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Scaling behavior for finite O(n) systems with long-range interaction
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A detailed investigation of the scaling properties of the fully firGén) systems, under periodic boundary
conditions, with long-range interaction, decaying algebraically with the interparticle distaliier =977,
below their upper critical dimension, is presented. The computation of the scaling functions is done to one loop
order in the nonzero modes. The results are obtained in an expansion of powersidferes =20 —d up to
O(£%?). The thermodynamic functions are found to depend upon the scaling varia) ™ 2 27722
whereR and U are the coupling constants of the constructed effective theoryl.dadhe linear size of the
system. Some simple universal results are obtained.
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[. INTRODUCTION a power law. For finiten the most frequently used analytical
method is that of renormalization gro(ip,4]. However this

The theory of continuous phase transitions is based on thié limited to the case of short-range interaction. The cross-
hypotheses that at temperatures close to the crificathere ~ OVer from I_ong to short-range forces was @scussed in Ref.
is only one dominating length scale related to the criticall®]: where it has been found that renormalized values of the
behavior of the system. Because of the divergent nature démperature and the coupling constant are continuous func-
the correlation length as the critical point is approached, théions of the parameter controlling the range of the interac-
microscopic details of the system becomes irrelevant for théon, when this approaches the value 2 characterizing the
critical exponents describing the singular dependence of thghort-range force potential. The case of pure long-range in-
thermodynamic functions. This intuitive picture is based onteraction was investigated very recently in Rif] (a com-
the grounds of the renorma“zation_group treatment 01ment on the method and the reSU|tS 0bta|ned there IS pre-
second-order phase transitions. sented in Sec. I\ In the mean time, special attention was

Scaling is a central idea in critical phenomena near a condevoted to the investigation of finite-size scaling for the
tinuous phase transition and in the field theory when we ar&ean-spherical model with long-range interactitor a re-
interested in the continuum lim[tL]. In both cases we are View see Ref[7] and references thergin
interested in the singular behavior emerging from the over- In recent years there has been an increasing interest in the
whelming large number of degrees of freedom, corresponddumerical investigation of the critical properties of systems
ing to the original cutoff scale, which need to be integratedWith long-range interaction decaying at large distarcesg a
out leaving behind long wavelength which vary smoothly.Power law as ~“~“, whered is the space dimensionality and
Their behavior is controlled by a dynamica”y generatedO’ is the parameter Controlling the range of the interaction.
|ength scale: the correlation |eng§8_ Such a fundamental The mOSt'y used technique for this achievement is the Monte
idea is difficult to test theoretically because it requires aCarlo method. This method was used to investigate the criti-
study of a huge number of interacting degrees of freedomgal properties of Heisenberg ferromagnetic syst¢Bisas
Experimentally, however, one hopes to be able to study scalell as Ising modeld9,10]. Nevertheless all the analysis
ing in finite systems near a second-order phase transitioinere was concentrated on systems with classical critical be-
Namely, the system is confined to a finite geometry and th&avior in the sense that the critical exponents are given by
finite-size scaling theory is expected to describe the behavidrandau theory.
of the system near the bulk critical temperat(far a review In this paper we present a detailed investigation of the
on the finite-size Sca”ng theory see Re{%] and [3]) finite-size Scaling properties of the field theordﬂcn) vec-

The O(n)-symmetric vector models are extensively usedtor ©* model with long-range interaction. We will also check
to explore the finite-size scaling theory, using different meththe influence of the interaction range on the critical behavior.
ods and techniques both analytically and numerically. Thelhese interactions enter the exact expressions for the free
most thoroughly investigated case is the particular one corenergy only through their Fourier transform, where the lead-
responding to the limin=co (this limit includes also the ing asymptotic isU(q)~q’", ando* = min(c,2) [11]. As it
mean spherical mode([3]. In this limit, these models are was shown for bulk systems by renormalization-group argu-
exactly soluble for arbitrary dimensions and in a general gements,oc=2 corresponds to the case of finifghorty range
ometry. These investigations were devoted exclusively tanteractions, i.e., the universality class then does not depend
systems with shortincluding nearest neighboras well as  ono [11,12. Values satisfying 8o<2 correspond to long-
long-range forces decaying with the interparticle distance imange interactions and the critical behavior dependsron

With the renormalization-group treatment it has been found

that the critical behavior depends on the small parameter
*Email address: chamati@issp.bas.bg =20—d, where 2r corresponds to the upper critical dimen-
TEmail address: tonchev@issp.bas.bg sior{11]. According to the above reasoning one usually con-
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siders the case>2 as uninteresting for critical effects, even where 2r plays the role of the upper critical dimension. We
for the finite-size treatmenf4.3]. So, here we will consider  will present the renormalized parameters that characterize
only the case & o=<2. the bulk critical behavior and appear in the scaling functions.
Here, we will provide a systematic and controlled ap-Since the computations are standatd, we will be quite
proach to the quantitative computation of the thermodynamidrief.
momenta, usually used in numerical analysis. These mo- The application of the renormalized theory, above the
menta are related to the Binder’'s cumulant and to variousritical temperature, to the model Hamiltonian requires a
thermodynamic functions like the susceptibility. We will scaling field amplitudeZ, a coupling constant renormaliza-
concentrate on the scaling properties of the coupling contion Z,, and a renormalization of the? insertions in the
stants defining the system in the vicinity of the critical point. critical theoryZ, . In terms of these, we define as usual
Our method is quite general and should apply to a large

extent on the investigation of finite-size scaling in systems t=27;Y(ro—ro.) and g:|—822251u0_ (2.3
with long-range interaction in the vicinity of the critical
point. In the remainder we will work in units where the reference

.The plan 40f the Paper Is as fOHOW.S' n Sep. Il we review, length | is set to unity. To one loop order the renormalization
briefly, the™ model with long-range interaction and discuss . qtants in the minimal subtraction scheme are given by
its bulk critical behavior. Section 1l is devoted to the expla- 12]

nation of the methods used here to achieve our analysis. We

end the section with the computation of some thermody- -

namic quantities of interest. In Sec. IV we discuss our results Z=1+0(g"), (2.49
briefly. In the remainder of the paper we present some details

of the calculations of some formula used throughout the pa- n+2. ~
per. Zi=1+ —0+0(9"), (2.4b

Il. FINITE-SIZE SCALING FOR SYSTEMS WITH -
LONG-RANGE INTERACTIONS Zy=1+ g+ 0(3?). (2.49

In the vicinity of its critical point the Heisenberg model,

with long-range interaction decaying as power law, is - s.(2.4)
equivalent to thel-dimensional®(n)-symmetric mode[14] as. (4,
1 1 . 2 29
H{e :_f d'%| (V720)%+roe?+ Suoe?|, (2.1 = =
pHiel=3], 0¥ T 270 979 4m2r (dr2) (4m)°T (o)

where ¢ is a short hand notation for the space dependent
n-component fieldp(Xx), ro=ro.+tg (tgxT—T,) andug are
model constantsV is the volume of the system. In E@.1),
we assumed =kg=1 and the size scale is measured in unit
in which the velocity of excitations=1. We note that the
first term in the model denotds’|¢(k)|? in the momentum
representation, where the parameter §<2 takes into ac-
count short-range as well as long-range interactignis. the
inverse temperature. The nature of the spectrum suggests that
the critical exponeny=2— o [11,12. Here we will consider
periodic boundary conditions. This means Before starting to investigate the finite-size scaling in the
field theoretical model under consideration, we shall recall
briefly the corresponding renormalization-group formalism.
In the continuum limit, the lattice spacing completely disap-
pears. The integration over wave vectors of the fluctuations
wherek is a discrete vector with componerits=2n; /L are evaluated without cutoff and are convergent. When some
(nj=0,+1,*2,...,i=1,...d) and a cutoffA~a"?! (a dimensions of the system are finite the integrals over the
is the lattice spacing In this paper, we are interested in the corresponding momenta are transformed into sums. Since the
continuum limit, i.e.,a—0. As long as the system is finite lattice spacing is taken to be zero, the limits of the sums still
we have to take into account the following assumptiong€nd to infinity.
L/a—®, &—o while & /L is finite. From general renormalization-group considerations an
Fisheret al. [11] and Yamazaki and Suzukil2] have observableX, the susceptibility for example, will scale like
shown that for the model under consideration the Landalil5l:
theory holds ford>2¢. In the opposite case, i.ad<20 an
expansion in powers o =20 —d=4—d— 27 takes place, X[t,9,,LT=2(p)X[t(p),9(p),lp,L], (2.7

X 1+;[|n(477)+¢(0')]+0(82) )

vaherew(x) is the digamma function.
The fixed point of thed function is atg=g* with

0 =—— + O(&? 26
G =+ 0e?). (26

1 .
o(X)= \/_V Ek: o(k)exp(ik-x), (2.2
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wheret is the reduced temperaturg,a dimensionless cou- the total spin by unit volume, then, frofi{, we can get an
pling constant, andl the finite-size scale. The length scale | effective Hamiltonian function of after entirely integrating
is introduced in order to control the renormalization proce-out the o(k#0) fields:

dure.
It is known that in the bulk limit, whemy(p) approaches Ld ) 4
its stable fixed poing*, we have Het=7 | RO™+ 5 47 ). 3.2

t(p)~tp™ and {(p)~p™", (2.9 The coupling constant® andU are computed in powers

of &, with the initial coupling constants renormalized as in

wherey, andv are the bulk critical exponents measuring thetheir bulk critical theory. This approach will rule out all the
divergence of the observablk and the correlation length, ultraviolet divergences of the bulk critical point. The new
respectively, in the vicinity of the critical point angis a  coupling constants are necessarily free of all ultraviolet di-

scaling parameter. Using dimensional analysis together withergences since the theory is super-renormalizathi.
Eq. (2.7) one gets They are also free of infrared divergences as we are only
integrating out finite modes. Obviously, these constants must

X[t,9.LL1=Z(p)X[t(p) (p)2.9(p) LLIp]. (2.9 ~ ©Pey the scaling forms,
R=L7"2fg(tL d U=L9*"27f,tLt) (3.3
Choosing the arbitrary parametier L/l, we obtain the well- R( ) an ul ) 33

known finite-size scaling result for t=0, wherefg and f, are scaling functions that are

properties of the bulk critical point. They are analytictat

X[t,g,l, L= L (tLY). (210 =0. This is a consequence of the fact that only finite modes
have been integrated out.
Here the functionf(x) is a universal function of its argu- Once the scaling functionf andf are known, one can
ment. In the remainder of this paper we will verify the scal-attack the problem of computing observables in &
ing relation(2.10 in the framework of mode(2.1). theory with the actiorH¢. This theory is in dimension

close to the upper critical dimensiomrZnot ind close to the
usual 4), and the problem seems to be unsolvable. In the
next section we will show that it is not the case.

In order to investigate the long-distance physics of the
A. Method finite system, one has to calculate thermal averages with re-
spect to the new effective Hamiltonian defined in E3}2).

The method, we shall use h(_are to anallyze. the f|n|te—S|ze|.hey are related to the thermodynamic functions of the sys-
scaling of the model under consideration, is originally due to,

Luscher[16] in his study on the quantu®(n) nonlinearo Leerfr;nggdber consideration. The averages of the figldre
model in 1+ 1 dimensions. An extension of the method was y
employed by Brezin and Zinn-Just[d7] and by Rudnick

IIl. FINITE-SIZE SCALING BELOW THE UPPER
CRITICAL DIMENSION

et al.[18] in their works on the finite-size scaling in systems f d"p p2Pexp( — Her)

with short-range potentials. Very recently it was used in the Map=(($?)P)= (3.4)
investigation of crossovers in quantu@(n) systems near 2 n

their upper critical dimensiofiL9]. We will see here that the f d"gexp( = Her)

problem related to finite-size scaling in systems with long-
range forces can be successfully analyzed by the same apsing an appropriate rescaling of the fielp: &
proach. Nevertheless, here we will observe the emergence ef (UL Y44, we can transform the effective Hamiltonian
some subtleties, which need to be discussed. into

The central idea of the method is that at finite linear size
L of the system, one can treat the=0 mode of the field 1
©(x), playing the role of the magnetization, separately from Heﬁ:§Z®2+ Z¢4, (3.5
the nonzerdk modes. The nonzero modes are treated pertur-
batively using the loop expansion. They are integrated out to . . oA 12 .
yield an effective Hamiltonian for the lowest mode only. All W:aerrl(tait thi(; ti(;a:lr?\?esvt?rg%ﬁ; clffoiniltJe-siz(;Ss?;]Iirllmlci)r?r(t:?i?izzal
the modes being integrated out are regulated in the infrared- 2"ty gal g . ginc

o . . tatics[17,18 as well as in critical dynamicg20,21]. With
by |k|” and consequently the process is necessarily free Ghe effective Hamiltoniari3.5), we obtain the general scalin
infrared divergences. On the other hand the renormalizations ;. e 9 9
. . . _._relation

of the bulk theory control the ultraviolet divergences at finite

size. In other words if we define by p(d—4+27)/2

Map=L~Pd-2+7)

L(d4+277)/2)
1 —
¢=‘fd%¢u) (3.1) ur

Vv

2_
f2p(RL 7 yL2

(3.6
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for the momenta of the fieléb. Having in mind Eqs(3.3), hand side of Eq.3.10 to the one-dimensional effective
we can write down Eq(3.6) in the following scaling form problem. In the general case of arbitrary one cannot just
use the Schwinger transformation or at least in its familiar
Mop=L"PU=ZED ) (1L1), (3.7 form. So we have to solve the problem by introducing some
. . L . . kind of generalization for it. In the spirit of the same problem
in agreement with the f|n|te_-3|ze scaling preql|ct|ons of Ed-2 method to investigate the finite-size scaling in the frame-
(2.10. In Eq.(3.7), the functionsF;,(x) are universal. work of the mean-spherical model was suggested in Ref.

_All the measurable thermodynamic quantities can be 0bry5) The method is based upon the following genius identity
tained from the momenta1,, . For example the susceptibil-

ity is obtained from 1

1 a:fxdxexp(—xz)xaflEma(—x“), (3.11a3
X=4 Jvddx<so(x><o<0)>=LZ‘"B(tLl’V). (3.8 Lzt e

. . , ) where the functions
Another quantity of importance for numerical analysis of the

finite-size scaling theory is the Binder’s cumulant defined by ® /
E,p5(2)=2, == 3.11
1 M, 8= 2 a1 ) (3410
B=1-5;—. (3.9
3 M%

is the so-called Mittag-Leffler type functions. For a more

In the remainder of this section we concentrate on théecent review on these functions and others related to them,
computation of the coupling constarigsand U of the effec-  and their application in statistical and continuum mechanics
tive Hamiltonian(3.2) for the system with long-range inter- see Ref[23]. See also Ref.22] and Appendix A.
action decaying with the distance as a power law. As a con- Using the identity(3.11), one gets, after some algebra,
sequence we will deduce results for the characteristic
variable z=RU™Y2.2777¢2 the susceptibilityy, and the Lo
amplitude ratior=M4/M§ entering the definition of the ij,,,(t,g,L)z(nJrZ)g
Binder’s cumulant.

—d w
dxx’271E 1,
(zw)vfo 2tz

(o8

—x72 t )[Ad(x)—l] (3.12a
(2m)° ’ '

B. Computation of the coupling constantsk and U X

As we explained above, loop corrections will be treated
perturbatively on the nonzerk modes. At the tree level
(lowest order ine=20—d) this procedure generates a shift
of the critical temperatur@; and a change of the coupling .
constantu, and additional operators involving powers of _ 2
larger than 4. The calculations will be performed in the A(X)_,Zw e
renormalized theory. The renormalized coupling constignt

is expressed in terms of the dimensionless coupling constat:].the analytic properties of the functio(x) are known very

e . i i
g=I%ug in which the parameter | is an arbitrary length scale.We”. For largex, A(x)—1 decreases exponentially and the

Here we wil _work In system In .Wh'Ch:H' T_hroughout integral in the right-hand side of E¢3.123 converges at
these calculations we use the minimal subtraction scheme. In

this scheme, the counterterms of the massless theory incluﬂ_qf(m';i') 1,';?‘{( SZT)‘?)"sﬁowsethzas(i(;ncotr:sgff(;;matlom(x)
ing the ¢? insertions are introduced. The one-loop counter- 77 i ges.

term for the coupling constant and tieg insertion will be 3 Eg; ir;]sllljﬁrg\]/ieolgt%?\zglr Igng;efélrggandsgldaen O;ng_q'
the only one relevant in the lowest corrections. ; 9 7. =9

The finite-size correction to the renormalized coupling:m'g ?glanud?gonag:jds'jbrt?g;'i:]edt;oe glefag‘erﬁnggctgetﬂgv_
constantt is given by gral. 9 9 ymp

ior of the function.A(x), we get after some algebra,

where

(3.12b

W (La.L)=(n+2)g— S — (310 Wy (tgL)
d,o\ "1 Ld " t+|HU ’ d,o 9,
La—d
to one-loop order. =(n+2)g Fao(tLY)+2m(n+2)gLe ¢
In order to investigate the finite-size scaling of the model 2m)7
under consideration one can use a suitable approach allowing d dar] -2
to simplify the analytical calculations. In the cage=2 it is % (477)‘“21“<— gsin_} (tLo)dlo-1, (3.133
possible to replace the summand by its Laplace transform. 2 o

This is the so-called Schwinger representation. The aim of
this approach is to reduce tdedimensional sum in the right- where
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w0 yx772 for the renormalized coupling constddt Equation(3.19 is
Fd'a(y)zf XX E 2 ool — obtained using the fact that at one-loop order the coupling
0 (2m)° constant is renormalized 1%, form Eq.(2.49. The obtained

(3.13h the scaling law of Eq(3.3). Note thatU has a finite limit as
t—0, i.e. it is analytic at the bulk critical temperature. In-
deed ast—0 one can use the expansion of the function
F20.0(y) for smally given by (see Appendix B

7\ 42 expression3.19 shows that the coupling constadtobeys
Jatoo-a-(2]"]

In the particular case=2, from Eq.(3.13 we recover the
result of Ref[17].
By introducing thep? counterterm insertion the renormal-

ized coupling constaritis replaced byZ,, whereZ, is given ol-o
by Eq.(2.4b. Hence to one loop order we have Foo oY) =F2, o(0)+27yC,— oT (o) yiny+O(y?),
42 (3.203
R=t| 1+g—— +Wh ,(tg,L). (3.14
t . . where
At d=20, Wy ,(t,9,L) has a simple pole. An expansion
about this pole leads to the final expression
1 »du u0'/2 T o
n+2. - - | == _ _ __fZ20 _
R=t+ Tgtlnt+2°'—1(n+2)r(a)gL—UFz[,,(,(tl_U) Co I'(o) fo u {Ea/zvl( (277)0> 0 (”)J“A-
(3.20b

+0(g?). (3.19

This result shows that, at the critical poifthas the required After substitution of Eq(3.20 in Eq. (3.19 the terms pro-
scaling properties of Eq3.3), since portional to loy cancel, which shows that the coupling con-

stantU is finite att=0. One gets

n+2
v l=g— e+0(&?). (3.16
n+8
.n+8 o .
. ) ) U=gL"® 1+g—(1+—F(a)C,, +O(gz)}
For the finite system the renormalized coupling constant o 2

g, to one-loop order, is shifted by a quantity expressed in the

form
showing thatU is analytic, as it should be, at the critical

point.

1
WY (tgL)=—(n+8)g>—= >, ' ————.  (3.17
as(19 (n+8)g Ldzk (t+|k|)2
C. Some thermodynamic quantities
As one can see the summand here can be expressed as the

first derivative of the summand of E¢B.10 with respect to 1. Shift of the critical point
t. So, the result fot) can be derived from that d® Using It is obvious that the coupling constaRtin the effective
this fact one gets Hamiltonian(3.2) is just the deviation of the temperature of
g the system from its “critical” value. By setting=0 in
Wi ,(t,9,L) (3.19, we obtain an expression for the finite-size shift of the
20—d bulk critical temperaturd .. This is given by
=(n+8)g? Fao(tL)—L2 8 —pb
(n+8)g @m0 ) o (47) %2 ,
n-+
re-diordo) . Te=To(L)=227 =T (0)L " "F2,,,(0), (3.21
where the prime indicates that we have the derivative of thvhere the coefficienE,, ,(0), appearing in the right-hand
function F with respect to its argument. side of Eq.(3.21) can be evaluated for some particular values
At the fixed point one ends up with of the interparticle interaction range (Ref. [24])
-~n+8
U=g 1+gT(1+Int) 2(1/2), o=1/2,

4£(1/2) B(1/2), o=1,

Fo, ,(0)=
~n+8 ) - 20,0 —4.82271993, o=3/2,
+g——T(0)F}, (L) +O(g?) (3.19
2= —8In2, o=2.

(3.22
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Here {(x) is the Riemann zeta function withz(%)  thatz* verifies the finite-size scaling hypotheses and conse-
= —1.460354508. .. an@(x) is the analytic continuation duently all the thermodynamic functions do.

of the Dirichlet series: At the critical temperatur&, (i.e.,t=0, and so/=0), we
obtain
- (-1
X)= 1
Ax) ;) (21+21)*
. n+2 I'(o)
z5=\e Foro(0)+0(s)|. (3.29
with B(3)=0.667691457... Remark that the function yn+8 V 277

F,..»(0) increases as the parametewvanishes.

In fact, since there is no true phase transition in the finite
system, the critical temperature is shifted to a “pseudocriti- Numerical values for the amplitude rati@.23 can be
cal” temperature,T¢(L), corresponding to the rounding of obtained by replacing the value af from Eg.(3.25 and
the thermodynamic singularities holding in the bulk limit. taking some specific values of the small parameteNote
From Eq.(3.21) one remarks thal¢(L) is larger thanT.,  that the scaling variable is proportional toys as it was
Confil’ming preViOUSly Obtai!‘]ed results in the framework Offound previous'y(see Reﬂ:l?] for examp'é in the case of
the spherical moddR5]. Notice also that for the shift expo- short-range forces. Furthermore it coincides with the result
nentn, we geth = o to lowest order ire. of Ref[6]. for the scaling variabl& in the case of long-range
interaction. Consequently all the thermodynamic function
will be computed in powers of/e.

In this subsection we are interested in the calculation of
the amplitude raticr=/\/l4//\/l§ instead of the Binder’s cu-
mulant from definition(3.9). This quantity can be expressed

2. Binder's cumulant

3. Magnetic susceptibility

in power series of the scaling varialte= RL?~ 7~ 2/2y ~1/2 As we mentioned earlier, there is no phase transition in
as the finite system under consideration. Consequently there
will be no “true” correlation length. An expression for it can
n TZ%in) [[i(n+6)] TI[i(n+2)] be d_educed from that of the susceptibili{y.8) trough the
=— 1-z + relation:
4T3 (n+2)] I[7(n+4)] rrzn]
1 1 1
Lt a]| Tl (n+6)]0[E (n+2)] 21y, (3.26
I3 (n+2)] L[[% (n+4)]T[5n]
[ (n+4)] The analyticity of the susceptibility is a consequence of that
3 - n-1 +0(2%) . (3.23  the coupling constant® andU.
[z (n+2)] From Eq.(3.8) in the regiontL?<1 (i.e., z<1), we ob-

. . L tain for the susceptibility
So, in order to obtain a result forit is enough to evaluate

at the fixed poing* and to deduce the value for the Binder’'s

cumulant. As we mentioned before this parameter appears in - 1

all thermodynamic functions through the momenta defined x= L_ 2y2 n+8 T'lx(n+2)]

earlier in this paper. Je J(4m)°T (o) N I n
At the fixed pointg* in the vicinity of the upper critical 1

dimension, we obtain

[ (n T'(n/4) F[%(n+2)]>
Xl_ZZ

RL2™7 1 { & ( n—4 ) 1 T T T(nl4)
7 = = =—y— = 1——|ny F[Z(n+2)]

VUL fixed point \/g_* 20 n+8 or1

+22<1_”+F [i(n+2)]
n+2
+27 e e T (0)F 0 oY) 4 T%n/4)
~n+8 o -~ 5
_8202yr(0_)|:é0’0—(y)} (324) _gT 1+ EF(O’)CG +O(gZ,Z) (327)

This result is obtained by using E(B.16 and the fact that

up to one loop order the terms proportional tb kcancel. In at the bulk critical poinfT,..

Eq. (3.24), we introduce the scaling variable=tL'". Fi- To the lowest order i, after taking the limin—oo, we
nally let us notice that from this equation one can see easil§ind that the correlation length scales like
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E~g V20 the ordinary perturbationapproach, wherall modesare
treated perturbatively. In this way the following result, valid
confirming the results obtained in the spherical md@&]  for arbitrary dimensions d<4, is obtainedsee Eq.(4.4)
and showing that this behavior is not a characteristic of thef Ref.[29]]

spherical limit, i.e.n—o. _ _ % (1—d)/l2a—L/& *2
In the regiontL?>1 (i.e., z>1), from Eq.(3.8), we get X=x=[1=4(n+t2)umd(2mL/E,) e ol

(3.32
1 n+2 * . ; ;
_Tla R A o1 whereu* is the fixed point value of the renormalized cou-
X— 1 1 o gint—=27"(n+2)I'(o)g(tL?) pling constant andé; is the bulk exponential correlation

length[30].

Now we are in position to shed some light on this debate.
Note that all our calculations are performed up to the order
g'~&l. One can easily see, by settidgs4— ¢ in Eq.(3.32),

YT () a(tL?) "2+ O(g2) |. 32 that both results Eq(3.31) and Eq.(3.32 coincide (if g
(0)g(tL?) (@) (3.28 =u*/27%) and any controversy gets down, at least up to the

) ) . orderel. It is interesting to see what happens in higher order,
The functionFg ,(y) has the following largey asymptotic e ., do the powerlike terms cancel completely up to the

1
XF20,,(1L?) = 5(n+2)(4m)7

behavior(see Appendix B second loop or higher orders. In this case, however, we need
a to have at our disposal the corresponding high-order terms in
EL (y)=— (277)‘T+4‘77T” I'[(d+0)/2] S 1 Egs.(3.15 and(3.19. Indeed it is beyond the scope of the
dol¥)="y VL (—ol2) STIERT: present paper.
(3.293 IV. CONCLUSIONS
for the case 60 <2, and In this paper, we have investigated the finite-size scaling
472 properties in thed(n)-symmetrico* model with long-range
Faoy)=——+d(2m7) " D2y(d=3)4g=\y interaction potential decaying algebraically with the interpar-
’ y ticle distance. We have found that the methods developed in

(3.290  Refs.[16—19 can be successfully extended to systems with
long-range interaction by combining them with other known
techniques. These techniques allow the investigation to be
simplified and express the results for various thermodynamic

for the particular case=2. These results show that the last
term in Eq.(3.28 is just canceled by the first term in Egs.

(3.29. ) i ) functions in terms of simple and known mathematical func-
In the case of long-range interactiors@ <2, we obtain  tjgns.
for the susceptibility Here we restricted our calculations to the critical domain

T=T,. and investigated the model in dimensions less than the
I'(3a/2)I' (o) upper critical one, which turns out to b&rd0<o=<2). We
I'1-o/2) constructed an effective Hamiltonian, from the initial one,
with new coupling constant® andU. These constants obey
' 30 ~y the scaling hypothesi§3.3). We found that the even mo-
XEI 1727+ 0(9%) (330 menta of the fieldy, related to the thermodynamics of the
finite system, are scaling functions of the characteristic vari-

in agreement with the finite-size scaling hypothe@sg).  able

Equation(3.30 shows that the finite-size scaling behavior of 7=RU 12 2-n-el2,

the system is dominated by the bulk critical behavior, with

small correction in powers df. First the power-law falloff This variable has the required scaling form predicted by the

of the finite-size corrections to the bulk critical behavior, duefinite-size scaling theory. From the obtained forms of the

to long-range nature of the interaction, was found in theconstanRandU one concludes thatis a universal quantity,

framework of the spherical modgR7,28. Here, we ex- Which does not depend of the details of the model.

tended this result to finita using a perturbative approach. ~ We evaluated the finite-size shift, the susceptibility and
It should be noted that the above regit. (3.30] cannot  the amplitude ratior =M,/ M5 at the tree levellowest

be continued smoothly to the case of short-range interactiofrder in e). We observed that the critical behavior of the

o=2, since therF , y) [see Eq(3.298] falls off exponen- ~ System is dominated by its bulk critical behavior away from

tially fast and, correspondingly, the finite-size corrections tothe critical domain and that the finite-size scaling is relevant
y are exponentially small in the vicinity of the critical point. The amplitude ratiois

evaluated as an expansion in powerzof\s. Our result is
x=Xx[1—8gV2m(n+2)(tL?) ¥ T+ O(g?)]. (3.3) in consistency with that of Ref6]. But it is disagreement
with the numerical results of the same paper. There, it has
In Ref. [29], it has been argued that the approach used imeen found, using the Monte Carlo method, thdtas an
Refs.[6] and [17-27 is inadequate in the regiotlL?>1 expansion ire instead of its square root. At this time, we do
aboveT,, for the latticep® model, and one should employ not have a reasonable explanation of this fact. It is also pos-

X=Xo| 1—og(n+2)23772(tL7) "3
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sible that higher order ir: could improve the result. An In some particular cases the functioBg 5(z) reduce to
amelioration of the result could also come from accountingknown functions. For example, in the case corresponding to
finite cutoff effects, which were to be relevant in the inves-the short-range case we have

tigation of finite systems and the comparison of the results

with numerical workg31,32. However this is the subject of E11(z)=expz). (A3)
another publication.

Notice that in the only work devoted to the exploration of  Settingz=y~ %, y>0 andx=ty, we obtain the Laplace
finite-size scaling inO(n) systems with long-range interac- transform
tion (Ref. [6]) the pertinent integrals have to be evaluated
only numerically, due to the choice of a parametrization that
does not reduce thd-dimensional problem to the effective 1+7
one-dimensional one. The approach we used here is more
efficient in the sense that the corresponding final expressiorfiom which we derive the identity3.11) by setting8= a.
can be handled by analytical means. Consequently, we can- The asymptotic behavior of the Mittag-Leffler functions is
not make a direct comparison between the results of thigiven by the Lemma[34]
paper and those obtained there. Let 0<a<?2, B be an arbitrary complex number, and

Let us note that it would be interesting and useful to ex-be a real number obeying the condition
tend the result obtained here in the static limit to models 1
including dynamics, since we believe that this is closely re- ~am<y<min{m,am}.
lated to the extensively investigated field of quantum critical 2
points, i.e., phase transitions occurring at zero temperature. ) ) _

In particular we find it useful to investigate the critical dy- 1N€n for any integep=1 the following asymptotic expres-

namic of the quantum model considered in H&B] in the ~ Sions hold wherjz| —co:
(1) At |arg| <7y,

y* P

= f dte *tP71E, 4(—t%) (Ad)
0

largen limit.
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APPENDIX A: SOME PROPERTIES OF THE Eap(2)= —gl T(A—ak) +0(I2 P, (A8)

MITTAG-LEFFLER TYPE FUNCTIONS

The Mittag-leffler type functions are defined by the power APPENDIX B: ASYMPTOTIC BEHAVIOR

series[23]: OF THE FUNCTION Fg ,(y)
To obtain the smally behavior(3.20a of the function
o X Fq..(y) we use the identity22]
EQ’B(Z)ZKZ()F(T-FB)’ a,3>0. (A1)

=dx
ng=a fo Bt~ X ~Ea(~yx)]  (BD

They are entire functions of finite order of growth. Let us o ) .
mention that the function corresponding the particular cas@nd the definition of the functioR ,(y):

B=1 was introduced by Mittag-Leffler. These function are . 12
very popular in the field of fractional calculyor a recent Fq ”(y):J’ dxx’?71E 0/2( Y )
review see Ref[23]). ’ 0 ' (2m)7
One of the most striking properties of these functions is a2
that they obey the following useful identif23]: x| Ad(x)— 1_(2) } (B2)
X
1 * .
:f dxe P 1E, H(—X2), (A2) After some algebra one obtains:
1+z 0 ’ 2170
FZO',U'(y) = FZU,O'(O) + 2_Uyco_ mylny+ O(yz).
which is obtained by means of term-by-term integration of (B3a)

the series(Al). The integral in Eq(A2) converges in the

complex plane to the left of the line Re1'®, |arg|  where

<Zam. The identity(A2) lies in the basis of the mathemati- o2 " "
cal investigation of finite-size scaling in the spherical model C :LJOC% E ( v ) _ U_A 2a(u)+u_
with algebraically decaying long-range interacti@ee Ref. T T(o)Jo u| 21 27’ =° ol
[7] and references thergin (B3b)

026103-8
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To obtain the largey asymptotic behaviof3.29 of the
functionF4 ,(y) we rewrite Eq.(B2) in the form

Fd,o‘(y) = Wd/ZJ;) dXXO./27 dlz*lE(r/Z,rr/Z

|

—f dxx2-1ge
0 2’

yXO'IZ

_ ) 2 " e w212/x
(2m)7) 1
al2

y
f( : <2w>f’)' o

PHYSICAL REVIEW E 63 026103

Using the identity
J'O dXX(r/Z? lE(r/Z,(r/Z( - X(r/2) =1, o>0, (85)

from the second term of E¢B4) we obtain the first terms of
Egs.(3.293 and(3.29Dh, respectively.

Next taking into account Eq(A6) or Eq. (A3) for the
functionE,, 4(2), and after subsequent integration in the first
term of Eq.(B4), we obtain finally the asymptotic behavior
given by Eqs(3.293 and(3.29h.

[1] J. Zinn-JustinQuantum Field Theory and Critical Phenomena
(Clarendon Press, Oxford, 1996
[2] M. N. Barber, inPhase Transitions and Critical Phenomena
edited by C. Domb and J. LebowittAcademic, London,
1983, Vol. 8, p. 145.
[3] V. Privman, inFinite Size Scaling and Numerical Simulations
of Statistical Systemedited by V. Privmar{World Scientific,
Singapore, 1990
[4] V. Dohm, Phys. ScrT49, 46 (1993.
[5] E. R. Korutcheva and N. S. Tonchev, J. Stat. Pi§%.553
(1992.
[6] E. Luijten, Phys. Rev. B0, 7558(1999.
[7]1 3. G. Brankov and N. S. Tonchev, Physica 89 583(1992.
[8] S. Romano, Int. J. Mod. Phys. B), 2687(1996.
[9] E. Luijten and H. W. J. Blte, Phys. Rev. 56, 8945(1997.
[10] E. Bayong and H. T. Diep, Phys. Rev.3®, 11 919(1999.
[11] M. E. Fisher, S-k. Ma, and B. G. Nickel, Phys. Rev. L&89,
917 (1972.

[12] Y. Yamazaki and M. Suzuki, Prog. Theor. Physl, 1886
(1977).

[13] M. E. Fisher and V. Privman, Commun. Math. Phy83 527
(1986.

[14] M. Suzuki, Prog. Theor. Phyg9, 1106(1973.

[15] E. Brezin, J. Phys(France 43, 15 (1982.

[16] M. Luscher, Phys. Lett. B18 391 (1982.

[17] E. Brezin and J. Zinn-Justin, Nucl. Phys.287, 867 (1985.

[18] J. Rudnick, H. Guo, and D. Jasnow, J. Stat. PHk. 751
(1985.

[19] S. Sachdev, Phys. Rev. B, 142 (1997).

[20] Y. Goldschmidt, Nucl. Phys. B85 519(1987).

[21] J. Niel and J. Zinn-Justin, Nucl. Phys.ZB0, 355 (1987.

[22] J. G. Brankov, J. Stat. Phys6, 309 (1989.

[23] R. Gorenflo and F. Mainardi, iRractals and Fractional Cal-
culus in Continuum Mechanicsedited by A. Carpinteri and F.
Mainardi (Springer-Verlag, Wien, 1997 pp. 223-227.

[24] H. Chamati and N. S. Tonchev, J. Phys38, L167 (2000.

[25] H. Chamati and N. S. Tonchev, J. Stat. P8%.1211(1996.

[26] J. G. Brankov and N. S. Tonchev, J. Stat. Ph§5, 1431
(1990.

[27] S. Singh and R. K. Pathria, Phys. Rev4B, 9238(1989.

[28] J. G. Brankov and D. M. Danchev, J. Math. Phgg, 2543
(1991.

[29] X. S. Chen and V. Dohm, Eur. Phys. J.1B, 283 (2000.

[30] The difference between exponential correlation length and sec-
ond moment correlation length is a true lattice effect that dis-
appears in our continuum modglee Ref[29]).

[31] X. S. Chen and V. Dohm, Eur. Phys. J. /3183 (1999.

[32] X. S. Chen and V. Dohm, Eur. Phys. J.1B, 687 (1999.

[33] H. Chamati and N. S. Tonchev, J. Phys38, 873(2000.

[34] H. Bateman and A. Erdy, Higher Transcendental Functions
(McGraw-Hill, New York, 1955, Vol. 3.

026103-9



