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Transport on directed percolation clusters
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We study random lattice networks consisting of resistorlike and diodelike bonds. For investigating the
transport properties of these random resistor diode networks we introduce a field-theoretic Hamiltonian ame-
nable to renormalization group analysis. We focus on the average two-port resistance at the transition from the
nonpercolating to the directed percolating phase and calculate the corresponding resistance exponent
two-loop order. Moreover, we determine the backbone dimenBignof directed percolation clusters to
two-loop order. We obtain a scaling relation fog that is in agreement with well known scaling arguments.
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Percolation1] is a leading paradigm for disorder. It pro- the two correlation lengths diverge with the exponentand
vides an intuitively appealing and transparent model of thes, of the DP universality class.
irregular geometry which occurs in disordered systems. In the first part of this paper we study the average resis-
Moreover, it is a prototype of a phase transition. Though théance between two connected sitesndx’ when an external
usual isotropic percolatiofiP) has attracted most attention, currentl is injected atx and withdrawn ak’. We choosen
directed percolatiofDP) [2] is a sexy model for study as = 1//d(1, . .. ,1) for thedistinguished direction. We assume
well. DP shows many qualitatively new features not appearthat the bond$,; ;, between two nearest-neighboring sites
ing in IP. DP is perhaps the simplest model resulting inandj are directed so thab; ;,-n>0. The directed bonds
branching self-affine objects. It has many potential applicaobey the nonlinear Ohm’s law
tions, including fluid flow through porous media under grav-
ity, hopping conductivity in a strong electric fiel@], crack

propagatiori4], and the propagation of surfaces at depinningvvhereV- is the potential at siteandl; ; denotes the current

transitions[5]. Furthermore, it is related to epidemics with a flowing lfromj t0i. The bond conducl:’t]anceﬁ are random

bias [6] and self-organized critical mode[§]. While the variables taking (')n the valuas, o-6(V) 09'(‘_\/) and 0

transport properties of IP have been studied extensively .. respective probabilitiep p’ 0 :;mdq o is’a posi-
) + — .

[8-13, relat|vely_l|ttle is known about transport in DP. The tive constant and denotes the Heaviside function. Note that
transport properties of DP have not been addressed hitherie gigdes are idealized: under forward-bias voltage they be-
by using sophisticated analytic methods such as renormajjaye as “ohmic” resistors, whereas they are insulating under

ized field theory. _ backward-bias voltage.
A model which captures both IP and DP is the random A central role in our theory is played by the power

resistor diode networkKRDN) introduced by Rednefl4—

16]. A RDN consists of a-dimensional hypercubic lattice in 5

which nearest-neighbor sites are connected by a resistor, a P({V}):GED oi,j(Vi=ViLV;=Vi] @)
positive diode(conducting only in a distinguished direction '

a negative diodgconducting only opposite to the distin- gissipated on the network. The sum in E2) is taken over
guished directiop or an insulator with respective probabili- al| bonds of the lattice. Following an idea by StepHéas]

ties p, py, p-, andgq=1-p—p,—p-. In the three- and its generalization to networks of nonlinear resistors by
dimensional phase diagranipictured as a tetrahedron Harris [19] we exploit correlation functions ofy, (X)
spanned by the four probabilitiesne finds a nonpercolating =exp(\V,) as generating functions of the resistance
and three percolating phases. The percolating phases are is(x,x’) betweenx andx’. Note that\ =il is an imaginary
tropic, positively directed, or negatively directed. Betweencurrent. With help of the saddle point methétie integra-
the phases there are surfaces of continuous transitions. Aflon is not Gaussian due to thefunctions we find

four phases meet along a multicritical line, where<i0

o j(Vi=V)LV;=Vil=1;, D

=p,=p_<1/2 andp=p(r). On the entire multicritical (I (X)f_\ (X))

line, i.e., independently af, one finds the scaling properties 1 1

of usual isotropic percolatiorr E0). For the crossover from :_f : - ; _

IP to DP see, e.g., Ref17]. Z H dViexg = 5 PUVH FIMVi= Vi)

In this Rapid Communication we focus on the vicinity of )
the critical surface separating the nonpercolating and the A ,
. . . . xexpg — = R(x,x")
positively directed phase. Here, typical clusters are aniso- 2
tropic and they are characterized by two different correlation
lengths: ¢ (parallel to the distinguished directiprand ¢, provided that the conditioh®> o holds.Z in Eq. (3) stands
(perpendicular to jt As one approaches the critical surface, for the usual normalization.

: ()
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We are interested in the average--)c of Rover all  (y5(0)y_; (X))
diluted lattice configurations which we will denote bg.

Hence, we switch toD-fold replicated voltages\/i—>\7i —x, [F e ( X|
=(v®V ... vP)y and imaginary currents;—X;=(\{ . - Y x, |2
'-,)\i(D)). The replication procedure induces the effective

iltoni - X
Hamiltonian X{1+W)\2|XJ_|¢/VLfW,1 _”Z +]

x|
1 - z z
Hrep:_|n< exr{—zp({V}) > . (4) = x{L-d- g [x.[* 1+ wi2x? s [x. | L
c | L R ’

(6)
For technical reasori20] we switch to discretized voltages

6 and currents\ taking values on a discre@-dimensional Wheren, v, , andz= /v, are the critical exponents for DP
torus. For the saddle point method to be reliable we workknown to second order ie-expansior{22,23. fy, f5, fy,1,

near the limit when all the components ®fare equal and @"dfw2 are scaling functions. In Ed6) we introduced the
continue to large imaginary values. Accordingly, we [$&f ress@anc.e exponepﬁt. Explomng_ the fact .that the correlation
N@=ixo+ & with real positiver, and &@, ED=l§(a) function in Eq.(6) is a gener;atmg function foM g [cf. Eq.

B : N —1 2 (3)] we deduce tham R~|xH|¢ YI'if measured parallel to the
=0, and_lmpose the conquﬁ%«D a_mdf <,1' . distinguished direction. For measurements in other directions
To refineH ., towards a field theoretic Hamiltonian, we j; js appropriate to choose a length scaland to express the

expandH e, in terms of 3(x). The steps are analogous 10 |ongitydinal and the transverse coordinates in terms.:of
those in Ref[19] and are skipped here for briefness. The SO|XL|~L and xj~LZ With this choice the scaling function

obtained expression is converted into a Landau-Ginzburgs L reduces to a constant and we obtilg~L%/".. For the
. H WY '
Wilson-type functional resistance exponent we find éexpansion

5 2 ¥-i(x) $=1+ 5t — o €0, (D)
N#0

1 € 151-3141In4/3) )
H=f ddx|—

wheree=5—d. Note that¢ is larger than the corresponding
resistance exponent for the random resistor netwWBRiRN)
g [25,9]. This is intuitively plausible, since long tortuous paths
te .. E Y ) (X P (X) (5)  that contribute to the macroscopic conductance in RRN are
AAAHL 20 suppressed in DP.

Now we compare Eq(7) to the few numerical results
by applying the usual coarse graining procedure. The paran@vailable in the literature. We are not aware of any numerical
eter 7 specifies the “distance” from the critical surface un- results for¢ itself. However, Redner and Muell¢26] de-
der consideration. The vectorlies in the distinguished di- termined the conductivity exponetit ¢+ (d—1)v, + v in
rection,v=vn. 7 andv depend on the three probabilitips ~ two dimensions by Monte Carlo simulatiortgd=2)=0.6
p., andp_. wis the coarse grained analog @f . Inthe =~ =0.10. Aroraet al. [27] did analog and numerical simula-
limit w—0 our Hamiltonian# describes the usual purely tions leading tot=0.73+0.10. Another value for compari-
geometric DP. Indee® leads forw— 0 to exactly the same SOn ist~0.7 obtained by Redn€rl5] from a real space
perturbation series as obtained in Ré&1—23. renormalization group calculation. Crudely evaluating the

We proceed with standard methods of field thefy] e-expansion of for small spatial dimensions leads inevitably
and perform a diagrammatic perturbation calculation up tdo poor quantitative predictions. Therefore, it is appropriate
two-loop order. As in our previous work on transport in IP to improve the expansion by incorporating rigorously known
[9-13), the principle propagator consists of an conductingfeatures. By carrying out a rational approximation which
and an insulating part. Hence, the principle Feynman diatakes into account tha{d=1)=0 we obtain the interpola-
grams can be decomposed into conducting diagrams consigton formula
ing of conducting and insulating propagators. These conduct-
ing diagrams can be interpreted as being directed networks . € 2
themselves. This real-world interpretation leads to a substan- t~<1 4)(2+0'208&+0'0604E ) ®
tial simplification of the actual calculation. Instead of carry-
ing out tedious summations over loop currents, we just havhich leads ta(d=2)~0.8.
to determine the total resistance of the conducting diagrams. The second part of this paper is devoted to the backbone
The remaining steps in calculating the diagrams are weltlimension in DP. The backbone between two sitesdx’

X[ 7= V2+WN2+(8(\ o) — 6(— No))V- V1¢5(X)

known from the field theory of DP21-23,. is defined, apart from unimportant Wheatstone-bridge-type
Renormalization group analysis provides us with the scalconfigurations, as the union of all bonds carrying current
ing behavior of the correlation function when | is inserted atx and withdrawn atx’. The average
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number of bonds belonging to the backbone is referred to as X|

its massMg. For the purpose of calculating the backbone Mcut:|xl|‘f’—l’”LxH’1f\,v,l —- (13
dimensionDgz we assume that the bonds obey a generalized X, |

Ohm'’s law,

By choosing once morgx, |~L and xj~L* we find that
_qlv, — H R
ai j(Vi=VOLV; = VIV, = Vil¥ =14 . © My~ L?-2/"17% This leads via Eqg12) and(10) to

The parameter measures the nonlinearity of the bond. Dg=1+¢-1/v, —z=1-n=d=20/v,, (14

g j(V;—V,) takes on the same values as in the first part. Th%vhereﬁz v, (d—1+7)/2 is the DP order parameter expo-
field-theoretic Hamiltonian for the generalized RDN is givennent known to second order in[22,23.
by Eq. (5) with wx? replaced by—w,=P__ (—i\(®) 1, Equation (14) is in agreement with scaling arguments
In the following we are going to use that the average[29], yielding that the fractal dimension of the transverse cut
resistance of the generalized RDMg , and the backbone through a DP cluster with local dimensiah is di—1=d
mass are related viMg~lim, ,_;+Mg (see, e.g., Ref. —1—p/v,. The analogous cut through the backbone can be
! viewed as the intersection of the cut through the cluster and
the clusters backward oriented pendftf,27]. Hence, the
codimension of the backbone cut is twice the codimension
Blv, of the cluster cut, which leads again to Efj4).
We conclude with a few remarks. Our approach gives Eq.
lim ¢, /v,=z— 7, (10) (14) perturbatively to second order ia, while the scaling
r1t arguments leading to E¢14) are exact. Hence, Eql4) has
a manifestation in the renormalization group framework in
at least to second order & From the generalized version of form of some Ward identity. The fact that_, renormalizes

[11]). A two-loop calculation analogous to that in part one
reveals that the coupling proportionalwg does not require
an individual renormalization in the limit——1". As a
consequence we obtain

Eq. (6) we deduce that the backbone mass scales as trivially to two-loop order is reminiscent of this Ward iden-
tity. It is an interesting issue for future work to identify the

Mg=|x, |[#-1/7f X (11) Ward identity and its underlying symmetry. Our result for

BT " x, 7] the resistance exponeut is for dimensions close to 5 the

most accurate analytic estimates that we know of. In two
For self-affine objects the notion of fractal dimension isdimensions our results show reasonable agreement with the
less straightforward than for self-similar objects. To deterknown numerical results. It is certainly desirable to have
mine the fractal dimension of the DP backbone one considensiore and firmer numerical data for comparison with our ana-
a d—1-dimensional hyperplane with an orientation perpendytic results, in particular in three dimensions. We hope that
dicular tox;. The cut is a self-similar object with the fractal this letter triggers further simulations of transport in DP.
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