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We study via renormalization groufrG), numerics, exact bounds, and qualitative arguments the equilib-
rium Gibbs measure of a particle indadimensional Gaussian random potential wittnslationally invariant
logarithmic spatial correlations. We show that for ady1 it exhibits a transition al=T.>0. The low-
temperature glass phase has a nontrivial structure, being dominatedfdoy distant stategwith replica
symmetry breaking phenomenolggyn finite dimension this transition exists only in this “marginal glass”
case(energy fluctuation exponemt=0) and disappears if correlations grow fagtgingle ground-state domi-
nance #>0) or slower(high-temperature phaseThe associated extremal statistics problem for correlated
energy landscapes exhibits universal features which we describe using a nonlinear Kolm@Rim\RG
equation. These include the tails of the distribution of the minimal en@gfree energyand the finite-size
corrections, which are universal. The glass transition is closely related to Derrida’s random energy models. In
d=2, the connection between this problem and Liouville and sinh-Gordon models is discussed. The glass
transition of the particle exhibits interesting similarities with the weak- to strong-coupling transition in Liou-
ville (c=1 barrie) and with a transition that we conjecture for the sinh-Gordon model, with correspondence
in some exact results and RG analysis. Glassy freezing of the particle is associated with the generation under
RG of new local operators and of nonsmooth configurations in Liouville. Applications to Dirac fermions in
random magnetic fields at criticality reveal a peculiar “quasilocalized” regismresponding to the glass
phase for the particjewhere eigenfunctions are concentrated @vénite numbenf distant regions, and allow
us to recover the multifractal spectrum in the delocalized regi®&063-651X00)11510-7
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[. INTRODUCTION tuation dissipation relations. Even so, it has been emphasized
that mean-field models, which usually involve infinite range

Despite significant progress in the past two decades, disar an infinite number of component limits, may not capture
ordered systems continue to pose considerable theoreticphysical processes important in low dimensions. The alter-
challenges. Two important questions still largely open, arenative “droplet picture” in its simplest forni3] postulates
respectively, to which extent thietter understogdmean- the existence of a single ground state with excitati@tep-
field models are relevant to describe low-dimensional physitets) of (free) energy AE scaling with their sizex as AE
cal systems, and, in the special case of two dimensions, te x?, 6>0. It provides a more conventional scaling de-
what extent the powerful field-theoretic treatments develscription of the glass physics, as being controlled by zero-
oped for pure models can be adapted to treat disordere@mperature RG fixed points where temperature is formally
models. irrelevant(with eigenvalue— 6).

A celebrated controversy is whether the structure found in  Another important advance was the exact solution of sim-
the solution of mean-field models for spin glasses and othepler prototype models, such as the random energy model
complex disordered systems, both in the stdtidsind in the  (REM) [6], where one considers simply a collection of inde-
dynamicq 2], has any counterpart in the world of experimen- pendently distributed energy levels, as well as its generaliza-
tally relevant low-dimensional models. Specifically, it hastion, the GREM[7], or the directed polymer on the Cayley
been vigorously questiond@] whether the breaking of the tree (DPCT) with disorder[8]. These solutions being direct
phase space in “many pure states,” predicted to occur irwith no use of replica, their results can be fully relied upon.
mean field, may also occur in short-range models, and how iThey exhibit a similar physics, with a glass transition, and in
can be properly definddt,5]. The unusual nature of the tech- the glass phase they exhibit an exponential tail for the distri-
nique used to solve the statics, i.e., the replica method with Bution of the free energP(f)~eP<" for negativef. This
hierarchical breaking of the permutation symmetry betweereature is crucial to recover the same physics, and indeed
replicas in the limin— 0 (RSB), did not contribute to make many observables were found to be similét. In fact, the
the physics transparent. A distinct structure, which remarkalternative solution of the REM using replicas, giver @,
ably parallels the one in the statics, has been foijdo  or that of the DPCT10] doinvolve RSB. In the REM model
occur in the nonequilibrium dynamics. The dynamical prob-the structure of the glass phase is particularly transparent as
lem can be studied by priori better defined methods and being dominated by fewstateq6,9].
leads to predictions which are in principle directly testable in It is important to go beyond models defined in mean field
experiments, such as a nontrivial generalization of the flucer on hierarchical(or ultrametri¢ structures and to study
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simple yet nontrivialand nonartificial finite d models with Another interesting property of this model is its relation to
full statistical translational invariance. In this paper we studythe Liouville model (LM) and the sinh-Gordon model
the model of a particle in a Gaussian random poteif{al (SGM) in d=2 (and their boundary restriction id=1):
with spatial correlations which ar@variant by translation  V(r) turns out to be the Liouville field while the LM and
and which grow as théogarithm of the distance. We con- SGM partition functions arise simply as generating functions
sider this model in any dimensiaf) but ind=2 it has also  of the probability distribution of the partition surg[V]
been studied recently since it is of direct relevance for sev= [ e~ V(") of a single particle. The high-temperature phase
eral physical systen{d1-20. One example is a spin model for the particle corresponds to the weak-coupling regime for
with XY symmetry and random gauge quenched disorderthe LM and SGM, where we find that known exact results
which arises naturally in describing Josephson junction areompare well with results for the particle. In the SGM we
rays[21] or two-dimensiona(2D) crystalline structures with  predict here the existence of a transitionore appropriately,
smooth disorder, e.g., flux lattices in superconducf@®, a “change of behaviory. It corresponds to the glass transi-
or electrons at the surface of heliui#3]. In this model, a tion for the particle, which also exhibits interesting similari-
single topological defectan XY vortex or a single neutral ties with the weak- to strong-coupling transition in the Liou-
pair sees precisely a random potential with logarithmic corville theory (and the so-callecc=1 barrie). The glassy
relations[14—19. Another example arises in a model of lo- freezing of the particle is associated, in the LM and SGM, to
calization of Dirac fermions in a random magnetic field, mo-new local operators and nonsmooth configurations being
tivated by quantum Hall physics. There, the zero-endfgy generated under RG.
=0 normalized wave function is identical to the Boltzmann To study the model, we will introduce a RG approach
weight of the particle studied hef#1-13. This wave func- based on a Coulomb gas renormalization in the manner of
tion is “critical” in a sense discussed below. Kosterlitz. It leads to a nonlinear RG equatipof the so-
Here we study this model using a renormalization-groupcalled Kolmogorov-Petrovskii-PiscounddPP) type] for the
(RG) approach, bounds, numerical methods, and qualitativéull probability distribution of the “local disorder.” Indeed,
arguments. We show that it exhibits a transitionTat T,  a separation between the long-range part of the disorder and
>0 in anyd=1. We find that in the high-temperature phasethe local, short-range part arises naturally in our approach.
the particle is essentially delocalized over the whole systeniThe RG equation has traveling-wave types of solutions. The
while in the low-temperature glass phase the Gibbs measumrresponding well-known problem, in such nonlinear equa-
is concentrated in a few minima. The fact that such a simpleions, of the selection of the velocity of the traveling front
(finite d) model exhibits a genuine glass transition is alreadyand its freezing folf < T, is related to glassy freezing of the
surprising. Indeed, as we argue, this transition exastgfor  particle free energy and, in the LM or SGM, to the “selec-
such a “marginal” type of correlatiofwhich corresponds to tion” of the anomalous dimensionG@nd at the transition
#=0 in the glass scaling mentioned abda#]). It disap- dimension degeneracy it leads to logarithmic operators
pears[for GaussianV(r)] if correlations grow fastetwith ~ When temperature is lowered, the local disorder becomes
only a low-temperature phase and single ground-state dombroadly distributed and the freezing occurs when its tails
nance or slower (with only a high-temperature phase become relevant. Our RG method indicates that the physics
Logarithmic growth of correlations thus produces exactly thedepends only weakly od. We will take advantage of this
right balance between the depth of the energy wells and thefact and check our results using simulationgdia 1.
number(entropy. Note that for slower growing correlations It is important to compare the present work to previous
one can recover a transition but only by artificially rescalingstudies of the model. The existence of a freezing transition in
the disorder variance with the size of the system: in the exd=2 has been conjectured previou§h,16,17,13 In Ref.
treme case of uncorrelated variables, it is the REM model[18], the analysis was based on an explicit approximation
Here, by contrast, there is a genuine phase transition in th&hich neglects spatial correlatiofsalled here and below the
thermodynamic limit, with no need for rescaling. Most inter- REM approximation Various efforts to include spatial cor-
estingly, the glass phase is nontrivial. The Gibbs measure i®lations were made in Refgl6,17,13; some are described
concentrated im few distant minimavhich remain in a finite  below. Although very interesting, none of these works fully
number in the thermodynamic limit. This is because the exestablished the existence of a transiti@rhich is done here
trema of random variables with such correlations exhibit arin Appendix A), nor developed analytical methods allowing
interesting property of “return near the minimum?”: there is, to obtain results beyond the simpler REM approximation
with a finite probability in a sample of size— +x, at least [25], or to prove their validity. The problem is thus still
one second minimum far awdgt distances of orddr), and largely open and the present work contains some new at-
with a finite energy difference with the absolute minimum.tempts to go beyond the REM approximation. In particular,
And there are not too manfa thermodynamic numbeof  one wants to know what is the precise universality class of
these secondary minima, leading to a zero entropy. As in ththe model, which we hope can be determined from the RG
REM, this property leads here naturally to a nontrivial method introduced here. This RG method yields some re-
ground-state structure, reminiscent, as we discuss, of a genmarkable universal features of the probability distribution of
ine property of replica symmetry breaking in the replicatedthe free energy and of its finite-size corrections, different
theory. The low-temperature limit corresponds to a nontrivialfrom the REM. It shows that the problem is more closely
problem of extremal statistics @rrelatedvariables, stud- related to the directed polymer on a Cayley treequalita-
ied here. tive analogy between the present model and the DPCT was
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model disordered systenfisee, e.g.[28-30), a lot remains

to be understood about tligore realisti¢ case of correlated
variables. Second, the question of the universality class is in
our opinion far from established. Evidence for the LFT de-
scription mostly comes from reproducing the multifractal
spectrum as given by the REM approximation and one would

Vv like to check it against more detailed predictions. The
\ present RG procedure is a step towards clarifying the con-
i i nection between this model and solvable models such as

Derrida’s REM and Derrida-Spohn DPCT. In this respect,
FIG. 1. Directed polymer approximation: sites are the tree endinite-size corrections are important to understand, as they
points. Thev] are uncorrelated of variancer2 The random poten- are found to exhibit universal prefactors allowing to distin-

tial ati is Vi=v{+0vP+0P and atj itis V;=v{P+0v@+0vP.  guish between various universality classes. In addition, they
Thus (V;—V))?=40d(i,j), whered(i,j)~ Inli—j| is the distance determine the anomalous dimensions, and thus control the
(in generationgon the tree. critical behavior, in the full disorderedY model as shown

in [19]. Since they are found to be very large, they are also

in fact cleverly guessed recently in Ref&7,11. It is based crucial in order to analyze the results of numerical simula-
on the observation that the energy of polymer configuratiortions. In particular, although we confirm the result[afi],
on a tree also scales logarithmically with the overlap distanceve also conclude that the sizes used in the numerical study
defined on the tre¢see Fig. L It is remarkable that this of [11] were in fact vastly insufficient for drawing firm con-
connection naturally emerges here from the Kosterlitz-typeclusions: we do perform here a more detailed finite-size
RG performed on this problem, via the KPP equation. It is allanalysis on much larger samples to confirm analytical pre-
the more surprising, since the model studied here has statigictions.
tical translational invariance, while a tree has a hierarchical The model studied here is thus related to a surprising
structure. The solution of Derrida and Spof8] (and the number of interesting problems. Let us mention for com-
mapping onto the DPCT proposed[iti7,11]) would be exact pleteness that it also has connections to problems such as
for random variablesV(r) correlated with ahierarchical  two-dimensional interfaces, or films, confined between two
(i.e., ultrametri¢ matrix of correlation. Here instead the cor- walls (for 8=+ it is the confinement entropy of a fibm
relations are translationally invariant and it is thus importantwetting transition$31], extremal statistics of correlated vari-
to understand the origin of the analogy with the DPCT and taables useful, e.g., for problems of “persistence” in nonequi-
which extent it holds. The RG procedure developed in thidibrium dynamicq 32], and finally, to the clumping transition
paper is an attempt to address these questions. The resultdb a self-gravitating planar gas3]. We will not explore
that we can make the mapping precise: at least for the unthese connections in detail here.
versal observables studied hdeeg., the tails of the free- This paper is organized as follows. In Sec. Il A, the
energy distribution the mapping is onto acontinuum  single-particle model is defined and in Sec. Il B, the random
branching processi.e., a continuum limit of a Cayley tree energies approximatiofREM) is applied, which amounts to
(whereaq 17,11 could not be so specific neglecting the spatial correlations of the random potential.

The present model has also been studied in the context dthe full problem, with correlations taken into account, is
random Dirac problems and localization. An early st{i2i§] related to the description of extremal statistics in Sec. IIC,
of the E=0 wave function established that it was criti¢al and three different classes of correlations are identified in
the sense of corresponding to a “delocalized” wave func-Sec. Il D from qualitative arguments. A new renormalization
tion, while E#0 has finite localization lengih However, (RG) technique is applied to this problem in Sec. Ill. The
this study missed the glass transition. Later stufli@com-  resulting nonlinear scaling equation for the distribution of
puted the multifractal spectrum based on the REM approxithe local disorder is studied in Sec. Il C, and is found to be
mation (in the sense defined aboy&5]) and noticed the related to the Kolmogorov KPP equation, which admits front
existence of a strong disorder regime. These and other studelutions. This connection between front solutions of nonlin-
ies [11,12, however, focused on properties of the high-ear equations and the renormalization of disordered models
temperature phase: it was conjectufé@] that the(confor-  is pursued in Sec. IlID, where a solution to the REM is
mal) Liouville field theory (LFT) (i.e., a continuum limit of found via a similar nonlinear RGdetails in Appendix ¢
the LM) was able to describe all spatial correlations of theThe nontrivial nature of the glass phase is discussed in Sec.
model in the high-temperature phase. These works call folll E together with its relations to replica symetry breaking.
more investigations. First, thglass transitionand the pecu- In Sec. IV we present a numerical analysis of the problem of
liar physical properties of the low (i.e., strong disorder the particle in a random potential th=1. Section V is de-
phase have not been addressed, even at the most qualitativeted to the connection between the particle mgded its
level. We thus find it useful to present the problem from atransition and entropic phenomena in the Liouville and sinh-
different perspective by comparing with other types of cor-Gordon models. A direct RG analysis in Sec. V C allows us
related disorder, or by recasting it as a problem of extremato recover the corresponding change of behaviors in these
statistics. Although well known properti¢27] of extremal models. Section VI contains the applications to the properties
statistics ofuncorrelatedvariables were often used to study of the critical wave function of a Dirac fermion in a random
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magnetic field, in particular the multifractal properties and F[V]=—TInZ[V], ®)
the property of quasilocalization. Appendix A contains an

outline of the proof of the existence of a transition, Appendixang  since it fluctuates from configuration to configuration

B is a review of welll-kr)owr(and not so v'vell-knowhresults asF[V]:er SF[V] we will be interested in its average
about extremal statistics, and Appendix D contains an exi:_m and in its distribution. Erom the convexity of the
tended model which exhibits three phases. - ' y

logarithm follows the well-known exact bound fBrin terms
of the annealed free enerdp :

II. MODEL AND QUALITATIVE ANALYSIS

In this section, we define the model of a single particle in —TInZ=F=F,=-TInZ, (4)
a correlated random potential. Then we describe the random
energy model(REM) approximation used in previous stud- 1
ies, which consist in neglecting correlations. We then pose F=—|TdInL+ ==V(r)? 5)
the new questions which we want to address here for the true 21
model and present a qualitative analysis showing physically
why we expect that logarithmic correlatiotas opposed to for the Gaussian case.
faster growing or slower growing correlationare the only In this paper we will mainly focus on the case of correla-
case which leads td¢i) a glass transition andii) a low- tions growinglogarithmically with distance:
temperature phase with a nontrivial structure of quasidegen-
erate distant minima - Ir—r’|

[V(r)=V(r')]*~4cIn T a<|r—r'|<L (6)

A. The model

The equilibrium problem of a single particle in a which also requires a small distance ultravidiet) cutoff a
d-dimensional random potential is defined by the canonicafwe can set hera=1 in accordance with the definition 1 of
partition function a discrete model, but in the following sections we will con-
sider a continuum version and vag). This behavior is
achieved ird dimension by choosing a propagator in Fourier
spacel’(q)~20(27)%S49%. Thed=2 case is also of spe-
cial interest as the propagator is the usual Coulomb one:

where B=1/T is the inverse temperature, in a sample of

finite sizeL (and total number of sites?) and for a given Ao

configuration of the random variabl&r). The equilibrium Fla)~—- (7)
Gibbs measure, or probability distribution for the position of q

the particle, is

Z[V]=§r: e AV, D

and boundary conditions must be specified later on. It is
p(r)=e AV0)z[V]. (2)  important to note that for LR correlations the single site vari-
anceV(r)°=I",(0) diverges with the system size, e.g., for
We are interested here in cases where the random var&d. (6) one had’ (0)~ 2o In(L/a).
ablesV(r) can be correlated. As discussed below, the statics For such logarithmic correlation@s well as for weaker
(and dynamick of this problem in the limit of large sizes correlations[36]) one will find thatF scales aslInL (con-
depends on the type of correlations, the distribution of thesistent with the number of degree of freedom beifign this
disorder, and the dimensionality of spateSome of these problem). Thus it is natural to define the intensive free en-
cases and their dynamical aspe(sch as the Sinai model ergy,
have been extensively studied, e.g., in the context of diffu-
sion in random medig34]. Even logarithmic correlations in ~ F[V]
d=2 were studied thef5], but it was not realized at that f(B)= lim L’
time that a static glass transition could exist in that case. Lo
Correlated random potential4r) are most conveniently

studied for Gaussian distributions, on which we focus, pawhich will be found to be self-averaging. The above bound
rametrized by the correlatdr(r,r')=V(r)V(r’') [and we 9IVES
chooseV(r)=0]. Non-Gaussian extensions will be men-
tioned. Unless specified otherwise, the correlations will be
chosen translationally invarianE(r,r’")=I (r—r") with
cyclic boundary conditions, or iridiscret¢ Fourier space

V(Q)V(p)=TI'(q,p)=1'(d)5, 4. We will often denote Thus we will find thatF[ V]~ f(8)d InL with subdominant

®

f(B)=-

1 0')
E*Eﬁ' 9

[V(r)—V(r’)]sz(r—r’)=2fq1“(q)(1—cos{q-(r—r’)]) corrections. These corrections have a nonfluctuating univer-
[with [,=1LZ,— [d%/(2m)"]. sal O(In(InL)) piece as well as a®(1) fluctuating part
One important quantity is the free energy, SOF[V] both of which we will study.
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B. The REM approximation a Gaussian distribution, the standard probability theory re-
A useful approximationto the problem studied here, SUlts are usually given in terms of a variabie such that

which can be called the REM approximation, consists in nex_r2: 1. One can simply rescalé = 2o In LX; from Appen-
glecting all correlations but keeping the on-site variance exdix B and get

act|18,13:
[ 3 1 Jo o
Vmin=—2\/0'd|n|_+§ a|n(47Td InL)+ a ,

(13

REM L
FL(I’)HFL (I’)=F|_(0)5r,rr=20'|n a 5r'rr . (10)

The corresponding Gaussian REM model can then be solvet/herey is distributed as in Eq(12). . .

being identical td6], and one finds that it exhibits a transi- ~ Much less is known in the case of variables with stronger

tion at B.= d/o with correlations studied here, though it is more important in
¢ practice. The statistics dof ,,;, in the logarithmically corre-

o lated case is thus one of the open issues discussed here. One
f(B)=— E+ aﬁ), B<Bc, (119 key question is to determine what is universal in the distri-
bution of the minimum of correlated variables. Here, we can
formulate the question as follows: given Gaussian random
f(B)=— 3 B> B.. (11b) variables satisfying Eq(6), what in the distribution of the

B’ minimum (i.e., of the ground-state energy for fixed laige
is universal, i.e., depends only enand not on the details of

Most preViOUS studies of the Original mOd@” in d:2) the Corre|atoﬂ"(r) at short scale. Wrmng
amount to studying the REM approximation and argue that it

is a good approximation. Indeed, as we will also find here, Vmin~ Vimint Vmin (14)

this REM approximation appears to give the exact result for

some observablde.g., forf(8)]. In particular, it does seem one finds, for the logarithmic correlator, that the averaged
to give correctly the transition temperatysge. ground-state energy must satisfy

C. Beyond the REM approximation: Extremal statistics Vimin=—2VodInL (15)

of correlated variables which follows from the above annealed bound, together with

Since it is not obvious priori why logarithmic correla- the fact thatf/dT= — S<0. Furthermore, one will find here
tions can be considered so weak as to be neglected, onlkat V,~emndINL up to a positive subdominant—
would like to go beyond the REM approximation and de-universal—piece and thae,,=—2o/d saturates the
scribe the effect of the neglected correlatidigy]. One  bound. In the distribution oBV,,,~O(1) we can clearly
would like to understand why this approximation works for expectlessuniversality than in the problem of random vari-
some observableggnd for which onesand whether it gives  ables with short-range correlatiof39].
exactly the universality class of the modee., all universal
behavior of observablgsThe answer to the latter is nega-
tive: as our analysis will reveal, the correlations do matter for o )
the more detailed behavior and the original modélsand Before describing the RG method, which allows us to go
(6) arenotin the same universality class as the REM model.Peyond the REM approximation, let us give some simple

In fact, the problem at hand is related to describing uni_qualltat!ve arguments and numerical re_sults which _|Ilust_rate
versal features of the extremal value statistics for a set of€ main physics of the thermodynamics of a particle in a
correlated random variables. Indeed, the zero-temperaturéorrelated random potential. To put things in context, we
limit (T=0 for fixed L) of the problem defined by Eq1) discuss sgveral types of correlatlc(shqrt range, long range,
amounts to finding the distribution of theminimum and margingl We focus ond=1 for simplicity but the ar-
—limy_oTINZ =Vyn=min({V,}) of a set ofcorrelated 9guments extend to arfynite d _
random variables. In the case of uncorrelafedshort-range Whether there is a single phase or not here comes simply
correlated variables, a lot is known in probability theory on from whether the entropy of typical sites wins or not over the
this problem(see, e.g.[38]), some of which is summarized €nergy of the low-energy sites. When there is a low-
in Appendix B. For the type of distributions considered heret€mperature phase, to decide its structure one must pay spe-
(Gaussian and some extensiprige distribution of the mini- ~ cial attention to distant secondary local minima.
mumV,,;, has a strong universality property, being given, up Indeed, when .there is a Iow-tempgrature phase, it is con-
to nontrivial rescaling and shifsee Appendix B and below trolled by the regions with most negative potential. To inves-

D. Qualitative study of a particle in a random potential

by the Gumbell distribution: tigate its structure one can start, for a given system oflsize
with the T=0 state, which is determined by the absolute
Prol{y<x)=G(x) =exp —€%). (12 minimum over the system, denot¥®(g,;, and located at .

At T very small but strictly positive, eacfiow-lying) sec-
The Gumbell distribution thus appears as the distribution obndary local minimunV will also be occupied with a prob-
the zero-temperature free energy in the REM. For the case @ility ~e~V~Vmid/Twhich is very small except whex
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FIG. 2. Three cases for the distribution of energy differeAée
between absolute and secondary minim(saparated at least by
R~L°) in a system of sizé.: (a) short-range correlated potentials,
AE,— 0 logarithmically with size{b) algebraically growing cor-
relationsAE,— +; (c) logarithmic correlationsAE, remains
constant as the system size increases.
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P,(V), which yields the exact leading behavior for uncorre-
lated disordef41] (and also for weak enough correlations—
see Appendix B Thus, the particle is delocalized over the
system for allT>0. One estimates the number of states
within AE of the minimum as N(AE)
~Ld fx:::JrAEPl(V)dV~exp(AE\/2d InL/\o) for a Gauss-
ian distribution. Thus there is a large number of sites almost
degenerate with the absolute minimwy,;,, separated by
finite barriers, andAE,, decays to O as a power of
1/InL(1/\InL for a Gaussian[42]. These minima, however,
are irrelevant for the thermodynamics of the system at a fixed
finite temperature.

For these minima to play a role and to obtain a transition
even for SR disorder, one needs to perform sartdicial

—V,i,~O(T). Thus to characterize the low-temperaturefescaling as in the REM modef6], either at fixed size to

phase, we need to know how many of these secondargoncentrate on the very low region(e.g., takeg~InL in-
minima exist and where they are located. For a smootfihe Gaussian cageor equivalently, to rescale disorder with

enough disordern(see, e.g., Fig. 3there will always be
“trivial” secondary local minima in the vicinity ofr ;;,. To

eliminate these, we definé,»(R) as the next lowest mini-
mum constrained to be at a distance at |&ast the absolute

the system size. By making disorder larger as the system

increases, for instance usirg(V)~e V"Vl with V,
~(InL)*"Y« one recovers artificially a transitidr80]. For
a=2 and uncorrelated(r) this is exactly the REM studied

minimum. An interesting quantity to study is then the distri-in [6]. There, the simple argument for the transition is that

bution Pg | (AE) of AE(R,L)=Vin2(R) —Vyin Over envi-

ronments(which a priori depends orR andL).

We now distinguish three main cases, according to the

behavior of the correlaton[V(r)—V(r’)]2=f(r—r’) at
large scalgwe restrict to Gaussian potentidi0]). In these
three cases the distributid?y | (AE) has markedly different

behaviors as illustrated in Fig. 2.

(i) Short range correlationsI'(r)—Cst at large r,
equivalentlyl’, (r)—0 at larger (or, e.g.,l“q~q‘d+5 with
6>0). In this case it is clear thahere is only a high-
temperature phas@é any finite d and no phase transition.
The entropyTdInL of typical sites[of energy typically
~0(1)] always wins over the energy of optimal sites
(Vmin~v20dInL for Gaussian distributions with on-site
varianceo). The optimal energy/ ., can be estimated using
1/L9=fYmnp, (V)dV in terms of the single site distribution

')

N

o
T

|
N
T

potential with linear correlations

1
IS

minimurm

50 100

()

200

the averaged density of sites at energyV is Q(E)
=9 E79)/ 270, [related to the annealed partition
sum viaZ=[ge PEQ(E)]. If o =0 is not rescaled, the
average energy i©(1) and the huge entropy of these states
always wins. Ifo scales withL aso | ~20 InL, then there is
a transition at B.=d/o. Indeed, Q(E)~exp(dInL[1
—(elenin)?]), wheree=E/(dInL) and emjp=Emn/(dInL)
=—2o/d and there is a saddle point it at (E)/(d InL)
=eSE=—,8eﬁ“n/2: since e, must be larger tharey,, [as
Q((E)) cannot become smaller than], 1the saddle point
cannot be valid belowl .= 1/8.= —ey/2= Jo/d and the
system freezes in low-lying states. Although this argument
implicitly relies on using IM)(E) instead ofin Q)(E), it does
give the correct picture for the REM, as shown[&.

This picture generalizes to correlated potentials provided
I' (r) decreases fast enough at largeThe decay must be
faster than 1/lm (which is a rather slow decags indicated
by the theorems recalled in Appendix B or also by a simple
argument given in Appendix B 2 c. Finally, let us point out
also that another way to obtain a transition for SR disorder is
to take thed=co limit before taking the largé limit: there
the model(even without rescalingalways exhibits a transi-
tion (in the statics and in the dynamjcs

(i) Long range correlations When the typicalV(r)
—V(r') grows with distance as a power lali(r)~|r|?,
there is only a low-temperature phaaad no transition. The
particle is now always localized near the absolute minimum
of the potential in the system af,,. The typical minimum
energyV i, grows as~ —L%? and thus overcomes the en-
tropy ~TdInL which is never sufficient to delocalize the
particle. The structure of this single low-temperature phase is
simple: there are no quasidegenerate minima separated by

FIG. 3. A typical random potential configuration for algebra- infinite distance(and thus also by infinite barrigrsn the

ically growing correlations.

thermodynamic limit. As can be seen in Fig. 3, there is typi-
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FIG. 4. A typical random potential configuration for logarithmic
correlations.

cally a single minimum, with many secondary ones near it,thatpi

but none far away. More precisely, Bs—«, the probability
that the lowest-energy excitatiavE(R,L) above the ground
state(a distance at lea®®~L°® from r,,) will be smaller
than a fixed finite(arbitrary value decays algebraically to O
with L (and AE, and AE increase algebraically with).
This is the familiar scenario from the droplet pictur&],
with ProbAE<T)~TL™9? (i.e., in some configurations
which become more and more rarelas + «, there are two
far away quasidegenerate ground statessome cases, e.g.,
in Sinai’'s model §=1), the distribution of rare events with
quasidegenerate minima has been studied extengi¥8ky
45]. For instance, it has been shoB,44 that there is a
well defined limit distributionQ(R)dR (whenL— +«) to
find quasidegenerate minini46] at a fixed distance between
R andR+dR, with Q(R)~R %7 at largeR.

(iii) Marginal case, logarithmic correlationsThe most

interesting case is when correlations grow fs{r)
~4cIn|r|. A typical logarithmically correlated landscape is

illustrated in Fig. 4. One can already see that, contrary to Fig,.

3, it has states with similar energies far away.

Given the growth of correlations, one sees thattyipécal
energy differences over a distande scale as[V(0)
—V(L) lyp~ = V4o InL. Computing the minimum energy is

0.030 4

0.020 1

0.0104

Gibbs measure p(7)

temperature phase8E3.0> B.=1),

PHYSICAL REVIEW E53 026110

o o
'y [=2]
. >

Gibbs measure p(7)

0.0 for st b rrrTe ,L I
2040.0 4000.0
z

FIG. 6. Gibbs measure in a typical sample in the low-
L=4096. Only points such
>10" 7 are indicated.

a harder task here, but if one estimates it agli8] through
the REM approximation 1= "mP (V)dV (which ne-
glects correlations one finds that it behaves a¥,
~—2JodInL (for Gaussian disordgr This estimate ap-
pears rather uncontrolled here since correlatigreav with
distance, while the theorems for uncorrelated random vari-
ables applya priori only for correlationsdecayingslower
than 1/Inr. In fact, the situation is a bit more complex, and as
we will find below from the RG and our numerics, the lead-
ing behavior ofV,;, with InL is still correctly given by the
REM approximation, although the next subleading—
universal—correction is not. Thus the energy of the mini-
mum
—2\JodInL can now balance the entropy of typical sites
TdInL, which yields the possibility of a transition. The
REM approximation of the model indeed yields a transition
at T.=/o/d between a high-temperature phase Bt 3,
Jo/d and a frozen phasg> .. This scenario is con-
firmed by various approaches in the following sections.

An interesting feature of this model is that the low-
temperature phase exhibits a nontrivial structure. Unlike

£ 19 ; . ; . : :
E
& I
.§ I
S K
I 1.7 K3 1
) T
< st T ]
3
15 ' : ' : : : :
5 7 9 15 17 19

Hog, &

FIG. 7. Averaged energy differenckE between the absolute
minimum atr ;, and the constrained secondary minimgim., the

FIG. 5. Gibbs measure in a typical sample in the high-minimum over the sefr —r;|>L/3), as a function of the system

temperature phasggE0.5<3.,=1), L=4096.

size.
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fixed probability that a second state withixE exists far
—~ 10007, away(as was already apparent in Fig. ¥Ve show in Fig. 7,
> A A N2 Fig. 8, and Fig. 9 numerical evidence that this distribution
\<_'/ 800 1\ —— N= :“ has a well-defined limitthe details of the simulation are
t — N=2° discussed in Sec. IV Finite-size effects are clearly impor-
Q600 tant in this system, but their magnitude appears compatible
= with the predictions of our RG approach, as discussed below.
£ 400l Thus we conclude that the numerics are consistent with the
5 existence of such a limit distribution and hence with a frozen
g phase with a nontrivial structure.
= 200+

I1l. RENORMALIZATION-GROUP APPROACH
°% : 4 : 8 10 12 A. Idea of the method

6
AFE _
S _ We now study the model€l) and (6) using a renormal-
FIG. 8. Distribution ofAE, the energy difference between the jzation approach introduced by us to stutly: 2 disordered
absolute minimum at,,;, and the constrained secondary minimum y v models[19,20]. There, one is led to study a neutral col-
(i_.e., the minimum over the s@t—r ;)| >L/3) for different system lection of interacting= 1 charges XY vortices in a random
SIzes. potential =V(r) with Eqg. (6). The single-particle problem
) ) S studied here amounts to restricting the Coulomb gas RG of
long-range disorder discussed above, for logarithmic correr1g 2 to the sector of a single-1 charge. Here, however,
lations we find that the low-temperature phase is dominateghere is no charge neutrality and one must be careful to study
not by one, but bya fewstates in the thermodynamic limit. 5 gystem of finite size, as some quantitigsuch asv(r)?]
This is in stark contrast with the standard droplet picture an xplicitly depend orL, while appropriately defined quanti-
is reminiscent of the replica symmetry breaking phenomsyjeq have a well-defined thermodynamic limit.
enology, even though we are dealing here with a very simplé 1 jgeq is first to formulate the problem in the con-

finite-dimensional system. _ fjnuum, with a short distance cutad
One can visualize the transition, and the peculiar nature o
the low-temperature phase in Figs. 5 and 6, where a typical ddr
Gibbs measur@(r) is shown in both phases, is fairly delo- Z= f —de‘BV(r), (16)
a

calized afT>T,, (Fig. 5 but peaks around a few states when
T<T. (Fig. 6 separated by a distance of the order of the
system size. . for V(r), and second, by coarse graining infinitesimally, to

This peculiar nature of the frozen phase can be tested blyelate tl‘,le roblem d'efined with a cutodf =ae” to the'
showing that distant secondary local minima with a firite P

exist with finite probability in the thermodynamic limit, Thus ProPlem with a cutofi. In general, this implies being able to
. ; . AT follow under this transformation the full probability measure
we have investigated numerically the distributiBg  (AE)

of the lowest excitation. As illustrated in Fig. 2, if the phaseOf the p_otentiar\/(r), which is quite difficult, as co_m_plicated

is nontrivial, we expect that this distribution,has a well- correlations can be genera.ted under- coarse graining. In some
defined limit for, e.g.R=L/3 whenL —o with a finite typi- very favorable cases, for instance in tle=1 Sinai Ia_nd—

cal AE. Contrary to the LR disorder, we expect the probab"_scape[whereV(r) performs a random walk as a function of

ity that, e.g.,AE(L/3,L) will be smaller than a fixed number ther Cf?‘self: 1] itis possmfle to f.OHO.W a;lnalyncally an as-
{0 saturate(not to decreageas L, i.e.. that there is a ymptotically exactRG transformatior(in the statics and in

the dynamicg45]). There a very specific real-space decima-
tion procedure is required, which can in principle be ex-
tended here, although it may not be tractable beyond numer-
ics. The present case of the logarithmically correlated
potential is thusa priori less favorable but still, thanks to
some known properties of the Coulomb potential, a RG
method in the manner of Kosterlitz can be constructed
which, we argue, should describe correctly all the universal
properties of the model. There are two possible derivations,
one which uses replicas and is more precise, and the other
one without. We start with the latter, which is physically
more transparent.
f The key observation is that befofand also aftercoarse

P T e graining, the logarithmically correlated disorder studied here
InAE can naturally be decomposed into two parts as

and an appropriately defined cutoff-dependent distribution

1000 ...

1004

e
(=)
L

unnormalized P(AFE)

1 T T

FIG. 9. Distribution ofAE in log scale. V(r)=V=(r)+uv(r), (17)

026110-8



GLASS TRANSITION OF A PARTICLE IN A RANDOM.. .. PHYSICAL REVIEW B3 026110

whereV~(r) is a smooth Gaussian disorder with the same=2¢ dl §®(r—r’) since it is clear from Eq21) that when
LR correlations as the initial(r) which represents the con- a—ae"' the LR disorder produces an additi@ussiarcon-
tribution of the scales larger than the cuta®, andv(r) is  tribution dv to the SR disorder.
a local short-range random potential which represents the The second contribution resulting from a change of cutoff
contribution of scales smaller than, or of the order of, theis that neighboring regions will merge. Poimtsandr, pre-
cutoff a€'. In the starting moded (r) appears naturally as a viously separated aas<|r;—r,|<ae" should now be con-
Gaussian variablésee below. After coarse grainingy(r) sidered as within the same region. The second important ob-
does notremain Gaussian, but doesremain uncorrelated in  servation is that the resulting transformation can only affect
space(i.e., correlations of short ran@gg. The decomposition the SR partv(r) of the disorder. Indeed, in the regian
(17) allows us to follow the distribution of th¥(r) under <|r;—r,/<ae” the LR partV~(r) can be considered as
coarse graining in a tractable way. constant up to higher-order terms of ordér One must view
The precise way of decomposing the disorder in @F)  this coarse graining as resulting in a “fusion of local envi-
depends on the details of the cutoff procedure, but should nabnments:” the two local partition sum variableér;) and
matter as far as universal properties are concerned. For illug{r,) combine into a single one(r) according to a rule
tration, let us indicate a simple way to do it; a more detailedwhich we will write asz(r) = z(r;) +z(r,). The exact choice
discussion is given if20]. It starts with the well-known of the form of this fusion rule is again dependent on the
continuum approximation ird=2 of the lattice Coulomb cutoff procedure and thus to a large extent arbitrary.
potential T (r —r')~4o{In(r —r’|/a) + y][1— 6@ (r—r")], Putting together these two contributions, we obtain the
where §®@(r—r’)=1 for |[r—r’|<a and 0 otherwisq y  following RG equation for the distributioR,(z) of the local

=In(2y2e%) andC=0.5772 is the Euler constdniThis de- disorder z=e~#" variable (also called “fugacity” in the
composition can be performed more generally, e.g., witH-oulomb gas context

other short-distance regularization of the potentiglr) 0 P(2)= Bo(1+20,)?P—dP(2)

(which preserves the large distance logarithmic behavior

and in anyd, which amounts to modifing the value of. , Y -

Using this approximation, the bare disordé) can indeed be +dL,Z,,P(Z P(2")6@=(2'+2"). (22
rewritten equivalently as a sufi7) of two Gaussian disor-

dersV~(r) andv(r) with no cross correlations and with  This equation also describes the evolution of the universal

respective correlators: part of the total free-energy distribution with the system size.
| | Indeed, the total partition function can be written at any scale
r—r
[V=(N=V=(r")P=40 In——[1- 6 (r—r")], as
(18 ddr ddr
Z(ﬁ):f—de_ﬁv(r)%f ( l)dZ|(I’)e_'BVI>(r)%Z(|*),
No(r')=20y8®(r—r"). 19 a ae
v(Nu(r')=20y8%( ) 19 (23
With this definition, the problem to be studied is rewritten _ ) o )
as where thez (r) are independent variables distributed with
P\(2) and theV; (r) are Gaussian distributed as Eg8). In
d9r A0 o) the last equality we have coarse grained up to the system
— - — A pPU * . . . .
Z= f gz(r)e o zr)=e - (200 size:L=aé". At this scale, there remains a single site of

(random) fugacity z;». Thus the distribution function of the
We can now study the behavior of the model under gPartition functionZ(B) can be deduced from the distribution
change of cutoff. There are two main contributions from©f the random fugacities at scal&. The distribution of the
eliminated short length scale variables. The first one can bfee energyF=—TIn Z is thus given byP« (v =F) [where
seen most simply by rewriting the correlator in Ef8), P(v)dv=P(z)dz from the change of variable fromto v
=—TInz]. Note that the~ in Eq. (23) means that these

Ir—r’| , distributions are the same priori only up to subdominant
> _\/>(r'\12— — 5@ r=r’
[V (N=v=(r)]"=4aln / [1=0(r=r")] nonuniversal termgmultiplicative for Z and additive for
In2).
+40 dIi[1-8@)(r=r"], (2D For a fixed system siz&, the above RG equation de-

scribes the evolution with the scdlesmaller than that* of
explicitly as the sum of a new LR disorder correlator with the distribution ofz(r), which is the local partition sum over
cutoff a’=ae and a SR disorder correlatpwe have dis- scales around smaller than or equal ta€ [i.e., of a “local
carded terms of orde®(dl?)]. Thus the original problem free energy” —TInz(r)=v,(r)]. The remaining long-
with cutoff a can be rewritten as one with cutadf with (i)  wavelength disorder at that scale; (r), should still be
a new Gaussian LR disorder with identical form of the cor-taken into account when computing the total partition sum.
relator(18) with a replaced bya' and(ii) a new short-range It is striking that Eq.(31) is identical to the RG equation
disorder  v(r)—uv(r)+do(r) with do(r)dov(r’) for the partition function of a continuum version of a di-
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rected polymer on a Cayley tréa so-called branching pro- where the primed sum correspond to a sum over all distinct
cesq 8]). We note that it has been derived here for a problemmonzero configurations of replica chargesat sitesr,,. We

with complete(statistica) translational invariance, with no have definedn,=3;n!, as the total number of replicas
ad hoc assumption about an underlying tree structure angresent in a given chargm‘((=1). The quantities'[n] are
simply adapting to the present problem the Coulomb gasunctions of the local vector charge and are the so-called
renormalization in the manner of Kosterlitz. That the corre-yector charge fugacities. In the bare model they appear as

spondence between the two problems naturally appeakpon as the continuum approximation to the lattice Green
within the RG with no additional assumptions is even MOre€,nction is used and rea&[n]:ethrynz Since we are

apparent on the derivation using replicas of the next S.ECtiorEtudying a single-particle problem, there is also an important

ion b h bl %Iobal constraint on the configuration sum that only one par-
strong connection between the two problems. ticle in any replicai be present in the system, i.e.,
Before analyzing the consequences of the above RG equa-

tion, let us sketch the more precise derivation using replicas. ,
Other derivations without replicas are also possible and we 2 n,=1, (27)
refer the reader tf20] for more details. “

o _ _ . which is preserved by the RG.
B. Derivation of the RG equation using replicas The RG equations for this model read

Let us consider the whole set of momeat8 which en-
code for the distribution functio®[ Z]. They can be written 8,Y[n]=(d+ B%en?)Y[n]+
as

1S Vv,

n’+n”=n
(28)

— (diry  d% s
ZM= —dl- M-, V(D] (24)  where the sum is oven’ andn” nonzero vector charges
a a (alson is nonzergp andS,_ is the volume of the unit sphere
in dimensiond. We recall than=X{",n;. These equations

This can be rewritten as ) o .
are obtained by a generalization of the Kosterlitz procedure

. do,  d " B [48] as follows. The first term comes from an explicit cutoff
Zn=| — —dme‘<5 M Zitj=,.. ml(ri=r)) dependence in E¢26). Upon increasing the cutoff infini-
a a tesimally a—a’=ae", the integration measure and the

dependence in all logarithms combine to giv{n,]

—Y[n,]ed" @+ B0 We have used that 2,_,.n,n,

We have used thaf' (r,r)=T (0)=2c¢In(L/a). One can =m?—3,n?, which holds due to Eq27). The last term in

choose a regularisation, e.g.I'(r—r")=V(r)V(r’') the above equatio28) comes from the fusion of replica

=—olIn(r—r’|?+a?/L2 Notice that only the large dis- charges upon increase of the cutoff. The above RG equations

tance behavior of the above correlator is important for théold for anym.

following renormalization. We should now look for solutions of this set of equations
We now switch to another representation of the replicaanalytically continued ton— 0. One way to do that is to find

partition sum. Equatiof25) is a partition sum ofn particles a convenient parametrization for the set\jin]. Here we

located atrq, ... I, corresponding ton replicas. Now in-  preserve replica permutation symmetry within the RG and

stead we will index the configurations usifigecto) colum- ~ we can thus choos¥[n] to be a function oih=X;n; only.

nar replicated chargesTo each point, within a hard core Then we define the parametrizatiofin]=fdz ®(z)z"

sizea, we associate am-component vecton whose com- = fdy &,(v)e ™. The different terms in Eq(28) then

ponentsn'(r) are either 1 or 0 depending on whether thetranslate into

particle corresponding to thi¢h replica is present withia of

r (J[r—rj|<a) or not. These charges thus corresponcto ) Bnos pelq 2

=(0,1,0...,0,1,1) since several replicas can be present n Y[“]:f dvoe "(B"d,)"®(v), (29)

near a given point. Choosing a columnar hard core for the

vector charges corresponds to a choice of cutoff, which is

arbitrary, but the universal features of the renormalization > Y[nl]Y[nz]=L Z//‘I’|(Z')<1>|(Z")5(Z—Z’—Z”)

> emzrrﬁz In(L/a) (25)

should not depend on [47]. nM+n@=n
The mth moment ofP[Z] then reads —2ND(2)+ 8(2)N?, (30)
2 2
Zm_| = prom z, H YIn,] dr, where N= [,®,(z). One then easily converts the equation
a e “Jir -t 1=a a® for ®,(z) into an equation for a normed functioR,(z)

=®(2)/ N~ defined only forz>0, with N> = [,-,®(2)
(se€|20] for detailg, by noting that\V~. converges quickly to

. (260 AL=2d/S,_;. The resulting equation foP,(z) is exactly
the one(22) given above, and its physical interpretation in

a<a'

I’a—l’ar
Xexp{ —2B%5 2, n,n, In(%)
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terms of the probability distribution of the fugacitye., the  which describes the diffusive invasion of a stable siate
local partition sumwas given in the preceding section. =0 into an unstable on&=1. This class of equations ad-
What is the small parameter which controls the validity ofmits a family of traveling wave solutions (®x)=g[x
the above RG equationsvith and without replica® In a  +m(l)] which describe dront moving towards negative
conventional Coulomb gas context, these RG equations amnd located aroung~ —m(l). This is readily seen by plug-
known to become exact in the dilute limit of nonzes®c-  ging this form in Eq.(34), and assuming thatjmg(l)—c
tor) chargeg48]. It is easy to see that this corresponds to theone obtains the equation for the front shape:
tail of the distributionP(z) for largez (or equivalently small
v). This is further confirmeda posteriori by the remarkable , "
universality properties of the resulting nonlinear RG equa- g9 (x)=g9"x)+Flg(x)]. (36)
tion (22), analyzed in the following section, which arises
precisely in this region oz So to obtain the universal be- The family of such traveling-wave solutiomg(x) can thus
havior (e.g., of the distribution of free energywe are work-  be parametrized by the velocity Equation(36) simplifies
ing with sufficient accuracy. On the other hand, the bulk offor |arge negativex wheng~1. Denotingg=1—g and us-
the distributionP,(z) seems to be sensitive to details of the
cutoff procedurge.g., details in the fusion ruleand as dis-
cussed below it is thus likelgunless proven otherwiséo be
nonuniversal.

ing thatF[g]~ —g for g~1, one finds the linearized front
equation forg,:

O~

cg'=49"+0. (37

ok

C. Analysis of RG equation and results
1. KPP front propagation equation and velocity selection This equation allows us to relate the speed of the frota

Let us analyze the solutions to the RG equatig@). In  the asymptotic decay of the front, since g{x)~e™* for
terms of the(local free energy variablev(r)=—TlInzr) large negativeone finds
[from Eq. (200 and its distribution P,(v)=P(z
=e A)Be P] it has a well-defined zero-temperature limit, A (39)
since then the fusion rule simply becomes the extremal rule d d a

"=min(v 4, leading to . ; .
v (v1.02) g The problem at hand now is to determine toward which of

+o these front solutiong.(x) will G,(x) converge at largé,
_1+2f P(v")dv’|. and thus what will be the asymptotic front velocity. This
’ (31) velocity will determine the intensive free energy of the origi-

nal problem. Indeed, the convergence at ldrgé the solu-

To be able to work at all temperatures, it is in fact useful totions of nonlinear equations of the tyj@4) (with a general
trade the distributionsP,(z) or P,(v) for the generating F[G]) towards one of such front solutions, and the corre-

4 P(v)=0d*P+dP(v)

function[8,49]: sponding problem of the selection of the front veloditys a
o famous problem, still under current interest in nonlinear
Ghﬂ(x):(e’zeﬁ Yem=(e" e (32  physics[51-53.

The simplest argument is to use the fact that for very large
We will sometimes drop the indeg. At zero temperature, negativex, one must have(x)~e”* and thusa= . This
the double exponential become® &unction andG,(x) sim-  seems to imply that the front velocity is
ply identifies with the distribution function:

c=c(B)= d. (39

o N 1
i’ 8
This, however, is not always true. First note that the curve
and for all B it is a decreasing function ok with G|(x  ¢(B) has two branches, i.e., in this naive estimate two dif-
——»)=1 and G|(x—+=)=0. Note the asymptotic be- ferents would correspond to the same velocity. The special
havior[50] at very large negative, 1—G(x)~(z)p €.  point B.=Jd/o corresponds te=c* =2d\/o/d. For more
The temperature appears only via the initial condifi®hand  general nonlinear equations one usually relies on the so-
the problem at hand is thus to determine the ldrehavior  called marginal stability criteriofe.g., which shows that the

G|;B:+m(x)=f:mP|(v)dv=PrOt{v>x) (33

of G|(x) for a given initial condition. large B branch is unstable and can be eliminatgg1,8].
Equation(31) is easily transformed, at all temperatures, Here there are rigorous results available: the Bramson theo-
into the Kolmogorov(KPP) nonlinear equation rem [56] ensures the following results, which aredepen-

dentof the precise form of[G] (up to some rather weak

1 o conditions onF[G] [56]).
— —_— — 2
d&'G(X) d KGHFLG], (34) (i) At high temperature 8<pB.= yd/o, the asymptotic
front is indeed an exponential for large negativendG, (x)
FIG]=—-G(1-G), (35  uniformly converges towards the traveling-wave solution
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de(px+m(l)], where the velocity is given by E39), thus
it is continuously dependent on temperature.

(i) At low temperature= 3., the velocityfreezedo the
valuec=c* and the front decays as

g(x) ~ —xePe (40)

for large negativex, thus independent of the temperature.
The solution G;(x) uniformly converges towards the
traveling-wave solutiorg.«[x+m(l)]. Thus in that regime,
one must then distinguish two regions@p(x) at largel, the
front region and the region very far ahead of the frpat
+m(1)> /1] where the decay is again &(x)~exp(8x) as
it should be: this will be discussed again below.

There are additional rigorous results fr¢f6] and in par-

ticular the remarkable fact that not only the velocity but also

the corrections to the velocitare universal(independent of
F[G]), i.e., one has for the position of the traveling wave
mg(l) at “time” 1,

7 ‘1)dl —\F 41
SBrpHdivCst p<po=y/-, (413
o 1
m(I)=\[a(2d|—§|n|), =B,
o 3
m(I):\[a(ZdI—EInI>, B> ..

2. Results for the fugacity and free-energy distribution and
extremal statistics

m(l)=

(41b

(419

These results on the KPP equati@4) can now be trans-
lated[via Eqg. (32)] into results for the fugacity distribution

P,(z) and for the distribution of free energfy(v). One finds
thatP,(z) andP,(v) also take the form of a front at larde
e.g.,

Pi(v)—p+m(1)) (42
with p(v') related tog(x) by g(x)=/,p(v')e """
Thus we obtain that the local free energy is

—B HInz)~—mg(l) (43)

up to a finite constant, where the position of the fron(1)

is given above in Eq.413. Using the result(23), N

=dIn(L/a)=dI*, we obtain using the RG that the free energy

F[V] of the system of sizé reads
FIVI=f.(B)dInL+ 6F, (44)

where 6F is a fluctuating part oD(1) of probability distri-

bution p(6F) and the intensive free energy reads

) mea
+OH! B<IBC_ ;,

B 1
fL(IB):_<E+E

C

(453
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B 1( 1In(InL)) ( 1 ) B
fL(IB)__E Z_EdIT +O\ ) A= Be
(45b)
B 1( 3In(InL)) ( 1)
fL(ﬁ)__B_C 2_5 dlnL +O Hv IB>ﬁ01

(450

where the factorg and3, which arise in the finite-size cor-
rections, areuniversal

Thus we have found using our RG method that in any
dimensiond=1 the original modelqg1) and (6) exhibit a
phase transition g8= B.(d). This transition is very similar
to the freezing transition of the continuous version of the
random directed polymer on the Cayley tree. Our RG thus
confirms that the REM approximatidt0) to the model does
give the transition at the sanf® , and with same asymptotic
intensive free energiegl1lb) as Eq.(45¢). It allows, how-
ever, for a more detailed study and shows that the universal
finite-size corrections differ in the two models. In the REM,
the above formula with the factoy holds in all the low-
temperature phase, which is not the case for the present
model. Thus the present model is in a different universality
class than the REM. The physics that we find here is much
closer to the one of the directed polymer on the Cayley tree:
it remains to be seen whether this can be extended to other
observables.

The RG method also yields the distribution of t®¢1)
fluctuating partéF of the free energy, and in particular at
T=0 it gives a result for the extremal statistics of the corre-
lated variables. We must now carefully distinguish between
what is clearly universaland thus for which we can be con-
fident that the RG approach gives the exact resuit what
may not be(as it depends on the details of the cutoff proce-
dure, yielding, e.g., a different KPP nonlinearfyG]).

Let us start withT=0. We find[cf. Egs.(44) and(450)]
that the minimunV,y,;,, of LY logarithmically correlated vari-
ables behaves as

3
Vinin=—2\odInL+ E\/gln(ln L)+ov  (46)

andséV is a fluctuating part of orded(1). Since afT=0 one
hasp(v)=g’(v), from the resul(40) we get that the tail of
the distribution ofu= 8V —(8V) for u— —< is universal
and behaves as
p(u)~—uele (47)

with B.=+/d/o. Thus we find a distributiomlifferent from
the Gumbell distributionand thus correlations do matter.

The question of what is universal in this distribution is
nontrivial. We find from our method that the full distribution
of P(u) depends on the detailed form of the frqand thus
on F[G] anda priori on the cutoff procedujeand is thus
less likely to be universghlthough this remains to be inves-
tigated. Hence we believe that universal features inclatle
leastthe tail of the distribution47).
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The above resulf47) carries through the tail of the dis- traveling-wave analysis. This allows us to make some con-
tribution of the free energy=F—(F) for u—— for T  nections with the correlated case studied previously. ILet
<T. and it was shown i8] that for T>T. one has =InL and InN=Id.

) We want to write a RG equation for
p(u)~e"%elf, p<p.. (48) ey, y
G)=(e"" Dpwm)® (53
D. More on fronts, REM via nonlinear RG, ) ] o ) )
and extremal statistics where the single site distributid®, (V) is now scaled witH.

i i . We introduce
To illustrate how the previous results fit in a broader con-

i i - = —eBx-V) _
text, let us show how the §|mpler properties of extremal sta Gi(x)=(e® >P|(V): exple U InG,(x)).  (54)
tistics of uncorrelated variables and of the random energy

model can be recovered within the same RG framework

. . . ) . Let h the single site distributiBy(V) which -
This provides, in passing, yet another solution of the REM. et us choose the single site distributiBy(V) which corre

sponds to the REM approximatidt0) of the model studied

1. Uncorrelated variables with fixed distribution: here[(1) and (6)], i.e., the Gaussian:

Gumbell via RG

1
Let us considerN=¢'=(L/a)? independent random PI(V)= ——e V!, (55
variablesv(r) r=1, . .. N with a fixed distributiorP(V) (d 4ol

here does not play any role as the true variablelibut we
keep it for the sake of comparispimThe generating function
of the distribution of the partition functionZ[V] aP (V)= 0d2P (V). (56)
=>,e AV of model (1) reads

It satisfies

One easily checks that it implies that
Gi(x)=(exp(—Z[V]e”))pw)
G ()= 0 diGy(x). (57)
:( f dVP(V)exp —ef-V)) | | (49 _ _
This leads to the equation f@3(x):
It satisfies the equation 1
8,G=00’G+dGIn G—a(l—e"d)a(axG)z. (58)

1 1
= InlIn==1. (50
d G Thus the RG equation of the REM, for largereads

Or, interestingly enough, it obeys a KPP-type equation

1
with no diffusion term: 8,G=002G+dGIn G—aa(axG)z (59
%(})IG: F[G], (52) and is almost a KPP equation, except that it has an additional

gradient(KPZ-type term. This term here plays an important
role and yields a different universality class from KPP. We
now search for the front solutions.

Let us rewrite the exact equatidb8) using the function
=—InG (remember that € G<1):

F[G]=GInG. (52)

The Gumbell distribution now emerges naturally from theh
front solutions of this equation. Writing3(x) ~g(«q;(x
+m;)) and assuming,(«;m;)—c yieldscg’ =g In g, whose gh=dh+oh"+ge '9h’2, (60)
solutions with the above boundary conditions ayéy)
=exp(— ") (y being a positive constantWe have as- For largel we can neglect the decaying nonlinear part, and
sumedd,a;—0. Since there is some freedom of choice forwe now look for a solution of the linear equation. The only
@ andm;, one can always set=y=1. The determination front solution of the formh(x)=h(x+m(l)) with gm(l)
of the rescaling factors, andm(l) is performed in Appen-  _, ¢ which satisfies the boundary conditioné—)=0 and
dix C. At T=0 one hasP(Vyin)=—G'(Vyin) and one re- h(+ )=+ is the exponential
covers the known results from probability theory for the con-

vergence to the Gumbell distribution detailed in Appendix B, hy(x) = e***+mm), (61)
but the generating functio®,(x) takes a Gumbell form also
at finite T. d
am(l)y=c=—+oca. (62
2. REM via RG “«

We now turn to an alternative derivation of the solution toBy using again theh,(x)~e®* boundary condition at
the Gaussian REM model using a RG approach and &— —x, we find =g and
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which ensures that Eq(66) has a proper limith,(y)

d
C(’B)_E+U’8 63 ~ Al 27Y= AeBY | which is again a Gumbell form for
G(x) but now is temperature-independent. This holds for

as in Eq.(39). This is correct in the high- phase and yields 8= .= Jd/o.
the correct REM value for the intensive free eneffyB) From this method of solving the REM we have recovered
=¢(B)/d+0O(1/InL) as in Eq.(11b (and also correctly the result off6], namely that for3= g, the free energy be-
yields the absence of nontrivial finite-size correctjoffus  haves as
for the REM in the hight phase we find

¢ B m(I)_ 1 1In(InL) o 1
G| (x)~exp —ePx+rmi))) (64) R B\ “"27dimL ) T ClinL):

(69)
thus again a Gumbell form, witky, =8 and m(l)=[(d/B) - o
+ap]l. In addition, we recover fol =0 the result for the minimum

To see the transition to a loW-phase for3=g.=\d/oc  Vmin In the REM approximation:
and the freezing of the velocity at=c* =2./d, one needs L
to carry a slightly more detailed analydidiscarding again VA InL+ _\/5 nL)+ sV 7
the decaying nonlinear parfThe general solution of the lin- min Vodin 2 Vd n(int) (70
ear part of Eq(60) is
with u= 8V — (V) distributed with a Gumbell distribution:

hy(x)= f dx’;e'd‘[(x"")z/“”']ho(x’), (65) Prol{u>x) =exp(—Ae’e), (72)
V4ol
whereA is a constant.
wherehy(x") can be interpreted as thg(x') at earlier time
|, such that the nonlinear terms can already be neglected and 3. Conclusion on RG fronts and extremal statistics

decay asho(x')~ e’ for x' — —c. Thus we have seen in two examples that extremal statis-
This formula nicely exhibits the REM transition. In the tics problems(and theirT>0 thermodynamic model coun-
high-T phase, using the asymptotic forip(x’')~e?* we  terpari can be studied using the nonlinear RG equation with
find that there is a saddle pointat=x+20pl. This gives traveling-wave solutions. In one exampl@ncorrelated
h(x) ~eP**+eB)D with ¢(B) given in Eq.(63). The front rescaled variables, i.e., the RENMhe RG equation is exact,
h(x) is centered ax* =—c(B)| and consistency requires While in the secondlogarithmically correlated variablgsve
that the corresponding saddle poiit moves to— so that ~ only know it presumably in the tails. The front position rep-
the asymptotic form ohy(x') can indeed be used. Hence we resents the typical value of the minimuviy,, as a function
have x'* ~[ 08— (d/B)]l. Thus the saddle point becomes of I=d™*InN while the shape of the front gives the distri-
inconsistent and the high-solution ceases to hold, fgg ~ bution of theVy,, (respectively of the free enerdy). This

== \d/o. suggests that a broader class of such models can be ap-
The solution in the lowF phase is easy to find. Setting Proached by these methods, and raises the question of uni-
x=—m(l)+y one finds for largéd versality. _ _ o
Studies of such nonlinear equatiofs5] usually distin-
hl(y)Ne|d,(1,4(,|)m(|)2,(1,2)|n(4m|)e(c*,zg)y guish between pushed fronts where the velocity relaxes ex-

ponentially inl (velocity selection by nonlinear termnand

. , pulled fronts(velocity selection by the marginal stability cri-
Xf dx'e™ (20 hy(x'), (66)  terion). The extremal statisticknd the glassy phaseorre-
spond to the pulled fronts. There one expects a very broad
universality as stressed [B3,54]: not only is the asymptotic
front universal, but also the velocity and its corrections. In a
nutshell, the argument for the universaln| corrections to
the front position comes from matching of the universal tail
of the frontg(y)~ (Ay+B)e’eY with y=x+m(l) with the
J dx’ e (€ 200X (x") (67)  fartail region, so far ahead of the front that one can linearize

the KPP equation and get

where we have denotedt =lim,_ ,.m(l)/l and neglected

the additional factoe*' /(47D in the integral. This is correct
provided the integral

is convergent, i.e.¢*<2Bc. The consistent choice far* 1-Gy(x)~efYy(y), o ¢|(Y)203§$|(Y)- (72)
andm(l) must be

The only matching solution ig;(y) =y/1¥2e Y47 Insert-

* _ .Y _} ing y=x+m(l)=x+c*I+CInl immediately yieldsC=3
c*=2\od, m(l)= \[d<2|d 2|n(47m|)) +O(1), for proper matching. As discussed [i64], this universality

(68) extends forpulled frontsin a very broad class of nonlinear
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(or coupled nonlinearequations and holds for steep enough 1. Spatial distribution of secondary minima
initial conditions(i.e., in the glass phase in our language Let us start with a simple argument: for a given realiza-

This argument fails in some cases, such as at the bifurcajon of disorder, we divide our system into two subsystems
tion between pushed and pulled frokésg., at the glass tran- of size9/2, and callV yin; andV i, the two corresponding
sition = B, or equivalently when the initial condition has minima in each subsystem.
slow decay~exp(BX)] (see, e.g., the analysis [52]). In- Within the REM approximation, we know from EL3)
terestingly, it clearly fails also for the nonlinear equationthat V1 — Vmina~ (Y1—Y2) Vo/d~0O(1), wherey; andy,
corresponding to the REM model, which is thus in a differenthave independent Gumbell distributions. Thus clearly in that
universality classthis may be related to the fact that fronts case there is a nontrivial structure: the secondary minimum
are unbounded hef&7]). Presumably what happens there is (defined as being constrained to lie within the other sub-
that the coefficientA vanishes, and the solution is exactly system is typically within AE=0O(1) in energy of the ab-
e, hence the; Inl [since the above matching function is solute minimum(and within this approximation the distribu-
now ¢(y)~|71/267y2/(4(rl)]. tion is also easily 9omput¢d _ . o

The RG analysis performed in this paper indicates that
adding correlations will not change this conclusion. Indeed,
one first coarse-grains up to scalg=In(L)—(1/d) In2. At
this scale, the system can be described by two local energies
(one for each halfof minimav, andv, distributed accord-
ing to P|o(v), to which should be added a ter&V which
Xorrelates the two halves and is Gaussian of variance
~(20/d)In 2. This, however, does not change the fact that
the differenceV pmini— Vminz~ O(1). Thus one still finds that
there exist secondary minima &i(1) in energy from the

g o . minimum, and a typical distande away from the absolute
and thus that only the tail of the distribution of the minimum minimum. As discussed in Sec. 11D, this property was also

of log-correlated variables is universal. confirmed by numerical simulations
Let us mention, however, that we were not able to rule out |; is natural. in view of the analogy with the directed
another scenario, the broad universality scenario, such th@blymer on the: Cayley tree, to introduce the “overlap” be-

ables is indeed universal. If this were true, the followingy, a5

conjecture would be tempting: since we know thatdacor-

related variables the KPP RG equation is exact WithG] In(a+|ry—rp))
=GInG and 0=0 (and is asymptotically exact even for a(ry.rz)=1- InL
weakly correlated ones—see Appendix Bne could conjec-

ture an interpolating KPP equatidB4) with F[G]=GInG  We expect it to be non-self-averaging and characterized by
and o>0, which would give exactly the distribution of the the “overlap distribution:”

minimum of log-correlated variables. Unfortunately we have
been upable .to confirrtbut also to strictly rulg _om)tn.umeri- P,(q)= 2 P(r)p(ra) 8(g—a(ry,ro)). (74)
cally this conjecture, due to the very large finite-size correc- 2

tions, as discussed in Sec. IV.

Next is the question of universality. We will address it
only for our model of Gaussian variables with logarithmic
correlations. We have recast the RG equati@g) into a
KPP equation with a specific nonlinear teFhG]. From our
RG we have obtaine&f[ G]=—G(1—G). The structure of
the RG derivation suggests that we have obtained correctl
the two lowest orders of[ G]. From the above discussion
this is enough for the universality. Thus, and we call it the
restricted universality scenario, it is likely that higher-order
terms F[G]=—-G(1-G)+0((1-G)®) are nonuniversal

(73

Although we have not attempted to compute this function
directly using our RG, it is natural to expect that, as in the

E. Structure of low-temperature phase and replica REM and the DPCT, it is nontrivial fof <T. and reads

symmetry breaking

T T
Let us now return to the structure of the low-temperature Pa(q)=F-d(a)+{ 1~ T_) 5(1-q). (75
phase for the particle in thé-dimensional random potential ¢ ¢
with logarithmic correlations. We argue th@t it has a non-  Similarly one expects that in a given disorder environment,
trivial structure, with a few states, arid) this structure is the probability of finding an overlapg between two thermal
reminiscent of the so-called “replica symmetry breaking” realizations becomes in the largelimit
[5]. This nontrivial structure can be characterized more pre- _
cisely here as the various states of the model correspond to Y(q)dg=(1-Y)dé(q)+Ysé(q—1) (76)
the different positions of the particle, and have thus a natural
meaning in real space. In particular, the minima of the “en-with Y=1—T/T, andY has the same distribution as in the
ergy landscape’(or metastable statesre nothing but the REM. Thus the natural expectation, from the DPCT analogy,
local minima in the sample of the random potential for ouris that the overlap in the low- phase will be either 1 or O
problem. A precise characterization of these “local minima” [i.e., secondary minima—of energy difference of order
is given below. Also, approximate replica solutions of our T—will be either near the absolute onerlp/InL—0, or a
model are shown in the following to exhibit RSB at Iow  distancer ;,~O(L) typically a fraction of the system size
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away]. It would, however, be of interest to investigate further a4 F ' ' ' ' E
these properties in the present model, in particular to obtain
more detailed information at intermediate scales, e.g., corre- — ;4 ¢ 920 E
lations probing the whole range fdp~(InL)® with § o7
O<as<l. S e
— 34 /
_ ) _ ) | . o slope 3/2
2. Approximate replica symmetry breaking solutions . -
of the model Zg 29} e 7 :
Let us now turn to the replica representation and discuss ~ 2i '
how the present model exhibits a form of “replica symmetry 24 ¢ " slope 1 ]
breaking.” The replicated partition sum reads /
19 ¢ E
Zm_ ﬁ. . %e—zaﬁzziq Inlr; —rjl/agm®ep? In(L/a)
a“ a‘ 40 15 0 25 30
(77 in(ln N)

It turns out that various approximations of this partition func-  FiG. 10. Zero-temperature limit: finite-size corrections to the
tion (specifically the REM and the DPCT approximatipns minimal energy. Plotted is|2- |V versus Id(I=In N).
are dominated, in the limiim—0, by replica symmetry
breaking configurations. sponding one for the REM approximation of the model, i.e.,
In the context of 2 Dirac fermions with random vector replacing in Eq. (78) X jInri—rj|/a by Z;.(1
potential(see Sec. V)| an estimate of E¢(77) was given in ~ — &, ,rj)ln(L/a). In the REM we know from Refl6] that the
[26]. For smallg it is clear that the exponential containing correct solution fof <T, can be obtained by performing the
the logarithmic attraction between replicas does not decagnalytical continuation ton—0 on a RSB saddle poirihote
fast enough and thus the integral is dominated by the conthat the REM finite-size correctiohInInL is also obtained
figurations where the replicas are @l(L) far apart, thus from the saddle integration
One can go one step further and use an argument based on
universality, which puts the present problem in the DPCT
universality class(for some observables such as the free-
(78) energy distribution For the DPCT, it was shown in Ref.
] ) o ) o [10] that one can also recover the correct result for the aver-
This estimate of Ref.26] is in fact incorrect as it misses ,ged free energy by considering directed polymer configura-
the glass transition. Indeed, one can redo this argument Usifg s which break replica symmetry as— 0. It remains to
configurations wheren/p packets op replicas aréO(L) far e gemonstrated how to obtain other universal quantities,
apart[while in each packet the replicgtndependent par- e.g., the2 InInL finite-size corrections, via a RSB saddle-
ticles) are close to each othefThis estimate was performed point calculation.
in Ref. [59] and gives instead It is interesting to see how the features associated to RSB
arise from the RG developed here, despite the fact that it is
E (79) explicitly replica symmetricQuite generally, if one can find
a independent local free-energy variables with an exponential
) ) ) ) ) distributionP(f) ~e”<’, one naturally obtains a RSB picture.
The interaction term is proportional to the number of pairs oftis is the case here, up to some more detailed universal
replicas in different packets, which m(m—p)/2. In the  ,eexnonential structure iR(f). The important feature of
limit m—0, one can then optimize overQu=p<1,i.€., o RG s thus that it follows the full distributioR,(z) of
local disorder(i.e., of local Boltzmann weightg) which
. (80) becomes algebraically broadlas + . Here this property is
sufficient to show that the low-phase has a structure remi-
niscent of RSB. Indeed, let us again coarse-grain the system
For B< .= \d/o the saddle is fop=1 and one recovers yp to an already large scalg,=ae® but still much smaller
the above expression. F@>pg.=d/o one finds that the thanlL, the ratioL/L,=€'t=M being large but fixed as L
saddle is foru=B./8=T/T., which gives — +o0, assuming thak  is so large thaP) (2) has reached

its fixed point alreadyexcept in a remote tail region corre-
sponding to very rare eventsSince one has the decomposi-

Thus this calculation yields a transition. In RE59] it was ~ 1ON (17), the RG tells us that the sam>ple is divided Nh
claimed that it does not correspond to replica symmetrysUPsystems with free energi€g=v; +Vi", i=1,... M

breaking. We believe that this is incorrect and that taia  Where the variableszi_;  y=e #"i are independently
(one-step RSB estimate of the above partition sum. This isdrawn from the common distributioR, (z) and theV;” are
clear since this calculation exactly amounts to the correstill correlated but Gaussian. Neglecting first ¥, we are

B2om?+dm- g2em(m—1) md(1+ (o/d) 52

L

a

L

a

zm~

o B2om2+d(mip) — B2om(m—p)
ZM~

_ L 1 o >
ZM™~exp dIin— max —+aﬂ u

Oo<u<1

Zm__ ad In(L/2)2(81Bc) (81)
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1000 ‘ ' ' v ' ' field). However, even ind=1 numerical simulations are
delicate because the finite-size corrections are very large

“s (and interesting to study, in order to distinguish various uni-

o& 100 1 versality classes Indeed we have found that the main nu-
| merical uncertainties come from the finite-size effects and
o not from the number of averages. In most of the numerical
g 10 E work, averaging over- 10 realizations of disorder was suf-

€3 A Ix! exp(x) . . . . o1

= 10 ficient, while a simulation of a system of sizé'22x1(°

IS

leads to important corrections to the thermodynamic behav-
ior of the model. In view of this, we believe that the previous
numerical investigatiofil1l] was at best approximate.

We have considered a lattice modeldr1 with L=2"
-9 -7 -5 E3 _1E0 1 3 5 sites. The potentiaM(r) on each site (=1,... L) was

min min computed from its Fourier component4(r)=w, ,(—1)"

+3L2 tw, cos(2rkr/L— ¢y, eliminating thek=0 mode,
with  wy, independent Gaussian variablesvwy,

left with a system oM subsystems of Gibbs measure: =A(K) Sk (k,k'=1,... L/2) and eachpy independently
distributed uniformly in[0,27]. We choose\ (k) such that

FIG. 11. Distribution ofE .

Z

2 : (82 I'(r—=r")=V(r)V(r’")

Z.

T 27k
L1 cog —(r—r’)

Since thez; are drawn from a distribution with algebraic tails _ U_Tr s L

P(2)~1/2**# with u=T/T,, one hagz)=+= for T<T, L &=

1
and, as is well known, the partition su@®2) is dominated by sin( W_k) \ [6— 2005( 2_7Tk)
a few of the z variables[9,58] (which in essence is the L L
physics associated to R&BSince the correlate®~ vari- (83)
ables are in finite number and with Gaussian tails, they can-
not change the exponential tails of the and thus_ adding ¢ that Wz&rln(r—r’) for 1<r—r'<L/2.
them back should not change the above conclusions.  This is the choice which also corresponds to correlations
Thus here, although the RG is replica symmetric, since 'Ellong the axiy=0 on a 2 square lattice.
allows for generation of broad tails, it can capture features The pehavior of the model has been studied, without loss
usually associated with RSB. of generality, at zero and at finite temperature for a disorder
strengtho=1 (other values o> can be incorporated in the
IV. NUMERICAL STUDY definition of the temperature scal&Ve have first computed

Since we found via the RG and other arguments that therg1e average minimummin="Ymin/INN (with N=L) for sys-

; ; _ o7 _ _ 21 _
should be a transition in any dimensidiz 1, it is particu- emh5|zi§s ;\?n%m\? f:orkh;ch—l\/ZSr tOL_vzérreall?; ?imr:i forf
larly convenient to perform numerical simulations in the each size we have taken the average o ations o

“extreme case” ofd=1 (i.e., the farther away from mean disorder. An estimate of the uncertainty on the disorder av-
erage was made by measuring the variance of a series of
average over 0realizations. This variance was found to be

0.5
E of the order of 10° for all the value ofV,,,,. The results are
N plotted in Fig. 10. We recall that the RG prediction reads for
., 04 o=1
Q
o
(]
£ o3 L V=2 InN= Sin(inN) +0(1 84
&cé InN| min|_ n Zn(n ) ( ) ( )
2.
— 02 . . .
~ We should first note that if one does not assiangthing
5 about the finite-size corrections, the resulting uncertainty on
0.1 the ratio e,in=Vmin/INN is very large even for sizet
=221 since the ratic In(In N)/InN~0.3. Hence with no as-

sumption it is hard to estimag,,;, to better than 10% accu-
racy.
However, if one assumes thef,,= — 2, the plot in Fig.
FIG. 12. Plot of Y,==,p? as a function of temperature for 10 shows the existence of the In{li) corrections with a
different system sizek=2N. slope definitely larger than 1 and consistent wttalthough
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the accuracy is not excellentlt is, however, sufficient to
rule out a REM-type behavior and is consistent with the RG GshB(X):HShB[M]:J DVe SselV], (87
prediction(84).
Next, we have plotted the distribution ¥f;, in Fig. 11 +o0 L 1
and compared with the prediction of the RG for the tails. SehelV]= JO dyJO dx(m(VV)2

Here also the agreement is satisfactory.
Finally, we have plotted the “glass order parametet,
=3,p? which is nonzero when the system is dominated by a +2u COSf(ﬁV(X,O))) : (88)
few states(see Fig. 12 It is consistent with a very slow
convergence toward¥,=(1—T/T.)6(T.—T) but clearly |ndeed one has, as required, thgY(x,0)—V(x’,0)]?

other forms cannot be ruled out. ~4cInjx—x|/a at large [x—x’|, and one only studies
(boundary observables defined gt=0.
V. RELATIONS WITH LIOUVILLE AND SINH-GORDON In the limit of 8=+ one has in both cases
MODELS GefX) = Probx<min(V, ,—V,)), (89)

In this section we describe the relation between the prob-
lem of the particle in the log-correlated random potential and =Prol{x<—max|V,|), (90

the Liouville and sinh-Gordon models. Exact results on the . . . .

sinh-Gordon model are compatible witand also point out and thus theproperly discretizedpartition function of the

towards the existence of the transition gt= 3 (boundary sinh-Gordon model becomes related, in that
.-

limit, to the distribution function of the maximum of the set
_ _ _ _ of positive random variabldd/(r)|. The results described in
A. Relations with the sinh-Gordon model ind=2 and d=1 the preceding sections about the statistics of extrema of such

Let us start with the correspondence with the sinh-Gordoryariables imply that some transition must occur as a function
model. Although less direct, it is also simpler to analyze, aff B corresponding to a related “change of behavior” in the
the model does not contain subtle boundary condition probSinh-Gordon and boundary sinh-Gordon models as well. This
lems. The interesting thing about the connection is that théS @ prediction, as we are not aware of such a change of
sinh-Gordon model is integrable =2 andd=1 (bound- behavior atg= 3. being mentioned in the literature. As we
ary sinh-Gordon[60—62. now discuss, examination of known results is perfectly com-

The connection requires introducing a slightly different patible with the transition g8= g .
version of the initial problem, defined by the partition func-  Let us first describe the known exact results bothdin

tion, =2 andd=1. The extensive free energy of the bulk sinh-
Gordon model is defined as
Zsr{v:l=Z|:V:|‘|'Z|:_V:|=2r (e*BV(r)-i-eﬁV(r))’ (85) fsh: lim _L—Zln Gsh! (91)
L—+o

which corresponds to a particle in a random potential whichwhere the model defined in E¢B7) is considered in finite

can explore bothv(r) and —V(r). A physical realization size L. The model is studied usually using the fielf

would be a particle with an Ising spin in a random field. As=V\2/c, the nonlinear term being 2coshBY)

it turns out, the physics of this disordered model is very=2u coshp¢) and its free energy depends on the single vari-

similar to the original problem. At low temperature, it is now able b= 8+/a/2= /8., where B.=+d/c is dimension-

related to the distribution of the minimum ef|V(r)|. dependent. Using the variablg its exact expression, pro-
We define the generating function of this mod&l,(x) posed in Ref[60], reads when explicitefb3],

=(exp(—uZy{ V1)), with w=e?*, which is related to the

distribution of the free energy of the particle. In the con- fs,{M)zcz(b)M(lmbz), (923

tinuum limit and ind=2, it can be rewritten as

21
Cy(b)=
Gar(X) =Hal 1] = f Dve i, ® )Z(F 1 2 )Zsin bz”)
2+2b? 2+2b? 1+b?
b [t 1 27\ 1(1+b?)
Ssr[V]:ﬁx Lc dx dy(%(vvﬁz# cosf(,BV(r))), X(% (92

i.e., the partition function of the sinh-Gordon modeldn These results ara priori only valid for b<1 (Jb|]<1), as
=2. Similarly, thed=1 version of our model is related to they were obtained if60] from an analytical continuation of
the well-studied boundary sinh-Gordon modiél] defined the sine-Gordon model(performing u——x and b?
as — —b?, M being the soliton magsThe constani was de-
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fined in the continuum model by fixing the normalization of  The physics of the problem of the particle in the random
the field<cos(b¢(r))cosb¢r’))=%|x—y|*4b2 of the sine- potential leads us to conjecture that thd inh-Gordon
Gordon model. model (as well as the boundary sinh-Gordon modeill

The d=1 version corresponds to the boundary sinh-exhibit a change of behavior; the algebraidlependance of
Gordon model usually studied usingg=V/\o and itS free energy will freeze foB= ., which cor_responds to
2 cosh@V)=2ucoshpg), with again b=p/B. (8. the low-temperature glassy phase of the particle model. We
=1/Jo). The analogous expression for the free energyus expect
reads, from61],

fon(m)~n®, (963
fana(u)= lim —L 711N Ggyg=Cy(b) ), (93)
L—+ow
" 4= ————, p<p=\do, (96b)
1(1+b2 1+(BIBe)
SR E i M 2 )( )
B x| 24 002] [ 24202|| T[-b?]

1

a=s, B> B.=dlo, (960

Let us now comment on these results. The power-law
dependence im of the2 free energy is just the naive dimen- and presumably log correction@t least atB=pg., and
sional result~x**" in both cases. This result should maybe for all3>g,). o o
hold for 8< 8.. However, there is clearly, in both=2 and This is confirmed by a renormalization-group analysis di-
d=1 cases, a singularity 88— 3, as the amplitudeC(b) rectly on the sinh-Gordon and Liouville models discussed
diverges a9 = 8/8.—1". This is thus in perfect agreement Pelow.
with the existence of a phase transition in the particle model.
In the sinh-Gordon model itself, we do not expect strictly B. Relation with the Liouville model in d=2
speaking a phase transition, as the model is massive both
Pelow and abov_ebfl, _however we do expect some in the random potential and the Liouville model proceeds via
change of behavior,” which may be related to a change of : :

o . 2~ “'the generating function,

nature of the excitations around the ground state. This is not

The relation between our original mod@) of the particle

ruled out by exact resul{$4] as it clearly comes here from G(x)=(exp(—e®Z[V]))y

the physical mass acquiring a nontrivial dependence in the

bare mass parametgr (contrary to the sine-Gordon model, =<ex;{ _2 eﬁ(x_v(,)))> 97)
for the sinh-Gordon model there is no presently known exact : V’

solution of a lattice version

Let us now interpret these results for our model. Theyyhich encodes the full probability distribution of the free
mean that the generag)l(ng functi@y(x) of the free-energy  energy of the particle. In the case of the2 potential with
distribution, with .= e, takes indeed the form of a travel- |ogarithmic correlations it is identical to the partition func-

ing wave: tion of a Liouville model, which one can write either on the
original lattice or in the continuurfwith uv and ir cutoffsa
Gsh~exp( - chd( BE) M2/[1+(B/ﬁc)]2) =g(x+cl+7y) andL) as (u=e):
C
(94)

G(x)=H[M]=f DVe SVl
with | =InL and a velocity

. (99

1
C=%+0',8. (95) S[V]If dzf(%[VV(f)]erMeﬁv(r)

This is exactly the velocity given by the KPP equation for Where the functional integral is normalized such thi{u
the particle model, in the high-temperature phase. It alsg=0]=1 (equivalently one redefine$i[u]—H[u]/H[
yields a front g(y)=exp(-e®) with a=BI/[1+(B!B.)?] =0]). We cgll it .the !_IOUVI||e mode(!_M) since it is impor-
and y=pBI[1+(B/B8.)?]InC4B/B). This form, however, tant to distinguish it from thecontinuum Liouville field

should be taken with caution as strictly speaking formulatheory (LFT) whose(formal) definition is recalled below. A
(94) is valid only in the limit whereL goes to infinity firstat ~ 'elation also exists between the correlation functions of the

fixed u=eP). It should be compared with the asymptotic Gibbs measure and some correlation functions in the Liou-

behavior of the front in the region of large positiyeWe  Ville model:

expect universality in the other region of the frqof very

negativey, i.e., x<<cl) and exact knowledge about this re- (p(ry)- - p(r )>:j pn~lem BV(r)+ V()= SIVI
gion would be equivalent to exact knowledge of the sinh- " u>0

Gordon model at finite size, which is not yet available. (99
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Strictly speaking, the mode€P8) above is not well defined Note that while the continuum LFT has a formal duality
because of the zero modé(r)—V(r)+w and must be —1/b,, the discrete LM naturally selects, &s>+x, the
complemented with boundary conditions. In the particlebranchb, =b<1. This phenomenon is analogous to the se-
problem studied here, we have chosen periodic boundargction of one branch of the curve inversec(@) in the KPP
conditions with the additional constraidt,V(r)=0 to pin  equation, wher®(b,) plays the role of the spatial decay rate
the zero mode. of solutions anct the scaling dimension.

On the other hand, many results are known for tres The regimeb, =b=<1 is the one where the continuum
lated continuum Liouville field LFT, of great interest in LFT is well defined: there the role of th@ term in Eq.(100
quantum gravity{65—68. It is usually defined on an arbi- is to shift the conformal dimension of the fielé£*¢ to
trary genush manifold with background metrig and asso- A(a)=a(Q— «) [while the naive power counting dimen-
ciated curvaturdR by the action70] sions in the LM areA («) = — «?, see abovewhich renders

the Liouville term fe?®® exactly marginal(and thus the
1 Q theory critica). It was argued iff12] that the LFT gives the
S,_FTzf dzx(—(aa¢)z+,ue2bt¢+ —~ R\Jgé¢ correlations of the Gibbs measure, the operatr) [Eq.
4 4 (2)] corresponding to the Liouville field®®?, and is thus of
(100 conformal dimensiom\(b)=1 [i.e., p(r)~L 2]. A hint in
favor of this conjecture was that the corresponding LFT con-
in conventional notations. Th&ormal) correspondence to formal dimensions of the composite fielgér)9~e?9*¢ are
the LM notations above is viap=—V/\2¢ and b =b simply A(q)=q(1+b2—Db?q), which correctly reproduces
=B/ B, (only for b<1, see below The (standargl choice is  the multifractal spectrum:
Q=b_+1/b,, for which the theory is critical and has local
conformal invariance(with a central chargec, =1+6Q? f d?r p(r)d~L20-2@) (102
=25+c) [70]. It can also be formulated as the theory of

(liquid) random surfacef68,71], e.g., as random triangula- . ) ) )
tions. There one defines the total afea [, 20L#() which ~ 9iven in [11] and Sec. VI(in the weak disorder regimg

is merely the partition functioA=2Z[V] of the particle <(c). This is not a very strong test sinpg the same multifrac-
problem, and studies the distributicf(A) ~ e~ #cAA sting~3 tal spectrum can also be obtained within the LM model by

which is merelyP(Z). considering the dimension of the normalized Gibbs measure

The particle model allows us to make precise statementg@ther than the unnormalized ore ). Indeed the effect
on the Liouville model defined above. The LFT allows for Of the Q term is to shift
exact calculationge.g., of correlation functionsand in prin- e2bad_, | 204Qg2bas _ 7[\/]~dg20ae (103
ciple one could hope to translate those in the particule model '
(Gibbs measure correlationsThe relation between the two, Tq convincingly establish the conjecture[d®], the effect of
however, is rather subtle. For instance, the boundary condie additionalQ term should be checked on the many-point
tions chosen in the particle problem would correspond tQ:orrelations[70], where it is rather more subtle, and further
Liouville on a torush=0, except that the additional pinning inyestigation is needed. In particular, the RG described here
condition spoils it. We will thus not explore here all these suggests by extension that the Gibbs measure correldtions
intricacies but give a few general remarks, mostly about theyt |east some limits of themshould also be computable
behavior of the Liouville model under coarse graining.  within the DPCT model. This suggests a direct relation be-
First we know thatG,(x) satisfies a RG equation of the tween LFT and DPCT, a check of which would be of great
KPP type. Thus upon coarse grainifige., as a function of jnterest. Note also that a critical model, which mimics the
| =In(L/a), see Sec. lllthe Liouville model partition func-  effect of theQ term (as adding an average value ¢o[70]),
tion satisfies a KPP nonlinear RG equation. The corresponds studied in Appendix D.
ing front velocity gives the scaling of the partition function jj) Strong coupling Liouville b= 8/8.>1. This corre-
with w. The glass transition, with freezing of the front ve- sponds to the glass phase for the particle which, interest-
locity, corresponds exactly in the Liouville model to the tran-ingly, has a nontrivial structure. As is well known, there are
sition between two regimeshe so-callecc=1 barrier inthe  serious difficulties in defining the continuum LFT in that
LFT). S regime. The Liouville parametds; is undefined and cannot
(i) Weak coupling Liouvilleb, =b=g/B.<1.In thatre-  equalb anymore[69]. Using what we know from the particle
gime there is no problem to define a continuum limit. Theproblem, we can gain some idea of what happens in the
KPP mnonlinear RG front solution of velocityc(8)  Ljouville theory. First let us note that sin€&(x) is such that
=2[(1B)+ (B/BZ)]=c(b) yields G,(u)~uY***) and in  for =+ and fixedL it is equal to the distribution function
the Liouville model the scaling dimensions are the one ob-of the minimum of the set o¥/(r),

tained by naive dimensional counting, e.g.,
G(x)=Prokx<min,V(r)). (104

qu d2r AV ;g Z[V]~ML3°(/3):ML2(”’)2). The (infinitely strong coupling Liouville model can be re-

cast asan extremal statisticproblem in that limit. The par-
(10D  tition sumZ[V] of the particle model being dominated, for
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b>1, by a few regions of space whek{r)~V,, [with UlV]
little dependence i, i.e., the Liouville wall becomes a hard
wall for all 8< 8. with thickness of orde©(1)], we expect
this spatial heterogeneity to show up in LM as well. From
what we have learned in the previous sections, we know the
upon coarse-graining the followirgffective Liouville model
action S.¢ is generated:

Gi(X)=H[u]= f DV(e V), ), 1oy 1

== V
0

S V1- [ dzf(%[V?(r)]%z(r)e‘ﬁv“)), 0

(106) X

. field is d icall énd h h FIG. 13. Liouville wall moving under RG as a traveling wave.
I.€.,anewfe .tr) Is dynamically generate n_ "’,IS S, ort- Represented i4J[V] on the negativeV side, of original form
range correlationbut has a broad power-law distribution, U[V]=e AV~ and also(dashed ling G(x) = exp(~U[V]). Both

move under RG forming a traveling front, whose velocity deter-
mines the “free-energy” exponent. For sinh-Gordon a second,

o~ . . . . mirror-image wall is also moving symmetrically towards 0. Freez-
while V=V~ is the smooth field introduced in E(L7). FOr  ing in the front velocity occurs at and below the transition at
b<1, this dynamically generated local field can be averageg-g_.

out without changing significantly the actignote that even
for b<1 it changes properties of operatoes %V for q
>q.), While for b>1 it changes crucially the physics. One
can define the effective Liouville potentidd[V] for the

smooth fieldV after averaging over thefield as

P(z)dz~z 1M, (107)

Thus we have seen that the Coulomb gas RG can be used
to understand the behavior of the Liouville model. A sce-
nario is obtained where fdr=1 new short scale degrees of
freedom are generate@hort scale instabilily Averaging

~ Py ~ over these changes the effective Liouville potential. The par-
Ui[V]=—In(exp(—ze 7))p = ~ING|(x=—V), allel with the particle model suggests that the short scale

(108 instability in Liouville may be related to the generation of
strong inhomogeneities in the Gibbs measp(e), analo-
gous to structures discussed in the context of replica symme-
try breaking. Thus, if the mapping onto the LFT is con-
firmed, it suggests to also investigate RSB-type effects in
strong-coupling LFT.

the bare Liouville potential being[V]=w exp(—BV). We
can now use the front solution of the KPP equatipe., the
scaling region in the largk/a limit) described in the previ-
ous sections. Fdn<1, since(z)p, <+, we have that for
largeV

2
U [V]=cue?@ ) exp — BV) (109 C. Direct renormalization-group analysis of sinh-Gordon and

_ S Liouville models and traveling waves
and thus the coarse-grained potential is similar to the bare

one. However, fob>1 one has for largs/ Let us now illustrate how one can see explicitly the freez-

ing of the free-energy exponent in the strong-coupling phase

U [V]=cue®V exp — BV) (110  from renormalization-group approacheisectly on the sinh-
Gordon and Liouville models. Such functional RG methods
because of the broad distribution of thdield. have been applied to study the analogous profj&hhof the

Since thez(r) are highly heterogeneous on short scales, itvetting of an interface of height. Related exact RG meth-
is not surprising that a continuum limit is hard to obtain for 0ds, with various truncation schemes, have also been applied
b>1. These heterogeneities are linked to the structure of thto the Liouville model, and in the context of quantum gravity
glass phase reminiscent of replica symmetry breaking. It i$0 the LFT[72]. In all cases we will illustrate how the main
tempting to conjecture that it may also be related to thePhysics lies in the selection mechanism for the traveling-
branched polymer structure which appears in LFTHorl,  Wave solutions of the nonlinear RG equation.

i.e., beyond the=1 barrier[68], or to the spike instability The study proceeds as follows. We consider
[71] of fluid membranes.

Furthermore, let us notice that the LFT theorybat 1 is G(x)=H[,u=eﬁX]=f DVe SV
known to have two marginal operators whose dimensions

are degenerate?®? and ¢e?°?. This is in exact parallel with

1
the behavior of the KPP front solution, which develops at with S[V]:f dzr(S—[VV(r)]ZJr Urvi|.
b=1 two degenerate linear eigenmodes exg{) and g
Vexp(—pBV). (111
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One can perform a Wilson RG analys$a, if one prefers, a 2
suitably truncated exact RG analysisind one finds ird c= E+G'B’ (118
=2 the flow for the local part),[V] as

which, plotted as a function oB, is the famous parabola,
such that two values @8 correspond to the sante which is
also a well-known property of Liouville theory.

As we now show, Eq(115) is incorrectfor 8= .. This
is so for a subtle reason, as apparently the statement that
exp(—pBV) is an exact eigenvector of the linear Rénd of
Eq. (114)] cannot fail. However, by now we are well used to
fronts: in fact we have encountered exactly the same equa-
tion in our previous solution of the REM model via RG
[hi(x) in Eqg. (65) is identical toU;(V) in Eg. (114]. To

aU=2U+cU"+0(U?). (112

There may also be corrections #oto O(U?) (in the sinh-
Gordon model but we focus for now on the RG to linear
order. Let us recall that the initial condition i9,_o[V]
=ue AV for Liouville and U,_o[V]=ue #V+ uefY for
sinh-Gordon, and that we are interested in the smdimit.
In this limit the initial condition corresponds to a very wide
well U[V] (e.g., in the sinh-Gordon modeWith a very
Z?;i%ur\éi?rs?lrjnp[l?/]i;[e-lr—gtgsbiﬁlen érglj;es,_[eonﬁi%/(i))(glem describe correctly the bare Liouvilléor equivalently the

* g . e 2 sinh-Gordon model, one should generalize the initial condi-
sca}lel =In(L*/ag) (more preciselyJ, [O]jl/(aao), where tion U,_o[V], still assuming thatU,_o[V]~exp(— B(V
ag is the_: bare uv cutoff of th_e modelAt this scalg, the free —x)) for V>x (x here is very negative corresponding to a
energy isO(1), as can bestimated from Gaussian fluctua- ga1,,). Then one can use the saddle-point method to esti-

tiong (s_traightforwardly at least in the SG mogieind thus mate Eq(114) as was done in Ed65) to evaluateh,(x) and
the initial free energy is one discovers that foB> 8, the velocity freezes into

2
F~Aq(B) Li) . (113 c=2\20 (119

which yields a free energy
Remarkably, it is now possible to use what we learned in
the previous sections and demonstrate the “freezing” tran- F~L2u'? (120
sition atB= 3. (corresponding to the glass transition for the

particle simply from the RG to this order. Indeed the solu- instead of the naive dimensional estimate, thus in agreement
tion of the truncated equation is with our expectation for the SG mod@60). In addition, we

find that the decay of the renormalized potentif V]
. 1 (V=V")? (~e‘)“V is frozen ata= B, for all 8> B, consistent with Eq.
UlV]=e —f dV’exp(——)U|_o[V]. 110.
Vamal 4ol What has happened is that althoughl,_o[V]
(114 =exp(— B(V—x)) is indeed formally an exact eigenvector,
it is dynamically unstablei.e., if one chooses another func-
ttion with the same large positivé—x behavior, one gets a
different velocity (which is not the case foB<pg.). It is
easy to see that the choitd_[V]=exp(—B(V—X)) ex-
actly for all V does not make sense fgr— — . Indeed it is
immediately spoiled by the slightest amount of coarse grain-
ing (as would appear also by considering the nonlinearities in
the RG equation The simplest way to see it is to notice that
the coarse-grained potential

U2
J dv exr{[—,u,e‘ﬁ(v”)]— 2_3)

does not grow as-exp(— BV) for large negative/ but much
slower as~V?2. To illustrate the point further, let us consider
the initial condition,

A straightforward conclusion would then be that the exac
solution corresponding to Liouville is

UI[V] = pe(* oFIle AV (115
and similarly for the sinh-Gordon
U [V]=2ue@t o)l (e AV 4 ghV) (116
since exp{-BV) are exact eigenvectors of the linear RG

equation for any3. From Eq.(113) this immediately yields U[V]=—In
the “naive dimensional” result for the free energy,

(121)

F~ L2 ML+ (81507 (117

with B.=2/o. As we know from the above exact result,

this is correct for3<B.. Note how the potential[V] o BV-X)
evolves. Using the notatiop.=e”* (natural from our ex- U_oV]m ———. (122
tremal statistics interpretatioit forms a “Liouville wall,” 1+e AV

which can be seen as a “front solution” moving as

exp(— B(V—x—cl)) towardsU=0 (and in the sinh-Gordon It behaves ae AV~ for large positiveV—x (and thus
model there are two symmetric walls moving towards corresponds to the Liouville modebut goes to 1 on the
=0 and reaching it at=1*) (see Fig. 1R The Liouville  other side. FoB= + it is easy to comput&)[V=0] from
front velocity is Eq. (114 sinceU,_o[V]= 6(x—V). One finds
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U/[V=0]~e? (40D (123 ¢ such thatA,=e,,d,4,B(r)=—d.¢(r). The Gaussian
distribution of ¢(r) is thus given by
and thus one has thét defined above is such that
P[¢]=ctex e~ (14m9)/(3,6()? 126
cl*=x, c=2\20. (124) [¢]=ctexe 8 (129

o . ) .. whereg parametrizes the strength of the random magnetic
This is in fact valid for all3> ., as was shown in detail in 14 B The correlator of the functios(r) is thus
the previous sections. '

Thus the freezing transition can be obtained from the lin- Ir—r’|
earized(i.e., lowest-orderRG equations, using only elemen- [p(r)—p(r')]?~2gIn
tary insight from coarse graining or the existence of higher-
order nonlinear terms. It provides an interesting example |, this model, the wave functions at eneryare local-

where the naive dimensions hold in some regime but arg;q for 4| energies other than the critical enefgy 0. We
modified in another. Of course, as we have seen in Sec. Il Dogirict our study to th&€=0 critical eigenstate, which sat-

from the study of fronts, to really establish the transition an sfy
determine the universality class, one needs to consider
higher-order nonlinearities in Eq112), which goes beyond HW,(r)=0. (129
the scope of this paper. For the LFT in quantum gravity, the

reader can find some exact functional RG studies in RefFor a system of finite size with appropriate boundary con-
[72]. Although not discussed in this reference, the nonlineaditions, there are two independentrmalizedsolutions of

RG there seems to also exhibit traveling front solutionsEq. (128): the first one can be writte¥( 1(r)= (¥ o(r),0)
whose physics may be important in understanding the probwith
lem of thec=1 barrier.

(127)

a

e72¢(r)

2_
VI. CRITICAL DIRAC FERMIONS IN A RANDOM Wo(r)*= (129

GAUGE FIELD Er: e 24(1)

In this section we relate our RG study of the preceding _ _
section to the study of the critical wave functions of 2D the second one beind o r)=(0,%o(r)), whereWy(r) is
Dirac fermions in a random magnetic field. We first confirm given by Eq.(129 changing¢(r)— — ¢(r). We denoteX,
the results of13] for the multifractal spectrum, and obtain having in mind either a discrete problem or a continuous
their finite-size corrections. Then we study the transitionproblem with some short scale cutetf
from the weak disorder to the strong disorder phase, related

tq the glass transition for the particle,_ a}nd find that the st.rong B. Participation ratios and multifractal spectrum
disorder phase has a new and nontrivial structure, leading to ) . ) ) )
what we callquasilocalizeceigenstates. Thus in a given configuration of disordei(r) the quan-

tum probability| W o(r)|? is identical to the Gibbs probability
p(r) defined in Eq(2) for the particle in the logarithmically

correlated random potenti®(r) with the correspondence
Let us first recall the problem of a massless two-

A. Critical wave function of 2D random Dirac

dimensional Dirac fermion in a static random magnetic field [Wo(r)[2=p(r), (130
[11,13,34. This model, and its non-Abelian generalizations,
has received a lot of attention in connection with the integer 2¢(r)=pBV(r), (131

quantum Hall effect transitions with disorder. As discussed _
in [26], two-dimensional Dirac fermions can experienceand thus the model depends on a single paramgter
three generic types of disorder: random gauge, random mass, 8°c. As we have discussed in the previous sections, the
and random potential. Random gauge disorder is believed tparticle in the logarithmically correlated random potential
be a line of fixed points in this general model and is still notundergoes a transition @.= \/2/o- at which its Gibbs mea-
yet fully understood. Here we address only the randonsure changes from being dominated by many sitegh-T
gauge disorder model of a Hamiltonian: phase to being dominated to a few sitéew-T phasé. Thus
in the quantum problem we expect a transition at
H=0,(ived,—A,()), (125

_ , 9=g.=1 (132
where theo, , are the 22 Pauli matrices angv=1,2 (we
set the Fermi velocitwr=1 from now on. The random with a weak disorder phase fgr<1 and a strong disorder
magnetic fieldB corresponding to the gauge potentfalis  phase forg>1. In the weak disorder phase the quantum
chosen to be Gaussian with mean va{e) =0. The type of  probability (and thus observables such as the mean-squared
correlations studied here correspond to the most interestingosition fluctuationgr?)—(r)?) is delocalized (- - - ) means
case where the gauge potential has short-range correlatiorsverages ove¥ ). In the strong disorder phase, the quantum
In the Coulomb gauge, we can introduce the scalar potentigdrobability is more concentrated, but it cannot be called lo-
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T(q) whereA is a sample-dependent variable of or@gl) with

a g-dependent distributioitwhose tails we have character-
ized previously. From there we obtais,(L), which have
different behaviors in the two phases.

! \(ngf}légﬁﬁamon (i) Weak disorder phaseFor g<1 we find, denotingy,
=1/\g,
L ‘ g sq(L)=2(q—1)(1—gg)inL+A,, for |q|<qc,
/ . 9e (1373
FIG. 14. Multifractal spectrum in the weak disorder phase. 2 1
sq(L)= 7[1—sgr(q)\/§]zln L+ IninL
calized in the usual sengef an exponential decay around a 9
single centerand in fact both phases have rather peculiar +Aqg for |gl=qc, (137hH

properties.
Properties of wave functions can be described by the in- 3
verse participation ratios defined from the normalized wave  Sq(L)=20[1—sgn(q)vg]?InL+ §|Q|\/§|n InL
function Wo(r) in a system of sizé& by
+Aqq for la|>qc, (1379

Rq(L):f d2r|‘1’o(f)|2q=f d?r(p(r))". (133 whereA,, 4 is a fluctuating part of orde®(1).
(ii) Strong disorder phaseForg>1 we find

At a very qualitative level, the nature of the eigenfunction

can be inferred from the scaling behavior of the inverse par- sq(L)=—2(qvg—1)%InL— gq@n InL
ticipation ratio with the system size: for an exponentially

localized stateR,(L) scales[73] as Ry(L)~const for allq +A for |q|<de, (1383
>0, while for a plane-wave delocalized state we BgfL ) 49

~L~2@" 1D |n addition to the localized and delocalized 1

states, there exist states such théq) = —InRy(L)/InL is a S(L)=—3IninL+Aqq for g=q., (138D
nonlinear function ofy: they correspond to multifractal wave

functions whose moments cannot be described by a single Se(L)=Aqq for g>qc, (1389

length as usual but rather by a spectrum of exponents. Here,
as in[13], we also find intermediate multifractal behavior. 3

To compute the finite-size inverse participation ratios, we Sq(L)=— 2|q] \/a( 4InL- > IninL
can use the information of the previous sections since

+Aq,g

Se(L)=—INRy(L)=—INZgzg+qinZ,, (134 forq<-gc, (1389

where we have defined,=Z(8=y2g/o), whereZ(p) is sq(L):—2(4 InL— %Inln L|+Aqg for g=-qc,
the partition function for the particle at inverse temperature (1388
B. In particular, we will be interested in the multifractal
asymptotic scaling exponen(q) defined by whereA, 4 is a fluctuating part of orde(1).
The corresponding scaling exponentg]) are thus iden-
(q) = lim Sq(L) (135 tical to the one found if13] and in addition we have ob-
Lo INL "~ tained their finite-size corrections as well as the order-of-

magnitude estimate of their fluctuations. In the weak disorder

These exponents were computed previousliB] using the ~ Phase fog=0,
REM approximation25]. Here we use our RG results and

also obtain finite-size corrections. Note that these correspond 2(q-1) 1- a for q=q.= \ﬁ
to properties of¥, defined above and could be changed if g ¢ g’
other boundary conditions were used. Q)= 5
From the previous sections we obtain 2q( 1— _) for gq=q.,
dc
InZg=2(1+g)inL+4A,, g<1, (1363 (139

. which means a parabolic form with a termination point at
InZg=\g[4InL-3In(nL)]+4y, g=1, (136D  q=q_ as represented in Fig. 14.

In the strong disorder phage>1, i.e., whenq.<1, the
InZy= \/6[4 InL—2In(In L)]+44, 9>1, (1369 above expression becomésr q>0)
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q\? 1 method allowed us to obtain the universal features of the

—2( 1- —) for g<q.= \ﬁ free-energy distribution at low temperature. The relation to

(a)= Ge g (140 the problem of extremal statistics of correlated variables was
0 for g=qc. investigated. It has been found that it exhibits universal

. . S . . finite-size corrections, consistent with our numerical calcula-
Since the inverse participation ratio does not scale with the.

system sizd for each integeq, one could naively conclude
that it is the sign of a localized statsee, however, below

As was discussed ifil3], these results can be translate
into the spectrum for exponent If one assumes thai(r) is
of orderL~® in a numberL(® sites, then the above spec-
trum is recovered if

Most interestingly, we found that this logarithmic model
d provides a particularly simple examplamaybe the simplest
of a finite-dimensional model, i.e., wittranslationally in-
variant disorder correlationssuch that the low-temperature
phase is nontrivial. It is nontrivial in the sense that in the
thermodynamic limitL— + <0, there are, with a finite prob-

(d.—a)(a—d_) ability, several low-lying state§.e., possible positions of the
f(a)=8 5 (141 particle with energy differences of order 1, and separated in
(dy—d.) space by distances of orderThus the Gibbs measure at low

temperature is dominated by “a few” spatially well-
separated states. Interestingly, this transition and this type of
glass phase occurs only for logarithmically growing correla-
((r—(r))Zy= LM+ Df () =) (142)  fions, faster growthe.g., as in Sinai modgielding only a
glass phase with single ground-state dominance, while
showing that the eigenstate is never localized in the usuailower growth yields only a high-temperature phase.
sense(exponential decay around a single ceht@nce the Although oversimplified in some respe@t has no inter-
exponent is always positive for large enoudgh Since nal spacg it does provide one example of a model where the
limg_, +..Sq(L)/@=IN Pmay min, ONe obtains that the maxi- usual droplet picturéwhich assumes dominance of a single
mum of the Gibbs measung,,,,=maxp(r) and the mini- ground state, or several related by a symmettges not

with d.=2(1=\/g)? for g>1 andd,=8./g, d_=0 for g
>1. It is easy to see that

mum behave for largé as apply. Rather, it provides one example where some features
_ _ of the physics usually associated to RSB, namely dominance
Pmax~ L 29 (In L)~ G219, (143 by a few states with exponential free-energy distributions,
_ B can be explicitly exhibited. In fact, due to the finite-
Prmin~L 239 (In L) * (/20 (144  dimensional correlations, there are some departures from the
, ) behavior observed in the simplest prototype mean-field mod-
in the weak disorder phase. els(such as the REM as can be seen, for instance, from the
free-energy distribution, which has more structure than a
C. Nature of the strong disorder phase: Quasilocalization simple exponential. It would of course be interesting to ex-

Let us now concentrate on the cage 1. There, we know plore further the additional features specific to finite dimen-
from the previous sections that the Gibbs measure of th&'Ons- _ _ _
particle is concentrated ia fewsites. Thus from Eq(131)  Although the present model is already of obvious physical
the quantum probability®(r)|? is also concentrated ia interest(in 2D it d-escrlbes., eg.a smgle vortgx ina random
fewsites, analogous to the RSB picture. This is a very pecud@UgexXY mode), its nontrivial properties provide a motiva-
liar type of eigenstate. Indeed if one computes the quanturHOn o search for models with more degrees of freedom and
averaggr2)—(r2) in a given sample, it has a finite probabil- with similar features. One way to proceed would be to search

ity to be of orderO(L2). Thus the eigenstate cannot be con-for interface models via an internal dimensional expansion
sidered as localized in the usual sense. Since it is peakeéound the present model. The key feature, however, appears
around a few sites, we call it “quasilocalized.” Around these 0 b€ themarginality of the model, i.e., the logarithmic
centers, the wave function decays fast enough to be norma@rowth of typical energy fluctuations. This corresponds to a
izable. It would be interesting to investigate further the typi-fluctuation energy exponeré=0, i.e., the situation where

cal spatial decay of such eigenstates around tmeirtiple) the temperaturdi.e., the entropy is marginal in the RG

centers, which we expect to be slower than exponential. S€nse. The droplet arguments indeed assumeythat, con-
sistent with the single ground-state dominafeed activated

behavior typical of a zero-temperature fixed point whEie
formally irrelevanj. In the situationd=0, one does expect
In this paper we have studied the equilibrium problem ofmore generally power laws witif-dependent exponents,
a particle in a random potential with logarithmic correlations,reminiscent of mean field. It would thus be of great interest
through exact bounds, numerical simulation, qualitative arto similarly exhibit other nontrivial marginal modelg.g.,
guments, and a renormalization-group method that we havepin models withd=0) with similar features[74]. Spin
developed specifically for this problem. We have shown thatmodels wherédomain wal) excitations(in root mean square
it exhibits a glass transition at finite temperatdrg=1/8.  and in averagealso scale logarithmicallyas vortices in the
>0 in any dimension. This confirms earlier conjectures andandom gaugeXY mode) are presumably good candidates.
allows for a more detailed study of the problem. The RG On the one hand we have developed a spe@@mulomb

VII. CONCLUSION
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ga9 renormalization-grougdRG) approach to describe the multifractal spectrum and extracted their finite-size correc-
model. From the study of the resulting nonlingkiPP) RG  tions. We have found that the nontrivial loWwphase of the
equation, we found explicitly that a freezing phenomenonparticle translates into peculiar quasilocalized eigenstates for
occurs at the glass transition temperature, and that in thée quantum problem, peaked around a few distant centers. It
glass phase a broaghower-law distribution of fugacities raises the question of whether this property can be present in
develops—or equivalently an exponential distribution of lo-0ther quantum systems.
cal free energy. It is different from more conventional per- Another interesting question is whether the transition
turbative RG (e.g., the one which was used to study thestudied here has a signature in the dynamics as well. Note
dynamics of this modgiin the sense that the full distribution that a similar nontrivial structure at low temperature is also
of probability is followed. This turns out to be crucial to Presentin the the Sinai model with a bias, which renormal-
describe the low-temperature phase. izes onto a random walk with algebraic waiting times distri-

On the other hand, as we have discussed,dproxima-  bution[58]. However, this is a driven system and it would be
tions of the present model, the REM approximation and theinteresting to see whether nondriven systems in low dimen-
DPCT hierarchical version, can both be solved using replicgion can exhibit similar features. Since the barriers grow
and do require considering the analytical continuatiomto logarithmically, it is natural to expect an anomalous diffu-
—.0 of contributions of replica symmetry breaking saddleSion exponenk~t” with v< 3, as was found in similar situ-
points[10]. ations[79]. What happens to this exponentat T, will be

This shows that a RG approach which is explicitly replicainvestigated in the very near future.
symmetric but allows to treat broad disorder distributions ~Finally, an outstanding question is how the present model
can be consistent witkapproximate approaches based on can be studied using 2D conformal field thed@FT). In
RSB saddle point§75]. We have illustrated this on the particular, one wonders what is the signature in this context
REM, which can be recast in terms of nonlinear RG equan the phySiCS that was unveiled here, reminiscent of RSB,
tions, with a freezing transition. In fact, one of the striking using RG with broad distributions. The freezing phenom-
properties of the model is that the RG equations derived her@non within the nonlinear RG, which transforms the naive
are similar—to the order we have been working—to the onescaling dimensions into nontrivial ones, should correspond to
which holds for a continuous version of the DPCT problem,& Similar mechanism in CFT. Recent progress on CFT clas-
the branching process. In particular, it indicates that bott$ification of disordered models where supersymmetry can be
problems share the same universal finite-size corrections. Used allows us to hope that such progress is within sight. We

We have also analyzed some connections in(@id via  hope that the present RG method will apply to study other
boundaries in 1Pbetween the model of the particle and the two-dimensional models with similar features and shed light
Liouville and sinh-Gordon models. The intensive free energyen the more formal field-theoretic methods.
of the particle corresponds to the scaling dimension in these
models withb=8/B.. The glass transition corresponds to ACKNOWLEDGMENTS
the weak- to strong-coupling transitionkat 1. Beyond, cor-
responding to the glass phase, the scaling dimension freezes )
as f/)ve ha\?e also ghownpvia a direct RGgapproach on the brk was supported in part by NSF Grant No. DMR-

models. We have seen that under coarse graining, an ad I_E28I57IE\31 (D'CI')' SLa,b_oratoi_re Ldg Pi;y_siqt;e Tbégu%h?ss
tional local field appears in the LM and SGM, with broad cole Normalé supeeure IS Laboratoiré Fropre du '

distribution, and corresponds to inhomogeneous configuragisdoc'eal Ecole Normale Supgeure et d'Universite Paris-

tions being generatetand broad fluctuations of the local
area, since the local partition function corresponds to local
area. APPENDIX A: EXISTENCE OF A TRANSITION
The present study raises interesting issues to be explored
concerning the relations with the continuum Liouville field
theory (LFT). An outstanding question is whether the con-
jecture of[12] is correct for the correlations. Since we have
obtained another result linking the problem to the DPCT, thd
diregt comparison o_f the LFT and the DPCT rema_ins to be Z_ | dg(BY2I(0) | d+fPe
studied. If it holds, it means that the conformally invariant
many-point correlations can be related in some linflisge
separations with fixed ratios t)/Inry) to the results from
the tree problem. It would also raise interesting issues about . -
the continuation of the LFT beyond=1 and its relation Z2= g FRATLOY o= (BT (A2)
with the nontrivial structure of the glass phaseith RSB r
feature$ in the equivalent particle model.
We have also extracted from our approach some conse- ~BL226%0 gop (A3)
guences for the problem of tlie= 0 critical eigenstate of 2D
Dirac fermions in a random magnetic field. We have con-the last estimate being valid as long as the sum over
firmed, via our RG method, previous results concerning thelivergent, i.e.,<B8,=+d/(20). The constantB>1 de-

We acknowledge useful discussions with B. Derrida. This

We use the same method as Derrida and a@ékfor the
directed polymer problerf77]. It is easy to compute the first
two moments ofP[Z], using translational invariance and
eriodic boundary conditions:

(A1)

and
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pends on the details of the model, e.g., br1 one can tion P(V) can belong to three classes of extremal statistics,
write B=lim__ /iy exp(— B%2[T (Ly)—4cInL])). Putwe will recall only the Gumbell class. Schematically for
Thus for 8< 83, the ratio this class, a well-known theoref27] states that there exist

constantsay andby such that for a fixed,
ZZ - ~
= B (A4) Prol(Vmin>byy —ay) —exp( — ). (B1)
The constantsy, andby are determined as
asL— +c0. In[76] it is shown that the propertyA4) implies

that -a 1
a |nf NdVP(V)=N, (B2)

1 1 —
Prot{dlnLan= dInLInZ =1/B (A5) o ,
szNJ' dyf dVP(V). (B3)
asL— +co. If we take for granted that the free energy is o o
self-averaging, it implies that forT>T,=+2a/d, the

. ) . L For variablesX, chosen from a centered Gaussian of unit
guenched and anneal@dtensive free energies coincide ex- . — (N2 X2 h db
actly, f(T)=fA(T). Thus forT>T,, the (intensive entropy \a/émanceP(X)—(l me » ONE Ccan choosay andby

is S(T)=sa(T)=—0df5(T) and thus one has

1
g —

sM=1- 5, T>T. (6) v onN (B4)
Sincesa(T) becomes negative beloW=T,=\d/o, it im- o 1 1
plies that there must be a temperatEfr@<%2 at which Eq. =2 InN-= 2InN 2 n(minN), (B5)
(A6) breaks down and thus a phase transition occurs. Al-
though this is harder to prove, it seems that here B§)  and thus one can write schematically that
holds down toT =T,

Awaiting a rigorous mathematical proof, we have not at- 1 1 -

tempted to prove the self-averagingfoNot only is it highly Xenin N~ —~ V2 INN+ 2NN >In(4mInN)+y |,
reasonable in view of our other results, but in fact if it were 2InN (B6)

not the case, the above argument would imply a rather
curious—and unphysical—distribution fdr(with a § peak
of nonzero weight smaller than).1In addition, as noted in
[76], by adjusting the small-scale details of the model, the= & eXP(-¢).

constantd can be chosen as close to 1 as wanted. It is useful to note the property of reparametrization asso-
ciated to a monotonous functiof(V). If one has Eq(B1)

for the minimumV,,;, of the variables/, with the constants
ay andby, one also hasunder some weak condition&q.
(B1) for the minimum(V,,,) of the variables/(V,) with

In this section we summarize some results on the extremdhe constantsy,=— ¢(—ay) and b =by/¢’'(—ay). Note
statistics of a set of random variables. We selected the onedso that we have illustrated how to show convergence to
which are useful in putting the problem studied here in aGumbell(and generalized it to finite temperatuie the text.
broader context. We recall some of the classic results from For completeness, we recall the necessary conditions for
probability theory and we have chosen to illustrate them bythe convergence to Gumbdli.e., P(V) belonging to the
adding a few simple arguments which emphasize the imporGumbell clas§ First P(V) must decay fast enough at
tance of some of these results to the physics of disordered— —oo so that there existg, such that
systems. We denote thé random variables eithex,, r
=1,... N when they are normalized in a particular way, or Yo y
V, when they can be readily interpreted as the random po- J_wdyf_mP(V)dV<+oo, (B7)
tential variables studied heféhe two differing by a trivial
uniform rescalingV(r)=V,«X,]. They apply directly to de- and second, defining
scribe d=1 (N=L) and can be usually extended tb
>1 [V(r) andN=L1].

whgref/ is distributed with the Gumbell distributiop(y)

APPENDIX B: EXTREMAL STATISTICS
OF CORRELATED VARIABLES

t y
R(t)=— f dyJ P(V)dv  (B8)
1. Uncorrelated variables J' P(V"HdV’ o o

It is natural to start with the case of uncorrelated vari-
ables of identical probability distributioR(V). The distribu-  one must have for ak<yj,
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t+xR(t)

-

lim ——————
‘*‘”’f P(V)dV’

P(V)dV

=X

(B9)

These conditions are in fact rather broad. Finally, note alsg,

the very powerful theorem 2.10.1 7] for the rate of con-
vergence to the Gumbell fixed point.

2. Correlated variables
a. General lower bound

We now consider correlated variables with distribution
P(Vq, ..., Vy). Let us start with a simple but very general
bound and extract the consequences. One has

G(X)=ProfV,,<x)< >

ProV,<x) (B10)
r=1N

since the reunion of all event¥,<x implies the event
Vimin<x and that ProbAUB)=<Prob()+ProbB) (the
bound is exactly saturated, e.g., when there are strong corr
lations such tha¥,—V,,>x for all r#r’). For variables

which have identical one-particle distributiorP(V,)
=[II, £, dV,, P(Vq, ... ,Vy) one has
X
G(x)st P(V)dV. (B11)

PHYSICAL REVIEW B3 026110

Prohly<y)<e’. (B16)
This yields a lower bound which can be compared with the
REM approximation defined in the text. Note that the above
upper bound is the exact behavior of the Gumbell distribu-
tion at large negative, so in a sense the REM approxima-
ion saturates the bound in the tails. Consequently, to allow
for a larger tail(such asye ) one needs at least a coeffi-
cient of InInN strictly larger thang).

b. Short-range correlations and convergence to Gumbell

Let us now consideN centered Gaussian variables
with a fixed correlation matrid’,,, =X, X,,, hormalized so
that I',,=1. A powerful bound, which refines EqB10)
above, allows us to easily demonstrate convergence to the
Gumbell distribution for a large class of “short enough
range” correlations. It compares two arbitrary correlators
'Y and I'? with I{V=r@=1. Their associateds(x)
functions satisfy[27]

e
e- |Gi(X)—Gy(x)|< D — g xI(1+my)
|Gy 2(X)] S 2m(1—mE )2
(B17)
with m,,,=max(|1"£rl?|,|1“5r2?|). It is obtained by bounding

dG(x)/dT',,» and integrating betweeh; andI',. It will be
used to compar@ﬁrl?ﬂ“”, with the uncorrelated caﬂéﬁf?

= Oyy1

Let us illustrate the consequences for correlated variables To address the question of the universality of the Gumbell

X1, ..., Xy such that the one-particle distribution is a unit
centered Gaussian. Then it implies for> — o

—x2/2

G(x)= e , (B12)
X
from which one immediately sees that it implies
In(47 InN)
Prof X ,in<Xn=— V2 INN+a@———=—
t{ min N /—2 InN
1

0 (B13)

=
(4w InN)[V2=al

by choosingx=xy for any @<1. Thus one has a general
lower bound for the minimum of correlated variables. In par-

ticular, for Gaussian variables such thanz 20InN
=2doInL one gets
V> —2dVo InL+JoaIn(4mwdIinL)  (B14)

with probability 1 in the large. limit for any a<3. More-
over, choosingr=3% and writing

Viin=—2d\JoInL+ o2 In(47dInL)+y] (B15)

one finds that

distribution, let us now consider @€ 1) translationally in-
variant correlatorI',,,=I(r—r") with I'(0)=1, where
I'(r) is anN-independent function which decays to zero as
r—r'—+oo,

Inserting x=ayy—by of Egs. (B1) and (B5) into
Eq. (B17) one easily gets that if (r) decreases fast enough,
one hasG(x=ayy— by) =exp(-#&) at largeN, i.e., one has
convergence to the Gumbell distribution with exactly the
same coefficientsy andby as in the uncorrelated case, so
that Eq.(B6) still holds. As one sees by studying the bound,
this result holds as long d¥(r) decreases faster than 1An(
(this is theorem 3.8.2. of27]). The limiting case(which
does not satisfy Gumbell, as discussed belas I'(r)
~ 7/In(r) at larger.

Let us give a simple self-consistency argument, more en-
lightening than the bounds, which explains wHy(r)
~1/Inr should be the limiting case between the short-range
(Gumbel) universality class and other behaviors. Let us split
a set of N correlated variableX,, . .. X5y into subsystem
1, X4, ... Xy, and subsystem Xy, 1, - - - Xy - If COrre-
lations are very short rangdd.g. exponentially decayingit
seems reasonable to first neglect correlations between 1 and
2 and find the minimum in each subsystem, which read, re-
spectively,

1In(47InN)
V2InN

P
V2 InN

’)‘(min,iw \ 2InN

(B18)

2
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InN I'(r) V/=V,+U (B20)
In NVt with V, a set of uncorrelated Gaussian variables &ha
' Gaussian variable uncorrelated with e, then clearly, if
one chooses the variance dfbig enough Eq(B6) cannot
hold. To keep using normalized variablds, (= 1), one de-
fines

(In N)1-@ NSV L B21
________________ r— /1+WN rTu 1+WN’ ( )

1 Gumbell Inr whereu is a centered Gaussian random variable with unit
umbe variance. The correlation matrix is thed'/ =1/(1
In N +wp) (8- +wy). Clearly one has
FIG. 15. Correlations as a function of in The straight line X/ 1 N W (822
corresponds to the log-correlated variables studied here. The thick min m min 1+wy'

line corresponds to the limit where the short-range Gumizeit
REM) behavior holds, witH'(r)~21/(Inr)* and «<1; the curved
solid line corresponds to the case where a convolution of Gumbe
and Gaussian holdsnarginal casexr=1); and the dotted line cor-
responds tax>1 when the mode =0 dominates the behavior.

sing the expressio(B6) for X,,, one sees that for devia-
ions from Gumbell to arise one needs thg{~ 7/InN. In
that case one gets from E@6) that

with i=1,2 and wherex;,x, are independently distributed " ZN- 1In(47InN) N Xi+v27ru+T
with the Gumbell distribution. The symbdi indicates that min 2 J2InN J2InN
the minimum(in each subsystenis with respect to a slightly (B23)

different distribution from the original one, since all cross

correlations between the two different subsystems have been These simple considerations thus allow us to understand
set to zero. The second stage is to add the correlations beimply the limiting case, i.e., that il’(r) decreases as
tween the two subsystems. Typically, the minima 1 and 27/In(r), one has that EqB6) still holds (with the same con-
will be a distance~N apart and thus their original cross stants but the distribution ofy— = now converges instead to
correlation is~I"(N), and thus, for short-range correlations, the convolution of the Gumbell distribution and the Gaussian
very small compared to the fluctuating pajty2 InN. Thus  of variance 2 (see, e.g., theorem 3.8.2. [#7)).

the distribution of the minimurrxﬁnzi';‘) of the original 2N Increasing the range of correlations even further, one gets
variables should be given with better and better accuracy anto a regime where the fluctuating pét the X variableg is
large N, as Xgnzi'r\:): min(imin,ljimin,z) [which is automati- larger than 1m (and thus in the/NX\/m variables the
cally satisfied by the approximatici®18)]. The corrections dominant finite-size corrections are non-self-averagifige

are irrelevant at large scale provided the typical root mealuctuations become then entirely Gaussian, being controlled
cross correlation between the subsystems remains smallBy the U part, i.e., theq=0 mode. For instance, if (r)

than the typical fluctuations of the minimum in each sub-decreases as[li(r)]* with 3<a<1, then(theorem 3.8.4. of

system, a condition which reads [27]) one has

VL (N)<1/{/InN, (B19) P{Vpmin>—T(N)Y%—[1-T(N)]¥?y2 InN
which indeed gives correctly the basin of attraction of the o ,
Gumbell distribution. Furthermore, in the limiting case [2InN=3In(47In N)]}—>J’ 27 Y2e=x12  (B24)

I'(r)~7/Inr the above argument shows that the distribution

of the x; should be changed, which is also the case, as we _ : . .
now examine. As illustrated below, this behavidentirely controlled by

So, to summarize, if correlations are short ranged witi"€ =0 mode is in a sense more long range, and further
I'(r) decreasing faster than L/t this is the “SR univer- 2Way from Gumbe_ll than the _problem of Iog-correlated vari-
sality class.” It includes the REM, and one can check thatdbles that we are interested in and that we now discuss.

the finite size corrections if6] are reproducedat T=0). d. Log-correlated variables

¢. Long-range correlations and absence of convergence The case of log-correlated variables is difficult and little is
to Gumbell known. We just make a few comments.
There is a simple but instructive model of correlated vari- Let us first discuss the form of the correlator. The cor-

ables which can be easily solved and that illustrates caseslator (for the normalized variableX,;=V,/\ 2o InNin d
where Gumbell does not hold. If one takes =1) is of the form
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FIG. 16. Phase diagram in the presence of both disorder and
external potential. The freezing of the KPP velocity still occurs at
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To conclude, we have given the various behaviors as a
function of the range of correlations. The presence of the
InIn N corrections seems to be more robust than the distribu-
tion of x. For the marginal case with=0 LR disorder, the
same: InIn N corrections hold as for the REM, while the
distribution is changed. On the other hand, for log-correlated
variables, we expect a different coefficiehtnInN as dis-
cussed in the textand we do not expect the Gumbell distri-
bution to hold.

APPENDIX C: GUMBELL VIA RG

In a more detailed analysis, EQ.50) yields
InIn(1/G,(x))=1+InIn(1/Gy(x)) which can be rewritten in
a frontlike form:

G(x)=exp —e' "9, (C1

B=B. and is represented by the dashed line and its solid prolongawhere ¢(x) =InIn(1/Gy(x)). In this appendix we setl—1.

tion: it remains a transition line far>4dJ? and becomes a cross-
over line for do<J?.

Inr
F'(ry=1-

N (B25)

for 1>r>N. One must then distinguish the two other re-
gions. For smalt, the precise form could vary by adding a

The center of the front is at the=—m(l) solution of
¢(—m(l))=—1I1. One can Taylor expandp(x)=—Il+y
+38y%+ .- with y=a;(x+m(l)), a,=¢'(—m(l)), and
8,=¢"(—m(1))/ ¢'(—m(1))2. Thus in the variably, G,
converges to a Gumbell limit distributigi(y) = exp(—¢). It
holds provided higher terms in the Taylor expansion are ir-
relevant(a necessary, and in the simplest cases sufficient,
condition being that the second ong—0).

If no rescaling of disorder is performed, in the relevant
large negativex region one hassy(x)~1 and thus¢(x)

short-range correlated noise. This is what we term short scafe IN[1—Go(X)]. Two cases must be distinguished because the
details, and an important question is the extent of universalimit T—0 andN— +< do not commute.

ity of the results(scaling of minima, distributionwith re-
spect to the small-form. Forr ~L, the behavior depends on
boundary conditions, which may also be importésde be-
low). For the periodic system in the simulatiom;(r)
=I'(N—r) andI'(r) actually becomes negative atN/2
and of orderc/In N (see Sec. Y. Adding a small unifornmJ

(i) Finite fixed temperature 0. For x— —o one has
1—Go(x)~Cq(B)eP[1+0(e’)] with C,= [ P(V)e kY
and we assume th&; ,C,<+ oo exists(distributions falling

faster than exponentiglsThen the situation is simple as

d(X)=Bx+InCy(B)+0(e*), m(1)~1/B+1/BInCy(B), «
=B, and¢"(x)/ ¢’ (x)2>—0 exponentially fast. For a Gauss-

noise, as described above in Appendix B 2 c, could makéan distribution,
I'(N/2)=0, so generally speaking one can discuss forms

such thatI'(N/2)=0. Seen as a scaling function af
=Inr/InN, T(r) then converges for largdl towards Eq.
(B25), but it does have boundary layerszat 0 andz=1.

It is useful to plot on the same graph the various caseﬁL
studied in this section. This is represented in Fig. 15. We

have represented schematicdllyr)In N versus Irr, for the
log-correlated form(B25) above, and for the various cases
I'(r)~InN/(Inr)* with a>1 (Gumbell behavior, «=1, and
a<l.

As discussed above, in the log-correlated case the beha

ior of I'(r) near Inr=InN can be considered as uncertain to
order 1/InN. This can be seen either from tlge=0 mode,

m(l)~

B (C2)

I+1
EO‘,B.

here isno transitionto a glass phase.
(ii) Zero temperaturelt is an extremal statistics problem.

Then clearly -G (x) does not decay as an exponential. Let

us consider a class of distributions such that Gg(x)
~(A|X]) "7 exp(— (B|x|)*) with a>1 (plus exponentially

§[nall corrections This contains the Gaussidnf variance

o) of most interest here, fon=2, B=1/\/20, y=1, and

A=.2x/o. Then one easily finds from above that

which, depending on boundary conditions, one may adjust

by this amount, as discussed above, or even looking at the

first nontrivial mode,g=2=/L, which has a contribution of

1

: (C3

m(I)~é(I— glnl—ym(A/B)

the same order. We know from the preceding paragraph that

these contributions can shift tixevariable by a Gaussian, so
it makes it unlikely that the Gumbell distribution would hold
in that case.

1—(1/a)
) : (CH

aﬁ«Ba(I—glnl—yln(A/B)
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and that¢"/¢'2~1/x|*, thus the convergence to the Gum- JIn(L/a). It is thus a one-vortex toy model of the recently
bell front holds. Note that the quantityym(l)~al—vyInl  studiedXY model with random phase shift9,20.
+0(1) exhibits some universality. In the absence of disorder, the model with a background
One thus recovers the standard theorems for extremgotential (model ) trivially exhibits a transition a{8=g*
value statistics reviewed in Appendix B, and the relation to=d/J. At low temperature3>B* the Gibbs measure is
the normalizing constants defined there as p(r)~C(a/r)?? with C=Z, _.. a finite constant and the par-
ticle is bound tar =0 (it has a finite probability to be within
(C5) a fixed distance of =0). At high temperaturg8<pg* the
Gibbs measure becomexr)~(a/L)? #(a/r)?’ and the
particle is delocalized. This transition can be seen in the
In the Gaussian case, using the values given above, one finfige-energy densit§=F/InL=—TIn Z/InL since

that Eq.(C4) indeed yields Eq(B5) in Appendix B (up to

subdomina.n.t terms Although t_he distribution is universql, f=0, pB>p*, (D2)

the normalizing constants obviously depend on the details of

the tail of the distribution. Note in all cases the presence of B " .

finite-size corrections involving a logarithm. f=—0QB"=B), B<B (D3)
There is a very small temperatur@,(~ \/In L for Gauss- o N _

ian) where the behavior dB,(x) changes fronti) to (ii). It for ,8<,3*. This first-order transmpn occurs &seaches its

can be seen by rescaling temperature or equivalently disoRound(sinceZ>1 due to the lattice cutoff, one has thiat

m(l)=ay, ¢« [=InN.

1
“by’

der, with system size as in the REM. <0). The model Il has the sanfeand a similar transition
Let us examine the case where the constapandB, are ~ With either one vortex preseng> g*, or zero,<p*.
rescaled and nowdependentsee also, e.g[30]). One can In the presence of disorder, the RG developed in this pa-

still use formula(C4). Let us chooseB,=bl 1*Y« and  per can be extended straightforwardly and leads to
A, /B,=cst (which includes the Gaussian REMOne finds

at T=0 that m(1)~1/b[1 — (y/a?) Inl—(y/a)In(A/B)] and 1 J T,
a;~ba. In the Gaussian case;=2c0l one recovers the aﬁlG(X)_a‘?XG’LE‘?XG”LF[G]' (D4)
REM result,
m(1)~o[21~§ In(4m)], (co) FIGI=~GA-6). (b3)
1 The additional term thus results in a simple shift in the front
) — — C velocity. The position of the front(l) thus leads to the free
| : (C7
Jo energyf=m(l)/(dl), which can have three distinct analyti-
cal forms:
at T=0 [i.e., Eq. (419 settingl—dl and o—o/d]. The
analysis can be performed at amyand now yields a transi- m(/1~da f
tion temperature when the behavior G, (x) at large x Amdl) BT(E)
changes. =—(d+oB?-JB) highT phasel, (D6)
- ZdE—J localized ph Il (D7)
APPENDIX D: AN EXTENDED MODEL ~~JB| localized phase ll,
A richer phase diagram can be obtained by adding a loga- 0 bound phase II. (D8)

rithmic background potentidl78] Vy(r)=JIn(|r|/a) to the
revious random potential [V4(r)—Vg4(r')]°~4olin|r _ _ o _

Fir’|/a for a<|r—r’|2L andV[d(rd)(:)O [i.de(., \)/ariting V(rl) The phase diagram is represen.ted |n.F|g. 16 using the re-

= V() +Vy(r)] in Eq. (1). The choice of the origin breaks duced ter;nperatlzjré*/\] and the d;men3|onles§ disorder pa-

translational invariance. The competition between the disorf@meter o=o/J°. For 4do<J® one defines 5*(o)

der and the binding background potentiathich if strong = (1/20)(J—yJ°—4do). The RG analysis yields three

enough tends to favor localizing the particle in wells far from Phases. In the model with the background poterttiaidel )

r=0) yields the phase diagram of Fig. 16. Another closelythey are as follows.

related modelmodel 1)) which preserves statistical transla- ~ The high temperature phagéor B< 3. when 4dg>J?

tional invariance and has the same phase diagram is and for < 8* (o) for 4do<J?]: Entropy wins and the par-
ticle is delocalized over the system.
L\ ~# The localized phasdfor o>o.=1/(4d) and B>p
= — -BV (I’) c Cc
ZVI=1+ a) Er e ®y Vd/o]: The KPP velocity is frozen. The disorder wins and

the particle freezes in wells away from the origin.

which describes a problem with either zero or one particle The bound-phaséfor fr<&c= 1/(4d) and B<pB*(o)]:
(vorteX) present, the energy cost of the vortex beingThe particle is bound to the origin. Within this phase near the
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phase boundariegvhere the bound-state length is larga in a few wells or in a highF phase(as studied in the text of
crossover can be distinguished as a remnant of the freezirthis papey.
transition. The bound phase arises because of the bébund Both transitions away from the bound phase are first or-
<0 (or equivalently the velocity of the KPP equation mustder, while the transition between the high-temperature phase
remain positive and the localized phase is continuous. An interesting feature
In model II, the bound phase corresponds to no vortexs the multicritical point where the transition becomes con-
present. When one vortex is present, it can be either localizetihuous.

based on this calculation, and hence are in effect obtained
using the REM approximation. To fully establish these results
within this microcanonical approach, one needs to show the
crucial property that I62(E)/In L in (almos} any sample con-
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