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Resonant suppression of Turing patterns by periodic illumination

Milos Dolnik,* Anatol M. Zhabotinsky, and Irving R. Epstein
Department of Chemistry and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
(Received 26 September 2000; published 12 January)2001

We study the resonant behavior of Turing pattern suppression in a model of the chlorine dioxide-iodine-
malonic acid reaction with periodic illumination. The results of simulations based on integration of partial
differential equations display resonance at the frequency of autonomous oscillations in the corresponding well
stirred system. The resonance in Turing pattern suppression is sharper at lower complexing agent concentration
and is affected by the waveform of the periodic driving force. Square Wawvff) periodic forcing is more
effective in suppressing Turing patterns than sinusoidal forcing. We compare the dynamics of periodically
forced Turing patterns with the dynamics of periodically forced nonhomogeneous states in a system of two
identical coupled cells. Bifurcation analysis based on numerical continuation of the latter system gives good
predictions for the boundaries of the major resonance regions of the periodically forced patterns.
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[. INTRODUCTION ling Turing patterns by constant or periodic illumination. A
further experimental studj13] revealed that spatially uni-
Turing’s work [1], published almost half a century ago, form illumination of Turing structures affects the character-
has had a profound impact on theoretical developments iistics of the patterns and, at larger intensities, eliminates pat-
pattern formation. Turing showed how spontaneous patterfern formation completely. When the light was periodically
formation may arise from the interaction of reaction and dif-switched on and off, the fastest pattern suppression was ob-
fusion in a chemical system. Despite considerable efforts tgerved at a frequency of illumination equal to the frequency
experimentally verify Turing’s idea and to find stationary Of autonomous oscillations in the corresponding well stirred
spatial patterns in a real chemical system, it took almost 4@ystem. It was also found that periodic illumination is more
years before the first experimental evidence of convectioneffective than constant illumination with the same average
free Turing patterns was report¢2l]. The Bordeaux group, light intensity.
working with an open continuously fed unstirred reactor Light is often used to study the effects of external pertur-
(CFUR) observed spatial pattern formation arising from abations on the dynamics of nonlinear reaction-diffusion sys-
homogeneous steady state in the chlorite-iodide-malonic aci¢ms. One of the most thoroughly studied systems is the
(CIMA) reaction. Since then, Turing patterns have been exPhotosensitive Belousov-Zhabotinsk§Z) reaction with the
tensively studied in the CIMA reaction and in its variant, the Ru(bpy); catalyst[14—16 immobilized in a thin layer of
chlorine dioxide-iodine-malonic acidCDIMA) reaction silica gel. Previous works have shown that traveling-wave
[3-5]. In recent years, increasing attention has been devotdeptterns observed in this photosensitive BZ reaction may
to another, oscillatory class of Turing patterns, which ariseshow spatial reorganization when subjected to periodic illu-
through the wave instabilitf6]. Examples of oscillatory mination. Resonant, frequency-locked regimes of standing-
standing patterns include standing way@kand oscillatory ~Wave patterns were observed during periodic forcing of a
clusters8]. Despite the considerable interest and progress ifiotating spiral wave[17,18. The sequence of frequency-
the study of Turing patterns, little is known about their be-locked regimes is analogous to that of locked oscillations
havior in the presence of periodic external forcing. observed in a well mixed reactpt9].
lllumination and electric fields have been used to affect Here, we study the resonant behavior of Turing structure
Turing-like patterns obtained during polymerization in thesuppression in a simple model of the CDIMA reaction with
acrylamide-methylene blue-sulfide-oxygen reactieh and  periodic illumination. We investigate how the waveform of
the same system has been exposed to spatially periodic ligtte periodic driving force influences pattern suppression. We
perturbation[10]. The pattern formation was modified by also compare the dynamics of periodically forced Turing pat-
light, and both spatial synchronization with the perturbationterns with the dynamics of a periodically forced system of
and irregular responses were observed. The disadvantage @0 coupled identical cells. We demonstrate how a bifurca-
this system is its irreversibility; once the polymerization istion analysis of the nonhomogeneous states in the system of
over, the pattern cannot be changed by further external pefwo coupled cells can be used to predict the boundaries of
turbation. This is not the case for the CIMA or CDIMA the major resonance regions of the periodically forced pat-
reaction in a CFUR, where patterns can be repeatedly exXerns.
posed to external forcing. Recent experiments using the
CDI_I\/I_A reaction have revealed a sensitivity _o_f this reaction Il ILLUMINATION OF TURING PATTERNS
to visible light[11,12 and opened the possibility of control- WITH CONSTANT LIGHT

We employ the simplified two-variable modé&0] modi-
* Author to whom correspondence should be addressed. fied to include the effect of illuminatiofl1,13:
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+K[I,][ S], whereK is the association constant of the starch-
triiodide complex and[S] is the concentration of starch-
triiodide binding site$21]. Parametew is the dimensionless
rate of the photochemical reaction, which is proportional to
the light intensity.

Figure Xa) shows the region of existence of Turing pat-
terns in theb vs a parametric space foor=9. The Turing
line is independent of the complexing agent concentration,
but the position of the Hopf line varies with. Increasing
the starch concentration shifts the Hopf line to lower values
of b and thus increases the size of the Turing pattern region
in the b vs a plane. The Hopf line lies above the Turing line
for a<17, and no Turing patterns can be obtained below this
value. When the CDIMA reaction-diffusion system is illumi-
nated, i.e.w>0, both the Turing and Hopf lines are affected
by the illumination. Figure (b) shows the Turing pattern
region in theb vs w parameter plane. The Hopf line moves
only slightly when the intensity of illumination is varied be-
tween 0 and 5. The changes in the Turing line are much
larger within this range, which leads to an increase in the
w width of the Turing pattern region. Whew>5, both the

Turing and the Hopf bifurcations are strongly shifted to

FIG. 1. Domains of Turing patterns mvsa andb vsw param-  smaller values ofo as the distance between these points
eter spaces in a model of the CDIMA reaction-diffusion systemghrinks. The Turing patterns cease to exist at an intensity of
with constant illumination, Eq.1). Parameterda) =9, w=0; (b) illumination slightly abovew=6. In this case, a homoge-
0=9,a2=36; (c) 0=15,w=0; (d) 0=15,a=36. neous stable steady state is reached.

Numerical integration of Eq.1) in two-dimensional2D)
au 5 space reveals that some of the bifurcations are subcritical.
E:a—u—41+u2—w+v u, Turing patterns are found for any initial condition in the
region between the Hopf and Turing lingsg. 1). If station-
ary Turing patterns from previous runs are used as the initial
conditions, then Turing patterns can also be obtained for cer-
: D tain parameters below the Hopf li@ the region of bulk
oscillations and above the Turing linén the region of the
uniform steady staje This observation indicates that both
the Hopf and the Turing bifurcations can be subcritical,
which leads to bistability between the Turing patterns and
i ) g the homogeneous steady state, and between the Turing pat-
tio andb to the[1,]/[ CIO,] ratio. Parameted is equal t0 the  tong and the bulk oscillations. Similar subcritical transitions
ratio of diffusion coefficientsd= DC|02—/D,7 and in this Turing patterns have been reported eafe22]. Figure 2
study it is fixed at the valud=1.2; o depends on the com- displays patterns obtained for different valuesbofind w
plexing agent(starch concentration according tar=1  using Turing patterns as initial conditions. The thick lines in
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Hereu andv are the dimensionless concentration§|of]
and[CIO, ], respectivelya andb are dimensionless param-
eters, witha proportional to thg CH,(COOH),]/[ CIO,] ra-
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FIG. 2. Turing patterns in a model of the CDIMA reaction-diffusion system with constant illumination. Turing patterns at higher values
of b are surrounded by a uniform homogeneous state and at lbbwghomogeneous bulk oscillatidBO). Columns in the table illustrate
transformation of Turing patterns when illumination intensity is varied. Parameter®, a=36. Thick solid line: Hopf bifurcation line;
thick dashed line: Turing line.
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Fig. 2, which correspond to the Turing and Hopf lines, indi-
cate the boundaries of the Turing pattern region. Figure 2 I (a) ]
illustrates that the Turing pattern can be modified not only by
varying the input concentration@arameteb) but also by
changing the intensity of uniform illumination. For example,
whenb is fixed at 2.5 andv is gradually increased, the Tur-
ing pattern changes from hexagons to mixed hexagons and
stripes, stripes, stripes-honeycombs, and pure honeycombs
before stronger illumination leads to total suppression of
Turing patterns.

Homogeneous state

o

light intensity, W
n
\
A

Turing patterns

IIl. PERIODIC ILLUMINATION OF TURING PATTERNS

-
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In a previous experimental stud¥3], we observed that
periodic illumination is more effective in suppressing Turing
patterns than constant illumination with the same average
light intensity. The experiments show the fastest suppression
of pattern formation at a frequency of illumination equal to
the frequency of autonomous oscillations in the correspond-
ing well stirred system. Numerical simulations displayed
similar resonant behavior of periodically illuminated Turing
patterns. Here, we extend our numerical study of periodic
illumination of Turing patterns and analyze the resonant dy- 0
namics of Turing pattern suppression. We employ both
square-waveon-off) and sinusoidal-wave forms for the pe-
riodic light signal. In all simulations with periodic illumina- FIG. 3. Resonant dynamics of periodically forced Turing pat-
tion we fix the parameters at=36 andb=2.5 and vary the terns in a 2D system according to Ed). The boundary between
period of illuminationT and the maximum light intensity. the domain of the Turing patterns and that of the spatially homoge-

Square-wave illuminatianSquare-wave illumination was neous state is calculated for=9 (solid line) and 15(dashed ling
used in the experiments described in Haf]. The light is  Other parameters aee= 36, b=2.5. (a) Square-wavéon-off) illu-
periodically switched on and off with equal durations of the mination.(b) Sinusoidal-wave illumination.
on andoff phases. The light intensity is a periodic function

Homogeneous state

w

light intensity, W

E-N

Turing patterns

2 4 6 8
forcing period, T

of time: Turing structure suppression, periodic bulk oscillations of
w=W for iT<t<iT+T/2, thg whqle med|um_ensue.. The frequency of t_hese. buI.k oscil-

lations is synchronized with the frequency of illumination. If
w(t)=0 for iT+T/2<t<(i+1)T. the periodic illumination ceases during or after pattern sup-

2) pression, the Turing patterns reappear, because they are the
only stable solution in the absence of light for the parameters
Herei=0,1,2 ... andT is the period of illumination. in Fig. 3[see Fig. )].

Sinusoidal-wave illuminatianTo study the role of the The solid line in Fig. 8a) for c=9 shows strong reso-
perturbation waveform in resonant behavior we also employances in the suppression of Turing patterns with numerous
sinusoidal-wave illumination, which is a periodic function of local minima and maxima for square-wave illumination. The
time according to global minimum is located near periot= 1.55, which al-

most coincides with the period of oscillations of the starch-
free system §=1). If this frequency is used for illumina-
3 tion, then light of maximum intensityv=0.6 is enough to
eliminate the pattern. This value is approximately 20 times
The termw(t) is always nonnegative, and the time-averagedess than the average intensity required when using constant
intensity over an integer number of periods is the same foillumination. Other local minima are found near odd mul-
the same maximum intensiw in the case of sinusoidal- and tiples of this periodlodd subharmonigsat T=4.6 and 7.7.
square-wave illumination. On the other hand, the even subharmonics display antireso-

Figure 3 compares the results of simulations for squarenance behavior—nedr=3.1 andT=6.2 maximal intensity
and sinusoidal-wave illumination for two values @of The is required to suppress pattern formation.
line divides the amplitude-period parameter space into two With sinusoidal- instead of square-wave illumination, the
regions. When the parameters lie in the region above thenajor resonance is found for the same pefisdlid lines in
solid (dashedl line for c=9 (0=15), periodic forcing re- Figs. 3@ and 3b)], but the subharmonic resonance nearly
sults in total suppression of Turing patterns. A spatially uni-vanishes, and fof >3 the minimum light intensity required
form state replaces the Turing patterns after a transient pée suppress the pattern is practically independent of fre-
riod and, if the periodic illumination is continued after quency.

Tt

1+sin

W
W(t) = E
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(a) m cate the light intensity; white corresponds to the light being
S on. Increasing the illumination intensity decreases the iodide
concentration11]. Our simulations show that for the low
concentration of complexing agent<15, a change in the
intensity of illumination is followed by damped oscillations.
Thus, the changes in linduced by illumination interact with
the damped oscillatory adaptation of the Turing pattern to a
new light level. If the illumination varies at the frequency of
0 P 4 6 8 10 the damped oscillations, then,;, and u,,,, approach each
(b) u other, and their merging leads to Turing pattern suppression.
Figure 4a) displays an example of such pattern suppression.
10, I At time t=1, immediately after the light is switched on, both
| Umin @nd up, . decrease. After half a period of illumination,
u A att=1.75,u starts to rise again as a result of the damped
51 ‘ oscillations. At the same time, the light is switched off and
Ui ‘ ‘ ‘ the rise inu is enhanced by the decrease in illumination.
» Although there is significant change in baik,;, andu,ay,
one can see a more profound increase in the former concen-
(C) I tration._After another hqlf period, When the Ii_ght is SV\_/itched
m on again, the decreaseltrcaused by illumination remains in
—\/\]\/\N\W synchrony with the damped oscillations, leading to a strong
decrease in both,;, and uy,,,. Over several cycles, the
u minimum and maximum values af approach each other.
Once they merge, the Turing pattern disappears. Figloe 4
shows a similar record for an illumination period three times
Uy, as long as that in Fig.(4). In this case, there is 3:1 entrain-
; , ment between the period of damped oscillation and the pe-
0 10 time 20 30 riod of illumination. It takes more cycles than in Figa#to
bring the minimum and maximum together for full suppres-
FIG. 4. Periodic square-wave illumination of Turing patterns— Sion of patterns in th_'s case. On the other hand, when we use
temporal profiles of maximum and minimum valuesiofa) Period @ period of illumination that is double the period of damped
of illumination T=1.5, resonance 1:1 with suppression of Turing OSCillation, the rises and falls in and the damped oscilla-
patterns within three periods of illuminatiotb) T=4.5, resonance tions are out of phase. The light is switched off when
3:1 with suppression of Turing patterns within five periods of illu- reaches its local maximum and switched on whenreached
mination.(c) T= 3.0, antiresonance 2:1 with no suppression of Tur-its local minimum. Thus, the concentration changes resulting
ing patterns. Parametens:= 2, other parameters as in Fig. 3. from illumination counterbalance the damping changes, and
) _ . we do not obtain the large deviations up,;, and u,,, that
At higher concentrations of the complexing agemt ( \yould lead to pattern suppression. This analysis suggests
=15) the minimum intensity required for pattern suppres-yhy at illumination periods equal to even multiples of the

sion at the resonant frequency is almolst 1-0 times larger thaﬂ‘amping period we observe antiresonance behdsie Fig.
ato=9. Foro=15, resonant suppression is found only nearg(c)].

the frequency of damped oscillations in a diffusion-free sys-

tem. The curve that separates the Turing patterns from the

homogeneous state displays a minimum at roughly threg, o, ;0 - ATION ANALYSIS OF A TWO-CELL SYSTEM

tlmgs the pasm period for square-wave |IIum|nat|on,.but this WITH CONSTANT ILLUMINATION

minimum is much shallower than far=9. Only a single

minimum (resonancgis found for sinusoidal-wave illumina- The determination of boundaries for Turing pattern sup-

tion. Square-wave illumination is more effective than sinu-pression as shown in Fig. 3 directly by integration of partial

soidal both foroc=9 ando =15, as shown by the fact that differential equationgPDE’s) in two dimensions is a time-

the amplitude of square-wave illumination required to sup-consuming task. A reaction-diffusion system is described by

press Turing patterns at a given period is less than or equal ® system of parabolic PDE’s, which are numerically solved

the corresponding sinusoidal illumination amplitude. by a finite difference method that converts the PDE’s into a
Figure 4 illustrates the process of Turing pattern suppresset of ordinary differential equation®DE’s) using a dis-

sion. The time-dependent behavior during square-wave illuerete set of spatial points with equidistant grid spacing. As an

mination is shown at two points selected from a 2D Turingalternative to direct integration, one might attempt to study

pattern. The thick line depicts the concentration changes atihe stability of the steady states and periodic solutions of the

point where the pattern has its maximum concentratiorODE’s, using continuation algorithn®3,24]. Though nu-

Umayx, the thin line shows the changes at a point with mini-merical continuation packages provide a powerful tool for

mum concentration,;,. Gray and white backgrounds indi- these studies, the number of ODE’s arising from the finite
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difference method is too large to be handled by currently 30
available packages. Limit point of

The diffusion-induced instability that leads to the forma- petiodlc soktion
tion of spatial stationary patterns can also occur in a system 1.2
of two homogeneous cells coupled by diffusifh]. This ’
system represents the minimal configuration for diffusion-
induced instability and can be viewed as the smallest unit 20-
that can be obtained from a set of PDE’s by the finite differ-
ence method. Several studies of such systems have been per- !
formed in the past, many of them with Brusselator kinetics A
[21,25-21.

Here we consider a system of two identical cells contain-
ing the components of the CDIMA reaction, including 10-
starch, and linked by diffusion coupling. Such systems can
be built from two well stirred reactors connected by a com-
mon wall via a semipermeable membrane, through which the
chemicals diffuse according to Fickian diffusion.

Our system is then described by the following set of equa-
tions:

1v1
—W+Up—Uy,
dt 1+u? 2

Uv,
b( U, — 2+W)+d(vz_vl)ly
1+ug

(4)

FIG. 5. System of two coupled cells with a CDIMA reaction.

) L . Solution diagram and examples of stable regimes at selected values
To find the steady state and periodic solutions of €. of parameter. Points:A, a=30.0, only homogeneous steady state

and to determing their stability, we use_the program packagﬁ_ls) is stable:B, a=41.0, nonhomogeneous oscillatiNO) co-
CONT [28]. We first calculate the soluyon dlagrams as thegyists with nonhomogeneous steady StN&); C, a=45.0, only
dependents of the steady state values in celi1and incell  NQ s stable D, a=55.0, NO and NS coexisE, a=65.0, NO,
2, up on a single parametea( b, or w). NS, and homogeneous oscillatiot30) coexist;F, a=75.0, NS
The steady state solution diagrams display branches withnd HO coexist. Gray shading in the solution diagram indicates the
a stable homogeneous steady st@dis), in which u;=u,  region between limit points of nonhomogeneous period solutions,
andv,=v,. HS becomes unstable either at a Hopf bifurca-where nonhomogeneous oscillations are stable.
tion point, where an oscillatory solution emerges, or at a
branching(pitchfork) bifurcation point, where nonhomoge- tion point ata=41.70 the NS becomes unstable. At the Hopf
neous steady state solutiofidS) with u;#u, andv,#v,  bifurcation point a branch of unstable periodic solutiON®
arise. The oscillatory solutions are found to be homogeneoutype) emerges, which is shown in Fig. 5 with open circles.
(HO) or nonhomogeneoudNO), and their stability is deter- The minima and maxima af; andu, are shown along the
mined from Floquet multiplier§23]. Bifurcation points from  branches of periodic solutions. At=40.78 there is a limit
the solution diagrams are used as starting points to calculafmint of periodic solutions, where a branch of periodic solu-
the bifurcation lines for construction of two-parameter bifur-tions changes stability and becomes staffiéed circles.
cation diagrams. We compare these diagrams with those ofherefore, at poinB (a=41.0) we find two stable nonho-
tained for the full reaction-diffusion systefsee Fig. 1 mogeneous solutions—NO and NS. At podt (a=45.0),
Figure 5 contains the solution diagram, which shows dewhich is beyond the Hopf bifurcation point, the NO state is
pendence of variables;, andu, on parametea for fixed b the only stable solution.
=2.5 ando=15. The diagram is shown together with ex- At a=50.50, there is another subcritical bifurcation on
amples of the dynamical behavior at six selected points. Onthe NS branch(the unstable branch of periodic solutions
stable HS is found foa<40.75(point A). At the branching emerging from this Hopf point is not shown in Fig) &nd
(pitchfork) point (a=40.75) HS becomes unstabldotted the NS becomes stable again. Thus, at pbinte obtain the
line) and two NS’s emerge. At the subcritical Hopf bifurca- same set of dynamical behaviors as at point B. The branch of
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FIG. 6. System of two coupled cells with a
CDIMA reaction—two-parameter  bifurcation
diagrams. Parameters are analogous to those used
in Fig. 1. (@ o=9,w=0; (b) 6=9, a=36; (c)
o=15,w=0; (d) 0=15,a=36. Gray areas in
diagram are regions with stable nonhomogeneous
oscillations, and regions where only nhonhomoge-
neous steady states are stable.

D
% / Hopf line
2
/_ NSNO
F=-HO,NS,NO

1 <+Limit line of periodic sol

HO,NS

0 1 2 3 4 5 8\

nonhomogeneous periodic solutions undergoes another limfquare-wave and sinusoidal-wave illumination according to
point bifurcation ata=70.24 and then ends at a branching Eq. (2) and Eq.(3).

point of periodic solutions whera= 60.28. At this point, the

stable homogeneous oscillations emerge. Thus,afdre-

tween 60.28 and 70.24 we obtain three stable solufiooist A. Bifurcation of periodic solutions and Turing patterns

E)—two nonhomogeneoudNO and NS and one homoge- Figure 7 shows a diagram for period-one solutions in a
neous(HO). Fora>70.24, HO coexists with NgoointF).  system of two coupled cells with sinusoidal illumination at a
We further use the bifurcation points from the one-fixed period of illuminationT= 2. For W<0.331 the homo-
parameter solution diagrams and perform continuation ofjeneous period-one solution is stable and coexists with non-
these points to obtain two-parameter bifurcation diagramshomogeneou:{compleg oscillation, which results from a
The results of these continuations are summarized in Fig. 8ubcritical torus bifurcation of the nonhomogeneous periodic
for ¢=9 and 15. Comparing Fig. 6 with Fig. 1, one can seesp|ution atWw=0.336. AtW=0.615 there is a supercritical
that the NO regions, together with the region where only NSorys bifurcation, which means that fo¥>0.615 the non-
is stable in the system of two coupled ceflyray shaded homogeneous period-one oscillations are stable. These oscil-
areg, correlate with the Turing pattern regiorisatched |ations again become unstable at a limit poi¢< 1.654),
area for the reaction-diffusion system. With increasing com- ang the branches of nonhomogeneous periodic solutions ter-
plexing agent concentration the area of this region increasgginate at a branching point Y= 1.644. Forw>1.654 we
in a similar fashion in both cases. Thus, a system of tWGind only stable homogeneous oscillations. In the preceding
coupled cells provides a good model for the full reaction-section we showed that the region of Turing structures in the
diffusion system. reaction-diffusion system correlates with the regions with
stable nonhomogeneous states in the system of two coupled
cells. Here we speculate that the parameter range in which
nonhomogeneous states are stdbleded argacorresponds
to amplitudes of sinusoidal forcing that do not lead to sup-
The resonance behavior and parameter dependences mession of Turing patterns in the reaction-diffusion system.
resonant periodic orbits and their bifurcations have beeWe further calculate the dependences of the bifurcation
studied for many yearf27,29-31. We further utilize the points on the amplitude and period of forcing in order to
software packageoNT for the continuation of periodically obtain a resonance diagram of homogeneous and nonhomo-
forced ODE's to investigate bifurcations in the system of twogeneous solutions. Figure 8 displays the branching, limit,
coupled identical cells described by E@), with w as a  torus, and period doubling lines for the period-one solution.
periodic function of time in both cells. We employ both The limit lines forW<1 show the boundaries of the resonant

V. PERIODIC ILLUMINATION OF TWO
COUPLED CELLS
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/U / Nonhomogeneous Homog.
120 [ --g@_ oscillations oscill. 4
8t 4

Branching points of
periodic solutions

Limit point of
periodic solutions,

FIG. 7. Two coupled cells with sinusoidal
illumination—period-one solutions. Parametei®=2.0, 0=9, b
=2.5,a=36. Region of nonhomogeneous oscillations is gray
Solid line represents stable, period-one, homogeid@ and non-
homogeneougNO) oscillations; dashed line represents unstable
HO, dotted line unstable NO. Examples of stable solutions at sev:;,
eral amplitude values of illumination are shown at the bottom. t

regions (Arnol'd tongues, which originate on theT axis
(W=0) atT~1.6, 3.2, 4.8, and 6.4. The torus and period
doubling lines lie between the resonant regions. Inside the
resonant regions there are stable period-one nonhomoge-
neous solutions, while outside these regions complex nonho-
mogeneous periodic solutions can be found. These complex
periodic solutions arise via torus or period doubling bifurca-
tions. From the assumption that the region of stable nonho-
mogeneous periodic solutions is associated with the Turing
pattern region, we relate the topmost supercritical branching
bifurcation line or(in the case of subcritical bifurcatipmthe

limit line of periodic solutions to the boundary of Turing
pattern suppression. In Fig. 9 we overlay these bifurcation
lines with the boundary detected by direct integration of the
two-dimensional reaction-diffusion systefitq. (1)]. The
agreement between the region of nonhomogeneous solutions

amplitude, W

twi

PHYSICAL REVIEWG6EB 026101

forcing period, T

FIG. 8. Resonance regions in two coupled cells with periodic

sinusoidal-wave illumination. Thick solid line, line of branching
points of HO; thin solid line, line of limit points of NO; dashed line,
period doubling line of NO; dotted line, line of torus bifurcation
points. Solid circles, Takens-Bogdanov points; open circle, degen-
erate period doubling pointe:=9, a=36,b=2.5.

B. Resonant dynamics of two coupled cells
with periodic illumination

Figure 3, which shows resonance in the suppression of

=

(]
©

amplitu

periodic Tyring patterns by periodic illumination, illustrates the ef-
fects of the waveform of periodic illumination and of the
‘complexing agent concentration. The resonant dynamics ob-
tained from continuation of periodic solutions in a system of
o coupled cells displays similar features. Figure 10 shows
he branching and limit lines for three different shapes of

Integration of PDE’s

Branch bifurcation

Limit of nonhom. oscill.

0 L 1 L ) L )
3 4 5 6

forcing period, T

in the two-cell system with the region of Turing patterns in

FIG. 9. Comparison of resonance in the suppression of Turing
patterns in a reaction-diffusion system and in the suppression of

the reaction-diffusion system is very good. The initial condi-onhomogeneous states in a system of two coupled cells. Sinusoidal
tions used in our direct integration are the same in allyayeform for s=9,a=36,b=2.5. The dotted line shows the

runs—a stationary Turing pattern. We have performed seVhoundary of Turing pattern suppression obtained from direct simu-

eral runs with other initial conditions and found that Turing

lations of Eq.(1). The thick solid line is the line of branching points

patterns can be suppressed for amplitudes between the limjt HO and the thin solid line is the line of limit points of NO for

line and the subcritical branching line, which indicates a re

system of two coupled cells with a CDIMA reaction. Parameters as

gion of coexistence of Turing patterns with the uniform statein Fig. 8.
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12 larger value ofo results in a shallower resonance domain.
Comparison of the border of Turing pattern suppresgiog.
3) and the branching and/or limit bifurcation linéSig. 10

gives almost quantitative agreement for both square-wave

3 al

2 and sinusoidal-wave illumination.

£ We also performed simulations with a waveform com-

.E posed of the first two harmonics from the Fourier transform
4 [ of the square wave. The square-wave illumination can be

written in the form of an infinite Fourier series

1(; w(t)=v—v(1+sin@+Esin@+lsinﬁ+---
2 T 3 T 5 T ’
)
® st
%’ We employed a combination of two sinusoidal waves:
g W 2wt 1 6wt
204. W(t)=? 1+S'”T+§SmT)' (6)

Figure 1Qc) shows the bifurcation lines with resonances
at the basic and triple periods of damped oscillations.

-
N O

C. Resonance in a modified model for illumination
of the CDIMA reaction

In a recent study, a new mechanism for determining the
effect of visible light on the CDIMA reaction was proposed
[12]. In this model, the overall rate of the light-sensitive part
of the mechanism depends p@lO,] and[1~ ] as well as on
the light intensity. In the simplified two-variable version, Eq.
(7), [ClO,] is considered constant, and we replace Eq.

(1) with

©

light intensity, W

Hn

0 2 4 6 8 _aw’ .
forcing period, T W= utc’ (7)
FIG. 10. Resonance in the suppression of nonhomogeneoygere \' is proportional to the light intensity arganda are
states; dependence on the illumination waveformder9 ando constants. Figure 14) shows a bifurcation diagram in the
=15. (a) Square(on-off) waveform.(b) Simple sinusoidal wave- vs w' parameter space with Turing and Hopf lines for
form. (c) Sinusoidal waveform composed of the first two terms of 0.8 anda=2.5. Comparing Fig. 18 with Figs. ib) and
the Fourier series of square waves. leot 9, when the branching 1(d). We see th.at.fow’<4 5 there .is no Significarit change in

bifurcation of periodic solutiongsolid line) is subcritical, the line i . .
of limit points (dotted ling marks the boundary of nonhomoge- the size and shape of the Turing pattern region. Only for

neous oscillations. Fos=15, the branching bifurcatiofdashed ~ arger values of the light intensityu(’ >4.5) is the shape of
line) is always supercritical. the Turing and Hopf lines altered. Now Turing patterns are

predicted to exist for very large values of paraméterhich
periodic illumination. Figure 1@ shows that for square- does not occur whew is considered to be independent of
wave illumination ando=9 the bifurcation lines display [CIO,] and[I]. Figure 11b) shows the line of branching
resonant periods with a major resonancé& atl.55(close to  bifurcations, which, as demonstrated in the preceding sec-
the period of damped oscillationand its odd subharmonics. tion, corresponds to the boundary of Turing pattern suppres-
Some resonance behavior also occurs near even subharmamn in the reaction-diffusion system with periodic forcing.
ics (T=3.1,6.2...), butthese minima are much shallower The periodic force in this case has the form
and are rapidly followed by antiresonant behavimaxima.
Simulations witho= 15 display much less pronounced reso- ' @ 8
nance behavior. The only minima on the bifurcation line oc- T/ ®
cur at the fundamental period and at triple that value. Figure
10(b) shows the results of continuation for sinusoidal-wavewherei=1,2. Owing to the dependence of the periodic forc-
illumination. The resonance occurs only around the period oing on the variables;, the forcing term is different in each
damped oscillations both far=9 ando=15. Here, too, a cell in the case of the nonhomogeneous state. This feature

w;(t)= 1+sin

o
B Z(Ui+C)
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(a) | | havior is caused by the opposing effects of the periodic forc-
! ing and the damped oscillations, which prevents suppression
81 J of the concentration gradient in the pattern.
y The resonant behavior is affected by the waveform of the
5 Steadystats ,,' periodic illumination. Square-wave forcing is more effective
L’ of in suppression of Turing patterns than a smooth sinusoidal
b //’ g waveform. We have performed a study with unequal on-off
41 1@“2‘“13’/ Turing patterns 4 duration for rectangular waveform illumination. We find that
_____ = ‘ for T=1.55 the ratiot,,/tos=1 is the most effective for
) ——festwele=fl— suppression of the patterns, i.e., the lowest intensity of illu-
_ Hofinele=18 — ——— mination is needed at this ratio to suppress the Turing pat-
oscillations tern. Similar results were obtained fdr=4.65, where the
0 et most effective ratio wak,,/ty:1=0.9. On the other hand, for

T=3.1 the most effective ratios are found to be 0.25 and 4,
while a ratio close to 1.5 gives a local minimymaximur)
in the effectivenessintensity of illuminatior).

There is a simple relationship between the shape of the
periodic forcing function and the resonant dynamics of Tur-
ing pattern suppression. At lower complexing agent concen-
trations (=9) resonance occurs at odd subharmonics.
Simple sinusoidal forcing gives resonance at the basic fre-
quency of damped oscillations; square-wave forcing, which
is an infinite series of odd sinusoidal terms, results in reso-
nance at the odd frequencies. A waveform consisting of only
o 1 2 3 4 5 6 7 the first two terms from the Fourier series of a square wave

forcing period, T results in a resonance structure almost identical to the reso-
nances found in square-wave forcing at the fundamental and

FIG. 11. Turing pattern domains in a modified model of the thjrq subharmonics, but does not contain any further subhar-
CDIMA reaction—EQq.(7). () Domains of Turing patterns ib vs monic resonances

W parameter space for a CDIMA reaction-diffusion systeb). Our simulations confirm that periodic illumination is

Resonance in the suppression of nonhomogeneous states in a S}Iﬁbre effective than constant illumination. For example. at
tem of two coupled cellsg=9, sinusoidal illumination. v fHiumination. xample,

o=9 the intensity of illumination needed to suppress the
Turing pattern using square-wave illumination is only 5% of
that required with constant illumination.

We have compared the dynamics of periodically forced
Turing patterns with the dynamics of periodically forced
nonhomogeneous states in a system of two coupled identical
cells. Bifurcation analysis based on numerical continuation
of the latter system gives very good predictions for the

VI. DISCUSSION AND CONCLUSION boundaries of the major resonance regions of periodically
forced patterns. The results of simulations suggest that the

In this numerical study of the CDIMA reaction, we have regions of stable nonhomogeneous solutions in the system of
analyzed resonant behavior during suppression of Turingyo coupled cells are associated with the Turing pattern re-
pattel’ns by periodiC illumination. The resonant behavior i%ion in the Continuous System_ In the amp"tude VS forcing
found to be more profound for lower starch Concentration%eriod parameter p|ane’ the topmost Supercritica| branching
and to vanish at high starch concentrations. Simulationgifurcation line or(in the case of subcritical bifurcatipthe
show that for low starch concentrations the recovery to gimit line of periodic solutions corresponds closely to the
Steady state after a Single perturbation exhibits well deﬁne%oundary Of Turing pattern Suppression_ The boundary in
damped oscillations. At larger starch concentrations thenpst cases does not deviate from the bifurcation lines by
damping becomes very strong, and &ex 15 there is a fast  more than 5% of W and in the case of subcritical branching

nonoscillatory recovery to the steady state after perturbatiorhifurcations, the boundary closely follows the limit line.
The interaction between the damped oscillations and periodic

illumination is responsible for the observed resonances. The

resonance in Turing pattern suppression is observed for a ACKNOWLEDGMENTS

frequency which is close to the frequency of damped oscil-

lations or which is an odd subharmonic of this frequency. This work was supported by the National Science Foun-
Forcing with a period that is an even multiple of the perioddation. We thank Igor Schreiber for providing us with the
of damped oscillations yields antiresonant behavior. This bemost recent version of theoNT package.

amplitude, W

results in numerical difficulties in the continuation technique,
which often fails to converge. Nevertheless, the resonanc
behavior is analogous to that obtained with a concentration
independent forcing term.
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