PHYSICAL REVIEW E, VOLUME 63, 022101
Field theory for reaction-diffusion processes with hard-core particles
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We show how to build up a systematic bosonic field theory for a general reaction-diffusion process involv-
ing hard-coreparticles in arbitrary dimension. We discuss a recent approach proposed by Park, Kim, and Park
[Phys. Rev. B62, 7642(2000]. As a test bench for our method, we show how to recover the equivalence
between asymmetric diffusion of excluding particles and the noisy Burgers equation.
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[. INTRODUCTION already mentioned, one may achieve this goal by phenom-
enologically exploiting the physical knowledge of the system
A general formalism to describe nonequilibrium statistical(Zia and Schmittmanii2] or Cardy[11]), but this is by no
physics is still lacking, but recent progress has been achieveieans exact, and can in general only be implemented safely
on the important issue of the description of collective phedn high space dimension. Directly in dimension 1, other ap-
nomena in such systenshase transitions in nonequilibrium Proaches exist, such as that proposed by C4fd®} and
steady-statefd], the emergence of long-range correlations inBrunel et al. [13], or by Mobilia and Bareq14]. In the
driven system$2], cellular automat3], and self-organized former the authors succeeded in constructing a field theory in
criticality [4]). Indeed, steps forward have been made in thed Systematic way, but of fermionic type, which unfortunately
last two decades in that direction by exploiting the formalProved, from a technical view, rather difficult to analyze,
analogy of their field-theoretic formulation with static critical While the latter, though efficient in the pair annihilation re-
phenomena. Of course, numerical approaches and exact s¥tion, seems difficult to extend to other processes.
lutions have played an equally important role, but this paper [n what follows we shall present the derivation of the
will deliberately ignore those aspects. The beauty of the?ath-integral formulation for systems of mutually excluding
field-theoretic formulation—when available—is that, com- particles of a single species. Where appropriate we will also
bined with a renormalization-group analysis, it provides theindicate how to extend the theory to cope with several spe-
theorist with a systematic analytic tool for the calculation ofCies or other constraints on local particle numbers. We shall
physical observables in the scaling regimes of interest. Howdllustrate how the mapping works on the case of asymmetric
ever, a vast category of reaction-diffusion processes, cellulgfiffusion, and how one can recover the equivalence with the
automata, driven lattice gases, and other related stochasfi®isy Burgers equation.
models fail to be exactly mapped onto continuous field theo-
ries [5]. This difficulty is due to the fact that the integer
degrees of freedortoften particle numbejausually have an Il. HARD-CORE PARTICLES USING
integer upper limit that prevents one from exploiting the fa- A BOSONIC FORMULATION
miliar mapping first introduced by Ddi6] and recently re- A. Master equation and bosonic formalism

vived by Cardy{7]. For instance, in a reaction-diffusion pro- T luti f f L f local ic|
cess with mutually excluding particles, local particle e evolution of a configuration={n;} of local particle

numbers are 0 or 1, but one might imagine other processé&'mbers is encoded in a mgster e_quation for the probability
with other similar constraintge.g., the contact threshold F_’(n,t) to Obsef"e co_nﬂguratlonat tlmet._The mast_er equa-
transfer process defined by Rossial. [8] in which a given tion for P(n,t) is equivalent to an evollutlon equgnon for the
site is occupied by no more than two partiglely some ~ State vectorW(t))==,P(n,t)|n), which we write in the
instances, the exclusion constraint can be phenomenologi?™™
cally accounted for, as done, e.g., by Zia and Schmittmann

[2] when they build up the effective Langevin equations to
describe the dynamics of driven-diffusive systems. Very of-

ten the evolution operator can be exactly mapped on a qua
tum spin chain. But it is only in one space dimension tirat

g )y=—H|V). (1)

I}_he operatorH, which acts on the space spanned by the
favorable casgsone can exploit the toolbox of integrable configuration vectorn), is usually easily expressed in terms

systems[9] [local particle numbers usually restricted to 0 °f bOTSOﬂIC creation and annihilation operatoes -8,
and 1, little being knowri10] on spin-1(and highey chains ~ ([&,8j1=6j;,[a;,8;]=0). This is true for reaction-
for stochastic problenjsA coveted goal is therefore to be diffusion processes involvingosonic particlesthat is, with-
able to build up a systematic and exact field-theoretic pathPut exclusion, for which bosonic operators are particularly
integral formulation that can, at least formally, account forWell-suited, but this is also true when particles exclude each
limitations in local particle numbers. other. NeAvertheIess in the latter situation one should not ex-
Several attempts have been made to incorporate the epect thatH will be a polynomial in terms of the, ,aJT, while
clusion constraint into a field theory of a standard type. Adt indeed is in the former. We confine the subsequent analysis
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to the dynamics of hard-corg@.e., mutually excluding par- Hence the only difficulty is to be able to normal order such

ticles) undergoing diffusion and reaction processes. an operator asy, , (possibly multiplied bya’s ora's). This
can be done rather easily in several ways. One of them is
B. Evolution operators for some elementary processes simply to normal order '&" then make use of the integral

In order to deal with the exclusion constraint we introduce’€Presentation
the operatois;, ,, defined by

’ ’ o :f eiu(ﬁ—m).
Sa,mlM') = 8y mlm”), 2 nme ) s2m

where |m) denotes a single site state. W_e now give tWONqrmg| ordering " is done by expanding the exponential
exa".‘p'e.s- The eyolutlon operator for one-dlmenglonal aSYMand looking at each term in the series. It is amusing to note
metric diffusion in the presence of hard-core interactionsy, 4

reads
/

Z(iw)” o
- v = > > s atlal, 7
Har=2 || D+ E)(l_aiar+l)5ﬁi,léﬁi+l,0 Zo /! 12'1 g )

where the coefficients; , are the Stirling numbers of the
(1-aja, 1) S, .00, .1 (3  second kinds; ,= (1/n!)(d"/dx") (€~ 1)!|;—, is the num-
ber of ways a set with’” elements can be partitioned into
whereD +v/2 (respectivelyD —v/2) is the hopping rate to disjoint, nonempty subsetsSimilarly, one finds that
the right(respectively, to the left

+

b v
2

H n
Kk .duala t,_ ot 'uaTa.+ (iu) is. afigi—1
For the simpleA+A_, & annihilation reaction of nearest- e fal=anett ; n! 2 isjpatial . (8
neighbor particles, one finds Once in their normal-ordered form, the operatamnda’ in
A Egs.(7) and (8) can be replaced by their coherent-state ei-
Hi=k2 [(1-alal 1) 8, 185, 1] (4)  genvalues. For instance,
I
+oo (iu)/ /
. . L . . . N
Extension to two-species annihilation is straighforward since (p|e| ¢)= > = 2 sj /@) pl=e?E" -1 (g
bosonic operators pertaining to distinct species commute. /=0 /3 =1

C. Passing to a coherent-state representation so that

In order to pass to a path-integral formulation, it is suffi- T du 3oE-1)_ B
cient to follow the steps described|[ib5] (for a thorough and (#|574 ¢>:f >-¢€ =e 7% (10)
pedagogical introduction we refer the reader to the review by 7
Mattis and Glassef16]). The result of those steps can be gimilar manipulations lead to the dictionary
summarized as follows. There exists an act®, ¢] such
that physical observables can be expressed as path integrals
over the complex fields}i(t),@(t) of functions of those
fields, weighted by exp{S). We denote by 0,;] the time

1. . ~
(¢la’ Gy mld)= rb(dd) e,

interval over which the process is studied. The actdmas 1 . 5
the form b (| 6nml )= H(fﬁfﬁ)me ¢4,
t N . 1 (11
S:_Zi ¢i(tf)+j0 dt(zi ¢i(t)oipi+HL P, 0]/, (5 <¢’|a5ﬁ,m|¢>:d’m(‘%fﬁ)m_le_(w
where (=0 if m=0).
H[ &, ¢]= M (6) In a reaction-diffusion process with hard-core particles, only
(o] o) the formulas form=0 or 1 will be needed. Formulas with

higher powers of tha’s or a'’s are derived in a similar way.
For example, the action for the annihilation process de-
ribed by the evolution operator of E@) reads

in which the notation|¢)=®;|¢#;(t)) denotes the tensor
product of the coherent states associated with each creath

and annihilatora ,a; with eigenvalue;(t) [and ¢;(t) de-
notes the complex conjugate ¢#(t)]. In order to evaluate A - . .

N N — b — b — bidi— b1
the quantity{ ¢|H| ¢)/{ $| $), one normal ordersl and then S kf dtZ [(bidiri=Ddidisse .
simply replaces they’s by ¢;(t) and thea''s by ¢;(t). (12
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Extensions to several species pose no new problem. A final
remark: when studying a process that conserves the parity of Again, for notational simplicity

the instantaneous total number of partichég) in the sys-
tem, the following quantity is conserved:

(- 1M0)=(@™N0)=(ple "X Fjw), (13

where(p|=(0|e*@ denotes the projection stat&5], which

is also a coherent state with eigenvalue 1, so that, using that

(1| ™i| ) =e*®™ 1) we find

((—1)NOY= <e*2§i: "”i(t)> =const. (14)

This is a way of characterizing parity by means of a well-
defined observable. We refer the reader to Deloukrand
Hilhorst [17] for further comments in the context of the pair
annihilation reaction.

D. The Park, Kim, and Park approach

It is well-known[18] that for reaction-diffusion processes
involving bosonic particle$which is not the case ifl9]) it
is possible to write a partial-differential equation for some
continuous random variable, (the mapping fails for hard-
core particles The first moment ofp; equals the average
local particle numbe(n;) (which makes it tempting to iden-
tify p; with a fluctuating densiy However, higher moments
of p; do not coincide with those af; (though they can be
related. This partial-differential equation takes a Fokker-
Planck form(i.e., is of order 2 only when the microscopic
reactions involve at most two particles.

We now refer to the articlgl9] in which the authors have
presented an alternative route to derive a path-integral fo

mulation for the dynamics of hard-core particle systems. Pars

ticle numbers are discrete variables, so that there is n
Fokker-Planck equation for them. In their Eq) they write

a Fokker-Planck equation for some continuous random vari
able p;, which, as we have said, is not correct without fur-

ther approximation. This error is not related to the necessity
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A. Action

we restrict the analysis to
one space dimension. We consider diffusion with a hopping
rate to the rightD+v/2 and a hopping rate to the lef
—uv/2. The evolution operator for such asymmetric diffusion
in the presence of hard-core interactions is that of @j.
Using the dictionary equatiofill) we find that the corre-
sponding action reads

STb.01= | atS | B

> (;{’i_ (})i+1)¢ie*$i</>i*<}i+1¢i+1

v
+(D+

+(D— %)(&i_:j}il)qsie;ﬁif/’i:f>i—1¢i—1 .
(15

No approximation was made and the action equatid is
fully exact. Without the exponential factors E@.5) would
yield the usual action of asymmetric diffusion for bosonic
particles. Here, owing to the presence of the nonlinear inter-
action termgthe exponentia)s there is no Galilean transfor-
mation that eliminates the drift-dependent terms.

B. Recovering the noisy Burgers equation
in the continuous limit

In this paragraph, we shall show that expanding naively
the action equatiofil5) leads to the noisy Burgers equation
for the density fluctuations, as it should. We perform the
change of fieldd23] ¢;=(p+¢;)e ¥, ;=ei. Now we
expand the action in powers of the new fiel@isand ;; (the
latter represents a fluctuation of the density with respect to

rj_ts average valug). We also assume that the fields have

slow space variations, and take the limit of a continuous
ghace. The resulting action reads

5= f dtdX P+ 0 dy— D2 Y0432

— Qoo+ -], (16)

of implementing the hard-core constraint or not. Such a

Fokker-Planck equation simply does not exist. Reference

and further comments can be found in the book by Gardinel

[18] or in Deloubrige and Hilhors{17].

Ill. AN EXAMPLE: ASYMMETRIC DIFFUSION
OF HARD-CORE PARTICLES AND THE NOISY
BURGERS EQUATION

s ” , .
here the constanty, ,g, are positive functions of the mi-

croscopic details of the modétliffusion constant, drift ve-
locity, lattice spacing, average dengityrhe dots stand for
higher polynomial or higher derivative terms. The action
equation(16) for the fieldsy, s is equivalent toy(x,t) sat-
isfying the noisy Burgers equatid22]. Hence, up to terms
that are irrelevant in the scaling limjtsee Janssen and

As an example we recover the noisy Burgers equation byschmittmann[22] for a renormalization-group analysis of

going to the continuous limit in the asymmetric diffusion of

the action equatiofl6)], we have recovered the equivalence

a system of hard-core particles. While this equivalence idetween asymmetric diffusion of hard-core particles and the

certainly not new20-22, we use it as a test bench for the

noisy Burgers equation. As a final remark, we would like to

method. It should be mentioned that this derivation of theemphasize that we have not resorted to any phenomenologi-
noisy Burgers equation is the first one that starts from artal arguments, and that our derivation is completely

exact mapping.

systematic—the first one of this sort. This feature is particu-
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larly encouraging since we have in mind the application ofapproach. However, great care must be paid to naive expan-
the formalism to other less studied processes. sions of exponential interaction terms, and the feasibility of
such a procedure must be investigated in each particular
case. The method presented here opens the door to the study
) ] ) of reaction-diffusion processes in which exclusion is conjec-
We have shown how to build up a field-theoretic formal-,red to play a crucial role, such as in tNespecies branch-

ism that takes into account in a systematic fashion the effeghg anninilating random walks recently described by Kwon
of exclusion ind-dimensional reaction-diffusion processes. gt 3. [24].

We have exemplified the formalism on the case of asymmet-
ric diffusion, thus recovering the noisy Burgers equation. We
now have a tool to take up any reaction-diffusion process in
which one, or all species, diffuse with a drift, such as the The author would like to thank Henk Hilhorst, Uwe
A+ B—(J reaction, for which it is conjectured that exclusion Tauber, and Martin Howard without whom this approach
changes the universality class of the scaling behavior. Thevould not have been elaborated, and would like to thank
A+B—(J reaction-diffusion process with drift is certainly Gunter Schte for communicating Refl9] prior to publica-
the first system that should be looked at using the presertton.

IV. CONCLUSIONS
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