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Ising model on nonorientable surfaces: Exact solution for the Mo¨bius strip and the Klein bottle
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Closed-form expressions are obtained for the partition function of the Ising model on anM3N simple-
quartic lattice embedded on a Mo¨bius strip and a Klein bottle. The solutions all lead to the same bulk free
energy, but for finiteM andN the expressions are different depending on whether the strip widthM is odd
or even. Finite-size corrections at criticality are analyzed and compared with those under cylindrical and
toroidal boundary conditions. Our results are consistent with the conformal field prediction of a central charge
c51/2, provided that the twisted Mo¨bius boundary condition is regarded as a free or fixed boundary.
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I. INTRODUCTION

There has been considerable recent interest@1–3# in
studying lattice models on nonorientable surfaces, both
new challenging unsolved lattice-statistical problems and
a realization and testing of predictions of the conformal fi
theory@4#. In a recent paper@1# we presented the solution o
dimers on the Mo¨bius strip and Klein bottle, and studied i
finite-size corrections. In this paper we consider the Is
model.

The Ising model in two dimensions was first solved
1944 by Onsager@5#, who obtained a closed-form expressio
of the partition function for a simple-quarticM3N lattice
wrapped on a cylinder. The exact solution for anM3N
lattice on a torus, namely, with periodic boundary conditio
in both directions, was obtained by Kaufman four years la
@6#. Onsager and Kaufman used spinor analysis to derive
solutions, and the solution under the cylindrical bound
condition was rederived later by McCoy and Wu@7# using
the method of dimers. More recently, we obtained the so
tion for a finite Ising lattice with a self-dual boundary co
dition @8#. As far as we know, these are the only know
solutions of the two-dimensional Ising model on finite la
tices with conventional boundary conditions.

Here, using the method of dimers, we derive exact exp
sions for the partition function of the Ising model on fini
Möbius strips and Klein bottles. As we shall see, as a c
sequence of the Mo¨bius topology, the solution assumes
form which depends on whether the width of the Mo¨bius
strip is even or odd. However, all solutions yield the sa
bulk free energy. We also present results of finite-size an
ses for corrections to the bulk solution, and compare w
those deduced under other boundary conditions. Our exp
calculations confirm that the central charge isc51/2, pro-
vided that the twisted Mo¨bius boundary condition is re
garded as a free or fixed boundary.

The organization of this paper is as follows. The partiti
function for a 2M3N Möbius strip is evaluated in Sec. I
with details given in Sec. III. The partition function for
(2M21)3N Möbius strip is evaluated in Sec. IV, and r
sults for the Klein bottle are given in Sec. V. In Sec. VI w
carry out a finite-size analysis for large lattices, and result
criticality are given for 2M3N lattices.
1063-651X/2001/63~2!/026107~9!/$15.00 63 0261
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II. 2 MÃN MÖBIUS STRIP

To begin with, we consider a 2M3N simple-quartic Ising
lattice L embedded on a Mo¨bius strip, whereM and N are
integers, 2M is the width, andN is the length of the strip,
which can be either even or odd. The Ising model has an
tropic reduced interactionsKh along the~horizontal! length
direction, andKv along the~vertical! width direction. The
example of a 435 Möbius stripL is shown in Fig. 1.

To facilitate considerations, it is convenient to let the ro
of N vertical edges located in the middle of the strip take
a different interactionK1, as shown. The desired result
then obtained by settingK15Kv . In addition, by setting
K150 the Möbius strip reduces to anM32N strip with a
‘‘cylindrical’’ boundary condition, namely, periodic in one
direction and free in the other, for which the partition fun
tion was evaluated by McCoy and Wu@7#. By settingK1
5` the two center rows of spins coalesce into a single r
with an ~additive! interaction, which in this case is 2Kh .
These are two key elements of our consideration.

Following standard procedures@7# we write the partition
function of the Ising model onL as

Z2M ,N
Mob ~Kh ,Kv ,K1!522MN~coshKh!2MN~coshKv!2(M21)N

3~coshK1!NG~zh ,zv ,z1!, ~1!

wherezh5tanhKh , zv5tanhKv , andz15tanhK1, and

FIG. 1. A 435 Möbius stripL. Vertices labeledA,B,C, andD
are repeated sites.
©2001 The American Physical Society07-1
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G~zh ,zv ,z1!5 (
closed polygons

zh
nhzv

nhz1
n1 ~2!

is the generating function of all closed polygonal graphs
L with edge weightszh , zv , andz1. Here,nh , nv , andn1
are the numbers of polygonal edges with weightszh , zv , and
z1, respectively.

The generating functionG(zh ,zv ,z1) is a multinomial in
zh , zv , andz1 and, due to the Mo¨bius topology, the intege
n1 can take on any value in$0,N%. Thus we have

G~zh ,zv ,z1!5 (
n150

N

Tn1
~zh ,zv!z1

n1 , ~3!

whereTn1
(zh ,zv) are polynomials inzh andzv with strictly

positive coefficients.
To evaluateG(zh ,zv ,z1), we again follow the usual pro

cedure of mapping polygonal configurations onL onto dimer
configurations on a dimer latticeLD of 8MN sites, con-
structed by expanding each site ofL into a ‘‘city’’ of four
sites@7–9#. The resultingLD for the 435 L is shown in Fig.
2.

Since the deletion of allz1 edges reduces the lattice to on
with a cylindrical boundary condition solved in Ref.@7#, we
orient all edges with weightszh ,zv , and 1 as in Ref.@7#. In
addition, allz1 edges are oriented in the direction shown
Fig. 2. Then we have the following theorem:

Theorem: Let A be the 8MN38MN antisymmetric deter-
minant defined by the lattice edge orientation shown in F
2, and let

PfA~zh ,zv ,z1!5AdetA~zh ,zv ,z1! ~4!

denote the Pfaffian ofA. Then

PfA~zh ,zv ,z1!5 (
n150

N

en1
Tn1

~zh ,zv!z1
n1 , ~5!

FIG. 2. The dimer latticeLD corresponding to the 435 Möbius
strip. The cities are numbered from 1 to 20, and the six edges w
each city all carry the weight 1.
02610
n

.

wheree4m5e4m1151 ande4m125e4m13521 for any in-
tegerm>0.

Remark: Define

Xp5 (
m50

[N/4]

T4m1p~zh ,zv!z1
4m1p , p50,1,2, and 3, ~6!

where @N/4# is the integral part of N/4, so that
G(zh ,zv ,z1)5X01X11X21X3. It then follows from Eq.
~5! that we have

PfA~zh ,zv ,6 iz1!5X01X26 i ~X11X3!. ~7!

As a consequence, we obtain

G~zh ,zv ,z1!5 1
2 @~12 i !PfA~zh ,zv ,iz1!

1~11 i !PfA~zh ,zv ,2 iz1!#, ~8!

where, as evaluated in the next section, the Pfaffian is gi
by

PfA~zh ,zv ,z1!

5@zv~12zh
2!#MN

3 )
n51

N Fsinh~M11!t~fn!2c~z1!sinhMt~fn!

sinht~fn! G , ~9!

with

c~z1!5
zv

2~11zh
212zhcosfn!12~21!nz1zhsinfn

zv~12zh
2!

,

cosht~f!5
cosh 2Khcosh 2Kv2sinh 2Khcosf

sinh 2Kv
, ~10!

fn5~2n21!p/2N.

Here we have used the fact that)n51
N 5)n5N11

2N in the prod-
uct in Eq. ~9!. Substituting these results into Eq.~1!, and
settingK15Kv , we are led to the following explicit expres
sion for the partition function:

Z2M ,N
Mob ~Kh ,Kv ,Kv!5 1

2 ~2 sinh 2Kv!MN~coshKv!2N

3@~12 i !F11~11 i !F2#, ~11!

where

F65 )
n51

N FeMt(fn)S et(fn)2c~6 izv!

2 sinht~fn! D
2e2Mt(fn)S e2t(fn)2c~6 izv!

2 sinht~fn! D G . ~12!

This completes the evaluation of the Ising partition functi
for the 2M3N Möbius strip. For example, for a 235 Mö-
bius strip, this leads to

in
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PfA~zh ,zv ,z1!511zh
10110z1zh

525z1
2zh

2~11zh
21zh

41zh
6!

220z1
3zh

515z1
4zh

4~11zh
2!12z1

5zh
5 ,

G~zh ,zv ,z1!511zh
10110z1zh

515z1
2zh

2~11zh
21zh

41zh
6!

120z1
3zh

515z1
4zh

4~11zh
2!12z1

5zh
5 , ~13!

which can be verified by explicit enumerations.
Note that we have cosht(fn)>1, so we can always tak

t(fn)>0. For largeM, the leading contribution in Eq.~12! is
therefore

F6; )
n51

N

eMt(fn), ~14!

and, hence, from Eq.~11!,

1

2MN
ln Z2M ,N

Mob ~Kh ,Kv ,Kv!;
1

2
ln~2 sinh 2Kv!

1
1

2N (
n51

N

t~fn!. ~15!

We now prove the theorem.
Considered as a multinomial inzh , zv , andz1, there ex-

ists a one-to-one correspondence between terms in the d
generating functionG(zh ,zv ,z1) and ~linear combinations
of! terms in the Pfaffian@Eq. ~4!#. However, while all terms
in G(zh ,zv ,z1) are positive, terms in the Pfaffian do n
necessarily possess the same sign. The crux of the mat
to find an appropriate linear combination of Pfaffians to yie
the desiredG(zh ,zv ,z1). For this purpose it is convenient t
compare an arbitrary termC1 in the Pfaffian with a standard
oneC0. We chooseC0 to be a term in which nozh , zv , and
z1 dimers are present.

The superposition of two dimer configurations rep
sented byC0 and C1 produces superposition polygon
Kasteleyn@10# showed that the two terms will have the sam
sign if edges ofLD can be oriented such that all superpo
tion polygons are oriented ‘‘clockwise-odd,’’ namely, th
there be an odd number of edges oriented in the clockw
direction.

Now since allzh , zv , and 1 edges ofLD are oriented as
in Ref. @7#, terms in the Pfaffian with noz1 edges (n150)
will have the same sign asC0. To determine the sign of a
term whenz1 edges are present, we associate a1 sign with
each clockwise-odd superposition polygon, and a2 sign to
each clockwise-even superposition polygon. Then the sig
C1 relative toC0 is the product of the signs of all superp
sition polygons. The following elementary facts can
readily verified.

~i! Deformations of the borders of a superposition po
gon always changem1, the number ofits z1 edges, by mul-
tiples of 2.

~ii ! The sign of a superposition polygon is reversed un
border deformations which changem1 by 2.

~iii ! Superposition polygons having 0 or 1z1 edges have a
sign 1.
02610
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~iv! There can be at most one superposition polygon h
ing an odd number ofz1 edges, a property unique to nonor
entable surfaces.

Let m154m1p, wherem is an integer andp50,1,2, and
3. Because of point~iv!, we need only to consider the pre
ence of at most one polygon havingp51 or 3. It now fol-
lows from points~i! and~iii ! thate4m5e4m1151, and from
points ~i!, ~ii !, and ~iii ! that e4m125e4m1352. This estab-
lishes the theorem.

III. EVALUATION OF THE PFAFFIAN

We now derive expression~9!. From the edge orientation
of LD of Fig. 2, one finds that the 8MN38MN antisymmet-
ric matrix A assumes the form

A~zh ,zv ,z1!5A0~zv! ^ I 2N1A1~zh! ^ J2N1A2~zh! ^ J2N
T

1A1~z1! ^ H2N , ~16!

whereA0 , A1 , A2 , andA1 are 4M34M matrices,I 2N is
the 2N32N identity matrix, andJ2N andH2N are 2N32N
matrices:

J2N5S 0 1 0 ••• 0

0 0 1 ••• 0

A A A � A

0 0 0 ••• 1

21 0 0 ••• 0

D , H2N5S 0 I N

2I N 0 D .

~17!

In addition, one has

A0~zv!5a0,0^ I M1a0,1~zv! ^ FM1a0,21~zv! ^ FM
T ,

A6~zh!5a61,0~zh! ^ I M , ~18!

A1~z1!5a~z1! ^ GM ,

whereFM andGM areM3M matrices:

FM5S 0 1 0 ••• 0

0 0 1 ••• 0

A A A � A

0 0 0 ••• 1

0 0 0 ••• 0

D ,

GM5S 0 0 ••• 0 0

0 0 ••• 0 0

A A � A A

0 0 ••• 0 0

0 0 ••• 0 1

D , ~19!

FM
T is the transpose ofFM , and
7-3
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a0,05S 0 1 21 21

21 0 1 21

1 21 0 1

1 1 21 0

D , a~z!5S 0 0 0 0

0 0 0 0

0 0 z 0

0 0 0 0

D ,

a1,0~z!5S 0 z 0 0

0 0 0 0

0 0 0 0

0 0 0 0
D , a0,1~z!5S 0 0 0 0

0 0 0 0

0 0 0 z

0 0 0 0

D ,

~20!

a21,0~z!52a1,0
T ~z!, a0,21~z!52a0,1

T ~z!.

We use the fact that the determinant in Eq.~4! is equal to the
t

th

02610
product of the eigenvalues of matrixA. To evaluate the lat-
ter, we note thatJ2N ,J2N

T , and H2N mutually commute, so
that they can be diagonalized simultaneously. This lead
the respective eigenvalueseifn,e2 ifn and i (21)n11 and the
expression

detA~zh ,zv ,z1!5 )
n51

2N

detAM~zh ,zv ,z1 ;fn!, ~21!

where

AM~zh ,zv ,z1 ;fn!5A0~zv!1A1~zh!eifn1A2~zh!e2 ifn

1 i ~21!n11A1~z1! ~22!

is a 4M34M matrix. Writing this out explicitly, we have
AM~zh ,zv ,z1 ;fn!5S B~zh! a0,1~zv! 0

a0,21~zv! B~zh! a0,1~zv! 0

A A � A A

0 a0,21~zv! B~zh! a0,1~zv!

0 a0,21~zv! C~zh ,z1!

D , ~23!
2
,

whereC(z,z1)5B(z)1 i (21)n11a(z1), and

B~z!5S 0 11zeifn 21 21

2~11ze2 ifn! 0 1 21

1 21 0 1

1 1 21 0

D .

~24!

The evaluation of detAM(zh ,zv ,z1 ;fn) can be carried ou
by using a recursive procedure introduced in Ref.@8#. Spe-
cifically, let BM5BM(fn)5detAM(zh ,zv ,z1 ;fn), and DM
be the determinant of the matrixAM(zh ,zv ,z1 ;fn) with the
fourth row and fourth column removed. Then we have

PfA~zh ,zv ,z1!5AdetA~zh ,zv ,z1!5 )
n51

2N

ABM~fn!.

~25!

Furthermore, by expanding the determinants one finds
recursion relation~which is the same as that in Ref.@8# when
zh5zv5z),

S BM

DM
D 5S a11 a12

a21 a22
D S BM21

DM21
D , M>2, ~26!

with

a11511zh
222zhcosfn ,
e

a12522izv
2zhsinfn , ~27!

a2152izhsinfn ,

a225zv
2~11zh

212zhcosfn!,

and the initial conditions~which are different from Ref.@8#!

B1[B1~zh ,z1!511zh
222zhcosfn22~21!nz1zhsinfn ,

D1[D1~zh ,z1!52izhsinfn2 i ~21!nz1~11zh
2

12zhcosfn!. ~28!

This leads to the solutions

BM~fn!5B1

l1
M2l2

M

l12l2
2~a22B12a12D1!

l1
M212l2

M21

l12l2
,

DM~fn!5D1

l1
M2l2

M

l12l2
2~a11D12a21B1!

l1
M212l2

M21

l12l2
,

~29!

where l65zv(12zh
2)e6t(fn) are the eigenvalues of the

32 matrix in Eq.~26!. After some algebraic manipulation
from Eqs.~25! and ~29! we obtain the expression@Eq. ~9!#
quoted in Sec. II.
7-4
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IV. „2MÀ1…ÃN MÖBIUS STRIP

The (2M21)3N Möbius strip is considered in this sec
tion. In order to make use of results of the preceding s
tions, we start from the 2M3N Möbius strip of Sec. II, and
let spins in the two center rows of the strip@the M th and
(M11)th rows# having interactionsK05Kh/2. The example

FIG. 3. Labelings of a 435 Möbius strip which reduces to a
335 Möbius strip upon takingK15`.
t
in

e

02610
c-

of a 435 lattice with these interactions is shown in Fig.
Then, by takingK15` (z151), as described in Sec. I, thi
lattice reduces to the desired (2M21)3N Möbius strip of
uniform interactionsKh andKv .

Following this procedure, we have

Z2M21,N
Mob ~Kh ,Kv!52(2M21)N~coshKhcoshKv!2(M21)N

3cosh2N~Kh/2!G~zh ,zv ,z0 ,z1!uz151 ,

~30!

wherez05tanh(Kh/2), andG(zh ,zv ,z0 ,z1) is the generating
function of closed polygons on the 2M3N Möbius net with
edge weights as described above.

The generating functionG(zh ,zv ,z0 ,z1) can be evaluated
as in the previous sections. In place of Eq.~25!, we now have

PfA~zh ,zv ,z0 ,z1!5 )
n51

2N

AdetAM~zh ,zv ,z0 ,z1 ;fn!,

~31!

where
AM~zh ,zv ,z0 ,z1 ;fn!5S B~zh! a0,1~zv! 0

a0,21~zv! B~zh! a0,1~zv! 0

A A � A A

0 a0,21~zv! B~zh! a0,1~zv!

0 a0,21~zv! C~z0 ,z1!

D . ~32!
a

Then Eq.~8! becomes

G~zh ,zv ,z0 ,z1!5 1
2 @~12 i !PfA~zh ,zv ,z0 ,iz1!

1~11 i !PfA~zh ,zv ,z0 ,2 iz1!#.

~33!

The evaluation of detAM(zh ,zv ,z0 ,z1 ;fn) can again be
done recursively. As before, define BM

5detAM(zh ,zv ,z0 ,z1 ;fn), and letDM be the determinan
of AM with the fourth row and column removed; one aga
obtains recursion relations~26!, and arrives at precisely th
same solution@Eq. ~29!#, but now with different initial con-
ditions

B15B1~z0 ,z1!, D15D1~z0 ,z1!, ~34!

where the functionsB1 and D1 are as defined in Eq.~28!.
After some algebra, this leads to the solution
PfA~zh ,zv ,z0 ,z1!

5@zv~12zh
2!# (M21)N

3 )
n51

N Fc1sinhMt~fn!2c2sinh~M21!t~fn!

sinht~fn! G ,
~35!

where

c15
2z0

zh
$12zh@cosfn1~21!nz1sinfn#%,

c252z0zvH 1

zh
1@cosfn1~21!nz1sinfn#J . ~36!

The substitution of Eq.~35! into Eqs. ~33! and ~30! now
completes the evaluation of the partition function for
(2M21)3N Möbius strip.
7-5
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V. KLEIN BOTTLE

The Ising model on a Klein bottle can be considered si
larly. We first consider a 2M3N lattice L, constructed by
connecting the upper and lower edges of the Mo¨bius strip of
Fig. 1 in a periodic fashion withN extra vertical edges. As in
the case of the Mo¨bius strip, it is convenient to let the extr
edges have interactionsK2. The desired solution is obtaine
at the end by settingK15K25Kv .

The Ising partition function for the Klein bottle now as
sumes the form

Z2M ,N
Kln ~Kh ,Kv ,K1 ,K2!

522MN~coshKh!2MN~coshKv!2(M21)N

3~coshK1coshK2!NGKln~zh ,zv ,z1 ,z2!,

~37!

where

GKln~zh ,zv ,z1 ,z2!5 (
closed polygons

zh
nhzv

nvz1
n1z2

n2 ~38!

generates all closed polygons on the 2M3N lattice L with
edge weightszi5tanhKi , i 5h,v,1, and 2. The desired par
tition function is then given by

Z2M ,N
Kln ~Kh ,Kv ,Kv ,Kv!

522MN~coshKhcoshKv!2MNGKln~zh ,zv ,zv ,zv!.

~39!

Again, it is convenient to first writeGKln(zh ,zv ,z1,z2) as a
multinomial in zh ,zv ,z1, andz2 in the form of

GKln~zh ,zv ,z1 ,z2!5 (
m,n50

N

Tm,n~zh ,zv!z1
mz2

n , ~40!

whereTm,n(zh ,zv) are polynomials inzh andzv with strictly
positive coefficients.

The evaluation of GKln(zh ,zv ,z1,z2) parallels that of
G(zh ,zv ,z1) for the Möbius strip. One first maps the lattic
L into a dimer latticeLD by expanding each site into a cit
of four sites, as shown in Fig. 2. Orient allkh , kv , andk1
edges ofLD as shown, and orient allk2 edges in the same
~downward! direction as thek1 edges. Then this defines a
8MN38MN antisymmetric matrix obtained by adding a
extra term toA(zh,zv,z1) given by Eq.~16!, namely,

AKln~zh ,zv ,z1 ,z2!5A~zh ,zv ,z1!1b~z2! ^ GM8 ^ H2N .
~41!

Here

b~z2!5S 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2z2

D ,
02610
i-

GM8 5S 1 0 ••• 0 0

0 0 ••• 0 0

A A � A A

0 0 ••• 0 0

0 0 ••• 0 0

D . ~42!

Then, in place of theorem~5!, we now have

PfAKln~zh ,zv ,z1 ,z2!5 (
m,n50

N

emenTm,n~zh ,zv!z1
mz2

n ,

~43!

from which, in a similar manner, one obtains the result

GKln~zh ,zv ,z1 ,z2!5 1
2 @PfAKln~zh ,zv ,iz1 ,2 iz2!

1PfAKln~zh ,zv ,2 iz1 ,iz2!

2 i PfAKln~zh ,zv ,iz1 ,iz2!

1 i PfAKln~zh ,zv ,2 iz1 ,2 iz2!#.

~44!

To evaluate the Pfaffian~43!, we note that matrix~41! can
again be diagonalized in the$2N% subspace, yielding

PfAKln~zh ,zv ,z1 ,z2!5 )
n51

2N

AdetAM
Kln~zh ,zv ,z1 ,z2 ;fn!,

~45!

where

AM
Kln~zh ,zv ,z1 ,z2 ;fn!5AM~zh ,zv ,z1 ;fn!

1 i ~21!n11b~z2! ^ GM8 . ~46!

Now we expand detAM
Kln in z2. Since, upon settingz250, the

determinant is preciselyBM and the term linear inz2, the
$4,4% element of the determinant, is by definitionDM , one
obtains

detAM
Kln~zh ,zv ,z1 ,z2 ;fn!5BM1 i ~21!nz2DM , M>2,

~47!

whereBM andDM were already computed in Eq.~29!. This
leads to

PfAKln~zh ,zv ,z1 ,z2!

5S 11
z1z2

zv
2 D N

@zv~12zh
2!#MN3

3 )
n51

N Fsinh~M11!t2c~z1 ,z2!sinhMt

sinht G ,
~48!

where
7-6
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c~z1 ,z2!5
1

zv~12zh
2!~zv

21z1z2!
@~11zh

2!~zv
41z1z2!

12zh~zv
42z1z2!cosfn12~21!n

3~z11z2!zhzv
2sinfn#. ~49!

Settingz15z25zv in Eq. ~44! and using Eq.~48!, after some
algebra one obtains

GKln~zh ,zv ,zv ,zv!5@zv~12zh
2!#MNF )

n51

N

2 coshMt~fn!

1Im)
n51

N S sinhMt~fn!

sinht~fn!
D~fn! D G ,

~50!

where

D~fn!5
1

zv~12zh
2!

@~11zh
2!~12zv

2!22zh~11zv
2!cosfn

24i ~21!nzhzvsinfn#, ~51!

and Im denotes the imaginary part. The substitution of
~50! into Eq. ~39! now completes the evaluation of the pa
tition function for a 2M3N Klein bottle.

For a 232 Klein bottle, for example, one finds

PfAKln~zh ,zv ,z1 ,z2!511zh
414~z11z2!zh

222~z1
21z2

2!zh
2

12z1z2~11zh
2!224z1z2~z11z2!zh

2

1z1
2z2

2~11zh
4!,

GKln~zh ,zv ,z1 ,z2!511zh
414~z11z2!zh

212~z1
21z2

2!zh
2

12z1z2~11zh
2!214z1z2~z11z2!zh

2

1z1
2z2

2~11zh
4!, ~52!

which can be verified by explicit enumerations.
For a (2M21)3N Klein bottle we can proceed as abov

by first considering a 2M3N Klein bottle with interactions
Kh ,Kv ,K1, andK2 and, within the center two rows, interac
tions K05Kh/2, as shown in Fig. 3. This is followed b
taking K1→` andK25Kv . Thus, in place of Eq.~39!, we
have

Z2M21,N
Kln ~Kh ,Kv!52(2M21)N~coshKh!2MN

3~coshKv!(2M23)Ncosh2N~Kh/2!

3GKln~zh ,zv ,z0,1,zv!, ~53!

where z05tanh(Kh/2), andGKln(zh ,zv ,z0 ,z1 ,z2) generates
polygonal configurations on the 2M3N lattice with weights
as shown. Then, as in the above, we find
02610
.

GKln~zh ,zv ,z0 ,z1 ,z2!5 1
2 @PfAKln~zh ,zv ,z0 ,iz1 ,2 iz2!

1PfAKln~zh ,zv ,z0 ,2 iz1 ,iz2!

2 i PfAKln~zh ,zv ,z0 ,iz1 ,iz2!

1 i PfAKln~zh ,zv ,z0 ,2 iz1 ,2 iz2!#,

~54!

where PfAKln(zh ,zv ,z0,z1,z2) is found to be given by the right
hand side of Eq.~35!, but now with

c15~11z0
2!~12z1z2!22z0~11z1z2!

3cosfn22~21!n~z11z2!z0sinfn ,

c25
1

zv~12zh
2!

$~zv
21z1z2!@~12zhz0!21~zh2z0!2#

12~zh2z0!~12zhz0!@~zv
22z1z2!cosfn

1~21!n~zv
2z11z2!sinfn#%, ~55!

expressions which are valid for arbitraryzh ,zv ,z0 ,z1, and
z2. For z05tanh(Kh/2), the case we are considering, Eq.~55!
reduces to

c15
2z0

zh
@12z1z22zh~11z1z2!cosfn

2~21!nzh~z11z2!sinfn#,

c25
2z0

zhzv
@zv

21z1z21zh~zv
22z1z2!cosfn

1~21!nzh~zv
2z11z2!sinfn# ~56!

@which reduces further to Eq.~36! after settingz250#. The
explicit expression for the partition function is now obtain
by substituting Eq.~54! into Eq. ~53!.

VI. BULK LIMIT AND FINITE-SIZE CORRECTIONS

In the thermodynamic limit, our solutions of the Isin
partition function give rise to a bulk ‘‘free energy’’

f bulk~Kh ,Kv!5 lim
M ,N→`

1

2MN
ln Z~Kh ,Kv!. ~57!

Here,Z(Kh ,Kv) is any one of the four partition functions
For example, using the solutionZ2M ,N

Mob given by Eq.~15! for
the 2M3N Möbius strip, one obtains

f bulk~Kh ,Kv!5
1

2
ln~2 sinh 2Kv!1

1

2pE0

p

df t~f!,

~58!

wheret(f) is given by Eq.~10!. This leads to the Onsage
solution
7-7
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f bulk~Kh ,Kv!5 ln 21
1

2p2E
0

p

dfE
0

p

du

3 ln@cosh 2Khcosh 2Kv2sinh 2Khcosu

2sinh 2Kvcosf!]. ~59!

Steps leading from Eq.~58! to Eq. ~59! can be found, for
example, in Ref.@11#. The bulk free energyf bulk(Kh ,Kv) is
nonanalytic at the critical point sinh 2Khsinh 2Kv51.

For large M and N, one can use the Euler-MacLaur
summation formula to evaluate corrections to the bulk f
energy. For the purpose of comparing with the conform
field predictions@4#, it is of particular interest to analyz
corrections at the critical point. We have carried out such
analysis for 2M3N lattices with isotropic interactionsKh
5Kv5K. In this case the critical point is sinh 2Kc51 or,
equivalently, 2Kc5 ln(A211) at which we expect to hav
the expansion

ln Z2M ,N~Kc!52MN fbulk~Kc!1Nc1~j,Kc!

12Mc2~j,Kc!1c3~j,Kc!1•••, ~60!

wherej5N/2M is the aspect ratio of the lattice.
The evaluation of terms in Eq.~60! was first carried out

by Ferdinand and Fisher@12# for toroidal boundary condi-
tions. Following Ref.@12#, as well as similar analyses fo
dimer systems@1,13#, we have evaluated Eq.~60! for other
boundary conditions. For the 2M3N Möbius strip, for ex-
ample, one starts with an explicit expression@Eq. ~11!# for
the partition function, and uses the Euler-MacLaurin form
to evaluate the summations. The analysis is lengthy, eve
the critical point. We shall give details elsewhere@14#, and
quote only the results, here

c1~j,Kc![c1
Mob5I 2Kc520.087 618 . . . ,

c2~j,Kc!50, ~61!

c3~j,Kc!52
1

2
ln 21

1

12
lnF 2q3

2~0u i j!

q2~0u i j!q4~0u i j!
G

1
1

2
lnF11

q3~0u i j/2!2q4~0u i j/2!

2q3~0u i j! G
where

I 5
1

2pE0

p

ln~A2 sinf1A11sin2f!df50.353 068 . . . ,

and q i(uut),i 52,3, and 4, are the Jacobi theta functio
@15#

q2~uut!52(
n51

`

q[n2(1/2)]2cos~2n21!u,

q3~uut!5112(
n51

`

qn2
cos 2nu, ~62!
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q4~uut!5112(
n51

`

~21!nqn2
cos 2nu,

with q5eipt. For the 2M3N Klein bottle, we find, simi-
larly,

c1~j,Kc!50,

c2~j,Kc!50, ~63!

c3~j,Kc!5
1

6
lnF 2q3

2~0u2i j!

q2~0u2i j!q4~0u2i j!
G

1 lnF11A q2~0u2i j!

2q3~0u2i j!
G .

If one takes the limit ofN→` (M→`) first in Eq. ~60!,
while keepingM ~N! finite, one obtains

lim
N→`

1

N
ln Z2M ,N~Kc!52M f bulk~Kc!1c11D1 /2M

1O~1/M2!,

lim
M→`

1

2M
ln Z2M ,N~Kc!5N fbulk~Kc!1c21D2 /N1O~1/N2!,

~64!

wherec1 ,c2 ,D1, andD2 are constants. Results of our find
ings are listed in Table I above. Also listed are values
toroidal boundary conditions taken from Ref.@12#, and val-
ues for the cylindrical boundary conditions computed by
using the solution given in Ref.@7#.

For a lattice strip of infinite length and finite width, whos
free energy is of the form of Eq.~64!, the conformal field
theory @4# predicts$D1 ,D2%5pc/24 ~or pc/6), wherec is
the central charge, when the boundary condition in the fin
width direction is free or fixed~or periodic!. Thus numbers
in the first two columns of Table I give rise to the value o

c51/2. ~65!

Likewise, numbers in the last two columns also yieldc
51/2, provided that the~twisted! Möbius boundary condi-
tion is regarded as a free boundary.

VII. SUMMARY

We have solved and obtained closed-form expressions
the partition function of an Ising model on finite Mo¨bius

TABLE I. Results of our findings for different configurations

Cylindrical Toroidal Möbius Klein

c1 c1
Mob 0 c1

Mob 0
c2 0 0 0 0
D1 p/48 p/12 p/48 p/12
D2 p/12 p/12 p/48 p/48
7-8
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strips and Klein bottles. The solution assumes differ
forms depending on whether the width of the lattice is ev
or odd. For a 2M3N Möbius strip, where 2M is its width,
the partition functionZ2M ,N

Mob is given by Eq.~11!, with F6

given by Eq.~12!. For a (2M21)3N Möbius strip, we em-
ploy a trick by first considering a 2M3N lattice and then
‘‘fusing’’ it into the desired lattice by coalescing two rows o
spins. The resulting partition functionZ2M21,N

Mob is given by
Eq. ~30!, in which the generating functionG(zh ,zv ,z0 ,z1) is
Eq. ~33! with the Pfaffians given by Eq.~35!.

For a 2M3N Klein bottle the partition functionZ2M ,N
K ln is

given by Eq. ~39! in which the generating function
GK ln(zh ,zv ,zv ,zv) is given by Eq.~50!. For a (2M21)3N
Klein bottle the partition functionZ2M21,N

K ln is given by Eq.
v.

l

02610
t
n
~53! in which the generating functionGK ln(zh ,zv ,z0,1,zv),
z05tanh(Kh/2), is computed using Eq.~54!. All solutions
yield the same Onsager bulk free energy@Eq. ~59!#.

We have also carried out finite-size analyses of all so
tions including that of the Ising model under cylindric
boundary conditions at criticality. The analyses yield a ce
tral chargec51/2, in agreement with the conformal fiel
prediction@4#, provided that the~twisted! Möbius boundary
condition is regarded as a free or fixed boundary.
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@4# H.W.J. Blöte, J.L. Cardy, and M.P. Nightingale, Phys. Re

Lett. 56, 742 ~1986!.
@5# L. Onsager, Phys. Rev.65, 117 ~1944!.
@6# B. Kaufman, Phys. Rev.76, 1232~1949!.
@7# B.M. McCoy and T.T. Wu,The Two-dimensional Ising Mode

~Harvard University Press, Cambridge, MA, 1973!.
@8# W.T. Lu and F.Y. Wu, Physica A258, 157 ~1998!.
@9# P.W. Kasteleyn, J. Math. Phys.4, 287 ~1963!.
@10# P.W. Kasteleyn, Physica~Amsterdam! 27, 1209~1961!.
@11# See, for example, K. Huang,Statistical Mechanics~Wiley,

New York, 1987!, p. 387.
@12# A.S. Ferdinand and M.E. Fisher, Phys. Rev.185, 832 ~1969!.
@13# A.E. Ferdinand, J. Math. Phys.8, 2332~1967!.
@14# W.T. Lu, Ph.D thesis, Northeastern University, 2001.
@15# I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series

and Products~Academic Press, New York, 1994!, 8.180.
7-9


