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Resonant suppression of Turing patterns by periodic illumination

Milos Dolnik,* Anatol M. Zhabotinsky, and Irving R. Epstein
Department of Chemistry and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-91

~Received 26 September 2000; published 12 January 2001!

We study the resonant behavior of Turing pattern suppression in a model of the chlorine dioxide-iodine-
malonic acid reaction with periodic illumination. The results of simulations based on integration of partial
differential equations display resonance at the frequency of autonomous oscillations in the corresponding well
stirred system. The resonance in Turing pattern suppression is sharper at lower complexing agent concentration
and is affected by the waveform of the periodic driving force. Square wave~on-off! periodic forcing is more
effective in suppressing Turing patterns than sinusoidal forcing. We compare the dynamics of periodically
forced Turing patterns with the dynamics of periodically forced nonhomogeneous states in a system of two
identical coupled cells. Bifurcation analysis based on numerical continuation of the latter system gives good
predictions for the boundaries of the major resonance regions of the periodically forced patterns.
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I. INTRODUCTION

Turing’s work @1#, published almost half a century ag
has had a profound impact on theoretical development
pattern formation. Turing showed how spontaneous pat
formation may arise from the interaction of reaction and d
fusion in a chemical system. Despite considerable effort
experimentally verify Turing’s idea and to find stationa
spatial patterns in a real chemical system, it took almost
years before the first experimental evidence of convect
free Turing patterns was reported@2#. The Bordeaux group
working with an open continuously fed unstirred reac
~CFUR! observed spatial pattern formation arising from
homogeneous steady state in the chlorite-iodide-malonic
~CIMA ! reaction. Since then, Turing patterns have been
tensively studied in the CIMA reaction and in its variant, t
chlorine dioxide-iodine-malonic acid~CDIMA ! reaction
@3–5#. In recent years, increasing attention has been dev
to another, oscillatory class of Turing patterns, which ar
through the wave instability@6#. Examples of oscillatory
standing patterns include standing waves@7# and oscillatory
clusters@8#. Despite the considerable interest and progres
the study of Turing patterns, little is known about their b
havior in the presence of periodic external forcing.

Illumination and electric fields have been used to aff
Turing-like patterns obtained during polymerization in t
acrylamide-methylene blue-sulfide-oxygen reaction@9#, and
the same system has been exposed to spatially periodic
perturbation@10#. The pattern formation was modified b
light, and both spatial synchronization with the perturbat
and irregular responses were observed. The disadvanta
this system is its irreversibility; once the polymerization
over, the pattern cannot be changed by further external
turbation. This is not the case for the CIMA or CDIMA
reaction in a CFUR, where patterns can be repeatedly
posed to external forcing. Recent experiments using
CDIMA reaction have revealed a sensitivity of this reacti
to visible light @11,12# and opened the possibility of contro
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ling Turing patterns by constant or periodic illumination.
further experimental study@13# revealed that spatially uni
form illumination of Turing structures affects the characte
istics of the patterns and, at larger intensities, eliminates
tern formation completely. When the light was periodica
switched on and off, the fastest pattern suppression was
served at a frequency of illumination equal to the frequen
of autonomous oscillations in the corresponding well stirr
system. It was also found that periodic illumination is mo
effective than constant illumination with the same avera
light intensity.

Light is often used to study the effects of external pert
bations on the dynamics of nonlinear reaction-diffusion s
tems. One of the most thoroughly studied systems is
photosensitive Belousov-Zhabotinsky~BZ! reaction with the
Ru(bpy)3 catalyst @14–16# immobilized in a thin layer of
silica gel. Previous works have shown that traveling-wa
patterns observed in this photosensitive BZ reaction m
show spatial reorganization when subjected to periodic i
mination. Resonant, frequency-locked regimes of stand
wave patterns were observed during periodic forcing o
rotating spiral wave@17,18#. The sequence of frequency
locked regimes is analogous to that of locked oscillatio
observed in a well mixed reactor@19#.

Here, we study the resonant behavior of Turing struct
suppression in a simple model of the CDIMA reaction w
periodic illumination. We investigate how the waveform
the periodic driving force influences pattern suppression.
also compare the dynamics of periodically forced Turing p
terns with the dynamics of a periodically forced system
two coupled identical cells. We demonstrate how a bifur
tion analysis of the nonhomogeneous states in the syste
two coupled cells can be used to predict the boundarie
the major resonance regions of the periodically forced p
terns.

II. ILLUMINATION OF TURING PATTERNS
WITH CONSTANT LIGHT

We employ the simplified two-variable model@20# modi-
fied to include the effect of illumination@11,13#:
©2001 The American Physical Society01-1
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1wD 1d¹2vG . ~1!

Hereu andv are the dimensionless concentrations of@ I2#
and@ClO2

2#, respectively;a andb are dimensionless param
eters, witha proportional to the@CH2~COOH!2#/@ClO2# ra-
tio andb to the@ I2#/@ClO2# ratio. Parameterd is equal to the
ratio of diffusion coefficientsd5DClO

2
2 /D I2 and in this

study it is fixed at the valued51.2; s depends on the com
plexing agent ~starch! concentration according tos51

FIG. 1. Domains of Turing patterns inb vs a andb vs w param-
eter spaces in a model of the CDIMA reaction-diffusion syst
with constant illumination, Eq.~1!. Parameters:~a! s59, w50; ~b!
s59, a536; ~c! s515, w50; ~d! s515, a536.
02610
1K@I2#@S#, whereK is the association constant of the starc
triiodide complex and@S# is the concentration of starch
triiodide binding sites@21#. Parameterw is the dimensionless
rate of the photochemical reaction, which is proportional
the light intensity.

Figure 1~a! shows the region of existence of Turing pa
terns in theb vs a parametric space fors59. The Turing
line is independent of the complexing agent concentrati
but the position of the Hopf line varies withs. Increasing
the starch concentration shifts the Hopf line to lower valu
of b and thus increases the size of the Turing pattern reg
in theb vs a plane. The Hopf line lies above the Turing lin
for a,17, and no Turing patterns can be obtained below t
value. When the CDIMA reaction-diffusion system is illum
nated, i.e.,w.0, both the Turing and Hopf lines are affecte
by the illumination. Figure 1~b! shows the Turing pattern
region in theb vs w parameter plane. The Hopf line move
only slightly when the intensity of illumination is varied be
tween 0 and 5. The changes in the Turing line are mu
larger within this range, which leads to an increase in
width of the Turing pattern region. Whenw.5, both the
Turing and the Hopf bifurcations are strongly shifted
smaller values ofb as the distance between these poi
shrinks. The Turing patterns cease to exist at an intensit
illumination slightly abovew56. In this case, a homoge
neous stable steady state is reached.

Numerical integration of Eq.~1! in two-dimensional~2D!
space reveals that some of the bifurcations are subcrit
Turing patterns are found for any initial condition in th
region between the Hopf and Turing lines~Fig. 1!. If station-
ary Turing patterns from previous runs are used as the in
conditions, then Turing patterns can also be obtained for
tain parameters below the Hopf line~in the region of bulk
oscillations! and above the Turing line~in the region of the
uniform steady state!. This observation indicates that bot
the Hopf and the Turing bifurcations can be subcritic
which leads to bistability between the Turing patterns a
the homogeneous steady state, and between the Turing
terns and the bulk oscillations. Similar subcritical transitio
to Turing patterns have been reported earlier@5,22#. Figure 2
displays patterns obtained for different values ofb and w
using Turing patterns as initial conditions. The thick lines
values
FIG. 2. Turing patterns in a model of the CDIMA reaction-diffusion system with constant illumination. Turing patterns at higher
of b are surrounded by a uniform homogeneous state and at lowerb by homogeneous bulk oscillation~BO!. Columns in the table illustrate
transformation of Turing patterns when illumination intensity is varied. Parameters:s59, a536. Thick solid line: Hopf bifurcation line;
thick dashed line: Turing line.
1-2
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RESONANT SUPPRESSION OF TURING PATTERNS BY . . . PHYSICAL REVIEW E63 026101
Fig. 2, which correspond to the Turing and Hopf lines, in
cate the boundaries of the Turing pattern region. Figur
illustrates that the Turing pattern can be modified not only
varying the input concentrations~parameterb) but also by
changing the intensity of uniform illumination. For examp
whenb is fixed at 2.5 andw is gradually increased, the Tur
ing pattern changes from hexagons to mixed hexagons
stripes, stripes, stripes-honeycombs, and pure honeyco
before stronger illumination leads to total suppression
Turing patterns.

III. PERIODIC ILLUMINATION OF TURING PATTERNS

In a previous experimental study@13#, we observed tha
periodic illumination is more effective in suppressing Turi
patterns than constant illumination with the same aver
light intensity. The experiments show the fastest suppres
of pattern formation at a frequency of illumination equal
the frequency of autonomous oscillations in the correspo
ing well stirred system. Numerical simulations display
similar resonant behavior of periodically illuminated Turin
patterns. Here, we extend our numerical study of perio
illumination of Turing patterns and analyze the resonant
namics of Turing pattern suppression. We employ b
square-wave~on-off! and sinusoidal-wave forms for the pe
riodic light signal. In all simulations with periodic illumina
tion we fix the parameters ata536 andb52.5 and vary the
period of illuminationT and the maximum light intensityW.

Square-wave illumination. Square-wave illumination wa
used in the experiments described in Ref.@13#. The light is
periodically switched on and off with equal durations of t
on andoff phases. The light intensityw is a periodic function
of time:

w~ t !5W for iT<t, iT1T/2,

w~ t !50 for iT1T/2<t,~ i 11!T.
~2!

Here i 50,1,2, . . . andT is the period of illumination.
Sinusoidal-wave illumination. To study the role of the

perturbation waveform in resonant behavior we also emp
sinusoidal-wave illumination, which is a periodic function
time according to

w~ t !5
W

2 F11sinS 2pt

T D G . ~3!

The termw(t) is always nonnegative, and the time-averag
intensity over an integer number of periods is the same
the same maximum intensityW in the case of sinusoidal- an
square-wave illumination.

Figure 3 compares the results of simulations for squa
and sinusoidal-wave illumination for two values ofs. The
line divides the amplitude-period parameter space into
regions. When the parameters lie in the region above
solid ~dashed! line for s59 (s515), periodic forcing re-
sults in total suppression of Turing patterns. A spatially u
form state replaces the Turing patterns after a transient
riod and, if the periodic illumination is continued afte
02610
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Turing structure suppression, periodic bulk oscillations
the whole medium ensue. The frequency of these bulk os
lations is synchronized with the frequency of illumination.
the periodic illumination ceases during or after pattern s
pression, the Turing patterns reappear, because they ar
only stable solution in the absence of light for the parame
in Fig. 3 @see Fig. 1~b!#.

The solid line in Fig. 3~a! for s59 shows strong reso
nances in the suppression of Turing patterns with numer
local minima and maxima for square-wave illumination. T
global minimum is located near periodT51.55, which al-
most coincides with the period of oscillations of the starc
free system (s51). If this frequency is used for illumina
tion, then light of maximum intensityW50.6 is enough to
eliminate the pattern. This value is approximately 20 tim
less than the average intensity required when using cons
illumination. Other local minima are found near odd mu
tiples of this period~odd subharmonics! at T54.6 and 7.7.
On the other hand, the even subharmonics display antir
nance behavior—nearT53.1 andT56.2 maximal intensity
is required to suppress pattern formation.

With sinusoidal- instead of square-wave illumination, t
major resonance is found for the same period@solid lines in
Figs. 3~a! and 3~b!#, but the subharmonic resonance nea
vanishes, and forT.3 the minimum light intensity required
to suppress the pattern is practically independent of
quency.

FIG. 3. Resonant dynamics of periodically forced Turing p
terns in a 2D system according to Eq.~1!. The boundary between
the domain of the Turing patterns and that of the spatially homo
neous state is calculated fors59 ~solid line! and 15~dashed line!.
Other parameters area536, b52.5. ~a! Square-wave~on-off! illu-
mination.~b! Sinusoidal-wave illumination.
1-3
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DOLNIK, ZHABOTINSKY, AND EPSTEIN PHYSICAL REVIEW E63 026101
At higher concentrations of the complexing agents
515) the minimum intensity required for pattern suppre
sion at the resonant frequency is almost 10 times larger
at s59. Fors515, resonant suppression is found only ne
the frequency of damped oscillations in a diffusion-free s
tem. The curve that separates the Turing patterns from
homogeneous state displays a minimum at roughly th
times the basic period for square-wave illumination, but t
minimum is much shallower than fors59. Only a single
minimum ~resonance! is found for sinusoidal-wave illumina
tion. Square-wave illumination is more effective than sin
soidal both fors59 ands515, as shown by the fact tha
the amplitude of square-wave illumination required to su
press Turing patterns at a given period is less than or equ
the corresponding sinusoidal illumination amplitude.

Figure 4 illustrates the process of Turing pattern supp
sion. The time-dependent behavior during square-wave
mination is shown at two points selected from a 2D Turi
pattern. The thick line depicts the concentration changes
point where the pattern has its maximum concentrat
umax; the thin line shows the changes at a point with mi
mum concentrationumin . Gray and white backgrounds ind

FIG. 4. Periodic square-wave illumination of Turing patterns
temporal profiles of maximum and minimum values ofu. ~a! Period
of illumination T51.5, resonance 1:1 with suppression of Turi
patterns within three periods of illumination.~b! T54.5, resonance
3:1 with suppression of Turing patterns within five periods of ill
mination.~c! T53.0, antiresonance 2:1 with no suppression of T
ing patterns. Parameters:w52, other parameters as in Fig. 3.
02610
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cate the light intensity; white corresponds to the light be
on. Increasing the illumination intensity decreases the iod
concentration@11#. Our simulations show that for the low
concentration of complexing agents<15, a change in the
intensity of illumination is followed by damped oscillation
Thus, the changes in I2 induced by illumination interact with
the damped oscillatory adaptation of the Turing pattern t
new light level. If the illumination varies at the frequency
the damped oscillations, thenumin and umax approach each
other, and their merging leads to Turing pattern suppress
Figure 4~a! displays an example of such pattern suppress
At time t51, immediately after the light is switched on, bo
umin andumax decrease. After half a period of illumination
at t51.75,u starts to rise again as a result of the damp
oscillations. At the same time, the light is switched off a
the rise inu is enhanced by the decrease in illuminatio
Although there is significant change in bothumin andumax,
one can see a more profound increase in the former con
tration. After another half period, when the light is switch
on again, the decrease inu caused by illumination remains in
synchrony with the damped oscillations, leading to a stro
decrease in bothumin and umax. Over several cycles, the
minimum and maximum values ofu approach each other
Once they merge, the Turing pattern disappears. Figure~b!
shows a similar record for an illumination period three tim
as long as that in Fig. 4~a!. In this case, there is 3:1 entrain
ment between the period of damped oscillation and the
riod of illumination. It takes more cycles than in Fig. 4~a! to
bring the minimum and maximum together for full suppre
sion of patterns in this case. On the other hand, when we
a period of illumination that is double the period of damp
oscillation, the rises and falls inu and the damped oscilla
tions are out of phase. The light is switched off whenu
reaches its local maximum and switched on whenu reached
its local minimum. Thus, the concentration changes resul
from illumination counterbalance the damping changes,
we do not obtain the large deviations inumin andumax that
would lead to pattern suppression. This analysis sugg
why at illumination periods equal to even multiples of th
damping period we observe antiresonance behavior@see Fig.
4~c!#.

IV. BIFURCATION ANALYSIS OF A TWO-CELL SYSTEM
WITH CONSTANT ILLUMINATION

The determination of boundaries for Turing pattern su
pression as shown in Fig. 3 directly by integration of part
differential equations~PDE’s! in two dimensions is a time-
consuming task. A reaction-diffusion system is described
a system of parabolic PDE’s, which are numerically solv
by a finite difference method that converts the PDE’s into
set of ordinary differential equations~ODE’s! using a dis-
crete set of spatial points with equidistant grid spacing. As
alternative to direct integration, one might attempt to stu
the stability of the steady states and periodic solutions of
ODE’s, using continuation algorithms@23,24#. Though nu-
merical continuation packages provide a powerful tool
these studies, the number of ODE’s arising from the fin

-
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RESONANT SUPPRESSION OF TURING PATTERNS BY . . . PHYSICAL REVIEW E63 026101
difference method is too large to be handled by curren
available packages.

The diffusion-induced instability that leads to the form
tion of spatial stationary patterns can also occur in a sys
of two homogeneous cells coupled by diffusion@1#. This
system represents the minimal configuration for diffusio
induced instability and can be viewed as the smallest
that can be obtained from a set of PDE’s by the finite diff
ence method. Several studies of such systems have been
formed in the past, many of them with Brusselator kinet
@21,25–27#.

Here we consider a system of two identical cells conta
ing the components of the CDIMA reaction, includin
starch, and linked by diffusion coupling. Such systems
be built from two well stirred reactors connected by a co
mon wall via a semipermeable membrane, through which
chemicals diffuse according to Fickian diffusion.

Our system is then described by the following set of eq
tions:

du1

dt
5a2u124

u1v1

11u1
2

2w1u22u1 ,

dv1

dt
5sFbS u12

u1v1

11u1
2

1wD 1d~v22v1!G ,

du2

dt
5a2u224

u2v2

11u2
2

2w1u12u2 ,

dv2

dt
5sFbS u22

u2v2

11u2
2

1wD 1d~v12v2!G . ~4!

To find the steady state and periodic solutions of Eq.~4!
and to determine their stability, we use the program pack
CONT @28#. We first calculate the solution diagrams as t
dependents of the steady state values in cell 1,u1 , and in cell
2, u2 on a single parameter (a, b, or w).

The steady state solution diagrams display branches
a stable homogeneous steady state~HS!, in which u15u2
andv15v2 . HS becomes unstable either at a Hopf bifurc
tion point, where an oscillatory solution emerges, or a
branching~pitchfork! bifurcation point, where nonhomoge
neous steady state solutions~NS! with u15” u2 and v15” v2
arise. The oscillatory solutions are found to be homogene
~HO! or nonhomogeneous~NO!, and their stability is deter-
mined from Floquet multipliers@23#. Bifurcation points from
the solution diagrams are used as starting points to calcu
the bifurcation lines for construction of two-parameter bifu
cation diagrams. We compare these diagrams with those
tained for the full reaction-diffusion system~see Fig. 1!.

Figure 5 contains the solution diagram, which shows
pendence of variablesu1 andu2 on parametera for fixed b
52.5 ands515. The diagram is shown together with e
amples of the dynamical behavior at six selected points. O
stable HS is found fora,40.75~point A). At the branching
~pitchfork! point (a540.75) HS becomes unstable~dotted
line! and two NS’s emerge. At the subcritical Hopf bifurc
02610
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tion point ata541.70 the NS becomes unstable. At the Ho
bifurcation point a branch of unstable periodic solutions~NO
type! emerges, which is shown in Fig. 5 with open circle
The minima and maxima ofu1 andu2 are shown along the
branches of periodic solutions. Ata540.78 there is a limit
point of periodic solutions, where a branch of periodic so
tions changes stability and becomes stable~filled circles!.
Therefore, at pointB (a541.0) we find two stable nonho
mogeneous solutions—NO and NS. At pointC (a545.0),
which is beyond the Hopf bifurcation point, the NO state
the only stable solution.

At a550.50, there is another subcritical bifurcation o
the NS branch~the unstable branch of periodic solution
emerging from this Hopf point is not shown in Fig. 5! and
the NS becomes stable again. Thus, at pointD we obtain the
same set of dynamical behaviors as at point B. The branc

FIG. 5. System of two coupled cells with a CDIMA reactio
Solution diagram and examples of stable regimes at selected va
of parametera. Points:A, a530.0, only homogeneous steady sta
~HS! is stable;B, a541.0, nonhomogeneous oscillation~NO! co-
exists with nonhomogeneous steady state~NS!; C, a545.0, only
NO is stable,D, a555.0, NO and NS coexist;E, a565.0, NO,
NS, and homogeneous oscillations~HO! coexist;F, a575.0, NS
and HO coexist. Gray shading in the solution diagram indicates
region between limit points of nonhomogeneous period solutio
where nonhomogeneous oscillations are stable.
1-5
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FIG. 6. System of two coupled cells with
CDIMA reaction—two-parameter bifurcation
diagrams. Parameters are analogous to those u
in Fig. 1. ~a! s59, w50; ~b! s59, a536; ~c!
s515, w50; ~d! s515, a536. Gray areas in
diagram are regions with stable nonhomogeneo
oscillations, and regions where only nonhomog
neous steady states are stable.
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nonhomogeneous periodic solutions undergoes another
point bifurcation ata570.24 and then ends at a branchi
point of periodic solutions wherea560.28. At this point, the
stable homogeneous oscillations emerge. Thus, fora be-
tween 60.28 and 70.24 we obtain three stable solutions~point
E)—two nonhomogeneous~NO and NS! and one homoge
neous~HO!. For a.70.24, HO coexists with NS~point F).

We further use the bifurcation points from the on
parameter solution diagrams and perform continuation
these points to obtain two-parameter bifurcation diagra
The results of these continuations are summarized in Fi
for s59 and 15. Comparing Fig. 6 with Fig. 1, one can s
that the NO regions, together with the region where only
is stable in the system of two coupled cells~gray shaded
area!, correlate with the Turing pattern regions~hatched
area! for the reaction-diffusion system. With increasing com
plexing agent concentration the area of this region increa
in a similar fashion in both cases. Thus, a system of t
coupled cells provides a good model for the full reactio
diffusion system.

V. PERIODIC ILLUMINATION OF TWO
COUPLED CELLS

The resonance behavior and parameter dependence
resonant periodic orbits and their bifurcations have b
studied for many years@27,29–31#. We further utilize the
software packageCONT for the continuation of periodically
forced ODE’s to investigate bifurcations in the system of t
coupled identical cells described by Eq.~4!, with w as a
periodic function of time in both cells. We employ bo
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square-wave and sinusoidal-wave illumination according
Eq. ~2! and Eq.~3!.

A. Bifurcation of periodic solutions and Turing patterns

Figure 7 shows a diagram for period-one solutions in
system of two coupled cells with sinusoidal illumination a
fixed period of illuminationT52. For W,0.331 the homo-
geneous period-one solution is stable and coexists with n
homogeneous~complex! oscillation, which results from a
subcritical torus bifurcation of the nonhomogeneous perio
solution atW50.336. At W50.615 there is a supercritica
torus bifurcation, which means that forW.0.615 the non-
homogeneous period-one oscillations are stable. These o
lations again become unstable at a limit point (W51.654),
and the branches of nonhomogeneous periodic solutions
minate at a branching point atW51.644. ForW.1.654 we
find only stable homogeneous oscillations. In the preced
section we showed that the region of Turing structures in
reaction-diffusion system correlates with the regions w
stable nonhomogeneous states in the system of two cou
cells. Here we speculate that the parameter range in w
nonhomogeneous states are stable~shaded area! corresponds
to amplitudes of sinusoidal forcing that do not lead to su
pression of Turing patterns in the reaction-diffusion syste
We further calculate the dependences of the bifurcat
points on the amplitude and period of forcing in order
obtain a resonance diagram of homogeneous and nonho
geneous solutions. Figure 8 displays the branching, lim
torus, and period doubling lines for the period-one soluti
The limit lines forW,1 show the boundaries of the resona
1-6
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RESONANT SUPPRESSION OF TURING PATTERNS BY . . . PHYSICAL REVIEW E63 026101
regions ~Arnol’d tongues!, which originate on theT axis
(W50) at T'1.6, 3.2, 4.8, and 6.4. The torus and peri
doubling lines lie between the resonant regions. Inside
resonant regions there are stable period-one nonhom
neous solutions, while outside these regions complex non
mogeneous periodic solutions can be found. These com
periodic solutions arise via torus or period doubling bifurc
tions. From the assumption that the region of stable non
mogeneous periodic solutions is associated with the Tu
pattern region, we relate the topmost supercritical branch
bifurcation line or~in the case of subcritical bifurcation! the
limit line of periodic solutions to the boundary of Turin
pattern suppression. In Fig. 9 we overlay these bifurca
lines with the boundary detected by direct integration of
two-dimensional reaction-diffusion system@Eq. ~1!#. The
agreement between the region of nonhomogeneous solu
in the two-cell system with the region of Turing patterns
the reaction-diffusion system is very good. The initial con
tions used in our direct integration are the same in
runs—a stationary Turing pattern. We have performed s
eral runs with other initial conditions and found that Turin
patterns can be suppressed for amplitudes between the
line and the subcritical branching line, which indicates a
gion of coexistence of Turing patterns with the uniform sta

FIG. 7. Two coupled cells with sinusoidal period
illumination—period-one solutions. Parameters:T52.0, s59, b
52.5, a536. Region of nonhomogeneous oscillations is gr
Solid line represents stable, period-one, homogenous~HO! and non-
homogeneous~NO! oscillations; dashed line represents unsta
HO, dotted line unstable NO. Examples of stable solutions at s
eral amplitude values of illumination are shown at the bottom.
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B. Resonant dynamics of two coupled cells
with periodic illumination

Figure 3, which shows resonance in the suppression
Turing patterns by periodic illumination, illustrates the e
fects of the waveform of periodic illumination and of th
complexing agent concentration. The resonant dynamics
tained from continuation of periodic solutions in a system
two coupled cells displays similar features. Figure 10 sho
the branching and limit lines for three different shapes

FIG. 8. Resonance regions in two coupled cells with perio
sinusoidal-wave illumination. Thick solid line, line of branchin
points of HO; thin solid line, line of limit points of NO; dashed line
period doubling line of NO; dotted line, line of torus bifurcatio
points. Solid circles, Takens-Bogdanov points; open circle, deg
erate period doubling points.s59, a536, b52.5.

FIG. 9. Comparison of resonance in the suppression of Tu
patterns in a reaction-diffusion system and in the suppressio
nonhomogeneous states in a system of two coupled cells. Sinus
waveform for s59, a536, b52.5. The dotted line shows th
boundary of Turing pattern suppression obtained from direct sim
lations of Eq.~1!. The thick solid line is the line of branching point
of HO and the thin solid line is the line of limit points of NO fo
system of two coupled cells with a CDIMA reaction. Parameters
in Fig. 8.
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DOLNIK, ZHABOTINSKY, AND EPSTEIN PHYSICAL REVIEW E63 026101
periodic illumination. Figure 10~a! shows that for square
wave illumination ands59 the bifurcation lines display
resonant periods with a major resonance atT'1.55~close to
the period of damped oscillations! and its odd subharmonics
Some resonance behavior also occurs near even subhar
ics (T'3.1,6.2, . . . ), butthese minima are much shallowe
and are rapidly followed by antiresonant behavior~maxima!.
Simulations withs515 display much less pronounced res
nance behavior. The only minima on the bifurcation line o
cur at the fundamental period and at triple that value. Fig
10~b! shows the results of continuation for sinusoidal-wa
illumination. The resonance occurs only around the period
damped oscillations both fors59 ands515. Here, too, a

FIG. 10. Resonance in the suppression of nonhomogen
states; dependence on the illumination waveform fors59 ands
515. ~a! Square~on-off! waveform.~b! Simple sinusoidal wave-
form. ~c! Sinusoidal waveform composed of the first two terms
the Fourier series of square waves. Fors59, when the branching
bifurcation of periodic solutions~solid line! is subcritical, the line
of limit points ~dotted line! marks the boundary of nonhomoge
neous oscillations. Fors515, the branching bifurcation~dashed
line! is always supercritical.
02610
on-

-
-
e

f

larger value ofs results in a shallower resonance doma
Comparison of the border of Turing pattern suppression~Fig.
3! and the branching and/or limit bifurcation lines~Fig. 10!
gives almost quantitative agreement for both square-w
and sinusoidal-wave illumination.

We also performed simulations with a waveform com
posed of the first two harmonics from the Fourier transfo
of the square wave. The square-wave illumination can
written in the form of an infinite Fourier series

w~ t !5
W

2 S 11sin
2pt

T
1

1

3
sin

6pt

T
1

1

5
sin

10pt

T
1¯ D .

~5!

We employed a combination of two sinusoidal waves:

w~ t !5
W

2 S 11sin
2pt

T
1

1

3
sin

6pt

T D . ~6!

Figure 10~c! shows the bifurcation lines with resonanc
at the basic and triple periods of damped oscillations.

C. Resonance in a modified model for illumination
of the CDIMA reaction

In a recent study, a new mechanism for determining
effect of visible light on the CDIMA reaction was propose
@12#. In this model, the overall rate of the light-sensitive pa
of the mechanism depends on@ClO2# and@ I2# as well as on
the light intensity. In the simplified two-variable version, E
~7!, @ClO2# is considered constant, and we replacew in Eq.
~1! with

w5
aw8

u1c
. ~7!

Here,w8 is proportional to the light intensity andc anda are
constants. Figure 11~a! shows a bifurcation diagram in theb
vs w8 parameter space with Turing and Hopf lines forc
50.8 anda52.5. Comparing Fig. 11~a! with Figs. 1~b! and
1~d!, we see that forw8,4.5 there is no significant change i
the size and shape of the Turing pattern region. Only
larger values of the light intensity (w8.4.5) is the shape of
the Turing and Hopf lines altered. Now Turing patterns a
predicted to exist for very large values of parameterb, which
does not occur whenw is considered to be independent
@ClO2# and @ I2#. Figure 11~b! shows the line of branching
bifurcations, which, as demonstrated in the preceding s
tion, corresponds to the boundary of Turing pattern supp
sion in the reaction-diffusion system with periodic forcin
The periodic force in this case has the form

wi~ t !5
aw8

2~ui1c! F11sinS 2pt

T D G , ~8!

wherei 51,2. Owing to the dependence of the periodic fo
ing on the variablesui , the forcing term is different in each
cell in the case of the nonhomogeneous state. This fea

us
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RESONANT SUPPRESSION OF TURING PATTERNS BY . . . PHYSICAL REVIEW E63 026101
results in numerical difficulties in the continuation techniqu
which often fails to converge. Nevertheless, the resona
behavior is analogous to that obtained with a concentrat
independent forcing term.

VI. DISCUSSION AND CONCLUSION

In this numerical study of the CDIMA reaction, we hav
analyzed resonant behavior during suppression of Tu
patterns by periodic illumination. The resonant behavior
found to be more profound for lower starch concentratio
and to vanish at high starch concentrations. Simulati
show that for low starch concentrations the recovery t
steady state after a single perturbation exhibits well defi
damped oscillations. At larger starch concentrations
damping becomes very strong, and fors@15 there is a fast
nonoscillatory recovery to the steady state after perturbat
The interaction between the damped oscillations and peri
illumination is responsible for the observed resonances.
resonance in Turing pattern suppression is observed f
frequency which is close to the frequency of damped os
lations or which is an odd subharmonic of this frequen
Forcing with a period that is an even multiple of the peri
of damped oscillations yields antiresonant behavior. This

FIG. 11. Turing pattern domains in a modified model of t
CDIMA reaction—Eq.~7!. ~a! Domains of Turing patterns inb vs
W parameter space for a CDIMA reaction-diffusion system.~b!
Resonance in the suppression of nonhomogeneous states in a
tem of two coupled cells,s59, sinusoidal illumination.
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havior is caused by the opposing effects of the periodic fo
ing and the damped oscillations, which prevents suppres
of the concentration gradient in the pattern.

The resonant behavior is affected by the waveform of
periodic illumination. Square-wave forcing is more effecti
in suppression of Turing patterns than a smooth sinuso
waveform. We have performed a study with unequal on-
duration for rectangular waveform illumination. We find th
for T51.55 the ratioton /to f f51 is the most effective for
suppression of the patterns, i.e., the lowest intensity of i
mination is needed at this ratio to suppress the Turing p
tern. Similar results were obtained forT54.65, where the
most effective ratio waston /to f f50.9. On the other hand, fo
T53.1 the most effective ratios are found to be 0.25 and
while a ratio close to 1.5 gives a local minimum~maximum!
in the effectiveness~intensity of illumination!.

There is a simple relationship between the shape of
periodic forcing function and the resonant dynamics of T
ing pattern suppression. At lower complexing agent conc
trations (s59) resonance occurs at odd subharmoni
Simple sinusoidal forcing gives resonance at the basic
quency of damped oscillations; square-wave forcing, wh
is an infinite series of odd sinusoidal terms, results in re
nance at the odd frequencies. A waveform consisting of o
the first two terms from the Fourier series of a square w
results in a resonance structure almost identical to the r
nances found in square-wave forcing at the fundamental
third subharmonics, but does not contain any further subh
monic resonances.

Our simulations confirm that periodic illumination i
more effective than constant illumination. For example,
s59 the intensity of illumination needed to suppress t
Turing pattern using square-wave illumination is only 5%
that required with constant illumination.

We have compared the dynamics of periodically forc
Turing patterns with the dynamics of periodically force
nonhomogeneous states in a system of two coupled iden
cells. Bifurcation analysis based on numerical continuat
of the latter system gives very good predictions for t
boundaries of the major resonance regions of periodic
forced patterns. The results of simulations suggest that
regions of stable nonhomogeneous solutions in the syste
two coupled cells are associated with the Turing pattern
gion in the continuous system. In the amplitude vs forci
period parameter plane, the topmost supercritical branch
bifurcation line or~in the case of subcritical bifurcation! the
limit line of periodic solutions corresponds closely to th
boundary of Turing pattern suppression. The boundary
most cases does not deviate from the bifurcation lines
more than 5% of W and in the case of subcritical branch
bifurcations, the boundary closely follows the limit line.
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