we are interested in the smallm limit.
In this limit the initial condition corresponds to a very wid
well U@V# ~e.g., in the sinh-Gordon model! with a very
small curvatureU9@0#. To obtain the free-energy expone
asm→0, one simply iterates the RG untilUl9@0#;O(1) at a
scalel * 5 ln(L* /a0) „more preciselyUl9@0#;1/(sa0

2), where
a0 is the bare uv cutoff of the model…. At this scale, the free
energy isO(1), as can beestimated from Gaussian fluctua
tions ~straightforwardly at least in the SG model! and thus
the initial free energy is

F;Ad~b!S L

L*
D 2

. ~113!

Remarkably, it is now possible to use what we learned
the previous sections and demonstrate the ‘‘freezing’’ tr
sition atb5bc ~corresponding to the glass transition for t
particle! simply from the RG to this order. Indeed the sol
tion of the truncated equation is

Ul@V#5e2l
1

A4ps l
E dV8expS 2

~V2V8!2

4s l DUl 50@V#.

~114!

A straightforward conclusion would then be that the ex
solution corresponding to Liouville is

Ul@V#5me(21sb2) le2bV ~115!

and similarly for the sinh-Gordon

Ul@V#52me(21sb2) l~e2bV1ebV! ~116!

since exp(6bV) are exact eigenvectors of the linear R
equation for anyb. From Eq.~113! this immediately yields
the ‘‘naive dimensional’’ result for the free energy,

F;L2m1/[11(b/bc)2] ~117!

with bc5A2/s. As we know from the above exact resu
this is correct forb,bc . Note how the potentialUl@V#
evolves. Using the notationm5ebx ~natural from our ex-
tremal statistics interpretation! it forms a ‘‘Liouville wall,’’
which can be seen as a ‘‘front solution’’ moving a
exp„2b(V2x2cl)… towardsU50 ~and in the sinh-Gordon
model there are two symmetric walls moving towardsU
50 and reaching it atl 5 l * ) ~see Fig. 13!. The Liouville
front velocity is
02611
n
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2

b
1sb, ~118!

which, plotted as a function ofb, is the famous parabola
such that two values ofb correspond to the samec, which is
also a well-known property of Liouville theory.

As we now show, Eq.~115! is incorrect for b>bc . This
is so for a subtle reason, as apparently the statement
exp(2bV) is an exact eigenvector of the linear RG@and of
Eq. ~114!# cannot fail. However, by now we are well used
fronts: in fact we have encountered exactly the same eq
tion in our previous solution of the REM model via R
@hl(x) in Eq. ~65! is identical toUl(V) in Eq. ~114!#. To
describe correctly the bare Liouville~or equivalently the
sinh-Gordon! model, one should generalize the initial cond
tion Ul 50@V#, still assuming thatUl 50@V#;exp„2b(V
2x)… for V@x (x here is very negative corresponding to
small m). Then one can use the saddle-point method to e
mate Eq.~114! as was done in Eq.~65! to evaluatehl(x) and
one discovers that forb.bc the velocity freezes into

c52A2s ~119!

which yields a free energy

F;L2m1/2 ~120!

instead of the naive dimensional estimate, thus in agreem
with our expectation for the SG model~96c!. In addition, we
find that the decay of the renormalized potentialUl@V#
;e2aV is frozen ata5bc for all b.bc consistent with Eq.
~110!.

What has happened is that althoughUl 50@V#
5exp„2b(V2x)… is indeed formally an exact eigenvecto
it is dynamically unstable, i.e., if one chooses another func
tion with the same large positiveV2x behavior, one gets a
different velocity ~which is not the case forb,bc). It is
easy to see that the choiceUl 50@V#5exp„2b(V2x)… ex-
actly for all V does not make sense forV→2`. Indeed it is
immediately spoiled by the slightest amount of coarse gra
ing ~as would appear also by considering the nonlinearitie
the RG equation!. The simplest way to see it is to notice th
the coarse-grained potential

Ũ@V#52 lnF E dv expS @2me2b(V1v)#2
v2

2sD G ~121!

does not grow as;exp(2bV) for large negativeV but much
slower as;V2. To illustrate the point further, let us conside
the initial condition,

Ul 50@V#5
e2b(V2x)

11e2b(V2x)
. ~122!

It behaves ase2b(V2x) for large positiveV2x ~and thus
corresponds to the Liouville model! but goes to 1 on the
other side. Forb51` it is easy to computeUl9@V50# from
Eq. ~114! sinceUl 50@V#5u(x2V). One finds
0-22
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Ul9@V50#;e2l 2(x2/4s l ) ~123!

and thus one has thatl * defined above is such that

cl* 5x, c52A2s. ~124!

This is in fact valid for allb.bc , as was shown in detail in
the previous sections.

Thus the freezing transition can be obtained from the
earized~i.e., lowest-order! RG equations, using only elemen
tary insight from coarse graining or the existence of high
order nonlinear terms. It provides an interesting exam
where the naive dimensions hold in some regime but
modified in another. Of course, as we have seen in Sec. I
from the study of fronts, to really establish the transition a
determine the universality class, one needs to cons
higher-order nonlinearities in Eq.~112!, which goes beyond
the scope of this paper. For the LFT in quantum gravity,
reader can find some exact functional RG studies in R
@72#. Although not discussed in this reference, the nonlin
RG there seems to also exhibit traveling front solutio
whose physics may be important in understanding the p
lem of thec51 barrier.

VI. CRITICAL DIRAC FERMIONS IN A RANDOM
GAUGE FIELD

In this section we relate our RG study of the preced
section to the study of the critical wave functions of 2
Dirac fermions in a random magnetic field. We first confir
the results of@13# for the multifractal spectrum, and obtai
their finite-size corrections. Then we study the transit
from the weak disorder to the strong disorder phase, rela
to the glass transition for the particle, and find that the stro
disorder phase has a new and nontrivial structure, leadin
what we callquasilocalizedeigenstates.

A. Critical wave function of 2D random Dirac

Let us first recall the problem of a massless tw
dimensional Dirac fermion in a static random magnetic fi
@11,13,34#. This model, and its non-Abelian generalization
has received a lot of attention in connection with the inte
quantum Hall effect transitions with disorder. As discuss
in @26#, two-dimensional Dirac fermions can experien
three generic types of disorder: random gauge, random m
and random potential. Random gauge disorder is believe
be a line of fixed points in this general model and is still n
yet fully understood. Here we address only the rand
gauge disorder model of a Hamiltonian:

H5sm„ivF]m2Am~r !…, ~125!

where thes1,2 are the 232 Pauli matrices andm51,2 ~we
set the Fermi velocityvF51 from now on!. The random
magnetic fieldB corresponding to the gauge potentialA is
chosen to be Gaussian with mean valueB(r )50. The type of
correlations studied here correspond to the most interes
case where the gauge potential has short-range correlat
In the Coulomb gauge, we can introduce the scalar poten
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f such thatAm5emn]nf,B(r )52]m
2 f(r ). The Gaussian

distribution off(r ) is thus given by

P@f#5cte3e2(1/4pg)* r„]mf(r )…2, ~126!

whereg parametrizes the strength of the random magn
field B. The correlator of the functionf(r ) is thus

@f~r !2f~r 8!#2;2g ln
ur2r 8u

a
. ~127!

In this model, the wave functions at energyE are local-
ized for all energies other than the critical energyE50. We
restrict our study to theE50 critical eigenstate, which sat
isfy

HC0~r !50. ~128!

For a system of finite sizeL with appropriate boundary con
ditions, there are two independentnormalizedsolutions of
Eq. ~128!: the first one can be writtenC0,1(r )5„C0(r ),0…
with

C0~r !25
e22f(r )

(
r

e22f(r8)

, ~129!

the second one beingC0,2(r )5„0,C̃0(r )…, whereC̃0(r ) is
given by Eq.~129! changingf(r )→2f(r ). We denote( r
having in mind either a discrete problem or a continuo
problem with some short scale cutoffa.

B. Participation ratios and multifractal spectrum

Thus in a given configuration of disorderf(r ) the quan-
tum probabilityuC0(r )u2 is identical to the Gibbs probability
p(r ) defined in Eq.~2! for the particle in the logarithmically
correlated random potentialV(r ) with the correspondence

uC0~r !u25p~r !, ~130!

2f~r !5bV~r !, ~131!

and thus the model depends on a single parameteg
5 1

2 b2s. As we have discussed in the previous sections,
particle in the logarithmically correlated random potent
undergoes a transition atbc5A2/s at which its Gibbs mea-
sure changes from being dominated by many sites~high-T
phase! to being dominated to a few sites~low-T phase!. Thus
in the quantum problem we expect a transition at

g5gc51 ~132!

with a weak disorder phase forg,1 and a strong disorde
phase forg.1. In the weak disorder phase the quantu
probability ~and thus observables such as the mean-squ
position fluctuationŝr 2&2^r &2) is delocalized (̂•••& means
averages overC0). In the strong disorder phase, the quantu
probability is more concentrated, but it cannot be called
0-23
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calized in the usual sense~of an exponential decay around
single center! and in fact both phases have rather pecu
properties.

Properties of wave functions can be described by the
verse participation ratios defined from the normalized wa
function C0(r ) in a system of sizeL by

Rq~L !5E d2r uC0~r !u2q5E d2r „p~r !…q. ~133!

At a very qualitative level, the nature of the eigenfuncti
can be inferred from the scaling behavior of the inverse p
ticipation ratio with the system sizeL: for an exponentially
localized stateRq(L) scales@73# as Rq(L);const for allq
.0, while for a plane-wave delocalized state we getRq(L)
;L22(q21). In addition to the localized and delocalize
states, there exist states such thatt(q)52 ln Rq(L)/ln L is a
nonlinear function ofq: they correspond to multifractal wav
functions whose moments cannot be described by a si
length as usual but rather by a spectrum of exponents. H
as in @13#, we also find intermediate multifractal behavior

To compute the finite-size inverse participation ratios,
can use the information of the previous sections since

sq~L !52 ln Rq~L !52 ln Zq2g1q ln Zg , ~134!

where we have definedZg5Z(b5A2g/s), whereZ(b) is
the partition function for the particle at inverse temperat
b. In particular, we will be interested in the multifract
asymptotic scaling exponentt(q) defined by

t~q!5 lim
L→`

sq~L !

ln L
. ~135!

These exponents were computed previously in@13# using the
REM approximation@25#. Here we use our RG results an
also obtain finite-size corrections. Note that these corresp
to properties ofC0 defined above and could be changed
other boundary conditions were used.

From the previous sections we obtain

ln Zg52~11g!ln L1Dg , g,1, ~136a!

ln Zg5Ag@4 lnL2 1
2 ln~ ln L !#1Dg , g51, ~136b!

ln Zg5Ag@4 lnL2 3
2 ln~ ln L !#1Dg , g.1, ~136c!

FIG. 14. Multifractal spectrum in the weak disorder phase.
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whereDg is a sample-dependent variable of orderO(1) with
a g-dependent distribution~whose tails we have characte
ized previously!. From there we obtainsq(L), which have
different behaviors in the two phases.

(i) Weak disorder phase. For g,1 we find, denotingqc

51/Ag,

sq~L !52~q21!~12gq!ln L1Aq,g for uqu,qc ,
~137a!

sq~L !5
2

Ag
@12sgn~q!Ag#2 ln L1

1

2
ln ln L

1Aq,g for uqu5qc , ~137b!

sq~L !52q@12sgn~q!Ag#2 ln L1
3

2
uquAg ln ln L

1Aq,g for uqu.qc , ~137c!

whereAq,g is a fluctuating part of orderO(1).
(ii) Strong disorder phase. For g.1 we find

sq~L !522~qAg21!2 ln L2
3

2
qAg ln ln L

1Aq,g for uqu,qc , ~138a!

sq~L !52
1

2
ln ln L1Aq,g for q5qc , ~138b!

sq~L !5Aq,g for q.qc , ~138c!

sq~L !522uquAgS 4 lnL2
3

2
ln ln L D1Aq,g

for q,2qc , ~138d!

sq~L !522S 4 lnL2
1

2
ln ln L D1Aq,g for q52qc ,

~138e!

whereAq,g is a fluctuating part of orderO(1).
The corresponding scaling exponentst(q) are thus iden-

tical to the one found in@13# and in addition we have ob
tained their finite-size corrections as well as the order-
magnitude estimate of their fluctuations. In the weak disor
phase forq.0,

t~q!55 2~q21!S 12
q

qc
2D for q<qc5A1

g
,

2qS 12
1

qc
D 2

for q>qc ,

~139!

which means a parabolic form with a termination point
q5qc as represented in Fig. 14.

In the strong disorder phaseg.1, i.e., whenqc<1, the
above expression becomes~for q.0)
0-24
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t~q!5H 22S 12
q

qc
D 2

for q<qc5A1

g
,

0 for q>qc .

~140!

Since the inverse participation ratio does not scale with
system sizeL for each integerq, one could naively conclude
that it is the sign of a localized state~see, however, below!.

As was discussed in@13#, these results can be translat
into the spectrum for exponenta. If one assumes thatp(r ) is
of order L2a in a numberL f (a) sites, then the above spe
trum is recovered if

f ~a!58
~d12a!~a2d2!

~d12d2!2
~141!

with d652(16Ag)2 for g.1 andd158Ag, d250 for g
.1. It is easy to see that

Š~r 2^r &!2k
‹>Lmaxa„(k11) f (a)2a… ~142!

showing that the eigenstate is never localized in the us
sense~exponential decay around a single center! since the
exponent is always positive for large enoughk. Since
limq→6`sq(L)/q5 ln pmax,min, one obtains that the maxi
mum of the Gibbs measurepmax5maxrp(r ) and the mini-
mum behave for largeL as

pmax;L22(12Ag)~ ln L !2(3/2)Ag, ~143!

pmin;L22(11Ag)~ ln L !1(3/2)Ag, ~144!

in the weak disorder phase.

C. Nature of the strong disorder phase: Quasilocalization

Let us now concentrate on the caseg.1. There, we know
from the previous sections that the Gibbs measure of
particle is concentrated ina few sites. Thus from Eq.~131!
the quantum probabilityuF0(r )u2 is also concentrated ina
fewsites, analogous to the RSB picture. This is a very pe
liar type of eigenstate. Indeed if one computes the quan
averagê r 2&2^r 2& in a given sample, it has a finite probab
ity to be of orderO(L2). Thus the eigenstate cannot be co
sidered as localized in the usual sense. Since it is pea
around a few sites, we call it ‘‘quasilocalized.’’ Around the
centers, the wave function decays fast enough to be nor
izable. It would be interesting to investigate further the ty
cal spatial decay of such eigenstates around their~multiple!
centers, which we expect to be slower than exponential.

VII. CONCLUSION

In this paper we have studied the equilibrium problem
a particle in a random potential with logarithmic correlation
through exact bounds, numerical simulation, qualitative
guments, and a renormalization-group method that we h
developed specifically for this problem. We have shown t
it exhibits a glass transition at finite temperatureTc51/bc
.0 in any dimension. This confirms earlier conjectures a
allows for a more detailed study of the problem. The R
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method allowed us to obtain the universal features of
free-energy distribution at low temperature. The relation
the problem of extremal statistics of correlated variables w
investigated. It has been found that it exhibits univer
finite-size corrections, consistent with our numerical calcu
tions.

Most interestingly, we found that this logarithmic mod
provides a particularly simple example~maybe the simplest!
of a finite-dimensional model, i.e., withtranslationally in-
variant disorder correlations, such that the low-temperatur
phase is nontrivial. It is nontrivial in the sense that in t
thermodynamic limitL→1`, there are, with a finite prob
ability, several low-lying states~i.e., possible positions of the
particle! with energy differences of order 1, and separated
space by distances of orderL. Thus the Gibbs measure at lo
temperature is dominated by ‘‘a few’’ spatially wel
separated states. Interestingly, this transition and this typ
glass phase occurs only for logarithmically growing corre
tions, faster growth~e.g., as in Sinai model! yielding only a
glass phase with single ground-state dominance, w
slower growth yields only a high-temperature phase.

Although oversimplified in some respect~it has no inter-
nal space!, it does provide one example of a model where t
usual droplet picture~which assumes dominance of a sing
ground state, or several related by a symmetry! does not
apply. Rather, it provides one example where some feat
of the physics usually associated to RSB, namely domina
by a few states with exponential free-energy distributio
can be explicitly exhibited. In fact, due to the finite
dimensional correlations, there are some departures from
behavior observed in the simplest prototype mean-field m
els ~such as the REM!, as can be seen, for instance, from t
free-energy distribution, which has more structure than
simple exponential. It would of course be interesting to e
plore further the additional features specific to finite dime
sions.

Although the present model is already of obvious physi
interest~in 2D it describes, e.g., a single vortex in a rando
gaugeXY model!, its nontrivial properties provide a motiva
tion to search for models with more degrees of freedom
with similar features. One way to proceed would be to sea
for interface models via an internal dimensional expans
around the present model. The key feature, however, app
to be the marginality of the model, i.e., the logarithmic
growth of typical energy fluctuations. This corresponds to
fluctuation energy exponentu50, i.e., the situation where
the temperature~i.e., the entropy! is marginal in the RG
sense. The droplet arguments indeed assume thatu.0, con-
sistent with the single ground-state dominance~and activated
behavior typical of a zero-temperature fixed point whereT is
formally irrelevant!. In the situationu50, one does expec
more generally power laws withT-dependent exponents
reminiscent of mean field. It would thus be of great inter
to similarly exhibit other nontrivial marginal models~e.g.,
spin models withu50) with similar features@74#. Spin
models where~domain wall! excitations~in root mean square
and in average! also scale logarithmically~as vortices in the
random gaugeXY model! are presumably good candidates

On the one hand we have developed a specific~Coulomb
0-25
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gas! renormalization-group~RG! approach to describe th
model. From the study of the resulting nonlinear~KPP! RG
equation, we found explicitly that a freezing phenomen
occurs at the glass transition temperature, and that in
glass phase a broad~power-law! distribution of fugacities
develops—or equivalently an exponential distribution of
cal free energy. It is different from more conventional pe
turbative RG ~e.g., the one which was used to study t
dynamics of this model! in the sense that the full distributio
of probability is followed. This turns out to be crucial t
describe the low-temperature phase.

On the other hand, as we have discussed, twoapproxima-
tions of the present model, the REM approximation and
DPCT hierarchical version, can both be solved using rep
and do require considering the analytical continuation tom
→0 of contributions of replica symmetry breaking sadd
points @10#.

This shows that a RG approach which is explicitly repli
symmetric but allows to treat broad disorder distributio
can be consistent with~approximate! approaches based o
RSB saddle points@75#. We have illustrated this on th
REM, which can be recast in terms of nonlinear RG eq
tions, with a freezing transition. In fact, one of the strikin
properties of the model is that the RG equations derived h
are similar—to the order we have been working—to the o
which holds for a continuous version of the DPCT proble
the branching process. In particular, it indicates that b
problems share the same universal finite-size corrections

We have also analyzed some connections in 2D~and via
boundaries in 1D! between the model of the particle and t
Liouville and sinh-Gordon models. The intensive free ene
of the particle corresponds to the scaling dimension in th
models withb5b/bc . The glass transition corresponds
the weak- to strong-coupling transition atb51. Beyond, cor-
responding to the glass phase, the scaling dimension free
as we have also shown via a direct RG approach on th
models. We have seen that under coarse graining, an a
tional local field appears in the LM and SGM, with broa
distribution, and corresponds to inhomogeneous config
tions being generated~and broad fluctuations of the loca
area, since the local partition function corresponds to lo
area!.

The present study raises interesting issues to be expl
concerning the relations with the continuum Liouville fie
theory ~LFT!. An outstanding question is whether the co
jecture of@12# is correct for the correlations. Since we ha
obtained another result linking the problem to the DPCT,
direct comparison of the LFT and the DPCT remains to
studied. If it holds, it means that the conformally invaria
many-point correlations can be related in some limits~large
separations with fixed ratios lnrij /ln rkl) to the results from
the tree problem. It would also raise interesting issues ab
the continuation of the LFT beyondb51 and its relation
with the nontrivial structure of the glass phase~with RSB
features! in the equivalent particle model.

We have also extracted from our approach some co
quences for the problem of theE50 critical eigenstate of 2D
Dirac fermions in a random magnetic field. We have co
firmed, via our RG method, previous results concerning
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multifractal spectrum and extracted their finite-size corr
tions. We have found that the nontrivial lowT phase of the
particle translates into peculiar quasilocalized eigenstates
the quantum problem, peaked around a few distant cente
raises the question of whether this property can be prese
other quantum systems.

Another interesting question is whether the transiti
studied here has a signature in the dynamics as well. N
that a similar nontrivial structure at low temperature is a
present in the the Sinai model with a bias, which renorm
izes onto a random walk with algebraic waiting times dist
bution@58#. However, this is a driven system and it would b
interesting to see whether nondriven systems in low dim
sion can exhibit similar features. Since the barriers gr
logarithmically, it is natural to expect an anomalous diff
sion exponentx;tn with n, 1

2 , as was found in similar situ-
ations@79#. What happens to this exponentn at Tg will be
investigated in the very near future.

Finally, an outstanding question is how the present mo
can be studied using 2D conformal field theory~CFT!. In
particular, one wonders what is the signature in this cont
of the physics that was unveiled here, reminiscent of RS
using RG with broad distributions. The freezing pheno
enon within the nonlinear RG, which transforms the na
scaling dimensions into nontrivial ones, should correspon
a similar mechanism in CFT. Recent progress on CFT c
sification of disordered models where supersymmetry can
used allows us to hope that such progress is within sight.
hope that the present RG method will apply to study ot
two-dimensional models with similar features and shed li
on the more formal field-theoretic methods.
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APPENDIX A: EXISTENCE OF A TRANSITION

We use the same method as Derrida and Cook@76# for the
directed polymer problem@77#. It is easy to compute the firs
two moments ofP@Z#, using translational invariance an
periodic boundary conditions:

Z̄5Lde~b2/2!GL(0);Ld1b2s ~A1!

and

Z25Lde~b2/2!4GL(0)(
r

e2~b2/2!G̃L(r ) ~A2!

;BL2d12b2s, b,b2 , ~A3!

the last estimate being valid as long as the sum overr is
divergent, i.e.,b,b25Ad/(2s). The constantB.1 de-
0-26
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pends on the details of the model, e.g., ford51 one can

write B5 limL→1`*0
1dy exp„2b2/2@G̃L(Ly)24s ln L#….

Thus forb,b2 the ratio

Z2̄

Z̄2
→B ~A4!

asL→1`. In @76# it is shown that the property~A4! implies
that

ProbS 1

d ln L
ln Z5

1

d ln L
ln Z̄D>1/B ~A5!

as L→1`. If we take for granted that the free energy
self-averaging, it implies that forT.T25A2s/d, the
quenched and annealed~intensive! free energies coincide ex
actly, f (T)5 f A(T). Thus forT.T2, the ~intensive! entropy
is s(T)5sA(T)52]Tf A(T) and thus one has

s~T!512
s

dT2
, T.T2 . ~A6!

SincesA(T) becomes negative belowT5Tg5Ad/s, it im-
plies that there must be a temperatureTc,T2 at which Eq.
~A6! breaks down and thus a phase transition occurs.
though this is harder to prove, it seems that here Eq.~A6!
holds down toTc5Tg .

Awaiting a rigorous mathematical proof, we have not
tempted to prove the self-averaging off. Not only is it highly
reasonable in view of our other results, but in fact if it we
not the case, the above argument would imply a rat
curious—and unphysical—distribution forf ~with a d peak
of nonzero weight smaller than 1!. In addition, as noted in
@76#, by adjusting the small-scale details of the model,
constantB can be chosen as close to 1 as wanted.

APPENDIX B: EXTREMAL STATISTICS
OF CORRELATED VARIABLES

In this section we summarize some results on the extre
statistics of a set of random variables. We selected the o
which are useful in putting the problem studied here in
broader context. We recall some of the classic results fr
probability theory and we have chosen to illustrate them
adding a few simple arguments which emphasize the imp
tance of some of these results to the physics of disorde
systems. We denote theN random variables eitherXr , r
51, . . . ,N when they are normalized in a particular way,
Vr when they can be readily interpreted as the random
tential variables studied here@the two differing by a trivial
uniform rescalingV(r )[Vr}Xr#. They apply directly to de-
scribe d51 (N5L) and can be usually extended tod
.1 @V(r ) andN5Ld].

1. Uncorrelated variables

It is natural to start with the case ofN uncorrelated vari-
ables of identical probability distributionP(V). The distribu-
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tion P(V) can belong to three classes of extremal statist
but we will recall only the Gumbell class. Schematically f
this class, a well-known theorem@27# states that there exis
constantsaN andbN such that for a fixedỹ,

Prob~Vmin.bNỹ2aN!→exp~2eỹ!. ~B1!

The constantsaN andbN are determined as

ln E
2`

2aN
dVP~V!5

1

N
, ~B2!

bN5NE
2`

2aN
dyE

2`

y

dVP~V!. ~B3!

For variablesXr chosen from a centered Gaussian of u
varianceP(X)5(1/A2p)e2X2/2, one can chooseaN andbN
as

bN5
1

A2 lnN
, ~B4!

aN5A2 lnN2
1

A2 lnN

1

2
ln~4p ln N!, ~B5!

and thus one can write schematically that

Xmin,N'2A2 lnN1
1

A2 lnN
S 1

2
ln~4p ln N!1 ỹD ,

~B6!

where ỹ is distributed with the Gumbell distributionp( ỹ)
5eỹexp(2eỹ).

It is useful to note the property of reparametrization as
ciated to a monotonous functionc(V). If one has Eq.~B1!
for the minimumVmin of the variablesVr with the constants
aN andbN , one also has~under some weak conditions! Eq.
~B1! for the minimumc(Vmin) of the variablesc(Vr) with
the constantsaN8 52c(2aN) and bN8 5bN /c8(2aN). Note
also that we have illustrated how to show convergence
Gumbell~and generalized it to finite temperature! in the text.

For completeness, we recall the necessary conditions
the convergence to Gumbell@i.e., P(V) belonging to the
Gumbell class#. First P(V) must decay fast enough a
V→2` so that there existsy0 such that

E
2`

y0
dyE

2`

y

P~V!dV,1`, ~B7!

and second, defining

R~ t !5
1

E
2`

t

P~V8!dV8
E

2`

t

dyE
2`

y

P~V!dV ~B8!

one must have for allx,y0,
0-27
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lim
t→2`

E
2`

t1xR(t)

P~V!dV

E
2`

t

P~V8!dV8

5ex. ~B9!

These conditions are in fact rather broad. Finally, note a
the very powerful theorem 2.10.1 of@27# for the rate of con-
vergence to the Gumbell fixed point.

2. Correlated variables

a. General lower bound

We now consider correlated variables with distributi
P(V1 , . . . ,VN). Let us start with a simple but very gener
bound and extract the consequences. One has

G~x!5Prob~Vmin,x!< (
r 51,N

Prob~Vr,x! ~B10!

since the reunion of all eventsVr,x implies the event
Vmin,x and that Prob(AUB)<Prob(A)1Prob(B) ~the
bound is exactly saturated, e.g., when there are strong c
lations such thatVr2Vr 8.x for all r 5” r 8). For variables
which have identical one-particle distributionP(Vr)
5*) r 85” rdVr 8P(V1 , . . . ,VN) one has

G~x!<NE
2`

x

P~V!dV. ~B11!

Let us illustrate the consequences for correlated varia
X1 , . . . ,XN such that the one-particle distribution is a un
centered Gaussian. Then it implies forx→2`

G~x!<
N

A2px
e2x2/2, ~B12!

from which one immediately sees that it implies

ProbS Xmin,xN52A2 lnN1a
ln~4p ln N!

A2 lnN
D

<
1

~4p ln N! [1/22a]
→

N→1`

0 ~B13!

by choosingx5xN for any a, 1
2 . Thus one has a genera

lower bound for the minimum of correlated variables. In p
ticular, for Gaussian variables such thatVr

252s ln N
52ds ln L one gets

Vmin.22dAs ln L1Asa ln~4pd ln L ! ~B14!

with probability 1 in the largeL limit for any a, 1
2 . More-

over, choosinga5 1
2 and writing

Vmin522dAs ln L1As@ 1
2 ln~4pd ln L !1 ỹ# ~B15!

one finds that
02611
o

re-

es

-

Prob~ ỹ,y!<ey. ~B16!

This yields a lower bound which can be compared with
REM approximation defined in the text. Note that the abo
upper bound is the exact behavior of the Gumbell distrib
tion at large negativey, so in a sense the REM approxima
tion saturates the bound in the tails. Consequently, to al
for a larger tail~such asye2y) one needs at least a coeffi
cient of ln lnN strictly larger than1

2 ).

b. Short-range correlations and convergence to Gumbell

Let us now considerN centered Gaussian variablesXr

with a fixed correlation matrixG rr 85XrXr 8, normalized so
that G rr 51. A powerful bound, which refines Eq.~B10!
above, allows us to easily demonstrate convergence to
Gumbell distribution for a large class of ‘‘short enoug
range’’ correlations. It compares two arbitrary correlato
G rr 8

(1) and G rr 8
(2) with G rr

(1)5G rr
(2)51. Their associatedG(x)

functions satisfy@27#

uG1~x!2G2~x!u< (
r 5” r 8

uG rr 8
(1)

2G rr 8
(2)u

2p~12mrr 8
2

!1/2
e2x2/(11mrr 8)

~B17!

with mrr 85max(uG rr 8
(1)u,uG rr 8

(2)u). It is obtained by bounding
]G(x)/]G rr 8 and integrating betweenG1 andG2. It will be
used to compareG rr 8

(1)
5G rr 8 with the uncorrelated caseG rr 8

(2)

5d rr 8 .
To address the question of the universality of the Gumb

distribution, let us now consider a (d51) translationally in-
variant correlatorG rr 85G(r 2r 8) with G(0)51, where
G(r ) is an N-independent function which decays to zero
r 2r 8→1`.

Inserting x5aNỹ2bN of Eqs. ~B1! and ~B5! into
Eq. ~B17! one easily gets that ifG(r ) decreases fast enough
one hasG(x5aNỹ2bN)5exp(2eỹ) at largeN, i.e., one has
convergence to the Gumbell distribution with exactly t
same coefficientsaN andbN as in the uncorrelated case, s
that Eq.~B6! still holds. As one sees by studying the boun
this result holds as long asG(r ) decreases faster than 1/ln(r)
~this is theorem 3.8.2. of@27#!. The limiting case~which
does not satisfy Gumbell, as discussed below! is G(r )
;t/ ln(r) at larger.

Let us give a simple self-consistency argument, more
lightening than the bounds, which explains whyG(r )
;1/ln r should be the limiting case between the short-ran
~Gumbell! universality class and other behaviors. Let us sp
a set of 2N correlated variablesX1 , . . . ,X2N into subsystem
1, X1 , . . . ,XN , and subsystem 2,XN11 , . . . ,X2N . If corre-
lations are very short ranged~e.g. exponentially decaying!, it
seems reasonable to first neglect correlations between 1
2 and find the minimum in each subsystem, which read,
spectively,

X̃min,i'A2 lnN2
1

2

ln~4p ln N!

A2 lnN
1

xi

A2 lnN
~B18!
0-28
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with i 51,2 and wherex1 ,x2 are independently distribute
with the Gumbell distribution. The symbolṼ indicates that
the minimum~in each subsystem! is with respect to a slightly
different distribution from the original one, since all cro
correlations between the two different subsystems have b
set to zero. The second stage is to add the correlations
tween the two subsystems. Typically, the minima 1 and
will be a distance;N apart and thus their original cros
correlation is;G(N), and thus, for short-range correlation
very small compared to the fluctuating partxi /A2 lnN. Thus
the distribution of the minimumXmin

(2N) of the original 2N
variables should be given with better and better accurac
large N, as Xmin

(2N)5min(X̃min,1,X̃min,2) @which is automati-
cally satisfied by the approximation~B18!#. The corrections
are irrelevant at large scale provided the typical root m
cross correlation between the subsystems remains sm
than the typical fluctuations of the minimum in each su
system, a condition which reads

AG~N!!1/Aln N, ~B19!

which indeed gives correctly the basin of attraction of t
Gumbell distribution. Furthermore, in the limiting cas
G(r );t/ ln r the above argument shows that the distribut
of the xi should be changed, which is also the case, as
now examine.

So, to summarize, if correlations are short ranged w
G(r ) decreasing faster than 1/ln(r), this is the ‘‘SR univer-
sality class.’’ It includes the REM, and one can check t
the finite size corrections in@6# are reproduced~at T50).

c. Long-range correlations and absence of convergence
to Gumbell

There is a simple but instructive model of correlated va
ables which can be easily solved and that illustrates ca
where Gumbell does not hold. If one takes

FIG. 15. Correlations as a function of lnr. The straight line
corresponds to the log-correlated variables studied here. The
line corresponds to the limit where the short-range Gumbell~and
REM! behavior holds, withG(r );1/(ln r)a and a,1; the curved
solid line corresponds to the case where a convolution of Gum
and Gaussian holds~marginal casea51); and the dotted line cor
responds toa.1 when the modeq50 dominates the behavior.
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Vr85Vr1U ~B20!

with Vr a set of uncorrelated Gaussian variables andU a
Gaussian variable uncorrelated with theVr , then clearly, if
one chooses the variance ofU big enough Eq.~B6! cannot
hold. To keep using normalized variables (G rr 51), one de-
fines

Xr85
1

A11wN

Xr1uA wN

11wN
, ~B21!

where u is a centered Gaussian random variable with u
variance. The correlation matrix is thenG rr8 51/(1
1wN)(d rr 81wN). Clearly one has

Xmin8 5
1

A11wN

Xmin1uA wN

11wN
. ~B22!

Using the expression~B6! for Xmin , one sees that for devia
tions from Gumbell to arise one needs thatwN;t/ ln N. In
that case one gets from Eq.~B6! that

Xmin8 'A2 lnN2
1

2

ln~4p ln N!

A2 lnN
1

xi1A2tu1t

A2 lnN
.

~B23!

These simple considerations thus allow us to underst
simply the limiting case, i.e., that ifG(r ) decreases as
t/ ln(r), one has that Eq.~B6! still holds ~with the same con-
stants! but the distribution ofỹ2t now converges instead t
the convolution of the Gumbell distribution and the Gauss
of variance 2t ~see, e.g., theorem 3.8.2. of@27#!.

Increasing the range of correlations even further, one g
into a regime where the fluctuating part~in theX variables! is
larger than 1/Aln N ~and thus in theV;XAln N variables the
dominant finite-size corrections are non-self-averaging!. The
fluctuations become then entirely Gaussian, being contro
by the U part, i.e., theq50 mode. For instance, ifG(r )
decreases as 1/@ ln(r)#a with 1

3 ,a,1, then~theorem 3.8.4. of
@27#! one has

P$Vmin.2G~N!1/2x2@12G~N!#1/2A2 lnN

@2 lnN2 1
2 ln~4p ln N!#%→E

2`

x

2p21/2e2x2/2. ~B24!

As illustrated below, this behavior~entirely controlled by
the q50 mode! is in a sense more long range, and furth
away from Gumbell than the problem of log-correlated va
ables that we are interested in and that we now discuss.

d. Log-correlated variables

The case of log-correlated variables is difficult and little
known. We just make a few comments.

Let us first discuss the form of the correlator. The co
relator ~for the normalized variablesXr5Vr /A2s ln N in d
51) is of the form

ck

ll
0-29
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G~r !512
ln r

ln N
~B25!

for 1@r @N. One must then distinguish the two other r
gions. For smallr, the precise form could vary by adding
short-range correlated noise. This is what we term short s
details, and an important question is the extent of univer
ity of the results~scaling of minima, distribution! with re-
spect to the small-r form. Forr;L, the behavior depends o
boundary conditions, which may also be important~see be-
low!. For the periodic system in the simulation,G(r )
5G(N2r ) and G(r ) actually becomes negative atr 5N/2
and of orderc/ ln N ~see Sec. IV!. Adding a small uniformU
noise, as described above in Appendix B 2 c, could m
G(N/2)50, so generally speaking one can discuss for
such that G(N/2)50. Seen as a scaling function ofz
5 ln r/ln N, G(r) then converges for largeN towards Eq.
~B25!, but it does have boundary layers atz50 andz51.

It is useful to plot on the same graph the various ca
studied in this section. This is represented in Fig. 15.
have represented schematicallyG(r )ln N versus lnr, for the
log-correlated form~B25! above, and for the various case
G(r ); ln N/(ln r)a with a.1 ~Gumbell behavior!, a51, and
a,1.

As discussed above, in the log-correlated case the be
ior of G(r ) near lnr5ln N can be considered as uncertain
order 1/lnN. This can be seen either from theq50 mode,
which, depending on boundary conditions, one may ad
by this amount, as discussed above, or even looking at
first nontrivial mode,q52p/L, which has a contribution o
the same order. We know from the preceding paragraph
these contributions can shift thex variable by a Gaussian, s
it makes it unlikely that the Gumbell distribution would ho
in that case.

FIG. 16. Phase diagram in the presence of both disorder
external potential. The freezing of the KPP velocity still occurs
b5bc and is represented by the dashed line and its solid prolon
tion: it remains a transition line fors.4dJ2 and becomes a cross
over line for 4ds,J2.
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To conclude, we have given the various behaviors a
function of the range of correlations. The presence of
ln ln N corrections seems to be more robust than the distr
tion of x. For the marginal case withq50 LR disorder, the
same 1

2 ln ln N corrections hold as for the REM, while th
distribution is changed. On the other hand, for log-correla
variables, we expect a different coefficient3

2 ln ln N as dis-
cussed in the text~and we do not expect the Gumbell distr
bution to hold!.

APPENDIX C: GUMBELL VIA RG

In a more detailed analysis, Eq.~50! yields
ln ln„1/Gl(x)…5 l 1 ln ln„1/G0(x)… which can be rewritten in
a frontlike form:

Gl~x!5exp~2el 1f(x)!, ~C1!

wheref(x)5 ln ln„1/G0(x)…. In this appendix we setdl→ l .
The center of the front is at thex52m( l ) solution of
f„2m( l )…52 l . One can Taylor expandf(x)52 l 1y
1 1

2 d l y
21••• with y5a l„x1m( l )…, a l5f8„2m( l )…, and

d l5f9„2m( l )…/f8„2m( l )…2. Thus in the variabley, Gl
converges to a Gumbell limit distributionG(y)5exp(2ey). It
holds provided higher terms in the Taylor expansion are
relevant ~a necessary, and in the simplest cases suffici
condition being that the second oned l→0).

If no rescaling of disorder is performed, in the releva
large negativex region one hasG0(x)'1 and thusf(x)
' ln@12G0(x)#. Two cases must be distinguished because
limit T→0 andN→1` do not commute.

~i! Finite fixed temperature T.0. For x→2` one has
12G0(x);C1(b)ebx@11O(ebx)# with Ck5*VP(V)e2kbV

and we assume thatC1 ,C2,1` exists~distributions falling
faster than exponentials!. Then the situation is simple a
f(x)5bx1 ln C1(b)1O(ebx), m( l ); l /b11/b ln C1(b), a l
5b, andf9(x)/f8(x)2→0 exponentially fast. For a Gauss
ian distribution,

m~ l !;
1

b
l 1

1

2
sb. ~C2!

There isno transitionto a glass phase.
~ii ! Zero temperature. It is an extremal statistics problem

Then clearly 12G0(x) does not decay as an exponential. L
us consider a class of distributions such that 12G0(x)
;(Auxu)2g exp„2(Buxu)a

… with a.1 ~plus exponentially
small corrections!. This contains the Gaussian~of variance
s) of most interest here, fora52, B51/A2s, g51, and
A5A2p/s. Then one easily finds from above that

m~ l !'
1

B S l 2
g

a
ln l 2g ln~A/B! D 1/a

, ~C3!

a l'BaS l 2
g

a
ln l 2g ln~A/B! D 12(1/a)

, ~C4!

nd
t
a-
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and thatf9/f82;1/uxua, thus the convergence to the Gum
bell front holds. Note that the quantitya lm( l );a l 2g ln l
1O(1) exhibits some universality.

One thus recovers the standard theorems for extre
value statistics reviewed in Appendix B, and the relation
the normalizing constants defined there as

m~ l !5aN , a l5
1

bN
, l 5 ln N. ~C5!

In the Gaussian case, using the values given above, one
that Eq.~C4! indeed yields Eq.~B5! in Appendix B ~up to
subdominant terms!. Although the distribution is universa
the normalizing constants obviously depend on the detail
the tail of the distribution. Note in all cases the presence
finite-size corrections involving a logarithm.

There is a very small temperature (bL;Aln L for Gauss-
ian! where the behavior ofG0(x) changes from~i! to ~ii !. It
can be seen by rescaling temperature or equivalently di
der, with system size as in the REM.

Let us examine the case where the constantsAl andBl are
rescaled and nowl-dependent~see also, e.g.,@30#!. One can
still use formula ~C4!. Let us chooseBl5bl2111/a and
Al /Bl5cst ~which includes the Gaussian REM!. One finds
at T50 that m( l );1/b@ l 2(g/a2) ln l2(g/a)ln(A/B)# and
a l;ba. In the Gaussian cases l52s l one recovers the
REM result,

m~ l !'As@2l 2 1
2 ln~4p l !#, ~C6!

a l→
1

As
, ~C7!

at T50 @i.e., Eq. ~41a! setting l→dl and s→s/d#. The
analysis can be performed at anyT and now yields a transi
tion temperature when the behavior ofG0,l(x) at large x
changes.

APPENDIX D: AN EXTENDED MODEL

A richer phase diagram can be obtained by adding a lo
rithmic background potential@78# V0(r )5J ln (ur u/a) to the
previous random potential @Vd(r )2Vd(r 8)#2;4s ln ur
2r 8u/a for a!ur2r 8u!L and Vd(r )50 @i.e., writing V(r )
5V0(r )1Vd(r )# in Eq. ~1!. The choice of the origin break
translational invariance. The competition between the dis
der and the binding background potential~which if strong
enough tends to favor localizing the particle in wells far fro
r50) yields the phase diagram of Fig. 16. Another clos
related model~model II! which preserves statistical transl
tional invariance and has the same phase diagram is

Zv@V#511S L

aD 2bJ

(
r

e2bVd(r ), ~D1!

which describes a problem with either zero or one part
~vortex! present, the energy cost of the vortex bei
02611
al
o

ds

of
f

r-

a-

r-

y

e

J ln(L/a). It is thus a one-vortex toy model of the recent
studiedXY model with random phase shifts@19,20#.

In the absence of disorder, the model with a backgrou
potential ~model I! trivially exhibits a transition atb5b*
5d/J. At low temperatureb.b* the Gibbs measure is
p(r );C(a/r )bJ with C5ZL5` a finite constant and the par
ticle is bound tor50 ~it has a finite probability to be within
a fixed distance ofr50). At high temperatureb,b* the
Gibbs measure becomesp(r );(a/L)d2bJ(a/r )bJ and the
particle is delocalized. This transition can be seen in
free-energy densityf 5F/ ln L52T ln Z/ln L since

f 50, b.b* , ~D2!

f 52~Jb* 2b!, b,b* ~D3!

for b,b* . This first-order transition occurs asf reaches its
bound ~sinceZ.1 due to the lattice cutoff, one has thatf
<0). The model II has the samef and a similar transition
with either one vortex present,b.b* , or zero,b,b* .

In the presence of disorder, the RG developed in this
per can be extended straightforwardly and leads to

1

d
] lG~x!5

J

d
]xG1

s

d
]x

2G1F@G#, ~D4!

F@G#52G~12G!. ~D5!

The additional term thus results in a simple shift in the fro
velocity. The position of the frontm( l ) thus leads to the free
energyf 5m( l )/(dl), which can have three distinct analyt
cal forms:

bm~ l !/ l;db f ~b!

52~d1sb22Jb! high-T phase I, ~D6!

2S 2d
b

bc
2Jb D localized phase II, ~D7!

0 bound phase III. ~D8!

The phase diagram is represented in Fig. 16 using the
duced temperatureT/J and the dimensionless disorder p
rameter ŝ5s/J2. For 4ds,J2 one defines b* (s)
5(1/2s)(J2AJ224ds). The RG analysis yields thre
phases. In the model with the background potential~model I!
they are as follows.

The high temperature phase@for b,bc when 4ds.J2

and forb,b* (s) for 4ds,J2#: Entropy wins and the par
ticle is delocalized over the system.

The localized phase@for ŝ.ŝc51/(4d) and b.bc

5Ad/s#: The KPP velocity is frozen. The disorder wins an
the particle freezes in wells away from the origin.

The bound-phase@for ŝ,ŝc51/(4d) and b,b* (s)#:
The particle is bound to the origin. Within this phase near
0-31
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phase boundaries~where the bound-state length is large!, a
crossover can be distinguished as a remnant of the free
transition. The bound phase arises because of the bouf
<0 ~or equivalently the velocity of the KPP equation mu
remain positive!.

In model II, the bound phase corresponds to no vor
present. When one vortex is present, it can be either local
c
nt

, J

f

en

d.

n

02611
ng
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x
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in a few wells or in a high-T phase~as studied in the text o
this paper!.

Both transitions away from the bound phase are first
der, while the transition between the high-temperature ph
and the localized phase is continuous. An interesting fea
is the multicritical point where the transition becomes co
tinuous.
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