
PHYSICAL REVIEW E, VOLUME 63, 022101
Field theory for reaction-diffusion processes with hard-core particles
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We show how to build up a systematic bosonic field theory for a general reaction-diffusion process involv-
ing hard-coreparticles in arbitrary dimension. We discuss a recent approach proposed by Park, Kim, and Park
@Phys. Rev. E62, 7642 ~2000!#. As a test bench for our method, we show how to recover the equivalence
between asymmetric diffusion of excluding particles and the noisy Burgers equation.
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I. INTRODUCTION

A general formalism to describe nonequilibrium statistic
physics is still lacking, but recent progress has been achie
on the important issue of the description of collective ph
nomena in such systems~phase transitions in nonequilibrium
steady-states@1#, the emergence of long-range correlations
driven systems@2#, cellular automata@3#, and self-organized
criticality @4#!. Indeed, steps forward have been made in
last two decades in that direction by exploiting the form
analogy of their field-theoretic formulation with static critic
phenomena. Of course, numerical approaches and exac
lutions have played an equally important role, but this pa
will deliberately ignore those aspects. The beauty of
field-theoretic formulation—when available—is that, com
bined with a renormalization-group analysis, it provides
theorist with a systematic analytic tool for the calculation
physical observables in the scaling regimes of interest. H
ever, a vast category of reaction-diffusion processes, cell
automata, driven lattice gases, and other related stoch
models fail to be exactly mapped onto continuous field th
ries @5#. This difficulty is due to the fact that the intege
degrees of freedom~often particle numbers! usually have an
integer upper limit that prevents one from exploiting the
miliar mapping first introduced by Doi@6# and recently re-
vived by Cardy@7#. For instance, in a reaction-diffusion pro
cess with mutually excluding particles, local partic
numbers are 0 or 1, but one might imagine other proces
with other similar constraints~e.g., the contact threshol
transfer process defined by Rossiet al. @8# in which a given
site is occupied by no more than two particles!. In some
instances, the exclusion constraint can be phenomeno
cally accounted for, as done, e.g., by Zia and Schmittm
@2# when they build up the effective Langevin equations
describe the dynamics of driven-diffusive systems. Very
ten the evolution operator can be exactly mapped on a q
tum spin chain. But it is only in one space dimension that~in
favorable cases! one can exploit the toolbox of integrab
systems@9# @local particle numbers usually restricted to
and 1, little being known@10# on spin-1~and higher! chains
for stochastic problems#. A coveted goal is therefore to b
able to build up a systematic and exact field-theoretic pa
integral formulation that can, at least formally, account
limitations in local particle numbers.

Several attempts have been made to incorporate the
clusion constraint into a field theory of a standard type.
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already mentioned, one may achieve this goal by phen
enologically exploiting the physical knowledge of the syste
~Zia and Schmittmann@2# or Cardy@11#!, but this is by no
means exact, and can in general only be implemented sa
in high space dimension. Directly in dimension 1, other a
proaches exist, such as that proposed by Cardy@12# and
Brunel et al. @13#, or by Mobilia and Bares@14#. In the
former the authors succeeded in constructing a field theor
a systematic way, but of fermionic type, which unfortunate
proved, from a technical view, rather difficult to analyz
while the latter, though efficient in the pair annihilation r
action, seems difficult to extend to other processes.

In what follows we shall present the derivation of th
path-integral formulation for systems of mutually excludin
particles of a single species. Where appropriate we will a
indicate how to extend the theory to cope with several s
cies or other constraints on local particle numbers. We s
illustrate how the mapping works on the case of asymme
diffusion, and how one can recover the equivalence with
noisy Burgers equation.

II. HARD-CORE PARTICLES USING
A BOSONIC FORMULATION

A. Master equation and bosonic formalism

The evolution of a configurationn[$ni% of local particle
numbers is encoded in a master equation for the probab
P(n,t) to observe configurationn at timet. The master equa
tion for P(n,t) is equivalent to an evolution equation for th
state vectoruC(t)&5(nP(n,t)un&, which we write in the
form

] tuC&52ĤuC&. ~1!

The operatorĤ, which acts on the space spanned by t
configuration vectorsun&, is usually easily expressed in term
of bosonic creation and annihilation operatorsai

† ,ai

(@ai ,aj
†#5d i j ,@ai ,aj #50). This is true for reaction-

diffusion processes involvingbosonic particles; that is, with-
out exclusion, for which bosonic operators are particula
well-suited, but this is also true when particles exclude e
other. Nevertheless in the latter situation one should not
pect thatĤ will be a polynomial in terms of theai ,aj

† , while
it indeed is in the former. We confine the subsequent anal
©2001 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW E 63 022101
to the dynamics of hard-core~i.e., mutually excluding par-
ticles! undergoing diffusion and reaction processes.

B. Evolution operators for some elementary processes

In order to deal with the exclusion constraint we introdu
the operatord n̂,m defined by

d n̂,mum8&5dm8,mum8&, ~2!

where um& denotes a single site state. We now give tw
examples. The evolution operator for one-dimensional as
metric diffusion in the presence of hard-core interactio
reads

Ĥdiff5(
i

F S D1
v
2D ~12aiai 11

† !d n̂i ,1
d n̂i 11,0

1S D2
v
2D ~12ai

†ai 11!d n̂i ,0d n̂i 11,1G , ~3!

whereD1v/2 ~respectively,D2v/2) is the hopping rate to
the right ~respectively, to the left!.

For the simpleA1A
k
→B annihilation reaction of neares

neighbor particles, one finds

Ĥk5k(
i

@~12ai
†ai 11

† !d n̂i ,1
d n̂i 11,1#. ~4!

Extension to two-species annihilation is straighforward sin
bosonic operators pertaining to distinct species commute

C. Passing to a coherent-state representation

In order to pass to a path-integral formulation, it is suf
cient to follow the steps described in@15# ~for a thorough and
pedagogical introduction we refer the reader to the review
Mattis and Glasser@16#!. The result of those steps can b
summarized as follows. There exists an actionS@f̂,f# such
that physical observables can be expressed as path inte
over the complex fieldsf̂ i(t),f i(t) of functions of those
fields, weighted by exp(2S). We denote by@0,t f # the time
interval over which the process is studied. The actionS has
the form

S52(
i

f i~ t f !1E
0

t f
dtS (

i
f̂ i~ t !] tf i1H@f̂,f# D , ~5!

where

H@f̂,f#5
^fuĤuf&

^fuf&
, ~6!

in which the notationuf&5 ^ i uf i(t)& denotes the tenso
product of the coherent states associated with each cre
and annihilatorai

† ,ai with eigenvaluef i(t) @and f̂ i(t) de-
notes the complex conjugate off i(t)#. In order to evaluate
the quantitŷ fuĤuf&/^fuf&, one normal ordersĤ and then
simply replaces theai ’s by f i(t) and theai

†’s by f̂ i(t).
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Hence the only difficulty is to be able to normal order su
an operator asd n̂,m ~possibly multiplied bya’s or a†’s!. This
can be done rather easily in several ways. One of them
simply to normal order eiun̂ then make use of the integra
representation

d n̂,m5E
2p

p du

2p
eiu(n̂2m).

Normal ordering eiun̂ is done by expanding the exponenti
and looking at each term in the series. It is amusing to n
that

:eiun̂
ª (

l 50

`
~ iu ! l

l ! (
j 51

l

sj ,l a† jaj , ~7!

where the coefficientssj ,l are the Stirling numbers of the
second kind@sj ,l 5(1/n!)(dn/dxn)(ex21) j ux50 is the num-
ber of ways a set withl elements can be partitioned intoj
disjoint, nonempty subsets#. Similarly, one finds that

:eiua†aa†
ªa†:eiua†a:1(

n

~ iu !n

n! (
j

jsj ,na† jaj 21. ~8!

Once in their normal-ordered form, the operatorsa anda† in
Eqs. ~7! and ~8! can be replaced by their coherent-state
genvalues. For instance,

^fueiun̂uf&5 (
l 50

1`
~ iu ! l

l ! (
j 51

l

sj ,l f̂ jf j5ef̂f(eiu21), ~9!

so that

^fud n̂,0uf&5E
2p

p du

2p
ef̂f(eiu21)5e2f̂f. ~10!

Similar manipulations lead to the dictionary

^fua†d n̂,muf&5
1

m!
f̂~f̂f!me2f̂f,

^fud n̂,muf&5
1

m!
~f̂f!me2f̂f,

~11!

^fuad n̂,muf&5f
1

~m21!!
~f̂f!m21e2f̂f

~50 if m50!.

In a reaction-diffusion process with hard-core particles, o
the formulas form50 or 1 will be needed. Formulas with
higher powers of thea’s or a†’s are derived in a similar way

For example, the action for the annihilation process
scribed by the evolution operator of Eq.~4! reads

S5kE dt(
i

@~f̂ if̂ i 1121!f if i 11e2f̂ if i2f̂ i 11f i 11#.

~12!
1-2
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BRIEF REPORTS PHYSICAL REVIEW E 63 022101
Extensions to several species pose no new problem. A
remark: when studying a process that conserves the pari
the instantaneous total number of particlesN(t) in the sys-
tem, the following quantity is conserved:

^~21!N(t)&5^eipN(t)&5^pueip(
i

n̂iuC&, ~13!

where^pu[^0ue( i ai denotes the projection state@15#, which
is also a coherent state with eigenvalue 1, so that, using

^1ueipn̂iuf i&5ef i (e
ip21), we find

^~21!N(t)&5 Ke22(
i

f i (t)L5const. ~14!

This is a way of characterizing parity by means of a we
defined observable. We refer the reader to Deloubrie`re and
Hilhorst @17# for further comments in the context of the pa
annihilation reaction.

D. The Park, Kim, and Park approach

It is well-known @18# that for reaction-diffusion processe
involving bosonic particles~which is not the case in@19#! it
is possible to write a partial-differential equation for som
continuous random variabler i ~the mapping fails for hard-
core particles!. The first moment ofr i equals the averag
local particle number̂ni& ~which makes it tempting to iden
tify r i with a fluctuating density!. However, higher moment
of r i do not coincide with those ofni ~though they can be
related!. This partial-differential equation takes a Fokke
Planck form~i.e., is of order 2! only when the microscopic
reactions involve at most two particles.

We now refer to the article@19# in which the authors have
presented an alternative route to derive a path-integral
mulation for the dynamics of hard-core particle systems. P
ticle numbers are discrete variables, so that there is
Fokker-Planck equation for them. In their Eq.~7! they write
a Fokker-Planck equation for some continuous random v
abler i , which, as we have said, is not correct without fu
ther approximation. This error is not related to the neces
of implementing the hard-core constraint or not. Such
Fokker-Planck equation simply does not exist. Referen
and further comments can be found in the book by Gard
@18# or in Deloubrière and Hilhorst@17#.

III. AN EXAMPLE: ASYMMETRIC DIFFUSION
OF HARD-CORE PARTICLES AND THE NOISY

BURGERS EQUATION

As an example we recover the noisy Burgers equation
going to the continuous limit in the asymmetric diffusion
a system of hard-core particles. While this equivalence
certainly not new@20–22#, we use it as a test bench for th
method. It should be mentioned that this derivation of
noisy Burgers equation is the first one that starts from
exact mapping.
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A. Action

Again, for notational simplicity, we restrict the analysis
one space dimension. We consider diffusion with a hopp
rate to the rightD1v/2 and a hopping rate to the leftD
2v/2. The evolution operator for such asymmetric diffusi
in the presence of hard-core interactions is that of Eq.~3!.
Using the dictionary equation~11! we find that the corre-
sponding action reads

S@f̂,f#5E dt(
i

F f̂ i] tf i

1S D1
v
2D ~f̂ i2f̂ i 11!f ie

2f̂ if i2f̂ i 11f i 11

1S D2
v
2D ~f̂ i2f̂ i 21!f ie

2f̂ if i2f̂ i 21f i 21G .
~15!

No approximation was made and the action equation~15! is
fully exact. Without the exponential factors Eq.~15! would
yield the usual action of asymmetric diffusion for boson
particles. Here, owing to the presence of the nonlinear in
action terms~the exponentials!, there is no Galilean transfor
mation that eliminates the drift-dependent terms.

B. Recovering the noisy Burgers equation
in the continuous limit

In this paragraph, we shall show that expanding naiv
the action equation~15! leads to the noisy Burgers equatio
for the density fluctuations, as it should. We perform t
change of fields@23# f i5(r1c i)e

2c̄ i, f̂ i5ec̄ i. Now we
expand the action in powers of the new fieldsc̄ i andc i ~the
latter represents a fluctuation of the density with respec
its average valuer). We also assume that the fields ha
slow space variations, and take the limit of a continuo
space. The resulting action reads

S5E dtdx@c̄~] t1v]x2D]x
2!c2g1~]xc̄ !2

2g2c̄c]xc1•••#, ~16!

where the constantsg1 ,g2 are positive functions of the mi
croscopic details of the model~diffusion constant, drift ve-
locity, lattice spacing, average density!. The dots stand for
higher polynomial or higher derivative terms. The acti
equation~16! for the fieldsc̄,c is equivalent toc(x,t) sat-
isfying the noisy Burgers equation@22#. Hence, up to terms
that are irrelevant in the scaling limit@see Janssen an
Schmittmann@22# for a renormalization-group analysis o
the action equation~16!#, we have recovered the equivalen
between asymmetric diffusion of hard-core particles and
noisy Burgers equation. As a final remark, we would like
emphasize that we have not resorted to any phenomeno
cal arguments, and that our derivation is complet
systematic—the first one of this sort. This feature is parti
1-3
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BRIEF REPORTS PHYSICAL REVIEW E 63 022101
larly encouraging since we have in mind the application
the formalism to other less studied processes.

IV. CONCLUSIONS

We have shown how to build up a field-theoretic form
ism that takes into account in a systematic fashion the ef
of exclusion ind-dimensional reaction-diffusion processe
We have exemplified the formalism on the case of asymm
ric diffusion, thus recovering the noisy Burgers equation. W
now have a tool to take up any reaction-diffusion process
which one, or all species, diffuse with a drift, such as t
A1B→B reaction, for which it is conjectured that exclusio
changes the universality class of the scaling behavior.
A1B→B reaction-diffusion process with drift is certainl
the first system that should be looked at using the pre
s
e,

e,

e,

,

e

a

n.
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approach. However, great care must be paid to naive ex
sions of exponential interaction terms, and the feasibility
such a procedure must be investigated in each partic
case. The method presented here opens the door to the
of reaction-diffusion processes in which exclusion is conj
tured to play a crucial role, such as in theN species branch-
ing annihilating random walks recently described by Kw
et al. @24#.
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