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Ising model on nonorientable surfaces: Exact solution for the Mbius strip and the Klein bottle
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Closed-form expressions are obtained for the partition function of the Ising model @vi & simple-
quartic lattice embedded on a Mdias strip and a Klein bottle. The solutions all lead to the same bulk free
energy, but for finiteM and A the expressions are different depending on whether the strip witltls odd
or even. Finite-size corrections at criticality are analyzed and compared with those under cylindrical and
toroidal boundary conditions. Our results are consistent with the conformal field prediction of a central charge
c=1/2, provided that the twisted Mius boundary condition is regarded as a free or fixed boundary.
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I. INTRODUCTION Il. 2M XN MOBIUS STRIP

. . . To begin with, we consider aM X N simple-quartic Ising
There has been considerable recent intefdst3 in lattice £ embedded on a Maus strip, whereM andN are

studying lattice models on nonorientable surfaces, both al‘?\tegers M is the width, andN is the length of the strip

new challenging unsolved lattice-statistical problems and aShich can be either even or odd. The Ising model has aniso-
a realization and testing of predictions of the conformal ﬁeldtropic reduced interactionk,, along the(horizonta) length

theory[4]. In a recent papelil] we presented the solution of irection, andK, along the(vertica) width direction. The
d_|mers_ on the Mplus strip ar_ld Klein bottle, anq studied |tls example of a &5 Mobius strip£ is shown in Fig. 1.
finite-size corrections. In this paper we consider the Ising T¢ facilitate considerations, it is convenient to let the row
model. of N vertical edges located in the middle of the strip take on

The Ising model in two dimensions was first solved ing different interactiork;, as shown. The desired result is
1944 by Onsagefi5], who obtained a closed-form expression then obtained by setting{;=K,. In addition, by setting
of the partition function for a simple-quarti¢t X\ lattice ~ K,=0 the Mdius strip reduces to akl x 2N strip with a
wrapped on a cylinder. The exact solution for AdX A" “cylindrical” boundary condition, namely, periodic in one
lattice on a torus, namely, with periodic boundary conditionsdirection and free in the other, for which the partition func-
in both directions, was obtained by Kaufman four years latetion was evaluated by McCoy and Wu]. By settingK,

[6]. Onsager and Kaufman used spinor analysis to derive the « the two center rows of spins coalesce into a single row
solutions, and the solution under the cylindrical boundarywith an (additive) interaction, which in this case isk3,.
condition was rederived later by McCoy and Wi using  These are two key elements of our consideration.

the method of dimers. More recently, we obtained the solu- Following standard procedur¢g] we write the partition
tion for a finite Ising lattice with a self-dual boundary con- function of the Ising model oif as

dition [8]. As far as we know, these are the only known

golutior)s of the tvyo-dimensional Ising. model on finite lat- Zg/lﬁbN(Kh,KU ’Kl):22MN(COShKh)2MN(COShKv)Z(M71)N

tices with conventional boundary conditions. ’

Here, using the method of dimers, we derive exact expres- X (coshK)NG(z,,2,,21), D
sions for the partition function of the Ising model on finite
Mobius strips and Klein bottles. As we shall see, as a con-
sequence opf the Muus topology, the solution assumes a Wherezy=tanhKy, z,=tanhK, , andz, =tanhk,, and
form which depends on whether the width of the il

strip is even or odd. However, all solutions yield the same A © K, oD
bulk free energy. We also present results of finite-size analy-

ses for corrections to the bulk solution, and compare with K, K,

those deduced under other boundary conditions. Our explicit K,

calculations confirm that the central chargecis 1/2, pro- B¢ °C
vided that the twisted Muaius boundary condition is re- K K, K, K, K,

garded as a free or fixed boundary.

The organization of this paper is as follows. The partition C ¢
function for a 2V X N Mobius strip is evaluated in Sec. I,
with details given in Sec. Ill. The partition function for a
(2M —1)X N Mobius strip is evaluated in Sec. IV, and re- D o K o A
sults for the Klein bottle are given in Sec. V. In Sec. VI we
carry out a finite-size analysis for large lattices, and results at FIG. 1. A 4x5 Maobius strip£. Vertices labeled\,B,C, andD
criticality are given for 41 XN lattices. are repeated sites.
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FIG. 2. The dimer lattic&C corresponding to the45 Mobius

strip. The cities are numbered from 1 to 20, and the six edges within

each city all carry the weight 1.

G(z,2,.21)= zhz "z 2)

closed polygons

is the generating function of all closed polygonal graphs on

L with edge weights,,, z,, andz,. Here,n,, n,, andn;
are the numbers of polygonal edges with weightsz, , and
Z,, respectively.

The generating functio®(z,,z, ,z;) is a multinomial in
Zy, Z,, andz; and, due to the Muius topology, the integer
n, can take on any value ifO,N}. Thus we have

)

N
G(z,2,,20)= 2 Tn,(20,2)2)",

WhereTnl(zf1 ,Z,) are polynomials irg,, andz, with strictly

positive coefficients.

To evaluateG(z,,z,,2;), we again follow the usual pro-
cedure of mapping polygonal configurations ®wnto dimer
configurations on a dimer lattic€, of 8MN sites, con-
structed by expanding each site 6finto a “city” of four
sites[7—9]. The resultingCy, for the 4xX 5 L is shown in Fig.
2

Since the deletion of alt; edges reduces the lattice to one

with a cylindrical boundary condition solved in R¢7], we
orient all edges with weights,,z,, and 1 as in Ref(7]. In

addition, allz, edges are oriented in the direction shown in

Fig. 2. Then we have the following theorem:
TheoremLet A be the MN X 8MN antisymmetric deter-

minant defined by the lattice edge orientation shown in Fig.

2, and let
PtA(2n.2,,2:) = detA(z,,2,,21) @
denote the Pfaffian oA. Then
N
PfA(z,,2, ,zl)=nlE:0 €n, Tn,(2h.2,)2}", (5
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where €4n,= €4m+1=1 andesms 2= €ams+3=—1 for any in-
tegerm=0.
Remark Define

[N/4]
xp=mZ:O Tamsp(Zn,2,)Z1" P, p=0,1,2, and 3, (6)

where [N/4] is the integral part of N/4, so that
G(z,,2,,21) =X+ X1+ X5+ X5. It then follows from Eq.
(5) that we have

PfA(z,z,,%iz1)=Xo+ X1 (X1 +X3). @)
As a consequence, we obtain
G(24,2,,21)=3[(1—1)PfA(z,,2,,iZ1)
+(1+i)PfA(z,,2,,—1z7)], (8)

where, as evaluated in the next section, the Pfaffian is given

by
PfA(Zh !ZD 121)

=[z,(1—zp)""

<11

SiN(M + 1)t( ¢,,) — c(z1)SiINhMt( ;)

- , 9
n=1 sinht( ¢, ©
with
2 Z2(1+ 22+ 22,c08¢) + 2(— 1)"2, ¢8I by,
c(zy)= ,
' z,(1-2})
cosh X cosh X, —sinh 2K cos¢

cosht(¢)= (10)

sinh X, '
¢n=(2n—1)m/2N.

Here we have used the fact tHa}_,=112", . , in the prod-
uct in Eqg. (9). Substituting these results into E(L), and
settingK,;=K,, we are led to the following explicit expres-
sion for the partition function:

Z%ON(Kp K, K,)=3(2 sinh K, )MN(coshK ) ™

X[(A=)F.+(1+DF_], (11
where
N e'¥n)—c(xiz,)
- O i S
Fo=11, em( 2 sinht( ) )
e 'n—c(xiz,)
—e ( n) v
e M 2 sinht(¢,) ) (12

This completes the evaluation of the Ising partition function
for the 2V X N Mobius strip. For example, for a>25 Mo-
bius strip, this leads to
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PfA(2Z4.,2,,21) =1+2 0+ 102,20 — 52°Z2(1+ 22+ 2} + 20)
— 202370+ 52174 (1+ ZD) + 2237,
G(2h,2,,21) =1+ 7t0+ 102,27+ 575 23(1+ 22+ zp+ 20)
+20832,+ 5237 (1+ )+ 223, (13

which can be verified by explicit enumerations.

Note that we have cogfy,)=1, so we can always take
t(¢,)=0. For largeM, the leading contribution in E¢12) is
therefore

N
Fo~IT e, (14)

and, hence, from Eq11),

Mob

In ZZM,N

1 1 .
2MN (Kh,KU,KU)~§In(2 sinh X,)
1 N
N 2 Uen)- (19

We now prove the theorem.
Considered as a multinomial i}, z,, andz,, there ex-

ists a one-to-one correspondence between terms in the dimer

generating functionG(z,,z,,z;) and (linear combinations
of) terms in the PfaffiafiEq. (4)]. However, while all terms

in G(z,,z,,z,) are positive, terms in the Pfaffian do not
necessarily possess the same sign. The crux of the matter
to find an appropriate linear combination of Pfaffians to yield
the desired>(z,,z, ,2z;). For this purpose it is convenient to
compare an arbitrary ter@, in the Pfaffian with a standard
oneC,. We chooseC, to be a term in which nay,, z,, and

z, dimers are present.

The superposition of two dimer configurations repre-
sented byC, and C; produces superposition polygons.
Kasteleyn 10] showed that the two terms will have the same
sign if edges oflp can be oriented such that all superposi-
tion polygons are oriented “clockwise-odd,” namely, that
there be an odd number of edges oriented in the clockwis
direction.

Now since allz,, z,, and 1 edges of are oriented as
in Ref. [7], terms in the Pfaffian with na; edges (,=0)
will have the same sign a&8,. To determine the sign of a
term whenz, edges are present, we associate aign with
each clockwise-odd superposition polygon, ane aign to

each clockwise-even superposition polygon. Then the sign of

C, relative toC,, is the product of the signs of all superpo-
sition polygons. The following elementary facts can be
readily verified.

(i) Deformations of the borders of a superposition poly-
gon always changm;, the number ofts z; edges, by mul-
tiples of 2.

(ii) The sign of a superposition polygon is reversed unde
border deformations which change, by 2.

(i) Superposition polygons having 0 oz edges have a
sign +.
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(iv) There can be at most one superposition polygon hav-
ing an odd number af; edges, a property unique to nonori-
entable surfaces.

Let m;=4m+ p, wheremis an integer ang=0,1,2, and
3. Because of poinfiv), we need only to consider the pres-
ence of at most one polygon havipg=1 or 3. It now fol-
lows from points(i) and(iii) that €4,,= €4m4 1=+, and from
points (i), (ii), and(iii) that €4 2= €am+ 3= —. This estab-
lishes the theorem.

IIl. EVALUATION OF THE PFAFFIAN

We now derive expressiof®). From the edge orientation
of Lp of Fig. 2, one finds that theMNXxX8MN antisymmet-
ric matrix A assumes the form

A(zh,2,,21) =Ag(2,) ® oy + AL (20) @ Jon+A_(25) @Iy

+A1(z1)®Hyy, (16)
whereAgy, A, , A_, andA,; are 4V X4M matrices,l,y is
the 2N X 2N identity matrix, andJ,y andH,y are 2N X 2N
matrices:

0 1 0
0O 0 1 0
0 Iy
2N~ , Hon= -1 ol
0 0 0 1 N
) -1 0 O
IS (17)
In addition, one has
AO(ZU):aO,O®IM+a0,1(zv)®FM+a0,fl(Zv)®FI/I ,
Ai(zh)=a+10Z)®In, (18)
Ai(z1)=a(z1)®Gy,
whereFy andGy areM XM matrices:
0 0
0 0
Fu= ,
0 0O 1
0 0O
0 0 0
0 0 0
Gu= , (19
0 0

r

F,, is the transpose df,, and
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0 1 -1 -1 0O 0 0 O
-1 0 1 -1 0O 0 0 O
07| 1 -1 0 » 2@=1 g 5, ol
1 1 -1 O 0 0 0 O
0O 0 0 O 0 00O
a1d2={o0 o 0 o @ 2= 00 0 z|
0 0 0 O 0 00 O
(20

a1 d2)=—ajd2), ap 1(z2)=—aj(2).

We use the fact that the determinant in E4).is equal to the

B(zn)

ap-1(z,) B(zy)

AM(Zh!Zv -Zl;¢n):

whereC(z,z,)=B(2)+i(—1)""*a(z,), and

0 1+zé% -1 -1

—(1+ze '¢n) 0 1 -1
B(z)= 1 1

1 1 -1 0

(29)

The evaluation of deAy(z,,z,,2;;¢,) can be carried out

by using a recursive procedure introduced in R8f. Spe-
cifically, let Byy=By () =detAu(z,,2,,21; @), andDy
be the determinant of the matrixy (zy ,z, ,2;; ¢n) with the
fourth row and fourth column removed. Then we have

2N
PfA(z,,z,,z,)= VJdetA(z,,z,,2;) :nll VBm(dn)-

(29

Furthermore, by expanding the determinants one finds the

recursion relatioriwhich is the same as that in R¢8] when
2,=2,=2),

Bwm aip
Dw

_[8u

(26)

BMl)
) M>21
DM—l

dy1 Ay
with

ay,=1+ 72— 2z,c08¢,,

0
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product of the eigenvalues of matr To evaluate the lat-
ter, we note thaUZN,J;N, and H,y mutually commute, so
that they can be diagonalized simultaneously. This leads to
the respective eigenvaluet’n,e”'%n andi(—1)""* and the
expression

2N
detA(Zh 12y !Zl) = ]._[ det'AM(Zh 1Ly a2y, d’n)y (21)
n=1

where

Am(Zn,2,,21; ) =Ao(Z,) + AL (Z,) €+ A_(z,)e ' ¥n
+i(—1)""A(zy) (22)

is a 4M X 4M matrix. Writing this out explicitly, we have

ap1(2,) 0
a'O,l( Zv) 0
ap-1(z,)  B(z) ap1(2,)
0 ap-1(z,) C(z4,z1)
|
ay,=—2iz2z,sin ¢y, (27)

a,1=2iz,sin¢,,
ay=22(1+Z2+ 22,C0S¢,),
and the initial conditiongwhich are different from Ref.8])
B1=B1(z,2,) =1+ 22— 22,c08¢,— 2(—1)"2,;SiN by,

D1=D1(2z4,21)=2izpsinp—i(—1)"2y(1+ 22

+27,C0S¢,,). (28)
This leads to the solutions
M_\M M-1_\M-1

+ - +
Bu(¢n) = Bl)w_—L - (aZZBl_alZDl)MT,
M_\M \M-1_\M-1
+ - + -
Dm(én)= Dl)w_—)\__(allDl_aZIBl))\_F_—)\_y
(29

where . =z,(1—z2)e* (0 are the eigenvalues of the 2
X 2 matrix in Eq.(26). After some algebraic manipulation,
from Egs.(25) and(29) we obtain the expressidiEq. (9)]
quoted in Sec. Il
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A O K, oD of a 4X5 lattice with these interactions is shown in Fig. 3.
[ Then, by takingk,= (z;=1), as described in Sec. I, this
K, K, lattice reduces to the desiredN2-1)x N Mobius strip of
| & Ko Ko Ky Ko uniform interaction, andK, .
B ¢ o C Following this procedure, we have
K K K ki K zZMob | (Kp,K,)=2CM~UN(coshK ,coshK , )2M~ DN
&Ko K, Ko K, Ko o '
C¢ B X costtN(Ky/2)G (2,2, ,20,21)|7,=1
K, K,
X (30)
h
D o o A

wherezy=tanhK/2), andG(z,,z,,Zq,2;) is the generating
FIG. 3. Labelings of a %5 Mobius strip which reduces to a function of closed polygons on theV2xN Mobius net with

3X5 Mobius strip upon takind<,=o. edge weights as described above.

The generating functio®(z,,z, ,zq,2;) can be evaluated

IV. (2M—1)XN MOBIUS STRIP as in the previous sections. In place of E2p), we now have

o - . . . 2N
The (2M —1)X N Mobius strip is considered in this sec-

tion. In order to make use of results of the preceding sec- PTA(z4.2, 'Zo’zl)znll VdetAy(zy.2,,20,21; b),
tions, we start from the I X N Mobius strip of Sec. Il, and (31)
let spins in the two center rows of the stiifhe Mth and

(M + 1)th rowd having interaction& ,=K/2. The example where

B(z,)  apa(z,) 0
ap-1(z,) B(z,) agiz,) 0
Am(zn.2,,20,21;¢n) = : ’ : (32
0 ao-1(z,)  B(zp) ap.1(2,)
0 ap-1(z,) C(z9,21)
|
Then Eq.(8) becomes PfA(z.2, ,20.21)

=[z,(1—2z5)] ™~

G(Zh 1Zv720121):%[(1_i)PfA(Zhizv7201izl) ClsinhMt(d) )_Czsinr(M_l)t((i) )

+(1+1)PfA(zy,2,,29,—i24)]. anl sinht(¢,,) ’
(33 (35)

The evaluation of deAy(z,,z,,25,21;¢,) can again be where
done recursively. As before, define By
=detAw(zy,2,,29,21; ¢n), and letDy, be the determinant

of Ay, with the fourth row and column removed; one again
obtains recursion relation®6), and arrives at precisely the

same solutiodEq. (29)], but now with different initial con-

ditions

220 n i
c1= 1= zcosdnt (~1)"zisiney ]},

1
Cy,=2202, Z—+[cos¢n+(—1)”zlsin¢n] . (36
h
BlzBl(ZO!Zl)i Dlle(ZO!Zl)’ (34)
The substitution of Eq(35) into Egs. (33) and (30) now

where the function®,; and D, are as defined in E(28). completes the evaluation of the partition function for a
After some algebra, this leads to the solution (2M —1)X N Mobius strip.
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V. KLEIN BOTTLE

The Ising model on a Klein bottle can be considered simi- 00 0
larly. We first consider a B XN lattice £, constructed by Gl=|t & i 42)
connecting the upper and lower edges of thebMe strip of M o R
Fig. 1 in a periodic fashion witN extra vertical edges. As in 0 0
the case of the Muius strip, it is convenient to let the extra 00 --- 0
edges have interactiors,. The desired solution is obtained
at the end by setting(; =K,=K, . Then, in place of theorertb), we now have

The Ising partition function for the Klein bottle now as-
sumes the form N

PfAKln(Zh 12y,21,2) = 2 €ménTmn(Zn,2,)2123,
Z5m (K Ky K1,Ko) mito ,

(43
=22MN(coshK ,)?MN(coshK ,)2M~ 1N

No~Kin from which, in a similar manner, one obtains the result
X (coshK ;coshK,)“"G""(z,,z,,21,2,),

(37) GKIn(Zh 2y 2y 122) = %[PfAKIn(Zh Ly !izl T iZZ)
where +PfAKIN(z, 2, ,—i2,,iz,)

—i PEAKIN(Z, 7, iz, ,iZ,)

GN"(z,,2,.,21,2) = zhzvz"702 (38 K . .
(h vl 2) closedE;J:ong|onsh v ) +i PfA n(Zh,ZU,—Izl,—|22)].

generates all closed polygons on thel XN lattice £ with (44

edge weightg;=tanhK;, i=h,v,1, and 2. The desired par- T4 eyaluate the Pfaffiaf43), we note that matrix41) can
tition function is then given by again be diagonalized in tH&N} subspace, yielding

Zom (K Ky K, K 2N
2MN 2MN~KIn PIAK(z,,,2, ,21,2,)= H \/detAK'n(Zh Z,,21,22; bp)
=2""(coshKcoshK,)“""“G""(z,,z,,z,,2,). oSl s M o e2 Py
(39) (45)

Again, it is convenient to first writéG¥"(z,,z,,2,,2) as a Where
multinomial inz,,z,,z;, andz, in the form of Kin
. Aw (Zn:2,,21,25;¢n) = Am(Zn,2, 1215 &)
G""(z,,2,,21,20)= > Tmn(2n,2,)2023, (40 +i(=1)""'b(z,)® Gy, . (46)
m,n=0
Now we expand de%*,f,l'” in z,. Since, upon setting,= 0, the
determinant is precisel,, and the term linear irz,, the

{4,4 element of the determinant, is by definiti@n,, one
obtains

whereT, n(z,,2,) are polynomials irg, andz, with strictly
positive coefficients.

The evaluation of GK"(z,,z,,2,,2) parallels that of
G(z,,z,,z,) for the Mdbius strip. One first maps the lattice
L into a dimer latticeCp by expanding each site into a city
of four sites, as shown in Fig. 2. Orient &, k,, andk; (47)
edges ofLp as shown, and orient ak, edges in the same
(downward direction as thek; edges. Then this defines an whereB,, andD,, were already computed in ER9). This
8MNX8MN antisymmetric matrix obtained by adding an |o54s to
extra term toA(z,,z,,2z4) given by Eq.(16), namely,

detAf,,'”(zh 12y 121,22, Pn) =By +i(—=1)"z,Dy, M=2,

Kin
A¥N(z,,2,,21,2)) =A(2n,2, 121) +b(2) @Gy ®Hoy - PIAT 2 2. 21,22)

“ - 1+Zl—§2)N[zv<1—zﬁ>]MNx
Here Z
000 O xﬁ sinr(M+1)t—.c(zl,zz)sinhMt ’
00 0 0 =1 sinht
bz)=| o o o o | (49
0 00 -2 where
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c(z1,25)= [(1+20)(Zi+2,2))

2,(1-Z2) (22 + 212,
+22z(Z—212,)c08¢p, +2(— 1)"

X (z4+2,)ZnZ2sin ] (49

Settingz, =z,=z, in Eq. (44) and using Eq(48), after some
algebra one obtains

N
[[1 2 coshMt( ¢,

G""(z,,2,,2,,2,)=[2,(1—2%) "N

sinhMt(¢,,)
+iml, (WD”’")”’
(50
where
1 2 2 2
D(¢hn) = ————5-[(1+20)(1~2))~22,(1+2])cos¢h,

Zv(l_ Zh)

—4i(—1)"z,z,sin¢,], (51

and Im denotes the imaginary part. The substitution of Eq.
(50) into Eqg.(39) now completes the evaluation of the par-

tition function for a 2V X N Klein bottle.
For a 2<X2 Klein bottle, for example, one finds

PIAKN (2,2, ,21,2,) = 1+ 20+ 4(2y+ 2,) 22— 2(Z2+ 23) 22
+2212,(1+ 22)%— 42,2,(21+ 2,) 72
+2225(1+ 2},
GN"(z2,,2,,21,2,) =1+ Zp+ A(2y+ 2,) 2+ 2(Z3+ 23) 22
+22,2,(1+ 22)%+ 42,25(2, + 2,) 72
(52)

+2225(1+ 2,

which can be verified by explicit enumerations.

For a (2M —1)X N Klein bottle we can proceed as above

by first considering a @ X N Klein bottle with interactions

Khn,K, K1, andK, and, within the center two rows, interac-

tions Ko=K/2, as shown in Fig. 3. This is followed by
taking K;—«~ andK,=K,. Thus, in place of Eq(39), we
have

Zgll\gllfl,N(Kh K,)=2@M=IN(coshK,)2MN
X (coshK ) M ~3NcositN(K | /2)

xG"(z,,2,,20,12,), (53

where zo=tanhKy/2), andGX"(z,,z,,20,2;,2,) generates
polygonal configurations on theM2xX N lattice with weights
as shown. Then, as in the above, we find

PHYSICAL REVIEW E 63 026107

G"(24.2,.29,21,2,) = 5[ PTA (2.2, ,2,i21, ~i2))
+PfANIN(z,,2, .20, —121,iZ;)
—i PEAKN(z, 12, ,20,i21,iZ5)
+i PIAN(z,,2,,20,—i21,—2,)],

(54)

where PAK"(z,,2 ,z,,,2,) is found to be given by the right-
hand side of Eq(35), but now with

C1=(1+25)(1—212,) — 220(1+ 2,2,)
X c0sp,—2(—1)"(z,+2,)zSin ¢,
C2=; 122 (@t 2zl (1= 2120+ (20~ 20)°]
+2(z,—29)(1— tho)[(zg_ 2,7,)C0S¢,,
+(=1)"(Z21+25)sin 1}, (55)

expressions which are valid for arbitrary,z,,zy,2z;, and
Z,. Forzy=tanh,/2), the case we are considering, E8b)
reduces to

2z,
Zp

—(=1)"zp(z1+2)sin by ],

Cl: [1—2122—Zh(1+2122)003¢n

2 5 2
Co=5 [z, + 212, +24(Z,— 21Z5) COS P,
hZU

+(—1)"zn(Z%2,+ 25)sin by ] (56)

[which reduces further to Eq36) after settingz,=0]. The
explicit expression for the partition function is now obtained
by substituting Eq(54) into Eq. (53).

VI. BULK LIMIT AND FINITE-SIZE CORRECTIONS

In the thermodynamic limit, our solutions of the Ising
partition function give rise to a bulk “free energy”

lim
M.N—x2MN

fou(Kn,K,) = InZ(Kp,K,).

(57)

Here, Z(Ky,,K,) is any one of the four partition functions.
For example, using the soluti ,\‘,’le given by Eq.(15) for
the 2M X N Mobius strip, one obtains

1 _ 1 (=
fbulk(Khqu) = Eln(z sinh z<v)+ ﬂfo d¢ t(d))!
(58

wheret(¢) is given by Eq.(10). This leads to the Onsager
solution
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TABLE I. Results of our findings for different configurations.

1 T T
fbulk(Kthu)zan‘l'z_zj dqbf de
™ Jo 0 Cylindrical Toroidal Mdoius Klein

X In[cosh Kcosh K, —sinh 2K,,cosd c, Mo 0 cMob 0
—sinh 2K ,cos¢)]. 59 0 0 0 0
:05¢)] (59 Ay /48 /12 /48 w12
Steps leading from Eq58) to Eq. (59) can be found, for A: w12 w12 /48 w48

example, in Ref[11]. The bulk free energyp Ky, K,) is
nonanalytic at the critical point sinfigsinh Z,=1.
For largeM and N, one can use the Euler-MacLaurin - nn2
summation formula to evaluate corrections to the bulk free '34(U|T):l+2nzl (=1)"q" cos A,
energy. For the purpose of comparing with the conformal
field predictions[4], it is of particular interest to analyze with q=e'"". For the M XN Klein bottle, we find, simi-
corrections at the critical point. We have carried out such amarly,
analysis for M XN lattices with isotropic interactionk,,

=K, =K. In this case the critical point is sinkkg=1 or, c1(£,Ke) =0,
equivalently, X.=In(y2+1) at which we expect to have
the expansion ’ C2(£,Ke) =0, (63

INZop n(Ke) =2MN 1 (Ke) +Necp (€,K¢)
+2MCZ(§7KC)+C3(§1KC)+ T (60)

295(0]2i¢) }
9,(0]2i £) 94(0]2i §)

[9,(01218)
1 N2 00210

If one takes the limit oN— o (M — ) first in Eq.(60),
while keepingM (N) finite, one obtains

1
Cal£.Ko) = g'n[

whereé=N/2M is the aspect ratio of the lattice. +In
The evaluation of terms in Eq60) was first carried out
by Ferdinand and Fishdid 2] for toroidal boundary condi-
tions. Following Ref.[12], as well as similar analyses for
dimer systemg$1,13], we have evaluated E@60) for other
boundary conditions. For theN2xX N Mobius strip, for ex- 1
ample, one starts with an explicit expressidty. (11)] for lim N
the partition function, and uses the Euler-MacLaurin formula N—ce
to evaluate the summations. The analysis is lengthy, even at
the critical point. We shall give details elsewhéief|, and
guote only the results, here

In ZZM,N(KC):ZM fbulk(Kc)+C1+Al/2M

+0(1M?),

1
lim =—InZ Ke)=Nfou(Ke) +Co+ A, /N+O(1N?),
C(£K ) =cM_ | K — 008768 ..., Jim oM am,N(Ke) bulk(K¢) T Cot+ Ay (1/N9)
(64)
CZ(§1KC):Ov (61) .
wherec,,Cc,,A;, andA, are constants. Results of our find-

1 1 2ﬂ§(0|i§) ings. are listed in Tablg _I above. Also listed are values for
Cc3(&,K)=—5In2+ —In[ - _ } toroidal boundary conditions taken from Rg12], and val-
2 127 9,(0[1€) 94(0i €) ues for the cylindrical boundary conditions computed by us
1 94(0]i €/2) — 9,4(0|i £12) using the solution given in Ref7]. S
+ Eln[1+ 20,0018 } For a lattice strip of infinite length and finite width, whose
3 free energy is of the form of Eq64), the conformal field
where theory [4] predicts{A;,A,}=c/24 (or wc/6), wherec is
the central charge, when the boundary condition in the finite

1 (= width direction is free or fixedor periodig. Thus numbers
| = ZL In( \/Esinq§+ V1+sirf¢$)d¢$=0.35308. . ., in the first two columns of Table | give rise to the value of
c=1/2. (65)

and 9;(u|7),i=2,3, and 4, are the Jacobi theta functions
[15] Likewise, numbers in the last two columns also yield
=1/2, provided that thétwisted Mobius boundary condi-

So(uln=23 q[”*(l’z)]zcos(Zn—l)u, tion is regarded as a free boundary.
n=1

VIl. SUMMARY
Sa(ul7) = 1+22 q”zcos Nu (62) We have solved and obtained closed-form expressions for
A=1 ’ the partition function of an Ising model on finite Mios
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strips and Klein bottles. The solution assumes differen{53) in which the generating functioﬁ;Km(zh,zv Z012,),
forms depending on wh_ether the width of the lattice is every,=tanhK,/2), is computed using Eq54). All solutions

or odd. For a 21 XN Mobius strip, where ® is its width, yield the same Onsager bulk free enef&y. (59)].

the partition funCtiOﬂZg"ﬁt,’N is given by Eq.(11), with F . We have also carried out finite-size analyses of all solu-
given by Eq.(12). For a (2M —1)x N Mobius strip, we em-  tions including that of the Ising model under cylindrical
ploy a trick by first considering aM X N lattice and then boundary conditions at criticality. The analyses yield a cen-
“fusing” it into the desired lattice by coalescing two rows of tral chargec=1/2, in agreement with the conformal field
spins. The resulting partition functiaByg> 1n is given by  prediction[4], provided that thetwisted Mobius boundary
Eqg. (30), in which the generating functio®(z,,z,,29,2;) is  condition is regarded as a free or fixed boundary.

Eq. (33) with the Pfaffians given by Eq35).

For a 2V X N Klein bottle the partition functioig,\',{"N is
given by Eg. (39) in which the generating function
GX"(z,,2,.2,,2) is given by Eq.(50). For a (M—1)XN This work was supported in part by National Science
Klein bottle the partition functiorzg,&“_lyN is given by Eq. Foundation Grant No. DMR-9980440.
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