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Hysteresis effects in spin systems with quenched disorder
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We present detailed numerical results for hysteresis effects in spin-glass systems. In particular, we focus on
the dependence of hysteresis loop areaardisorder amplitude an¢b) frequency of the applied magnetic
field.
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[. INTRODUCTION a brief overview of the results known in the context of hys-
teresis in spin systems. In Sec. Ill, we discuss the soft-spin
There has been intense research interest in the static afdherrington-Kirkpatrick(SK) model and its dynamics. The
dynamical properties of spin glasses, which consist of magde'[a”ed numerical results obtained from our simulations are
netic impurities random|y p|aced in a host |att|{;]5_4] presented in Sec. lll. In Sec. IV, we present a discussion and
These systems exhibit many properties analogous to those 8#mmary of our results.
structural glasses, e.g., slow relaxation, multiplicity of meta-
stable states, etc. However, the physical origins of these Il. OVERVIEW OF KNOWN RESULTS
properties are considerably different. In structural glasses,
slow dynamics results from the trapping of particles in cages
comprised of other particles. In spin glasses, slow evolutior?
results from the effects of quenched disorder and frustratior!!
Experimental observations on spin glasses are usually in-
terpreted in terms of phenomenological models with compli- A. Pure spin systems

cated free-energy landscapes, having deep valleys separated|, early work, Agarwal and Shendi] formulated gen-

by randomly distributed barriers. This complex free-energyeral conditions for the existence and nature of hysteresis
landscape leads to frequent trapping in local minima and thgyops, elucidating the role of various relevant time scales. An
consequent breakdown of ergodicity in phase space, i.e., thfportant work in the context of our present discussion is
system cannot access all states over the duration of a typicglie to Junget al. [6], who studied the hysteretic response of
laboratory experiment. Because of the long time scales iny single, continuous spin in a bistable potential. The loop
volved in spin-glass dynamics, most experimental systemgrea is perhaps the most important quantitative characteristic
should be understood as being effectively nonequilibriumpf the hysteresis loop as it is proportional to the heat dissi-
systems. pated during a field cycle. Jurej al. obtained an analytical

An important nonequilibrium property of spin systems, in expression for the loop area at small frequencies, i.e.,
general(and spin glasses, in particulas that of magnetic

hysteresis. Typically, when an oscillating magnetic field is A(w,hg)=A(0hg) +aw?3(h3—h2)% (1)
applied to an ordinary spin system, the response is delayed—

leading to hysteresis effects. The magnitude of hysteresis ishere A(w,hy) denotes the loop area for an external mag-
determined by the competition between experimental timanetic fieldhgcost); anda,h, are constants. Jurgj al. also
scales(measured by the inverse frequency of the appliedverified their analytical result, both numerically and experi-
perturbation and the spin relaxation time scale. The phe-mentally. Studies of the single-spin dynamics can also be
nomenon of hysteresis has received considerable attention thought of as a mean-field limit of the coupled-spin dynam-
the context of both pure and disordered spin systems, whictes we will discuss subsequently,

we will review shortly. Bose and Sarkdi7,8] extended the work of Jurgg al.[6]

In this paper, we focus upon hysteresis effects in spinin two important directions. First, they analytically obtained
glass systems. We will consider two relevant cases, (ag., area-scaling laws valid for an extended region bf,w)
weak-disorder limit, where the system is in the paramagnetivalues [7]. Secondly, they studied the effects of thermal
phase, andb) strong disorder limit, where the system is in noise on area-scaling laws and the dynamical symmetry-
the spin-glass phase. We have already remarked that relakreaking transitio8].
ation in disordered systems is characterized by a wide spec- The next class of studies we discuss involves interactng
trum of relaxation times. Thus, the hysteretic response irspin systems. In early work, Ra al.[9] numerically stud-
these systems will be determined by a competition betweeied hysteresis loops in interacting spin systems at tempera-
the experimental time scal@verse frequengyand a multi-  tures below the ordering temperature. They considered two
tude of internal time scales. This problem has been the suldifferent cases(a) Ising model with Monte CarldMC) ki-
ject of some preliminary studies, which we discuss later. netics, for which they obtained qualitative resu(ts. Lange-

This paper is organized as follows. In Sec. Il, we providevin studies of the time-dependent Ginzburg-Land@DGL)

As we have remarked earlier, hysteresis effects in spin
ystems have been extensively studied in the literature. Let
s briefly review some of the known results in this context.
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model with O(n) symmetry in the limitn—oco. For this  critical temperaturd . After all, there is no reason to expect
model, their numerical results for low fregeuncies suggestedignatures of an equilibrium phase transition in a nonequilib-
an area-scaling lawA(w,hg) ~ »*hZ®. Subsequently, Dhar rium situation.

and Thomag$10] analytically studied casg@) above and ob- Another interesting work in this context is due to Sethna
tained the resulm(w,h0)~w1’2h(1)’2—at variance with the etal. [18], who studied hysteretic effects in th€=0
numerical results of Raet al.[9]. random-field Ising model. These authors primarily focused
More extensive MC simulations of the Ising model in an upon the universal nature of distribution of domain ava-
oscillating field were conducted by Lo and Pelcoyitd].  lanches along the hysteresis loop and their relation to

Furthermore, Sengupet al. [12] also studied this problem Barkhausen noise. ' . _ _
through a cell dynamical simulation. Both sets of authors Many authors have also investigated hysteresis effects in

again found that an area-scaling law was valid at low fre-Spin glasses. Let us first discuss relevant experimental works.
quencies, namelyA(w,ho)~w®h?, with @=0.40 and B Most experimental studies have been in the SG phase, where
) 1 0 - V.

~0.47. Furthermore, Acharyya and Chakrabfi8,14 have a wide variation in .the shapes of hystere5|$ I.oops has been
) ) . . categorized. Experimental results also exhibit a strong de-
also performed MC simulations of the Ising model in an

oscillating field and have obtained scaling laws for the loo pendence on the magnetic history of the system, e.g., the

id fval dt tUrE pIoops are of different shapes depending on whether the sys-
area over a wide range of valuesitf,», and temperaturg. . .tem is prepared by “zero-field cooling” or “field cooling”

tﬁ]. We do not review here the range of experimentally ob-

diff_er(_ent scaling laws in dif_ferent windows otsho) space. served hysteresis loops but merely provide some relevant
This is clearly not satisfying and suggests that the abov?ieferenceilg—za

studies may be seeing only limited ranges of a more genera
behavior of the loop are&(w,hp). This is the approach
emphasized by Sidest al. [15-17 in a comprehensive
study of this problem. Essentially, these authors argue th
the hysteresis loop in pure Ising systefasd the associated
dynamical phase transitionshould be interpreted in terms
of decay of metastable phases through nucleation and grow
of (single or multiple droplets. This leads to asymptotically a

logarithmic dependencies @(w,ho) on » and hy. How- (i) Hysteresis loops observed for the Ising glass with zero
ever, the modulations are extremely slow ak(o,ho) ap- ferromagnetic bias are smooth and continuous—in qualita-

pears to exhibit power-law scaling even over a few decadeﬁve agreement with results for dilute AuFe systefis].
of parameter values. Of course, the “power-law” exponents i\ “sharp magnetization reversals are only observed for

are dependentl c;ln thelwmdc;w of parameters one _foclusqgmg glasses with strong ferromagnetic bias. In this case, the
upon. Sidest al. have also peformed extensive MC simula-  staresis loops are qualitatively similar to those seen for

tions of hysteresis in kinetic Ising models, which both guide 5 e concentrated AuFe systefd9], as well as CuMn and
and confirm their analytical arguments. We believe that th%gMn systemg 21,22, ’

work of Sideset al. provides an overview of hysteresis in (iii) Displaced hysteresis loops were only observed for

pure Ising systems, which systematizes the earlier obsenVgygisenberg glasses. Experimentally, displaced loops are seen

tions of diverse exponents. : L . : .
- . . . . n glasses containing Mn under special preparation condi-
This discussion has attempted to provide a brief review O{ior?s [20-22. g P prep

hysteresis effects in pure systems. We hope that the main \,merical studies of hysteresis effects in Heisenberg

thrust of vari(_Jus studies has been clarified, namely, to estalyacses have also been undertaken by Dasgupta and Yao
I|sh_ the functional dependence of the hyst'ere3|s I.oop area 9] \who also include anisotropy through the DM interac-
various system parame_ters_. The same attltUQe will alsp 9uidgyn . pasgupta and Yao found that weak anisotropy effects
our subsequent investigations of hysteresis loops in SPiBromote the rigidity of the spin system during rotation and
glasses. inversion of magnetization, and there is a decrease in the
sharpness of the hysteresis loop with increasing anisotropy.
This provides an independent mechanism for sharp magneti-
zation reversals in hysteresis loops.

Let us next consider some representative studies of hys- Finally, we mention a recent work by Pazmarstial.
teresis in disordered systems. Acharyya and Chakrdldditi  [26], who studied hysteresis ifi=0 Ising spin glasses with
have also studied the dilute Ising model in an oscillatoryzero ferromagnetic bias. These authors numerically deter-
field. In particular, they examined the effects of increasingmined the distribution function of domain avalanches during
dilution on the area of the hysteresis loop. Their results ar¢he evolution. They demonstrate that this distribution exhib-
mostly qualitative, with the most relevant observation beingits “self-organized critical” behavior all along the hysteresis
that there is no unusual behavior as the density of spins godsop.
through the percolation threshold. A similar observation The above works have primarily confined themselves to
holds in the context of the pure Ising model, where there aregualitative statements about the shapes and sizes of hyster-
no dramatic effects as the temperature is varied through thesis loops. In this paper, we undertake a quantitative numeri-

An early numerical study of this problem is due to Souko-
lis et al. [23,24], who conducted MC studies of hysteresis
effects in(a) Ising spin glasses with long-ranged interactions
"{‘23], and (b) Heisenberg spin glasses with long-ranged ex-
change interactions and anisotropic Dzyaloshinsky-Moriya
DM) terms[24]. Both these studies were conducted in the
G phase. The results of Soukadisal. can be summarized

s follows:

B. Disordered spin systems
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cal study of the dependence of the hysteresis loop area updion with spin-flip Glauber dynamicfl—4]. However, we
disorder for spin systems with long-ranged interactions. Irfocus upon dissipative Langevin dynamics associated with
particular, we present detailed numerical results for the dethe corresponding soft-spin Hamiltonian as modeled by the
pendence of the loop area on disorder. The results presentggual TDGL formulatior{30,31]:

ere are obtained from simulations of a soft-spin version of dori(t) S(BH)

the SK model for spin glasses. T4
ping T r 50 + &(1)
I1l. THEORETICAL MODELING N
= —uod -
The usual model for spin glassésith long-ranged inter- =L roi—uo; +'8,-:%¢i) Jijo;
actiong is the SK mode[27] with the Hamiltonian:
N N
+ Bhycoq wt) |+ &(1). (5)
H:—(izj> JijO'iO'j_hi:El g, (2) I

h h . " . b q ibed In Eq. (5), I' "1 is the time scale of individual spin flips;
where the magnetic impuritieN(in numbej are describe and we have introduced= A7; u= AU, where = (ksT) .

by an Ismg.splmizt.l. I.n general, each spin mtgracts W'th is the inverse temperature. The effect of the heat bath is
all other spingexcluding itself and the exchange interaction represented by the Gaussian random noise te(th driving
Jij is chosen to be a random variable, introducing disordefy,o system, which is characterized by

and frustration in the model. It is customary to assume that
the distribution ofJ;; is Gaussian: (&i(1))=0,

1 p{ (Jij—Jo)? (E(DE&())=2T8;8(t—t"). (6)
P(‘]I]): ex e —

\ /27732 232 The angular brackets in E¢6) represent an avgragir)g over
the thermal noise ensemble, and the fluctuation-dissipation
where] is the variance of the distribution, afd;;)=J, is condition on the variance ensures a proper equilibrium dis-

the ferromagnetic bias, which we always set to zero in thigribution. _
paper. The quantitied, andJ are scaled byN and N2, Before we proceed, we should stress that the Langevin

respectively, to ensure that appropriate thermodynamic uaqpproach has several advantages over the MC approach.
esp y, to enst pprop y qUalirst, there is an intrinsic averaging involved at the level of
tities are extensive in thl—oo limit. In Eq. (2), h refers to

o defining variablegor order parametersn the Langevin for-
an external magnetic field. _ _ mulation. This enables us to obtain smooth and conclusive
In this paper, we will focus upon the soft-spin version of yymerical results with considerably less numerical effort
the SK model with the Hamiltonian: than in the MC approach. Secondly, MC simulations may
N N N become considerably time consuming because the system
2 4_ _ can get stuck for a long time in a single valley if the neigh-
21 oi + i OED Jijoio] h; i, (4) boring free-energy barriers are too high—particularly at low
temperatures(Of course, this may be true for the Langevin
whereo; is now a continuous variable wittt e[ —,>]. In . model also, especially at weak valuestof Nevertheless,
Eq. (4),r andu are positive, phenomenological parametersthe continuous spins have more routes to relax from meta-
and the two-state SK model is recovered in the limiz ~ Stable states in comparison to “hard” MC spinginally,
—.o0, with their ratio remaining finite. The soft-spin SK the SK model with Glauber k|r_1et|cs is analytically intrac-
model has proven to be a convenient starting point for anal@Ple, whereas the corresponding continuum model is ame-
lytical calculationg28,29. nable_ to approximate analytical sqlutlon..
In the present case, we are interested in an explicitly time- !t i convenient to rescale variables in E§) so as to
dependent system with the magnetic field having an oscillalduce the number of free quantities. We introduce the re-
tory form h=hocos(t), wherehy is the amplitude, and is ~ Scaled variables:

: )

N
H:_

N =1
N |

i=1

the frequency. We associate dissipative dynamics with the u
SK Hamiltonian by coupling the system to a heat bath, which o = \/70| ;
induces spin flips. For metallic spin glasses, this heat bath

can be identified with conduction electrons, which produce t'=I't,
single-spin flip processes with impurity spins via an ex- ,

change interaction. Since the spin-glass free-energy land- Jij=Adij
scape has a large number of metastable states, the dynamics 3 =43

of the system is expected to be complicated. The metastable '
states are separated by activation barriers of varying heights. u
Therefore, it is possible to have thermally activated transi- ho=Bho \[F

tions leading to a broad distribution of relaxation times.
Dynamical properties of disordered systems have often @ @
been studied by MC simulations of the SK model in conjunc- r’
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and obtain the dimensionless dynamical equatinopping
primes:

doj(t) N
O; =r(gi—ad)+ 2, Jjoj+hgcogwt)+ 7(t).
t i=1G#0)
(8)

In all subsequent discussions, we will always refer to dimen-g
sionless variables only. In Eq8), the distribution of the
exchange coupling;; is obtained as

1 I
P(Jij))= —exg — = |, )
2mJ? 27?
where the variance] must be scaled byN'? i.e., J " ° iy ° "
=JN~Y2 whereJ is independent oN. The rescaled Gauss- _ _
ian white noiser;(t) is defined by FIG. 1. Effects of disorder amplitudg) on the shapes of hys-
teresis loops. We plot the time-dependent magnetizatift) vs
(mi(1))=0, the magnetic fieldh(t) for J=0.0, 0.2, 1.0, 1.66, and 5.0—denoted
by the specified line types and symbols. The amplitude and fre-
u guency of the magnetic field were fixed lag=10.0 andw=0.1.
(mi(1) nj(t’)>:2r Gijo(t—t'). (10 Other details of the simulation are described in the text.

Equations(8)—(10) constitute the dynamical model that sented here are representative of results for a wide range of
we investigate in the present paper. It should be kept in mindr.ho) values. Finally, thermal noise was mimicked by
that, in the corresponding two-state moéwhich arises for ~Gaussian random numbers with the appropriate amplitude.
r,u—o andhy,=0), the transition between the paramagneticThe hysteresis loop arepm(t)dh(t) [where m(t) is the
and spin-glass states occurgidt= 1. In the present case, the time-dependent average magnetizalioras computed after

transition point will depend uponandu, in general. allowing the initial configuration to equilibrate into a stable
loop, which typically took 15 field cycles. All statistical data
IV. DETAILED NUMERICAL RESULTS was obtained as an average over at least 40 sets of initial

conditions for each disorder configuration. In addition, the

Our numerical study focused upon qualitative and quantidata was averaged over at least 40 disorder configurations.
tative properties of hysteresis loops in spin-glass systems. IWherever necessary, even further averaging was performed
particular, we investigated the shape and area of the hystete improve data quality.
esis loop as a function of both disorder and the applied Figures 1 and 2 summarize the qualitative effects of dis-
field—characterized by a field strendth and frequencyw.
We have considered cases wid) “weak” disorder, where
the h=0 system is in the paramagnetic state, al
“strong” disorder, where thén=0 system is in the SG state.

We integrated Eq98)—(10) using an Euler discretization
scheme with very fine mesh sizet=10*. We have con-
firmed that numerical results are unchanged on further reduc
tion of the mesh size. We should remark here that consider-
ably higher values ofAt also give qualitatively reasonable =
results. However, we have preferred to simulate the model in
a “continuum limit” so as to avoid discreteness effects,
which may interfere with the delicate effects of disorder.
Typically, the simulations were carried out on a system of
size N=100 spins. We also did some trial simulations with
N =200 spins and the results were numerically indistinguish-
able from those folN=100 spins. The initial configuration ) .
for each run was chosen to be a random mixture-daf and -10 5 0 5 10
—1 with equal probability. ho

For the results shown in this paper, some parameters in F|G, 2. Effects of frequency«) on the shapes of hysteresis
Egs. (8)—(10) are fixed, namelyy =u=2.0 andhy=10.0.  |oops. We present data fas=0.05, 0.1, 0.5, 1.0—denoted by the
We present results for a range of valuesaindw. We have  specified line types and symbols. The disorder amplitude was fixed
also investigated other values ofhy and the results pre- atJ=1.25.
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order on the shapes of hysteresis loops for a single field & v r ‘
cycle. Figure 1 shows results for disorder amplitudes ;’8;?5
=0.0, 0.2, 1.0, 1.66, and 5.0, with the frequency fixedvat ©0.5
=0.1. In the absence of an applied field, the system is in the bl
paramagnetic phase fdr=0.0 and 0.2, and in the SG phase 6| T
for J=1.0, 1.66, and 5.0. There are two primary effects of
increasing disorder on the shape of the hysteresis loop. Th
first important feature is the dependence of the slope of theQ o
loops on disorder amplitude. Thk=0 case corresponds to &4
the limit of disconnected sping—8], which exhibit a rela-
tively rapid response to a sign change in the external field. o
The nature of this response is determined by a comparison o
the spin-relaxation time 7{) with the inverse frequency
(0™ 1). Typically, <o~ ! corresponds to the low- °
hysteresis limit, as the spin readjusts to the applied field be- sk a®
fore it changes substantially. *
If the disorder amplitude is increased, the free-energy sur- ° 1 2 3 4
face becomes complicated and is characterized by multiple J
metastable minima, differing from each other by small _ i
groups of spins. In the absence of an external field, there is g = 3. Plot of f(w,J) [=A(w,J)/A(w,0)] vs J for a wide

L . . . : . range of disorder amplitudes. The quan#itfw,J) is the area of the
distribution of barrier heightsX); and a corresponding dis- hysteresis loop for frequency and disorder amplitudd. We

tribution of escape times from th.ese n‘!inimae(v eﬁA)' T(_) resent data fow=0.05, 0.1, 0.5, 1.0, and 5.0—denoted by the
the best of our knowledge, there is no rigorous calculation OEpecified symbols.

the barrier distribution as a function dfand N [1-4]. A

rough estimate of barrier heights can be obtained as followgpserve that the hysteresis loops do not always close on
Typically, configurations in the free-energy landscape differcompletion of a field cycle. Finally, for extremely large val-
by clusters ofO(N*%) spins[4], with an associated barrier yes of disorder, the system is unable to respond to the chang-
energyA_~N1’4J in the SK model. The MC simulations of ing field. Clearly, there will be no hysteresis loops for infi-
Mckenzie and Young32] demonstrate that the barrier dis- pite disorder amplitude, since the driving field will be unable
tribution iS approximately Uniform up to thIS |eVe|. In the to remove the System from a trapped State.
presence of a constant magnetic fieJdhe energy associated  The second important feature concerns the tails of the
with a spin cluster is\,~N"*h. Therefore, the relevant pa- |oops, which become more opémlative to the width at zero
rameter to understand relative effects of disorder and maql'ekj) for |arger disorder values. Correspondingb/, the Shapes
netic field isA/A,~J/h. of the loops also become more elliptical as the disorder am-
Next, consider the effect of a time-dependent magnetigjitude is increased. This should be contrasted with tails in
field h(t) =hg cos(t) in the following cases (a) If ho>A,  systems with no disordepr weak disorder where the satu-
the hysteretic response will be unaffected by the disordefation magnetization is attained rapidly. The results in Fig. 1
when|h(t)|=h,. The only effects of disorder are seen whenare consistent with those from earlier numerical simulations
h(t)=0, and the range of relevant escape times are dete[23], and also experimental resu[ts9,22.
mined byw > 7,. Thus, we expect diminishing effects of = Figure 2 shows hysteresis loops for field frequeney
disorder asw is increased(We will quantify this shortlyy  =0.05, 0.1, 0.5, and 1.0, for a representative value of the
(b) If ho~A, similar arguments apply except that the effectsdisorder amplitudeJ=1.25. The loops become flatter at
of disorder are seen through the entire hysteresis cf@l¢f.  higher frequencies. As we demonstrate shortly, the effects of
ho<A, the effects of disorder are dominant and temporaljisorder are diminished with increasing frequency whgn
evolution occurs primarily through thermally activated bar-= A
rier hopping. In this limit, we do not even expect well-  \we next attempt to quantify the effects of disorder on the
defined hysteresis loops. area of the hysteresis loop. As we have stressed in Sec. Il
The hysteresis loops in Fig. 1 bear out the above arguthis experimentally relevant quantity has been the subject of

ments. ForJ<0.2, the hysteresis loops are barely distin-most investigations. It is convenient to focus on the quantity
guishable from that fod=0. The only differences are seen

in the region wheréa(t)~0. This difference also diminishes Alw,J)

asw increases, as we will quantify shortly. At higher ampli- fw,d)= Al(®,0)’ (12)
tudes of disorder, trapping of the system in metastable states

prevents sharp reversal of spins. Therefore, the slopes of thghereA(w,J) is the area of the hysteresis loop at frequency
hysteresis loops become increasingly flatter with increase iw and disorder amplitudd; with other parameters being
disorder. Even more drastic effects of trapping are seen fdiixed as specified earlier. Clearlj(w,0)=1, so the strong
stronger disorder, e.g., the loop fd+= 5.0, which is actually dependence oA(w,0) onw [6—8] has been factored out in
displaced from the origin—a consequence of long-term trapeur definition.

ping in a restricted region of phase space. In some cases, we Figure 3 plotsf(w,J) vs J for a wide range of disorder

2L 4

> 00

>0
G0
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Moo A @ order amplitude. The best-fit values fBrare specified in the
00.1 (B=047) figure and appear to be universal. The suggested universal
JEe o exponent is(obviously B=1/2, but we have no theoretical
3T x50 (p-040) argument for such a behavior.

Next, we consider the behavior 6fw,J) with w. Figure
4(b) plots In@) vs In(w), obtained from the best-fit lines in
Fig. 4a). Again, the data exhibits a reasonable power-law
scaling,B(w)=bw™ ¢, albeit over two decades of frequency.
The best-fit value for this exponent és&=1.03+0.01. Com-
bining the results of Figs.(d4) and 4b), we obtain an overall
scaling form forf(w,J) as

In[f(e.))-11

f(w,J)=1+bw “JP+higher order terms, (12

M2 =TS 3 " 4 2 valid for the weak values of disorder considered here. Equa-
In() tion (12) is the main result of this paper. We again stress that
0 . . ‘ we have no analytical arguments to support this functional
aton form. Nevertheless, the numerical evidence is rather compel-

' ling, and we hope our results will provoke further numerical
and analytical investigations of this problem. Furthermore, in
the context of the arguments by Sidefal. [15,16 in the
case of pure systems, we have no strong reason to believe
that the power laws in Eq12) are universal. It is reasonable
to believe that the form of Eq12) may be only a limiting
case of a more general expression—even though it appears to
hold for an extended range of parameter values. Of course,
the elucidation of such behavior must necessarily rely upon
analytic arguments, which are not available at present.

Let us now consider stronger values of disorder, corre-
sponding to the SG phase in the absence of a magnetic field.
% . . ‘ ‘ Figure 3a) plots Iff(w,J)] vs InQJ) for values of disorder

3 2 - (o 0 ! 2 ranging fromJ=1.0 to J=5.0; and frequencies»=0.05,
0.1, 0.5, 1.0, and 5.0. We should stress again that hysteresis

FIG. 4. (a) Plot of I f(w,J)—1] vs InJ) over 4 decades of weak loops are not well-defined at much higher values of disorder.
disorder values, ranging froth=10"°to J=10"1. We present data For example, the effects of Barkhausen noise, which arise
for =0.05, 0.1, 0.5, 1.0, and 5.0—denoted by the specified symelue to avalanches all along the hysteresis |&fj), are more
bols. The best linear fits are superposed on the relevant data sefssonounced at high disorder values. Furthermore, as we have
and the corresponding exponeiitsferred to ag3 in the tex} are  remarked earlier, the loops may not even close at high values
specified in the figure. The error bars on exponent values argf disorder. Over the limited range of disorder values for
+0.01. (b) Plot of InB) vs In(w), where InB) is obtained as the \yhich reliable data is available, the data fiffw,J) again
intercept of the appropriate best-fit line in Figay The best-fitline  ayhibits a reasonable power-law scalif(go,J)zC(w)J*‘?.
for the present data set is shown in the figure, and the relevanfyo pest-fit exponents for different values of frequency are
exponent isy=1.03+0.01. shown in the figure, and again appear to be universal. Figure

5(b) plots In(C) vs In(w), where InC) is obtained from the
values and for frequencies=0.05, 0.1, 0.5, 1.0, and 5.0. best-fit lines in Fig. &). Again, the data exhibits a reason-
We will shortly examine the behavior d{ w,J) in various  able power-law behavio€(w)=cw~* over two decades of
limits, but it is useful to make some general observations afrequency. The results from Figs(éh and %b) suggest an
follows: (a) As expected,f(w,0)=1 and f(w,2)=0. (b)  overall scaling fornf(w,J)=bw~ *J~?, valid for strong dis-
The functionf(w,J) rises to a maximum at=J,, and then order values—though the numerical evidence for this form is
decays to 0. The quantiti( w,J,) decreases with increasing not as compelling as that for E¢L2).
frequency.(c) In general,f(w,J) decreases with increasing  We have also studied the remnant magnetizatipfw, J)
frequency. [i.e., the width of the hysteresis loop whi(t) =0]; and the

Let us now elucidate various limiting behaviors of the saturation magnetizatiomy(w,J) (i.e., the maximum mag-
functionf(w,J). Figure 4a) plots I f(w,J)—1] vs In@) from  netization in the cycle We should remark that the saturation
Fig. 3 for weak values of disorder, ranging frahe10 °to  value of the magnetization need not necessarily occur when
J=10"1. In the absence of a magnetic field, these values oh(t) is maximum—especially for strong disorder values. At
disorder correspond to the paramagnetic phase. Figiae 4 weak values of disorddas in Fig. 4a)], it is not possible to
constitutes strong numerical evidence of a power-law scalinglearly distinguish the values of,,(w,J) andmg(w,J) from
f(w,J)=1+B(w)J?, which holds over four decades of dis- the corresponding values at=0. This is due to the

In(B)
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FIG. 6. Plot of Ifm(w,J)/m(w,0)] vs InQ) for strong disorder.
The labeld =r andi=s refer to the “remnant magnetization” and
“saturation magnetization,” respectively. The best-fit line to the
remnant magnetization data is superposed on the relevant data set
and the best-fit exponent i$=1.99+0.01.

V. SUMMARY AND DISCUSSION

In(C)

Let us briefly summarize the results presented in this pa-
per. We have undertaken a detailed numerical study of hys-
teresis loops in spin systems with quenched disorder in the
exchange interactions, and zero ferromagnetic bias. In par-
ticular, we have focused on the variation of the loop area as
a function of disorder amplitud@) and field frequency®).

2 - s : ‘ The loop area is the most important experimental character-
-3 -2 -1 0 1 2 . . . ..
(o) istic of the hysteresis loop, as it measures the heat dissipated
. in a field cycle.
FIG. 5. (a) Plot of INf(w,J)] vs InQ) for strong disorder values, For weak values of disorder, where the system is para-

ranging fromJ=1.0 toJ=>5.0. We present data fas=0.05, 0.1,  magnetic in the absence of a magnetic field, we find compel-

0.5, 1.0, and 5.0—denoted by the specified symbols. The best Iineﬂrh numerical evidence for power-law scaling of the quan-
fits are superposed on the relevant data sets, and the correspond%i f(0,9)=A(w,J)/A(0,0), where A(w,J) is the loop

exponentgreferred to asd in the tex} are specified in the figure. . \
The error bars on exponent values ar.01. (b) Plot of In(C) vs area at f_reqqencyb and disorder amphtudé._The power-
In(w), where InC) is obtained as the intercept of the appropriate/l@W scaling is seen for four decades of disorder and two
best-fit line in Fig. %a). The corresponding bestit line for the decades of frequency. At present, we have no analytical ar-
present data set is shown in the figure, and the relevant exponent@iments to support this scaling form but hope that our nu-
y=0.68+0.01. merical results will provide an impetus for further investiga-
tions of this problem.
For strong values of disorder, where the system is in the
spin-glass phase in the absence of a magnetic field, we also
Barkhausen noise along the hysteresis curve, whose ampRbserve power-law scaling ¢{»,J). However, this applies
tude is comparable to the differencls;(w,J) —m;(w,0)|, only for a restricted range of disorder values. We do not have
i=r,s. results for very high disorder amplitudes, where there are no
For strong disordefas in Fig. %a)], we obtain clear nu- Well-defined hysteresis loops. We have also studied other
merical results for these quantities. Figure 6 p|ot5relevant quantities like the remnant and saturation magneti-
In[m(w,J)/m(w,0)] vs In@J) for strong disorder andb=0.1.  zations of the hysteresis loop.
The scaling form of the remnant magnetization is similar to ~ Qualitatively, the effects of disorder on hysteresis loops
that shown forf (w,J) in Fig. 5. This is trivially understood can be understood in terms of a semiphenomenological
if the hysteresis loop is approximated as an ellipse. Howevernodel involving clusters of a small number of sp[@s,23.
due to trapping and saturation effects in the tails of the loopsThis model invokes the properties of the free-energy surface
the saturation magnetization does not exhibit simple scalingf a disordered system, which is comprised of metastable
behavior, as seen in Fig. 6. minima separated by barriers. The free-energy surface is
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comprised of a distribution of barrier heighta), and a least in the context of weak disorder, where the field-free
consequent distribution of escape times from the metastablkgy/stem is paramagnetic, we believe that it will be possible to
minima (r.). For magnetic-field strengthbg=A, we expect formulate the necessary arguments.
that the escape times that are relevant to spin dynamics in an
oscillatory magnetic field, satisfw 1> r,. Therefore, we
expect the effects of disorder to be diminished at higher-field
frequencies—in accordance with our numerical results. The authors are grateful to C. Dasgupta for a critical read-
Of course, the simple argument above only serves to esng of this manuscript, giving us a number of valuable sug-
tablish trends. At present, we are attempting to quantify thesgestions, and bringing Ref25] to our notice. We are also
arguments with the goal of providing an analytical basis forgrateful to M. Novotny for a careful criticism of this manu-
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