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Field-theoretic renormalization group is applied to the Kraichnan model of a passive scalar advected by the
Gaussian velocity field with the covariande(t,x)v(t’,x))—{v(t,x)v(t’,x")ycS(t—t")|x—x'|*. Inertial-
range anomalous exponents, related to the scaling dimensions of tensor composite operators built of the scalar
gradients, are calculated to the oraérof thee expansion. The nature and the convergence of thepansion
in the models of turbulence are briefly discussed.
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The investigation of intermittency and anomalous scalingvhere Pj; (k) = &;; — kik; /k? is the transverse projectok
in fully developed turbulence remains essentially an oper=|k|, D,>0 is an amplitude factod is the dimensionality
theoretical problem. Both the natural and numerical experiof the x space, and €e<2 is a parameter with the real
ments suggest that the deviation from the predictions of th¢‘Kolmogorov” ) valuee =4/3. The infraredIR) regulariza-
classical Kolmogorov theorjl] is even more strongly pro- tion is provided by the cut-off in integrdB) from below at
nounced for a passively advected scalar field than for th&k=m, wherem=1// is the reciprocal of another integral
velocity field itself; see, e.g[2] and literature cited therein. scale/; the precise form of the cut-off is not essential. The
At the same time, the problem of passive advection appeaiglationD,/v,= A® defines the characteristic ultraviolet mo-
to be easier tractable theoretically: even simplified modelgnentum scale\.
describing the advection by a “synthetic” velocity field with  The issue of interest is, in particular, the behavior of the
a given Gaussian statistics reproduce many of the anomaloegjual-time structure functions
features of genuine turbulent heat or mass transport observed
in experiments. Therefore, the problem of passive scalar ad- Sh(r)=([o(t,x)—6(t,x")]"), r=[x—x']| 4)
vection, being of practical importance in itself, may also be
viewed as a starting point in studying anomalous scaling irih the inertial-convective rang&> 1/r >m.
the turbulence on the whole. In the isotropic mode(1)—(3), the odd multipoint corre-
Most progress has been achieved for the so-called rapidation functions of the scalar field vanish, while the even
change mode]3]: the anomalous exponents have been cal€qual-time functions satisfy linear partial differential equa-
culated on the basis of a microscopic model and within regutions [3—5]. The solution for the pair correlator is obtained
lar perturbation expansions; see Ré&-15] and references explicitly; it shows that the structure functicy is finite for

therein. m=0 [3]. The higher-order correlators are not found explic-
In that model, the advection of a passive scalar fieldtly, but their asymptotic behavior fan— 0 can be extracted
6(x)=6(t,x) is described by the stochastic equation from the analysis of the nontrivial zero modes of the corre-
sponding differential operators in the limitsdt-0 [4], &
0+ (v;d;) 0= voA O+ T, (1) —0 [5,7], or e—2 [6,7]. It was shown that the structure

functions in the inertial-convective range exhibit anomalous
whered,=dldt, 9,=dldx;, vy is the molecular diffusivity scaling behavior:
coefficient,A is the Laplace operatow(x)={v;(x)} is the

transverse(owing to the incompressibility velocity field, Son(r) <D @) (mr)An 5)
and f=f(x) is an artificial Gaussian scalar noise with zero ) .
average and correlator with negative anomalous exponerts, whose first terms of

the expansion in @/ [4] ande [5] have the forms
f(X)f(x"))y=8(t—t")C(r/L), r=|x—x"|. 2
(fFOOf(x"))=8t—t")C(r/L), r=[x=x"|. (2 A,=—n(n—2)e/2d+O(1/d?)
The parametel is an integral scale related to the scalar — n(n_ 124 2
noise, andC(r/L) is some function finite ak — . Without n(n-2)e/2(d+2)+0(e%). ©

loss of generality, we take =2 andC(0)=1. In paper[9], the field-theoretic renormalization group

Stokes equation. In the rapid-change model it obeys a Gausgypdel (1)~(3). In the RG approach, the anomalous scaling

ian distribution with zero mean and correlator for the structure functions and various pair correlators is es-
tablished as a consequence of the existence in the corre-

, o(t—t") —des sponding operator product expansions of “dangerous” com-
(vi()vj(x'))=Do (279 f dk Py (k)k posite operatorgowers of the local dissipation rafevhose

negativecritical dimensions determine the anomalous expo-

Xexdik-(x—x")], 3 nentsA,,. The anomalous exponents were calculated in Ref.
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[9] to the orders? of the e expansion for the arbitrary value (see also Refd13,14; for |=0 this gives the result di5],
of d; generalization to the compressible case was given invhile for n=3 andl=1 or 3 the result of 7] is recovereg

[10,11]. The main advantage of the RG appro&apart from The coefficientsA (2 and A2 were obtained in Ref9]
its calculational efficiencyis the universality: it can equally for any n andd; the result for generdlis presented ifi11].
be applied to the case of finite correlation tifde2]. In particular, one has
In this Rapid Communication, we present the anomalous
egponents and other quantities for mo@B(3) in the order A{®=n(n—2)(0.000208—0.02976
e°. Here we give only basic ideas and results; more exhaus- 2
tive discussion of the calculational technique will be given —1%0.017310+0.01223 (12
elsewhere. A general review of the RG approach to the stay, =2 and
tistical theory of turbulence can be found in Ref$6,17);
the case of the Kraichnan model is discusse®inn detail. Anzl)z n(n—2)(0.00203—0.00384
The stochastic problerfl)—(3) can be reformulated as a
multiplicatively renormalizable field-theoretic model; the —1(1+1)(0.0071¢—0.00619 (13

Cofrespo!"d.'”g .RG e_quauons haV(_a an IR attracuve f'x.eqor d= 3 (analytical results are too cumbersome and will not
point. This implies existence of the infrared scaling behaworbe iven here: see Refi®,11))

for all correlation functions with certain scaling dimensions, Ngow let us 'turn to theO'(s35 contribution. No analytical
palculated as series in (in this sense, the exponeatplays result for it is available for general; the numerical results
in the RG approach the same part as the paramsetet have the forms

—d does in the RG theory of critical behaviom particular,

for the structure function$4) and (5) in the IR asymptotic Aﬁ)=n(n—2)(0.005472|2+ 0.064%+0.0647
range (A\r>1) one obtains

Son(r) D "=y (mr). (7)

+12(—0.02161%—0.10231+ 0.2406+ 0.018412) (14)

for d=2 and

The behavior of the scaling functiong,(mr) at mr—0

() 2
(inertial-convective rangeis obtained with the aid of the An’=n(n—2)(0.0014®"+0.019%+0.0343 + I (I +1)

operator product expansion: X[—0.004202+0.0241+0.002812+1+18)] (15
_ for d=3. The quantityAl>) can be expanded as a series in
mr)= 2>, Ce(mr)4F, 8 - ni : )
Xn(m) EF: F(m) ® 1/d; the coefficients of such an expansion can be found, in

principle, to any given order. For generaindl to the order
where the sum runs over all possible composite operdtors 1/d2 we have obtained
entering the OPE for a given structure functidn, are their
critical dimensions, an€ are numerical coefficients ana- An=&[ —n(n—2)(1—2/d)/2d+(1/2)(1—2/d+1/d+2/d?)]

lytical in (mr)? and finite atmr=0. 2/ -~ 2, .30
The key role is played by the critical dimensions,, +3e7(n=2)(n=Difad™+e%(n~1)

associated with the tensor composite operators X[1.74988n—2) —0.624916]/d>. (16)

Fri=di,0-- - 6(309,0)P, 9) Note that thee? and & contributions decay fod— o
faster than M in agreement with th©(1/d) result obtained

wherel is the number of the free vector indices ane | in Ref. [4] for A,q. Moreover, from Eq(16) it follows that

+ 2p is the total number of the field& entering the operator; the leadingO(1/d?) terms in these contributions vanish for

the vector indices of the symbél,,; are omitted. n=1, so that the decay at— becomes even faster,

The dimensiom ,=A ,, of the scalar operator is nothing

other than the anomalous exponent in Es); see Ref[9]. Anpp=en/2+n(n—1){e/(d=1)(d+2)

The dimensions with+0 become relevant if the forcin@) —e2[1+(2n—7)/d]/d3— £3(3n—8)/2d*} + O(&*),
is anisotropicA,, corresponds to the zero-mode contribution
to thelth term of the Legendre decomposition for the func- (17)
tion S, ; see Ref[12]. They can be systematically calculated \yith the accuracy oD(1/d%).
as seres Irz, We also recall thaf\ ,,=0 to all orders ine in agreement
o with the exact solution for the second-order structure func-
_ (k) .k tion [3], and that the exact nonperturbative result foy,
An kZl Anre’, (10 exists for alle andd [4].
For isotropic model1)—(3), only scalar operators enter
with the first-order coefficient12] expansion(8), the number of the field® in the operators
does not exceed the number@$ on the left-hand side, and
w_ _Nn(n=2) (d+1)I(d+1-2) (1)  the leading term of the smathr behavior is given by the
nl 2(d+2) 2(d—1)(d+2) operator with minimal dimensiodAg. This allows one to
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FIG. 1. The dimension, for d=3 vse: theO(e), O(¢?), and FSIG- 2. The exponeny for d=3 vse: the O(e?), O(e), and
O(&®) approximationgfrom above to below Dashed line: numeri-  O(s”) approximationsfrom above to beloy Dashed line: numeri-
cal simulation by Refd.8]. cal solution by Refs[7].

identify the anomalous exponest, in Egs.(5) and(6) with ~ Where
the critical dimensiom\, of the scalar operatdf ,o.
If noise covariancé?2) involves some fixed constant vec- e.=[d’+d+2+8d(d+1)]/(d—1).
tor n (large-scale anisotropythe above results for the di-
mensions\,,; do not change, but the operators with0 also It shows that the corresponding expansion has the finite
enter the right-hand side of E(B) and give rise to contribu- radius of convergence_, ranging from O toe whend
tions proportional toP|(z), the Ith order Legendre polyno- varies from 1 tox; in particular,e_=1.1 ford=2 ande_
mial, z being the angle between the vectarandr. The odd  =2.1 ford=3. Hence, the naive summation of theexpan-
structure functionss,, ;. ; become nontrivial, and the leading sjon for A,, works only in the intervak<e_, which de-
term of their inertial-range behavior is determined by thecreases almost linearly witrd¢1). In order to recover the
dimensionA,,, 1 ; of the vector operatoF ;11 behavior ofA,, from its & series for largek, it is necessary
to isolate explicitly the singularity a¢ _ in Eq. (19), thus
Sonp1(r)xDy "V (T V@) (mryAanii (18)  changing to a kind of improved expansion(whose radius
of convergence becomes >¢ _). In practice, the first three
(for more detail, see Ref§12]). terms of this improved expansion approximate the exact re-
In Fig. 1, we show the dimensioA, (which determines sult(19) equally well for all 0<e<2, both in two and three

the anomalous exponent f8;) for d=3 in the first, second, dimensions.
and third orders ine. In Figs. 2 and 3, we show the The difference with the models of critical phenomena,

“anomaly” y, defined by the relatiors;>r3~?, for d=3  Wheree series are always asymptotical, can be traced back to
and 2, respectively; note that i ¢?) curve lies above the the fact that in the rapid-change models, there is no factorial
O(e) line for n=3 andn below it forn=4. In the same growth of the number of diagrams in higher orders of the
figures, we also present nonperturbative results obtained féterturbation theory. The divergence fdr—1 is naturally
n=4 in Refs.[8] using numerical simulations, and for explained by the fact that the transverse vector field does not
=3 in [7] using numerical integration of the zero mode exist in one dimensiofwe also recall that the RG fixed point
equations {,=,—2¢, in the notation of 8] and y=3—\  diverges atl=1; see Ref[9]). Thus, it is natural to assume
in the notation of 7]). that the series for higher-order exponefits also have finite

An important issue which can be discussed on the ex-
ample of the rapid-change model is that of the nature and Y
convergence properties ef expansions in models of turbu- 3
lence and the possibility of their extrapolation to finite values
e~1. Figures 1-3 show that the agreement betweerethe 2
expansion and nonperturbative results for smealinproves -
when the higher-order terms are taken into account, but the 1 Z=
deviation becomes remarkable fer-1 and decreasing.
Furthermore, the coefficients of the series appear more o
irregular ford=2 (see Fig. 3, while the forms of the non-
perturbative resultf7,8] are not much affected by the choice -1
of d.

Such behavior can be understood on the basis of the exact

analytical result ford 55, which can be written in the forrid] FIG. 3. The exponeny for d=2 vs&: the O(¢?), O(s), and
O(&%) approximationgfrom above to beloyw Dashed line: numeri-

2A=—d—2+e+(et+e,)(e+e_), (19 cal solution by Refs[7].
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radii of convergence with the behavior similar to thatof. the implementation of the instanton calculus within the RG
Therefore, in order to obtain reasonable predictions for finitdramework will give the solution of this important problem.
values ofe, one should augment plain expansions by the )
information about the location and character of the singulari- N-V-A. acknowledges Juha Honkonen, Andrea Mazzino,
ties. Such information can be extracted from the asymptotiand Paolo Muratore Ginanneschi for discussions and the
cal behavior of the Coeﬁicienmgﬁ) in Eq. (10) at largek. To ~ Center for Chaos and Turbulence Studies at the Niels Bohr
our knowledge, this problem has never been studied for dylnstitute for their warm hospitality. The work was supported
namical models like(1)—(3); the instanton analysis devel- in part by the Grant Center for Natural Scien¢@sant No.
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havior of the exponents in the limit— . One can hope that ResearchGrant No. 99-02-16783
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