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Anomalous exponents to order«3 in the rapid-change model of passive scalar advection
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Field-theoretic renormalization group is applied to the Kraichnan model of a passive scalar advected by the
Gaussian velocity field with the covariance^v(t,x)v(t8,x)&2^v(t,x)v(t8,x8)&}d(t2t8)ux2x8u«. Inertial-
range anomalous exponents, related to the scaling dimensions of tensor composite operators built of the scalar
gradients, are calculated to the order«3 of the« expansion. The nature and the convergence of the« expansion
in the models of turbulence are briefly discussed.
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The investigation of intermittency and anomalous scal
in fully developed turbulence remains essentially an op
theoretical problem. Both the natural and numerical exp
ments suggest that the deviation from the predictions of
classical Kolmogorov theory@1# is even more strongly pro
nounced for a passively advected scalar field than for
velocity field itself; see, e.g.,@2# and literature cited therein
At the same time, the problem of passive advection app
to be easier tractable theoretically: even simplified mod
describing the advection by a ‘‘synthetic’’ velocity field wit
a given Gaussian statistics reproduce many of the anoma
features of genuine turbulent heat or mass transport obse
in experiments. Therefore, the problem of passive scalar
vection, being of practical importance in itself, may also
viewed as a starting point in studying anomalous scaling
the turbulence on the whole.

Most progress has been achieved for the so-called ra
change model@3#: the anomalous exponents have been c
culated on the basis of a microscopic model and within re
lar perturbation expansions; see Refs.@3–15# and references
therein.

In that model, the advection of a passive scalar fi
u(x)[u(t,x) is described by the stochastic equation

] tu1~v i] i !u5n0Du1 f , ~1!

where] t[]/]t, ] i[]/]xi , n0 is the molecular diffusivity
coefficient,D is the Laplace operator,v(x)[$v i(x)% is the
transverse~owing to the incompressibility! velocity field,
and f [ f (x) is an artificial Gaussian scalar noise with ze
average and correlator

^ f ~x! f ~x8!&5d~ t2t8!C~r /L !, r 5ux2x8u. ~2!

The parameterL is an integral scale related to the sca
noise, andC(r /L) is some function finite asL→`. Without
loss of generality, we takeL5` andC(0)51.

In the real problem, the fieldv(x) satisfies the Navier-
Stokes equation. In the rapid-change model it obeys a Ga
ian distribution with zero mean and correlator

^v i~x!v j~x8!&5D0

d~ t2t8!

~2p!d E dk Pi j ~k!k2d2«

3exp@ ik•~x2x8!#, ~3!
1063-651X/2001/63~2!/025303~4!/$15.00 63 0253
g
n
i-
e

e

rs
ls

us
ed
d-

n

d-
l-
-

d

r

ss-

where Pi j (k)5d i j 2kikj /k2 is the transverse projector,k
[uku, D0.0 is an amplitude factor,d is the dimensionality
of the x space, and 0,«,2 is a parameter with the rea
~‘‘Kolmogorov’’ ! value«54/3. The infrared~IR! regulariza-
tion is provided by the cut-off in integral~3! from below at
k.m, where m[1/l is the reciprocal of another integra
scalel ; the precise form of the cut-off is not essential. T
relationD0 /n05L« defines the characteristic ultraviolet mo
mentum scaleL.

The issue of interest is, in particular, the behavior of t
equal-time structure functions

Sn~r !5^@u~ t,x!2u~ t,x8!#n&, r 5ux2x8u ~4!

in the inertial-convective rangeL@1/r @m.
In the isotropic model~1!–~3!, the odd multipoint corre-

lation functions of the scalar field vanish, while the ev
equal-time functions satisfy linear partial differential equ
tions @3–5#. The solution for the pair correlator is obtaine
explicitly; it shows that the structure functionS2 is finite for
m50 @3#. The higher-order correlators are not found expl
itly, but their asymptotic behavior form→0 can be extracted
from the analysis of the nontrivial zero modes of the cor
sponding differential operators in the limits 1/d→0 @4#, «
→0 @5,7#, or «→2 @6,7#. It was shown that the structur
functions in the inertial-convective range exhibit anomalo
scaling behavior:

S2n~r !}D0
2nr n(22«)~mr!Dn ~5!

with negative anomalous exponentsDn , whose first terms of
the expansion in 1/d @4# and« @5# have the forms

Dn52n~n22!«/2d1O~1/d2!

52n~n22!«/2~d12!1O~«2!. ~6!

In paper @9#, the field-theoretic renormalization grou
~RG! and operator product expansion~OPE! were applied to
model ~1!–~3!. In the RG approach, the anomalous scali
for the structure functions and various pair correlators is
tablished as a consequence of the existence in the co
sponding operator product expansions of ‘‘dangerous’’ co
posite operators~powers of the local dissipation rate!, whose
negativecritical dimensions determine the anomalous exp
nentsDn . The anomalous exponents were calculated in R
©2001 The American Physical Society03-1
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@9# to the order«2 of the« expansion for the arbitrary valu
of d; generalization to the compressible case was given
@10,11#. The main advantage of the RG approach~apart from
its calculational efficiency! is the universality: it can equally
be applied to the case of finite correlation time@12#.

In this Rapid Communication, we present the anomal
exponents and other quantities for model~1!–~3! in the order
«3. Here we give only basic ideas and results; more exha
tive discussion of the calculational technique will be giv
elsewhere. A general review of the RG approach to the
tistical theory of turbulence can be found in Refs.@16,17#;
the case of the Kraichnan model is discussed in@9# in detail.

The stochastic problem~1!–~3! can be reformulated as
multiplicatively renormalizable field-theoretic model; th
corresponding RG equations have an IR attractive fi
point. This implies existence of the infrared scaling behav
for all correlation functions with certain scaling dimension
calculated as series in« ~in this sense, the exponent« plays
in the RG approach the same part as the parameter«54
2d does in the RG theory of critical behavior!. In particular,
for the structure functions~4! and ~5! in the IR asymptotic
range (Lr @1) one obtains

S2n~r !}D0
2nr n(22«)xn~mr!. ~7!

The behavior of the scaling functionsxn(mr) at mr→0
~inertial-convective range! is obtained with the aid of the
operator product expansion:

xn~mr!5(
F

CF~mr!DF, ~8!

where the sum runs over all possible composite operatoF
entering the OPE for a given structure function,DF are their
critical dimensions, andCF are numerical coefficients ana
lytical in (mr)2 and finite atmr50.

The key role is played by the critical dimensionsDnl ,
associated with the tensor composite operators

Fnl5] i 1
u•••] i l

u~] iu] iu!p, ~9!

where l is the number of the free vector indices andn5 l
12p is the total number of the fieldsu entering the operator
the vector indices of the symbolFnl are omitted.

The dimensionDn[Dn0 of the scalar operator is nothin
other than the anomalous exponent in Eq.~5!; see Ref.@9#.
The dimensions withlÞ0 become relevant if the forcing~2!
is anisotropic:Dnl corresponds to the zero-mode contributi
to the l th term of the Legendre decomposition for the fun
tion Sn ; see Ref.@12#. They can be systematically calculate
as series in«,

Dnl5 (
k51

`

Dnl
(k)«k, ~10!

with the first-order coefficient@12#

Dnl
(1)52

n~n22!

2~d12!
1

~d11!l ~d1 l 22!

2~d21!~d12!
~11!
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~see also Refs.@13,14#; for l 50 this gives the result of@5#,
while for n53 andl 51 or 3 the result of@7# is recovered!.

The coefficientsDn0
(2) and Dn2

(2) were obtained in Ref.@9#
for any n andd; the result for generall is presented in@11#.
In particular, one has

Dnl
(2)5n~n22!~0.000203n20.02976!

2 l 2~0.01732n10.01223! ~12!

for d52 and

Dnl
(2)5n~n22!~0.00203n20.00384!

2 l ~ l 11!~0.00710n20.00619! ~13!

for d53 ~analytical results are too cumbersome and will n
be given here; see Refs.@9,11#!.

Now let us turn to theO(«3) contribution. No analytical
result for it is available for generald; the numerical results
have the forms

Dnl
(3)5n~n22!~0.005472n210.0649n10.0647!

1l2~20.02161n220.1023n10.240610.01841l 2! ~14!

for d52 and

Dnl
(3)5n~n22!~0.00140n210.0199n10.0343!1 l ~ l 11!

3@20.00420n210.0241n10.0028~ l 21 l 118!# ~15!

for d53. The quantityDnl
(3) can be expanded as a series

1/d; the coefficients of such an expansion can be found
principle, to any given order. For generaln andl to the order
1/d2 we have obtained

Dnl5«@2n~n22!~122/d!/2d1~ l /2!~122/d1 l /d12/d2!#

13«2~n22!~n2 l !/4d21«3~n2 l !

3@1.74988~n22!20.624916l #/d2. ~16!

Note that the«2 and «3 contributions decay ford→`
faster than 1/d in agreement with theO(1/d) result obtained
in Ref. @4# for Dn0. Moreover, from Eq.~16! it follows that
the leadingO(1/d2) terms in these contributions vanish fo
n5 l , so that the decay atd→` becomes even faster,

Dnn5«n/21n~n21!$«/~d21!~d12!

2«2@11~2n27!/d#/d32«3~3n28!/2d4%1O~«4!,

~17!

with the accuracy ofO(1/d4).
We also recall thatD2050 to all orders in« in agreement

with the exact solution for the second-order structure fu
tion @3#, and that the exact nonperturbative result forD22
exists for all« andd @4#.

For isotropic model~1!–~3!, only scalar operators ente
expansion~8!, the number of the fieldsu in the operators
does not exceed the number ofu ’s on the left-hand side, and
the leading term of the small-mr behavior is given by the
operator with minimal dimensionDF . This allows one to
3-2
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identify the anomalous exponentDn in Eqs.~5! and~6! with
the critical dimensionDn0 of the scalar operatorFn0.

If noise covariance~2! involves some fixed constant vec
tor n ~large-scale anisotropy!, the above results for the di
mensionsDnl do not change, but the operators withlÞ0 also
enter the right-hand side of Eq.~8! and give rise to contribu-
tions proportional toPl(z), the l th order Legendre polyno
mial, z being the angle between the vectorsn andr . The odd
structure functionsS2n11 become nontrivial, and the leadin
term of their inertial-range behavior is determined by t
dimensionD2n11,1 of the vector operatorF2n11,1

S2n11~r !}D0
2n21/2r (n11/2)(22«)~mr!D2n11,1 ~18!

~for more detail, see Refs.@12#!.
In Fig. 1, we show the dimensionD4 ~which determines

the anomalous exponent forS4) for d53 in the first, second
and third orders in«. In Figs. 2 and 3, we show th
‘‘anomaly’’ g, defined by the relationS3}r 32g, for d53
and 2, respectively; note that theO(«2) curve lies above the
O(«) line for n53 andn below it forn54. In the same
figures, we also present nonperturbative results obtained
n54 in Refs. @8# using numerical simulations, and forn
53 in @7# using numerical integration of the zero mod
equations (D45z422z2 in the notation of@8# and g532l
in the notation of@7#!.

An important issue which can be discussed on the
ample of the rapid-change model is that of the nature
convergence properties of« expansions in models of turbu
lence and the possibility of their extrapolation to finite valu
«;1. Figures 1–3 show that the agreement between th«
expansion and nonperturbative results for small« improves
when the higher-order terms are taken into account, but
deviation becomes remarkable for«;1 and decreasingd.
Furthermore, the coefficients of the« series appear mor
irregular ford52 ~see Fig. 3!, while the forms of the non-
perturbative results@7,8# are not much affected by the choic
of d.

Such behavior can be understood on the basis of the e
analytical result forD22, which can be written in the form@4#

2D2252d221«1A~«1«1!~«1«2!, ~19!

FIG. 1. The dimensionD4 for d53 vs«: theO(«), O(«2), and
O(«3) approximations~from above to below!. Dashed line: numeri-
cal simulation by Refs.@8#.
02530
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where

«65@d21d126A8d~d11!#/~d21!.

It shows that the corresponding« expansion has the finite
radius of convergence«2 , ranging from 0 to` when d
varies from 1 tò ; in particular,«2.1.1 for d52 and«2

.2.1 for d53. Hence, the naive summation of the« expan-
sion for D22 works only in the interval«,«2 , which de-
creases almost linearly with (d21). In order to recover the
behavior ofD22 from its « series for larger«, it is necessary
to isolate explicitly the singularity at«2 in Eq. ~19!, thus
changing to a kind of improved« expansion~whose radius
of convergence becomes«1@«2). In practice, the first three
terms of this improved expansion approximate the exact
sult ~19! equally well for all 0,«,2, both in two and three
dimensions.

The difference with the models of critical phenomen
where« series are always asymptotical, can be traced bac
the fact that in the rapid-change models, there is no facto
growth of the number of diagrams in higher orders of t
perturbation theory. The divergence ford→1 is naturally
explained by the fact that the transverse vector field does
exist in one dimension~we also recall that the RG fixed poin
diverges atd51; see Ref.@9#!. Thus, it is natural to assum
that the series for higher-order exponentsDnl also have finite

FIG. 2. The exponentg for d53 vs «: the O(«2), O(«), and
O(«3) approximations~from above to below!. Dashed line: numeri-
cal solution by Refs.@7#.

FIG. 3. The exponentg for d52 vs «: the O(«2), O(«), and
O(«3) approximations~from above to below!. Dashed line: numeri-
cal solution by Refs.@7#.
3-3
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radii of convergence with the behavior similar to that of«2 .
Therefore, in order to obtain reasonable predictions for fin
values of«, one should augment plain« expansions by the
information about the location and character of the singul
ties. Such information can be extracted from the asympt
cal behavior of the coefficientsDnl

(k) in Eq. ~10! at largek. To
our knowledge, this problem has never been studied for
namical models like~1!–~3!; the instanton analysis deve
oped in Refs.@15# has mostly been concentrated on the b
havior of the exponents in the limitn→`. One can hope tha
v
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tt
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the implementation of the instanton calculus within the R
framework will give the solution of this important problem
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