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Interface localization-delocalization transition in a symmetric polymer blend:
A finite-size scaling Monte Carlo study

M. Müller* and K. Binder
Institut für Physik, WA 331, Johannes Gutenberg Universita¨t, D-55099 Mainz, Germany

~Received 21 August 2000; published 24 January 2001!

Using extensive Monte Carlo simulations, we study the phase diagram of a symmetric binary (AB) polymer
blend confined into a thin film as a function of the film thicknessD. The monomer-wall interactions are short
ranged and antisymmetric, i.e., the left wall attracts theA component of the mixture with the same strength as
the right wall does theB component, and this gives rise to a first order wetting transition in a semi-infinite
geometry. The phase diagram and the crossover between different critical behaviors is explored. For large film
thicknesses we find a first order interface localization-delocalization transition, and the phase diagram com-
prises two critical points, which are the finite film width analogies of the prewetting critical point. Using
finite-size scaling techniques we locate these critical points, and present evidence of a two-dimensional Ising
critical behavior. When we reduce the film width the two critical points approach the symmetry axisf51/2 of
the phase diagram, and forD'2Rg we encounter a tricritical point. For an even smaller film thickness the
interface localization-delocalization transition is second order, and we find a single critical point atf51/2.
Measuring the probability distribution of the interface position, we determine the effective interaction between
the wall and the interface. This effective interface potential depends on the lateral system size even away from
the critical points. Its system size dependence stems from the large but finite correlation length of capillary
waves. This finding gives direct evidence of a renormalization of the interface potential by capillary waves in
the framework of a microscopic model.

DOI: 10.1103/PhysRevE.63.021602 PACS number~s!: 05.70.Fh, 68.08.Bc, 83.80.Tc
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I. INTRODUCTION

Confining a binary mixture, one can profoundly alter
miscibility behavior @1–5#. If a mixture is confined into a
quasi-one-dimensional~e.g., cylindrical! pore no true phase
transition occurs, unlike the prediction of the mean fie
theory. Fluctuations destroy long-range order, and onl
pronounced maximum of the susceptibility remains in
vicinity of the unmixing transition in the bulk. In a two
dimensional system~e.g., a slitlike pore or a film! with iden-
tical surfaces a true phase transition occurs~capillary con-
densation! and the shift of the critical point away from it
bulk value has been much investigated@6#. The confinement
changes the universality class of the transition from a thr
dimensional~3D! Ising critical behavior in the bulk to a 2D
Ising critical behavior in the film. The latter manifests itse
in much flatter binodals in a film close to the unmixing tra
sition than in the bulk. No such change of the critical exp
nents is observed in mean field theory.

The phase behavior of symmetric mixtures in a thin fi
with antisymmetric surface interactions has attracted abid
interest recently@7–12#. The right surface attracts one sp
cies with exactly the same strength as the opposite sur
attracts the other species. In contrast to capillary conde
tion, the phase transition does not occur close to the unm
ing transition in the bulk, but rather in the vicinity of th
wetting transition. Close to the unmixing transition in th
bulk, enrichment layers at the surfaces are gradually built
and an interface is stabilized in the middle of the film. In th
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‘‘soft-mode’’ phase the system is laterally homogenous—
spontaneous breaking of the symmetry occurs. If the wet
transition of the semi-infinite system is of second order, o
encounters a second order localization-delocalization tra
tion slightly below the wetting transition temperature. T
system phase separates laterally into regions where the i
face is located close to one surface~localized state!. The
order parameter, i.e., the distance between the interface
the center of the film, grows continuously. This prediction
phenomenological theories was corroborated by deta
simulation studies@10,13,14#, and it is also in accord with
experimental findings@15,16#.

If the wetting transition is of first order, and the thickne
of the film not too small, mean field calculations@17,18#
predict the occurrance of two critical points which corr
spond to the prewetting critical point of the semi-infini
system. Unlike the wetting transition,@6# the prewetting tran-
sition can produce a critical~singular! behavior in a thin film,
because only the lateral correlation length diverges at
prewetting critical point; the thickness of the enrichment la
ers at the surfaces remains finite. The mean field treatm
invokes approximations and it cannot be expected to cap
the subtle interplay between 2D Ising fluctuations at the cr
cal points, ‘‘bulklike’’ composition fluctuations, and inter
face fluctuations typical of the wetting transition@13#. Con-
sequently, a detailed test of the mean field predictions
Monte Carlo simulations is certainly warranted, and elu
dates the role of fluctuations. Using Monte Carlo simulatio
of the Ising model, Ferrenberget al. also studied the inter-
face localization-delocalization transition for the case wh
the wetting transition of the semi-infinite system is of fir
order@19#. This simulation study was centered on the dep
dence on the film thickness, which is a convenient param
©2001 The American Physical Society02-1
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to vary in experiments. However, the study was restricted
the coexistence between strictly symmetric phases, and m
questions remained open.

General features of the phase behavior are shared b
binary mixtures. Here we present large scale Monte Ca
simulations aiming at investigating the phase behavior o
symmetric binary polymer blend confined between antisy
metric walls. Computationally, simulations of a polym
blend @20# are much more demanding than studying sim
fluids ~e.g., the Ising model!, but recent mean field calcula
tions made detailed predictions for the phase behavio
confined polymer mixtures@17,18#, and serve to guide u
when choosing the model parameters in the simulatio
Simulating polymer blends, we can, at least in principle, c
trol the importance of fluctuations by varying the degree
interdigitation, i.e., the chain length@18,20#. The mean field
theory is expected to become accurate in the limit of infin
interdigitation. In a binary polymer blend the wetting tran
tion occurs at much lower temperatures than the critical te
perature of the unmixing transition in bulk@21#. Hence, bulk-
like composition fluctuations are not important in the vicin
of the wetting transition temperature, and we can isolate
effect of interface fluctuation. Moreover, these systems
also suitable candidates to examine the phase behavio
perimentally. Indeed, one of the first studies of the ‘‘so
mode’’ phase employed a binary polymer blend@15#.

Our paper is broadly arranged as follows: First, w
present a phenomenological description of the phase be
ior in a film with antisymmetric short-ranged surface inte
actions. Using a standard model for the effective interfa
potential we calculate the phase behavior in the mean fi
approximation, discuss the regime of validity of the me
field approach, and consider the crossover between the
ferent critical behaviors. Second, we briefly describe
coarse grained lattice model for a binary polymer mixtu
Then we present our Monte Carlo results: We obtain
phase diagram for film thicknesses ranging fromD51.1Rg
to 7Rg , whereRg denotes the radius of gyration of the pol
mer chains, investigate the critical behavior and present
dence that interface fluctuations renormalize the effective
terface potential. We close with a comparison of the ph
diagram to the behavior of the bulk and of films with sym
metric boundary conditions.

II. BACKGROUND

Rather than describing the configuration of the system
a detailed composition profile across the film, much qual
tive insight into the thermodynamics can be deduced fr
the effective interface potential. Below the bulk critical tem
perature, enrichment layers of the prefered components f
at the surfaces and stabilize anAB interface which runs par
allel to the walls. The effective interface potentialgwall( l )
describes the free energy per unit area as a function of
distancel between thisAB interface and a wall. In the cas
of short-ranged forces between the monomers and the w
the interface profile becomes distorted in the vicinity of t
walls, and this gives rise to an interaction which decays
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ponentially as a function of the distance l between theAB
interface and a single wall:

gwall~ l !5a exp~2l l !2b exp~22l l !1c exp~23l l !.
~1!

This expression retains only the lowest powers of exp(2ll),
which are necessary to bring about a first order wett
transition of the semi-infinite system. The coefficienta is
explicitly temperature dependent, while the temperature
pendence ofb andc is neglected.c.0 is assumed through
out the discussion. All coefficients are of the same mag
tude as the interfacial tensions between the coexisting bulk
phases. For polymer blends this quantity scales with ch

length N and monomer number densityr like AN̄/Rg
2 . N̄

5(rRg
3/N)2 measures the degree of interdigitation. 1/l de-

notes the spatial range of the interactions, and it is of
orderRg . b,0 gives rise to a second order wetting tran
tion at a50, andb50 to a tricritical transition. Forb.0
one encounters a first order wetting transition atawet
5b2/4c, where the thickness of the enrichment layer jum
discontinuously from l 251/l ln(2c/b) to a macroscopic
value@18#. The wetting spinodals take the valuesa.0 ~from
the wet phase! anda,b2/3c ~from the nonwet phase!. The
concomitant prewetting line terminates at the prewett
critical point apwc516awet/9 andl pwc51/l ln(9c/2b).

We approximate the effective interface potential in a fi
to be the linear superposition of the interactions originat
at each wall and analyze the behavior. Self-consistent-fi
calculations@18# lend support to this approximation. The in
terface potential in a film of thicknessD takes the form

g~ l !5gwall~ l !1gwall~D2 l !22gwall~D/2!

52a exp~2lD/2!„cosh~l@ l 2D/2# !21…

22b exp~2lD !„cosh~2l@ l 2D/2# !21…

12c exp~23lD/2!„cosh~3l@ l 2D/2# !21…. ~2!

In general, the phase boundaries depend on the varia
a/c, b/c, and lD. If we proceeded as in Ref.@13# by ex-
panding the cosh in powers of@ l 2D/2#, further analysis
would be rather cumbersome. A more transparent proced
employs the variable

m̃252 exp~2lD/2!„cosh~l@ l 2D/2# !21…

5„exp~2lD/4!l@ l 2D/2#…21higher orders of@ l 2D/2#

~3!

to rewrite the interface potential in the form

g~ l !5c@m̃2~m̃22r !21tm̃2#

with

r 5
b26c exp~2lD/2!

2c
2-2
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INTERFACE LOCALIZATION-DELOCALIZATION . . . PHYSICAL REVIEW E 63 021602
and

t5
a2awet2b exp~2lD/2!

c
. ~4!

The qualitative form of the effective interface potential w
inferred previously on the basis of a Landau expansion@18#.
Here it is derived explicitly from the standard form of th
interface potential@Eq. ~1!# for a first order wetting transition
in a semi-infinite system. Negative values ofr correspond to
second order localization-delocalization transitions,r 50 to a
tricritical one, and positive values ofr give rise to first order
transitions.t measures the distance from the tricritical tra
sition temperature~for r<0), and t50 denotes the triple
temperature in the case of a first order interface localizat
delocalization transition~see below!. For r<0 the phase
boundaries depend only on the two parameter combinatior
and t. In these variables the limitlD→` is particularly
transparent:cr→b/2, ct→a2awet, andm̃→exp(2ll).

A. rÏ0: Second order and tricritical interface
localization-delocalization transition

A second order interface localization-delocalization tra
sition ~i.e., r ,0) will occur either if the wetting transition is
second order~i.e., b,0) or if the wetting transition is first
order but the film thicknessD small enough to comply with
0,b,6c exp(2lD/2). This behavior is in accord with pre
vious findings@9,19,18#, and we shall corroborate this furthe
by our present simulations. Since the coexisting phases
symmetric with respect to exchangingl andD2 l , phase co-
existence occurs atDmcoex[0 or ]g/] l 5(]g/]m̃)(dm̃/dl)
50. From this condition, for the binodals we obtain

m̃25
2ur u
3 SA11

3

4r 2
Dt21D

→H Dt/4ur u for Dt!r 2 ~2DMF!

ADt/3 for Dt@r 2 ~2DTMF!.
~5!

The critical temperature is given bytc52r 2, and Dt5tc
2t denotes the distance from the critical temperature at fi
r. For r ,0 the binodals at the critical point open with th
mean field exponentb2DMF51/2. This corresponds to mea
field critical behavior~2DMF! of a system with a single sca
lar order parameter, i.e.,m5@ l /D21/2#. At larger distance
the order parameter grows likem;(Dt)b2DTMF with b2DTMF
51/4. The latter exponent is characteristic of the mean fi
behavior at a tricritical point~2DTMF!. The crossover be
tween mean field critical and tricritical behaviors occu
around uDtcrossu;r 2. As we decrease the magnitude ofr
→0 we approach the tricritical point and the regime whe
mean field critical behavior is observable shrinks. At the
critical point only the tricritical regime~2DTMF! exists, i.e.,
Dtcross50, and the binodals take the particularly simple fo
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m̃5(Dt/3)1/4. The crossover in the binodals forr 520.4 is
illustrated in the inset of Fig. 1~a!.

Of course, the above considerations neglect fluctuati
and the behavior close to the transition is governed by Is
critical exponents and two-dimensional tricritical exponen
respectively. The crossover between Ising critical behav
~2DI! and tricritical behavior ~2DT! occurs at uDtcrossu
;r 1/fcross, where the crossover critical exponent is not 1/2~as
for the crossover between the mean field regimes! but rather
4/9 @22–24#. Following Ref. @13# we calculate the critical
amplitudes, and estimate the location of the crossover
tween mean field critical behavior and the region where fl

FIG. 1. ~a! Illustration of the different regimes for a secon
order and tricritical transition. 2DTMF: mean field tricritical beha
ior; 2DMF: mean field critical behavior; 2DI: two-dimensiona
Ising critical behavior; 2DT: two-dimensional tricritical behavio
The inset shows the temperature dependence of the order para

m̃ for r 520.4 as calculated within mean field theory@see Eq.~5!#.
For tc2t!16r 2/3, 2DMF behavior is found, while 2DTMF behav
ior is observed at larger distances from the critical point.~b! De-
pendence of the critical temperaturetc on the distancer from the
tricritical point. The curves correspond to different values oflD, as
indicated in the key. Thick lines, which bracket the behavior, c
respond totc57r 2/5 ~valid for smallr ) andtc57r 2/9 ~valid in the
limit lD→`). The inset presents the binodals at fixed strengthb
54.44 of the wetting transition of the individual surface, and se
eral values oflD as indicated in the key. For the choice of param
eter b/c54.44.3 exp(2lD/2) ~and, hence,r .0), there are two
critical points for all values of the film thickness.
2-3
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tuations dominate the qualitative behavior. For small val
of the order parameterm5@ l /D21/2# we approximatem
'm̃ exp(lD/4)/(lD), and obtain, for the mean field critica
amplitudes,

B̂2DMF5
exp~lD/4!

2Aur ulD
and B̂2DTMF5

exp~lD/4!

31/4lD
. ~6!

The susceptibility of the order parameter above the crit
temperature is related to the inverse curvature of the in
face potential in the middle of the film 1/xD2

5(]2g/] l 2) u l 5D/2 . Using Eq.~4!, for critical and tricritical
mean field transitions we obtain

x5
1

2c~lD !2
exp~lD/2!Dt21

and

ĈMF
1 5

1

2c~lD !2
exp~lD/2!, gMF51. ~7!

The ratioĈMF
1 /ĈMF

2 of the critical amplitudes above and b
low the critical point is universal, and takes a mean fie
value 2 at the critical point and 4 at the tricritical point. A
the transition the correlation lengthj i diverges. This latera
length is associated with fluctuations of the local interfa
position, i.e., capillary waves. In mean field approximati
the parallel correlation length takes the form

j i5S 1

s

]2g

] l 2 D 21/2

5AsD2x

hence

ĵMF
1 5

As

lA2c
exp~lD/4!, gMF51/2, ~8!

and ĵMF
1 / ĵMF

2 5A2 and 2, respectively.
Knowing the critical amplitudes we can estimate the i

portance of fluctuations via the Ginzburg criterium@25#. As
it is well known, mean field theory is self-consistent if th
02160
s
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fluctuations of the order parameter in a volume of line
dimensionj i are small in comparison to the mean value
the order parameter. For our quasi-two-dimensional sys
(d52), we obtain

x

j i
d
!
!

m2⇒S c122/dl2

s D d/2

exp~2dlD/4!

!
! H 1

ur u
Dt (42d)/2 for r ,0 second order

Dt (32d)/2 for r 50 tricritical.

~9!

This result is as expected: For a second order in
face localization-delocalization transition in ou
quasi-two-dimensional system we obtainDt!Gi2DI

;ur uexp(2lD/2)/AN̄, in accord with Ref.@13#, while we
obtainDt!Gi2DT;exp(2lD)/N̄ upon approaching the tric
ritical point. For bulk (d53) tricritical phenomena Landau
theory is marginally correct.

Combining the above results we find the following beha
ior upon approaching the critical temperature: Far away fr

the tricritical point, i.e.,r @exp(2lD/2)/AN̄, we find a mean
field tricritical behavior~2DTMF! for Dt@r 2, a mean field
critical behavior ~2DMD! for r 2!Dt!ur uexp(2lD/2),
and finally a two-dimensional Ising critical behavior~2DI!
for ur uexp(2lD/2)@Dt. Closer to the tricritical point,

i.e., r !exp(2lD/2)/AN̄, we find a mean field tricritical be-
havior ~2DTMF! for Dt@exp(2lD/4), a two-dimensional
tricritical behavior ~2DT! for exp(2lD/4)!Dt!Cr1/fcross,
and an Ising critical behavior~2DI! for Cr1/fcross@Dt. The
prefactor C must be chosen such that all crossover lin
(2DI↔2DT, 2DT↔2DTMF, 2DTMF↔2DMF, and
2DMF↔2DI) intersect at a common point. This yieldsC

;@N̄ exp(lD)#2111/2fcross. Of course, the term ‘‘crossove
line’’ is not meant as a sharp division between different b
haviors, but should rather be understood as the center
smooth crossover region. Likewise, the above constanC
may involve a constant of order unity which has been s
pressed for simplicity. The two different sequences can
clearly distinguished in the Monte Carlo simulations, b
cause the probability distribution of the order parameter
hibits a three peak structure@36# only close to the tricritical
point ~2DT!. We shall use this property to analyze our Mon
and
uired to
TABLE I. Compilation of the boundaries of the different regimes in the vicinity of the tricritical point
the correlation lengths at the crossover. The latter quantity gives an estimate of the system size req
observe the crossover in the Monte Carlo simulations.

Crossovers uDtcrossu jcross/Rg

2DT ↔ 2DI
„N̄ exp(lD)…2111/2fcrossr 1/fcross exp„lD(3/42n tri/2fcross)…N̄

1/22n tri/2fcrossr 2n tri /fcross

2DI ↔ 2DMF ur uN̄21/2 exp(2lD/2) ur u21/2N̄1/4 exp(lD/2)
2DMF ↔ 2DTMF r 2 ur u21 exp(lD/4)
2DTMF ↔ 2DT N̄21 exp(2lD) N̄1/2 exp(3lD/4)
2-4
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Carlo ~MC! simulations. The anticipated behavior is summ
rized in Fig. 1~a!.

In the Monte Carlo simulation this rich crossover scena
is further complicated by finite-size rounding. The Mon
Carlo results are subjected to pronounced finite-size eff
whenever the correlation length becomes of the order of
lateral system size. In the mean field regime the correla
length scales likej i;Rg exp(lD/4)Dt21/2. Knowing the
Ginzburg number for the crossover from 2DMF to 2DI b
havior, we estimate the correlation length in the Ising criti
regime@13#,
th
t
e
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j i;Rg exp~lD/4!Dt21/2f̃ ~Dt/Gi2DI!

→H Rg exp~lD/4!Dt21/2 for Dt@Gi2DI

Rgur u1/2N̄21/4Dt21 for Dt!Gi2DI ,
~10!

where we have assumed that the scaling functionf̃ assumes
a power law behavior for small and large arguments, and
have used the valuen2DI51 appropriate for the divergenc
of the correlation length in the 2DI regime. Similarly, w
determine the correlation length in the 2DT regime:
j i;Rg exp~lD/4!Dt21/2f̃ ~Dt/Gi2DT!→H Rg exp~lD/4!Dt21/2 for Dt@Gi2DT

Rg exp„lD~3/42n tri!…N̄
1/22n triDt2n tri for Dt!Gi2DT .

~11!
ical
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ts
n tri55/9 denotes the exponent of the correlation length in
2DT universality class@22–24#. The correlation lengths a
the various crossovers are compiled in Table I. The larg
correlation length occurs at the crossover from 2DT to 2
behavior:

j i
2DT↔2DI;Rg exp@lD~3/42n tri/2fcross!#

3N̄1/22n tri/2fcrossur u2n tri /fcross. ~12!

In order to observe the true Ising critical behavior for neg
tive values ofr, the system sizeL has to exceed this corre
lation length. In the vicinity of the tricritical point~i.e., for
small negative values ofr ) this requirement is very difficult
to be met in computer simulations.

B. rÌ0: First order interface localization-delocalization
transition

For positive values ofr the interface potential exhibits
three valley structure. The three minima atm̃56Ar andm̃
50 have equal free energy att50. This corresponds to th
triple point. At lower temperatures anA-rich phase coexis
with a B-rich phase, and since the two phases are symm
cal the coexistence occurs atDmcoex50. The binodals below
the triple point take the form

m̃56A2r

3
1Ar 2

9
2

t

3
for t,0, r .0. ~13!

Above the triple temperaturet.0 there are two two phas
coexistence regions symmetrically located aroundm̃50.
These phase coexistences terminate at two critical po
Since the coexisting phases correspond to thick and thin
richment layers of the prefered phase at each wall, there i
symmetry between the coexisting phases, and the exch
potentialDmcoex at coexistence differs from zero. Unfortu
nately, the phase boundaries fort.0 and r .0 depend not
only on r and t but also onlD explicitly, and we have
e

st
I

-

ri-

ts.
n-
no
ge

determined them numerically. The dependence of the crit
temperaturetc on r for several values oflD is presented in
Fig. 1~b!. The coexistence curve forb/c54.44 and various
values oflD are presented in the inset of Fig. 1~b!. As the
film thickness is decreased the critical temperature decrea
and the critical points move closer to the symmetry axis
the phase diagram. They are determined by the conditio

]2g

] l 2
5

]3g

] l 3
50 at t5tc and m̃5m̃c . ~14!

In two limiting cases a simple behavior emerges.
~i! If ul( l 2D/2)u!1 we can replace the derivative wit

respect tol by derivatives with respect tom̃ and, obtain@18#

tc57r 2/5 and m̃c56A2r /5. This approximation holds for
r !exp(2lD/2). Expandingg in powers ofdm̃5m̃2m̃c we
obtain ~omitting an irrelevant term linear indm̃)

g~m̃!'c~ tc2t !dm̃214rcdm̃41
7c

3
dm̃51cdm̃6. ~15!

This allows us to calculate the binodals in the vicinity of t
critical points, the susceptibility, and the parallel correlati
length. The presence of a fifth order term indm̃ in expansion
~15! is a manifestation of the fact that the phase bounda
of the prewetting transitions are not symmetric aroundm̃c .
This lack of symmetry is also evident from the numeric
results in Fig. 1~b! ~inset!. The critical amplitudes scale in
the same way withr, N̄, andlD as forr ,0. In particular we
find, for the crossover between 2DMF and 2DI behavio

Gi2DI;ur uexp(2lD/2)/AN̄.
~ii ! In the limit of large film thicknesslD→`, the critical

point tends toward a prewetting critical point attc→tpwc
57r 2/9. In this limit confinement effects are negligible, an
the coexistence curves in the vicinity of the critical poin
2-5
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correspond to the prewetting lines at the corresponding
faces. We expect the same critical behavior as at the pre
ting critical point. In this case the Ginzburg number does
depend on the film thickness. ForlD→` we employ the
interface potential at a single wall, and for the validity of t
mean field description we find

a2apwc

apwc
@

l2

s
;N̄21/2;Gi2DI for r .0, lD→`.

~16!

III. BOND FLUCTUATION MODEL AND SIMULATION
TECHNIQUE

Modeling polymeric composites from the chemical deta
of the macromolecular repeat units to the morphology of
phase separated blend within a single model is not feas
today, even with state-of-the-art supercomputers. Howe
there is ample evidence that by a careful choice of simula
and analysis techniques, coarse grained models of flex
polymers—like the bond fluctuation model@20,26#—provide
useful insights into the universal polymeric features. In
framework of the bond fluctuation model each effecti
monomer blocks a cube of eight neighboring sites from f
ther occupancy on a simple cubic lattice in three dimensio
Effective monomers are connected by bond vectors of len
2, A5, A6, 3, or A10 in units of the lattice spacing. Th
bond vectors are chosen such that the excluded volume
dition guarantees that chains do not cross during their mo
@27#. Each effective bond represents a group ofn'3 – 5 sub-
sequent C-C bonds along the backbone of the chain@28#.
Hence the chain lengthN532 employed in the present simu
lations corresponds to a degree of polymerization of 10
150 in a real polymer. If we increased the chain lengthN, the
mean field theories would yield a better description of
equilibrium thermodynamics~self-consistent-field theory is
believed to be quantitatively accurate in the limitN→`), but
the length scale of the ordering phenomena would be lar
Hence our choice ofN is a compromise determined by th
computational resources. The statistical segment lengthb in
the relation for the radius of gyrationRg5bAN/6 is b
53.05 ~i.e., Rg'7 for N532).

We study thin films of geometryL3L3D. Periodic
boundary conditions are applied in the two lateral directio
while there are hard impenetrable walls atz50 andz5D
11, modeling a film of thicknessD. The average numbe
density in the film isr051/16, i.e., half of the lattice site
are occupied by corners of monomers. This density co
sponds to a melt or concentrated solution. The density pro
of occupied lattice sites, normalized by the bulk value,
presented in Fig. 2 for film thicknessesD524 and 48. For
this choice of temperature and monomer-wall interaction
interface is stabilized in the center of the film. Due to t
extended shape of the monomers and the compressibilit
the fluid there are packing effects at the walls@21#. Overall
the walls are repulsive, and the monomer density is sligh
reduced in the boundary region. The spatial extension of
region is independent of the film thickness. Moreover,
density is reduced at the center of the interface as to red
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the energetically unfavorable contacts between unlike s
cies @29#. Both effects are not incorporated into the me
field calculations@17,18# and cause the density in the bulk
like region of the film to be slightly larger for thinner film
than for thicker ones. In the following we employ the dens
of occupied lattice sites in the layers 5<z<8 as a measure
of the density of the film. For largeD the data are compatible
with a behavior of the formr5r0(110.85/D). The film
thickness ranges fromD512'1.7Rg to D548'7Rg , and
we vary the lateral extension over a wide range 48<L
<264 to analyze finite-size effects. In the two layers near
to the walls, monomers experience a monomer-wall inter
tion. An A monomer is attracted by the left wall and repell
by the right wall; the interaction betweenB monomers and
the walls is exactly opposite. Each monomer-wall interact
changes the energy by an amountew50.16 in units ofkBT.
For these parameters the wetting transition and the ph
diagram of a blend confined between symmetric walls
been investigated previously@21#.

Binary interactions between monomers are catered for
a short ranged square well potentiale[2eAA52eBB5eAB

[1/kBT, which is extended up to a distanceA6. The phase
separation is brought about by the repulsion between
unlike species. The Flory-Huggins parameter isx52zeffe,
wherezeff'2.65 denotes the effective coordination numb
in the bulk@30,20# at r051/16. Forew50.16 previous simu-
lations find a strong first order wetting transition atTwet
51/ewet514.1(7) @21#. This value corresponds toxN'12,
which is well inside the strong segregation limit.

The polymer conformations are updated via a combi
tion of random monomer displacements and slithering sna
like movements. The latter relax the chain conformatio
about a factor ofN faster than the local displacements@30#.
We work in the semi-grand-canonical ensemble@31#, i.e., we
control the temperatureT[1/e and the exchange potentia
Dm between the two species, and the concentration flu
ates. This semi-grand-canonical ensemble is realized

FIG. 2. Density of blocked lattice sites normalized by the bu
value as a function of the distance from the wall ate50.06 and
ew50.16 for film thicknessesD524 and 48. Note the strong pack
ing effects at the wall forz<5. For these parameters an interface
stabilized at the center of the film. The position of the interfa
fluctuates in the intervalRg'7,z,D2Rg ~cf. Fig. 6! The inset
presents the normalized density averaged over layers 5–8. Thi
gion is marked by the arrow in the main panel.
2-6
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INTERFACE LOCALIZATION-DELOCALIZATION . . . PHYSICAL REVIEW E 63 021602
Monte Carlo simulations via switching the polymer ident
A
B at a fixed chain conformation. Different Monte Car
moves are applied in the ratio slithering snake:lo
displacements:semi-grand-canonical identity switches, wh
is 12:4:1. During production runs, we record all 150 slith
ing snake steps—the composition, energy, and sur
energy—and obtained the joint probability distribution in t
form of a histogram. We use semi-grand-canonical iden
switches in conjunction with a reweighting scheme@29,32#,
i.e., to the Hamiltonian of the system we add a reweight
function Hrw5Horig1W(f), which depends only on the
overall compositionf5npoly

A /(npoly
A 1npoly

B ). npoly
A and npoly

B

denote the number ofA and B polymers in the simulation
cell, respectively. The choiceW(f)'2 ln P(f) , where
P(f) denotes the probability distribution of the compositi
in the semi-grand-canonical ensemble, encourages the
tem to explore configurations in which both phases coexis
the simulation cell. Otherwise these configurations would
severely suppressed due to the free energy cost of interfa
In the framework of this reweighting scheme the system
ten ‘‘tunnels’’ from one phase to the other, and this allows
to locate the phase coexistence accurately and measur
free energy of the mixture as a function of the composit
f. Use of histogram extrapolation technique@33# permits
histograms obtained at one set of model parameters to
reweighted to yield estimates appropriate to another se
model parameters. We employ this analysis technique to
tain estimates for the reweighting functionW(f).

IV. RESULTS

First, we locate the critical points of the phase diagram
For a very small film thickness we find a second ord
localization-delocalization transition even though the wett
transition is of first order. Swiftet al. predicted this behavio
in the framework of a square gradient theory@9#, and such a
behavior is also borne out in our self-consistent-field cal
lations for polymer blends@17,18# and simulations of the
Ising model@19#. Upon increasing the film thickness we e
counter a nearly tricritical transition. A truly tricritical tran
sition cannot be achieved by tuning the film thickness on
because of the discreteness of the lattice, but it could
brought about by varying the monomer-wall interaction.
an experiment using real materials, of course, the film thi
ness can be varied continuously, and a truly tricritical tra
sition is in principle always accessible. For an even lar
film thickness the interface localization-delocalization tran
tion is first order and we find two critical points atfÞ1/2.

Second, we locate the triple line for the two largest valu
of the film thicknesses, and discuss how capillary waves l
to a strong dependence of the effective interface potentia
the lateral system size.

Third, we detail our results on the thickness depende
of the phase diagram, and relate our findings to the bino
of the bulk and the mixture confined into a film with sym
metric boundaries.
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A. Critical points

1. DÄ8É1.1Rg and DÄ12É1.7Rg : second order interface
localization-delocalization transition

For film thicknesses which are comparable to the rad
of gyration of the molecules, the effective interface pote
tials originating from the two surfaces strongly interfer
This might change the order of the interface localizatio
delocalization transition from first to second. In this case
single critical point occurs on the symmetry axisf51/2 of
the phase diagram. The transition is thought to belong to
2D Ising universality class. In Fig. 3~a! we present the prob
ability distribution of the composition for various invers
temperaturese, film thicknessD58, and lateral film exten-
sion L580. Upon increasing the monomer-monomer int
action e the probability distributionP(f) changes from
single peaked to bimodal, which indicates that a phase t
sition occurs in this temperature range. No signature
the trimodal distribution occurs, and hence we conclu
that the system is far away from the tricritical point, i.e

ur u.exp(2lD/2)/AN̄. In this case, we expect a crossov
from 2DMF to 2DI behavior.

Along the coexistence curveDm50 and its extension to
higher temperatures we use the cumulant intersection me
to locate the critical point@35#. In the vicinity of the critical
point the probability distribution of the order parameterm
5f2fcoex5f21/2 scales to leading order like@35#

P~m,L,t !;Lb/nP!~Lb/nm,L21/nt !, ~17!

where t5(ec2e)/ec denotes the distance from the critic
point along the coexistence curve, andb andn are the criti-
cal exponents of the order parameter and the correla
length.P! is characteristic of the universality class, and w
obtained from simulations of the Ising model@34# at the
critical temperature t50. Cumulants of the form
^m2&/^umu&2 are expected to exhibit a common intersecti
point for different system sizesL at the critical temperature
@35#. The value of the cumulant at the intersection point
universal. Our simulation data are presented in panel~b! and
exhibit some corrections to scaling due to the crosso
2DMF to 2DI behavior. Similar corrections were observed
simulations of a second order interface localizatio
delocalization transition in the Ising model@13#. From the
intersection points of neighboring system sizes and from
intersection of the cumulant with the universal value of t
Ising model, we estimate the critical temperature to beec
50.0520(5).

In the inset of Fig. 3~b! we show the probability distribu-
tion normalized to unit variance and norm at our estimate
the critical temperatureec50.052, and compare the distribu
tion to the universal scaling curve of the 2D Ising univers
ity class. The probability distributions for the smaller syste
sizes are slightly broader than the universal scaling cu
but the deviations decrease as we increase the system s

The simulation data forD512 are presented in Figs. 3~c!
and 3~d!. As we lower the temperature the probability dist
bution of the composition forL548 changes from single
peaked to bimodal. At intermediate values ofe, however, a
2-7
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FIG. 3. ~a! Probability distribution of the composition for system sizesD58 andL580. The inverse temperatures are indicated in
key. Histogram reweighting has been applied to extrapolate the data along the coexistence curve. The shape of the distributio
changes from single peaked to bimodal, but there is no indication of a third peak atf51/2. ~b! Cumulant ratio^m2&/^umu&2 along the
coexistence curveDm50 for film thicknessD58 and various lateral extensionsL, as indicated in the key. In the finite size scaling lim
L→`, t[(e2ec)/ec→0, and Lt finite, the cumulant intersection should occur at the value^m2&/^umu&251.072, highlighted by the
horizontal straight line. Our estimate of the critical temperatureec50.0520(5) is indicated by the double arrow. The inset shows
distribution function of the order parameter—scaled to unit norm and variance—at our estimate of the critical temperature, and com
MC results to the universal distribution of the 2D Ising universality class.~c! Same as~a!, but for system sizesD512 andL548. Note that
there is a broad range ofe where the distribution has three peaks, unlike the Ising model. This indicates the vicinity of the tricritical
~d! Cumulant ratiô m2&/^umu&2 for film thicknessD512 and various lateral extensionsL, as indicated in the key. Our estimate of the critic
temperatureec50.0589(10) is indicated by the double arrow. The inset shows the distribution function of the order parameter at our
of the critical temperature, and compares the MC data to the universal distribution of the 2D Ising universality class.
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three-peak structure is clearly discernible. This is charac
istic of the 2DT regime, and indicates the vicinity of th
tricritical point. In the phenomenological considerations t

regime occurs only forur u,exp(2lD/2)/AN̄. We note that
the distribution for that small lateral system sizes resemb
at no value ofe the universal shape of the order parame
distribution of the 2D Ising model. We conclude that t
finite-size rounding for this lateral system size sets in bef
we observe the crossover from 2DT to 2DI behavior, i.e.,
correlation lengthj i

2DT↔2DI in Eq. ~12! exceeds the latera
systems sizeL. For such small lateral extensions the unive
sal properties of the transition are completely masked. La
system sizes and a careful finite-size scaling analysis are
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dispensable in determining the type of transition, and ac
rately locate the transition temperature.

The temperature dependence of the cumulant is prese
in Fig. 3~d!. There is no unique intersection point, and t
value of the cumulants at the crossing is larger than the
versal value of the cumulant of the Ising class. This behav
indicates pronounced corrections to scaling due to the cr
over from 2DT behavior away from the critical point, to 2D
behavior at the critical point. From the intersection points
neighboring system sizes and from the intersection of
cumulant with the universal value of the 2D Ising model w
estimate the critical temperature to beec50.0589(10).

The inset of panel~d! compares the distribution of th
2-8
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INTERFACE LOCALIZATION-DELOCALIZATION . . . PHYSICAL REVIEW E 63 021602
order parameter at our estimate of the critical tempera
and the Ising scaling function. As we increase the late
system size the ‘‘third’’ peak in the distribution vanishe
and P(f) gradually approaches the universal scaling cur
This indicates that our largest system sizes exceed the c
lation length at the crossover from 2DT to 2DI behavior. T
comparison ofP(f) with the universal scaling curve fo
several system sizes accurately locates the critical point,
gives evidence that the transition belongs to the 2D Is
universality class. ForD<12 we find a single interface
localization-delocalization transition of second order atf
51/2.

2. DÄ14É2Rg : tricritical interface localization-delocalization
transition

The three-peak structure in the probability distribution
D512 and small lateral extensionsL has indicated the vicin-
ity of the tricritical interface localization-delocalization tran
sition. Increasing the film thickness we need larger and lar
lateral extensions to observe the 2DI behavior asj i

2DT↔2DI

diverges. Right at the tricritical point the distribution of th
composition is expected to exhibit a three-peak structure
all lateral system sizes, and the distribution, when scale
unit variance and norm, coincides with a universal scal
function. Wilding and Nielaba@36# obtained this scaling
function via simulations at the tricritical point of the spin
Blume-Capel model@37# in two dimensions. Assuming tha
the tricritical interface localization-delocalization transitio
belongs to the same universality class, we vary the fi
thicknessD and the interaction strengthe as to match the
probability distribution of the composition onto the predet
mined scaling function of the tricritical universality clas
This strategy largely facilitates the search of the tricritic
interface localization-delocalization transition. Figure 4~a!
displays the probability distribution of the composition f
film thicknesses ranging fromD512 to 18 and the universa
scaling curve. The temperature was adjusted for each
thickness such that the relative heights of the central
outer peaks correspond to the ratio of the universal sca
curve. For smallD,D tri the ‘‘valley’’ between the peaks is
too shallow and forD.D tri the probability between the
peaks is too small. ForD@D tri this situation corresponds t
the triple point~see below!, and the probability of finding a
system between the peaks is suppressed by the free en
cost of the interface between the phases with composi
close to 0 or 1 and the ‘‘soft-mode’’ phase with compositi
f51/2. As we increase the film thickness the temperatur
which the ratio between the peak height equals 1.2 sh
toward lower temperatures and approaches the wetting t
sition temperature from above.

Panel~a! of Fig. 4 suggests that the tricritical transitio
occurs close to the film thicknessD514. This is further
corroborated in Fig. 4~b!, where we show the distribution
function ate50.06151 for various system sizes. Within th
statistical accuracy of our data the distribution functions
the larger systems sizes collapse well onto the universal s
ing curve. For smaller systems the outer peaks are slig
sharper and centered at smaller values of the order pa
02160
re
l

,
.

re-

nd
g

r

er

r
to
g

-

l

m
d
g

rgy
n

at
ts
n-

r
al-
ly
m-

eter. Of course, no perfect data collapse can be expec
because we can tune the film thickness only in units of
lattice spacing. In view of the statistical accuracy and p
sible systematic corrections to scaling, however, we did
attempt to vary the monomer-wall interactionew as to
achieve a better collapse. ForD514 the system is very clos
to the tricritical transition.

3. DÄ24É3.5Rg and DÄ48É7Rg : critical points for fÅ1Õ2

Though the system is strictly symmetric the critical poin
for larger film thickness (D.D tri) do not occur atf51/2,
but rather there are two critical points at critical compo
tions fc and 12fc . These critical points are the finite film
thickness analogs of the prewetting critical points, which o
cur in the limit D→` @17#. Below the critical temperature
the phase diagram comprises two miscibility gaps. The
existing phases correspond to surfaces with a thin and a t
enrichment layer of the preferred component. Due to
missing symmetry between the coexisting phases the c
istence value of the chemical potentialDmcoex differs from
zero. We determineDmcoex via the equal weight rule@38#,
i.e., we adjustDm such that

E
0

f!

df P~f!5
! E

f!

1

df P~f! and f!5E
0

1

df P~f!f.

~18!

Along this coexistence curve and its finite-size extens
to higher temperatures we use the cumulant intersectio
locate the critical temperature. This is shown in Fig. 5~a! for
the film thicknessD524. For the system sizes accessible
the simulations the intersection points between cumulant
neighboring systems sizes systematically shift to lower te
peratures and the value of the cumulant at the intersec
point gradually approaches the value of the 2D Ising univ
sality class from above. The latter is indicated in the figu
by the horizontal line. From these data we estimate the c
cal parameters to beec50.061(1), fc50.18(2), and fc
50.82(2) respectively. This corresponds to a critical thic
ness l c5Dfc50.62Rg of the enrichment layer. A similar
procedure has been employed to locate the critical temp
ture in the film of thicknessD548. The temperature an
system size dependence of the cumulants are displaye
Fig. 5~c!. From this we extract the estimateec50.0625(10)
for the critical temperature andfc50.09(2) and fc
50.91(2) for the critical compositions. This value corr
sponds to a distance between the wall and the interfac
l c50.63Rg . Since increasing the film thickness from 3.5Rg
to 7Rg does not changeTc or l c substantially, we are in the
regimelD@1 and the critical behavior is characteristic
the prewetting critical point in the semi-infinite system.

The behavior of the cumulants and the very gradual
proach of the probability distribution towards the Ising cur
indicate pronounced corrections to scaling. For the simu
tion of the bulk phase diagram@39# a nice cumulant intersec
tion was obtained with system sizes in the range 243 to 563.
In the present study we employ systems with about an o
of magnitude more polymers and obtain no clear intersec
2-9
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M. MÜLLER AND K. BINDER PHYSICAL REVIEW E 63 021602
FIG. 4. ~a! Probability distribution of the composition for vari
ous film thicknesses as indicated in the key. The lateral system
is L596. We have adjusted the interaction strengthe such that the
central peak is a factor 1.2 higher than the outer peaks. In ac
dance with convention, we have scaled the distributions to
norm and variance. Circles mark the universal distribution of
2D tricritical transition.~b! Temperature dependence of the cum
lants forD514 and lateral system sizes as indicated in the key.
horizontal line marks the cumulant value of the universal tricriti
distribution. ~c! Probability distribution of the composition ate tri

50.06151(50) scaled to unit norm and variance. The universal
tricritical distribution~from Wilding and Nielaba@36#! is shown for
comparison.
02160
of the cumulants! There are three reasons for strong cor
tions to the leading 2D Ising scaling behavior:~i! The aspect
ratio D/L of our simulation cell is always finite. Truly two
dimensional behavior can only be observed for a vanish
aspect ratio, and our data might fall into the broad crosso
region between three- and two-dimensional critical beh
iors. Such a crossover was studied in our polymer model
neutral walls@40# and walls, which attract both the sam
species~i.e., capillary condensation! @21#. However, we note
that unlike these situations there is no three-dimensio
critical point in the vicinity for antisymmetric boundary con
ditions. The temperature of the unmixing transition in t
bulk is a factor 4 higher than the critical point in a thin film
Since the critical point in a thin film is related to the prewe
ting transition of the semi-infinite system, i.e., a transiti
with no three-dimensional analogy, we expect the corr
tions to be qualitatively different from the case of neutral
symmetric boundaries.~ii ! Unlike the situation for small film
thicknessD512 the probability distribution of the order pa
rameter is asymmetric, because the critical point does not
on the symmetry axis of the phase diagram. This miss
symmetry between the two phases gives rise to field–mix
effects @34#, which manifest themselves in corrections
relative orderL2(12a2b)/n. These corrections are antisym
metric to leading order and, hence, are not expected to in
ence even moments~like the cumulants! of the order param-
eter distribution profoundly. The effects are, howev
detectable in the order parameter distribution which
present in Figs. 5~b! and 5~d!. The distribution functions at
our estimate of the critical temperature clearly lack symm
try, and very gradually approach the symmetric scaling cu
of the 2D Ising universality class.~iii ! Additionally, there are
corrections to scaling by nonsingular background terms. O
source of~noncritical! composition fluctuations are bulklike
fluctuations in theA- andB-rich domains. In a bulk system
i.e., with periodic boundary conditions in all directions, th
susceptibility is rather small. Ate50.065 it takes the value
xT

bulk5V^Df2&50.047, withDf5f2^f&. In a system of
size 96396324 this susceptibility corresponds to compo
tion fluctuations of the orderA^Df2&;531024. Therefore,
we believe that bulklike composition fluctuations are not t
major source of background terms. However, we cannot
out that the presence of anAB interface gives rise to en
hanced composition fluctuations. Another source of corr
tions to scaling stems from the fluctuations in the avera
interface position itself. Since the effective interaction b
tween the interface and the wall is rather weak, they give
to a finite but large susceptibility away from the critic
point. We have estimated the susceptibility from the cur
ture of lnP(f) close to the triple point~i.e., T'0.9Tc), and
obtained values of the orderxT;33102 ~and a smaller
value is obtained if the interface is close to a wall.! For the
same system size as above, this yields composition fluc
tions of the orderA^Df2&;0.04 @a value which should be
compared tofc(D524)50.18(2)#. This observation par-
tially rationalizes why the peak in the probability distributio
of the composition close tof51/2 is always broader than
the peak which corresponds to the phase in which the in
face is close to the wall. As we approach the critical te
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FIG. 5. ~a! Temperature dependence of the cumulant^m2&/^umu&2 for D524 and various system sizes as indicated in the key. The ar
marks the critical temperature rangeec50.061(1). ~b! Probability distribution of the composition scaled to unit norm and variance at
estimate of the critical temperaturee50.061. Thin lines denote the results of the Monte Carlo simulations. Histogram reweighting has
applied to extrapolate the data along the coexistence curve. Circles show the universal distribution of the 2D Ising universality~c!
Same as~a!, but for film thicknessD548. The inverse critical temperature isec50.0625(10).~d! Same as~b! but for film thicknessD
548 andec50.0625.
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perature, composition fluctuations grow. At the critical po
the typical composition fluctuations are of the orderADf2

;ALg/n2d;L21/8, where we have used the critical exp
nents for the susceptibilityg57/4 and the correlation lengt
n51 appropriate for the 2D Ising universality class. Hen
for small system sizes typical fluctuations yield compositio
which differ substantially from the critical composition; on
for very large sizes does the composition fluctuate in
vicinity of the critical value. Moreover, the critical density
much displaced from the symmetry axisf51/2 and typical
fluctuations in a finite system are cut off by the constra
0,f or f,1. Therefore, the susceptibility of a small sy
tem is reduced compared to the value expected from
leading scaling behavior. This observation is in accord w
our Monte Carlo data, and a similar reasoning was used
Bruce and Wilding@41# in discussing background terms
the specific heat and the concomitant corrections to sca
in the energy distribution.

B. Triple point

For the largest two film thicknessesD524 and 48 the
interface localization-delocalization transition is first ord
and the concomitant two miscibility gaps join in a trip
point. At this temperature anA-rich phase, aB-rich phase,
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and a phase where the interface is located in the middle
the film (f51/2) coexist. The coexisting phases correspo
to three peaks in the distribution of the composition. Up
increasing the lateral system size the peak positions do
shift ~as opposed to the behavior at the tricritical point!, the
peaks become more pronounced, and configurations with
termediate compositions are more and more suppressed
cause of the presence of interfaces between the coexis
phases.

The composition of the system and the average interf
position are related vial 5fD ~integral criterium!, where we
assume that the coexisting bulk phases are almost pure,
fcoex

bulk'0 or 1. From the probability distribution we then ca
culate the effective interface potentialg( l ):

g~ l !52
kBT

L2
ln P~f5 l /D !. ~19!

In principle, not only fluctuations of the interface positio
^D l 2&, but also bulklike fluctuations, contribute to compos
tion fluctuations ^Df2&'1/D2^D l 2&1(xT

bulk/L2D). Since
the wetting transition in a binary polymer blend occurs
below the critical point of the bulk, the bulk susceptibility
very small, and the latter contribution can be neglected.
2-11



t
o

e
e
s.
is
a
ac
e
th

en

he
re
tia
te
al

ry
c

of
m

in

e
wall

m

or

ac-
ves

m

he
e
this
ss.

m
r-

e
em.

to
d we

aller
face

ti-
ged

,

on

h
e
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The dependence of the free energy per unit area on
position of the interface is a key ingredient into the theory
wetting @42,43,3,44–47#. The interface interacts with th
boundaries and the~bare! interface potential exhibits thre
minima. These correspond to the three coexisting phase
the two phases withf close to 0 and 1, the interface
localized close to the wall, the interaction between the w
and the interface is rather strong, and the effective interf
potential possesses a deep minimum. In the ‘‘soft-mod
phase the interface is only weakly bound to the center of
film, and the minimum is much broader. In Fig. 6 we pres
the effective interface potentials for film thicknessesD524
~a! and D548 ~b!, and various lateral system sizes in t
vicinity of the triple temperature. The three minima a
clearly visible; however, the shape of the interface poten
and the value of the minima depend on the lateral sys
sizeL. Moreover, the minima which correspond to the loc
ized states broaden and~slightly! shift to larger distances
between the wall and interface upon increasingL ~cf. the
inset!.

Fluctuations of the local interface position, i.e., capilla
waves, lead to a renormalization of the effective interfa
potentialg( l ), and cause a dependence ofg( l ) on the lateral
system size, which we observed in a microscopic model
polymer mixture. Describing the configuration of the syste

FIG. 6. ~a! Dependence of the effective interface potential
the lateral system sizeL in a thin film of width D524 at e
50.065. ~b! same as~a!, but for D548 ande50.069. The inset
presents an enlarged view of the minimum close to the wall. T
scale on the abscissa corresponds to the distance between th
and the interface in units ofRg .
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only via the local positionl (x,y) of the interface~sharp kink
approximation! we write the coarse grained free energy
form of the capillary wave Hamiltonian@44,46,48#,

H@ l #5E d2xH s

2
~¹ l !21g~ l !J , ~20!

where s approaches theAB interface tension between th
coexisting bulk phases for large separations between the
and the interface. An increase ofs at smaller distancesl as
revealed by previous MC simulations is neglected@21#. In
the vicinity of a minimum ofg( l ), we may approximate the
interface potential by a parabola:

g~d l !5const1 1
2 ski

2d l 2. ~21!

d l denotes the deviation of the local interface position fro
the position whereg( l ) attains its minimum.j i52p/ki is
the parallel correlation length of interface fluctuations. F
lateral distances much smaller thanj i the fluctuations of the
local interface position are hardly perturbed by the inter
tion between the interface and the wall; the interface beha
like a free interface. For lateral distances which exceedj i ,
capillary waves are strongly suppressed.j i is larger for the
minimum of g( l ) in the center of the film than for the
minima, in which the interface is localized at a wall. Fro
the curvature of the effective interface potentialg( l ) for film
thicknessD524 we estimatek15A(d2g/df2)/sD250.26
and k250.031, where we have used the bulk values
50.0382 for the interfacial tension ate50.068. For the
thicker film we obtaink150.3, but the curvature in the
middle of the film could not be accurately estimated. T
value is of the orderk2;O(0.005), and we expect this valu
to decrease exponentially with the film thickness. Hence
fluctuation effect is the stronger the larger the film thickne
For the system sizes employed in the MC simulations,kiL is
of order unity.

In our Monte Carlo simulations the finite lateral syste
sizeL acts as an additional cutoff for the spectrum of inte
face fluctuations@14#, and upon increasingL we extend the
spectrum of interface fluctuations. Allowing for interfac
fluctuations we decrease the free energy of the syst
Therefore, we expect the free energy density of the system
decrease when we increase the lateral system size, an
expect the effect to be the stronger the largerj i is. Therefore,
the free energy of the soft-mode phase becomes sm
compared to the free energy of the phase, where the inter
is located close to a wall when we increaseL. This effect is
clearly observed in the MC simulations. To be more quan
tative, we consider a system where the laterally avera
interface position is at the minimum ofg( l ), and we expand
the deviationd l (x,y) from the minimum in a Fourier series

d l ~x,y!5 (
n,m50

`

$anm cos~qnx!cos~qmy!1bnm cos~qnx!

3sin~qmy!1cnm sin~qnx!cos~qmy!

1dnm sin~qnx!sin~qmy!%, ~22!

e
wall
2-12
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with qn52pn/L. The coefficientsa005b005c005d005b0m
5c0m5d0m5dn0 vanish identically, and all other coeffi
cients can take any real value. Using expansion~22! and the
effective interface Hamiltonian@Eq. ~20!#, we calculate the
average size of fluctuations,

^anm
2 &5

4

s~Lki!
2 F11S 2p

Lki
D 2

~n21m2!G21

, ~23!

and the free energy

F

kBTL2
52

1

L2
ln E D@ l #expS 2H@ l #

kBT D
5const1

2

L2 (
nm50

`

hnm

3 lnH s

kBT Fki
21S 2p

L D 2

~n21m2!G J , ~24!

where the factorhnm takes the valuesh0050, hn05h0m
51/2, andhnm51 for nÞ0 andmÞ0 in order to account
for the restriction on the coefficientsa, b, c, and d. The
additive constant is independent of the wave vector cu
ki . The dependence of the free energy on the system si
dominated by the smallq behavior. In this regime the dis
crete nature of the wave vector space matters and, hence
do not replace the sum overq by integrals. Using the mea
sured values of the wave vector cutoffs, we calculate
lateral system size dependence of the free energy differe
between the soft-mode phase and the delocalized state.
results are compared to the MC data in Fig. 7. Good ag
ment is found for largeL, whereas there are deviations f
smallerL. For smallL the amplitude of the fluctuations be
comes large, and the parabolic interface potential is
longer a good approximation—especially for the localiz
state where the interface is located very close to the wa
We have used histogram extrapolation to adjust the temp
ture such that the differenceDg( l )5g22g1 of the minima

FIG. 7. Free energy difference per unit area andkBT of the
localized and delocalized state as a function of the lateral sys
size. The symbols represent the MC data, while the solid lines
calculated from the effective interface Hamiltonian. The tempe
ture was chosen such thatDg→0 for L→`.
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vanishes. This corresponds to the equal height criterium
the triple point. The equal weight condition, which we ha
applied to determine the binodals close to the critical poin
would requireDg5(1/L2) ln(k1 /k2). Both conditions agree
of course, when we extrapolate our results toL→`. From
this procedure we obtain the following estimates for t
triple point: 1/e triple514.7(4) andf triple50.015, 0.5, 0.985
for D524 and 1/e t514.2(4) andf triple50.0066, 0.5, 0.9934
for D548. The thickness of the microscopic enrichme
layer at the wetting transition temperature is of the ord
l wet50.05Rg , a value which is consistent with expectatio
for strong first order wetting transitions.

The dependence of the critical temperature and the tr
temperature on the film thickness is summarized in Fig.
When we increase the film thickness the critical temperat
1/ec shows a non-monotonic dependence. AtD514 the tri-
critical point ~where the critical temperature and the trip
temperature merge! occurs ate tri50.0615(5); at film thick-
ness D524 we find ec50.0610(10), and atD548 ec
50.0625(10). This effect is rooted in two opposing effec
On the one hand, self-consistent-field~SCF! calculations pre-
dict the Flory-Huggins parameterxc

SCF(D) to decrease upon
increasing the film thicknessD for an incompressible fluid.
This shift in temperature decreases exponentially with
film thickness. One the other hand, packing effects, wh
are not incorporated in the self-consistent-field calculatio
increase the density in the bulklike portion of the film wh
we decrease the film thickness. These packing effects a
walls depend strongly on the computational model, but qu
tatively similar effects might occur in experimental system
as well. This thickness dependence of the density in
middle of the film modifies the relation between the depth
the square well potential and thex parameter. This leads to
behavior of the formec;xc

SCF/(110.85/D), where we use
the dependence of the density profile~cf. Fig. 2! on the film
thickness as obtained by direct measurement in the Mo

m
re
-

FIG. 8. Temperatures of the critical points and the triple point
a function of the film thicknessD. Open symbols mark the result
of the finite size scaling analysis. We have applied a correc
factor (110.85/D)21 to account for the film thickness dependen
of the density at the center~filled symbols!. Dashed lines are only
guides to the eye. The arrow on the right hand side marks the v
of the wetting transition temperature obtained independently via
Young equation@21#.
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M. MÜLLER AND K. BINDER PHYSICAL REVIEW E 63 021602
Carlo simulations. A dependence of the fluid packing str
ture on the density is neglected. A similar 1/D correction to
the difference in surface free energies between theA- and
B-rich phases was observed in previous simulations@21#. At-
tempting to separate these two effects we also present@(1
10.85/D)ec#

21, which corresponds to the inverse Flor
Huggins parameter. Within the error bars the behavior of
quantity is consistent with the mean field prediction. T
critical value of the inverse Flory-Huggins parameter
creases, and the triple value decreases as we increase th
thickness. The latter approaches the wetting transition t
perature@21# Twet514.1(7) from above.

C. Phase diagram

For a film thicknessD548 we have determined the com
plete phase diagram. Close to the critical point we assum
2DI behavior, with an exponentb51/8 for the order param
eter, and employ finite-size scaling to estimate the criti
amplitude. Outside the critical region but above the trip
temperature, we have estimated the location of the bino
via the equal weight criterium in a system of sizeL564, but
no finite-size analysis has been applied. The phase diag
for a blend confined into a film with antisymmetric walls
presented in Fig. 9. Figure 9~a! shows that confinement int
a film with antisymmetric boundary conditions enlarges
one phase region up to the prewetting critical temperat
Since the wetting transition in binary polymer blends occ
far below the unmixing critical temperature in the bulk, t
effect is quite pronounced. The temperature region betw
the prewetting critical point and the triple point is about 11
of the wetting transition temperature. This value strongly
pends on the details of the structure at the walls. The st
ger the wetting transition, the larger the prewetting lines a
the more extended the region of the two miscibility ga
The phase diagram of the bulk and a film with symmet
walls are displayed for comparison in Fig. 9. The symme
film, has the same thickness as the antisymmetric film,
the monomer-wall interactions at one wall are identical a
attract theA component. While the prewetting at the wa
which ‘‘prefers’’ the A component leads to a two phase r
gion in the antisymmetric case, there is only a change
curvature of the binodal detectable in the symmetric cas

Panel~b! of Fig. 9 presents the phase diagram as a fu
tion of temperature and exchange chemical potential. In
antisymmetric caseDmcoex50 up to the triple temperature
There, two coexistence lines emerge which are the thin
analogies of the prewetting lines at the two walls. Since
monomer-wall interactions are short ranged, the prewet
line in the bulk and the coexistence curves in the film devi
from the bulk coexistence value linearly~up to logarithmic
corrections! @49#. They end in two critical points. Though th
system is strictly symmetric with respect to exchang
A
B, phase coexistence is not restricted toDm50, and the
coexisting phases are not related by the symmetry of
Hamiltonian. The coexistence curve of the symmetric film
shown for comparison. The coexistence value of the che
cal potential is shifted to values disfavoring the compon
attracted by both walls. There is a change in the tempera
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dependence of the coexistence curve close to the we
transition temperature, but the coexistence curve stays
away from the prewetting line. If the two lines were to in
tersect there would also be a triple point in the symme
case@21,50#. Since the shift of the chemical potentialDm is
roughly proportional to the inverse film thickness~Kelvin
equation!, we expect a triple point to occur only for muc
larger film thicknesses. This is in accord with self-consiste
field calculations@21#. The typical distancel between the
interface and the wall at coexistence is of orderD/2 in the
antisymmetric case, while it is only of the orderRg ln D/Rg in
the symmetric case. Hence smaller film thicknesses are
ficient to study the interaction between the interface and
wall, and antisymmetric boundary conditions are compu
tionally more efficient to investigate the wetting behavior

V. SUMMARY AND DISCUSSION

We have studied the phase diagram of a symmetric p
mer mixture in a thin film with antisymmetric boundary co
ditions via large scale Monte Carlo simulations. The wa
interact with monomers via a short range potential; one w

FIG. 9. ~a! Phase diagram of a binary polymer blend (N532).
The upper curve shows the binodals in the infinite system;
middle one corresponds to a thin film of thicknessD548 and sym-
metric boundary fieldsew50.16, which both ‘‘prefer’’ speciesA.
The lower curve corresponds to a thin film with antisymmetric s
faces. The arrow marks the location of the wetting transition. F
circles mark critical points; open circles and dashed line denote
triple point. ~b! Coexistence curves in the (T,Dm) plane. Circles
mark critical points, and the diamond indicates the location of
wetting transition temperature. This is indistinguishable from
temperature of the triple point.
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attracts theA component and repels theB component, while
the interaction at the opposite wall is exactly reversed. T
salient features of the phase diagram and its dependenc
the film thickness, as obtained by our MC simulations, are
accord with the results of mean field theory@9,17,18#. Fluc-
tuations, which are neglected in the mean field calculatio
do not modify the qualitative phase behavior. However, th
give rise to a rich crossover behavior between the Ising c
cal behavior, the tricritical behavior, and their mean fie
counterparts. This has been elucidated by phenomenolo
considerations, and is qualitatively consistent with our sim
lation results.

Since the critical point of the thin binary polymer film
occurs at a much lower temperature than the unmixing tr
sition in the bulk, bulklike composition fluctuations are on
of minor importance. The dominant fluctuations of the co
position of the film arise from capillary waves at the inte
face between theA- and B-rich regions in the film. The in-
teraction between the walls, and the interface is rather sm
because it is mediated via the distortion of the interface p
files at the walls and the strength of the interaction decrea
exponentially with the distance. Hence the interface is o
very weakly bound to the minimum of the effective interfa
potential. These large fluctuations give rise to rather p
nounced corrections to scaling in our systems of limited s
However, using the cumulant intersection method@35# and
the matching of the order parameter distribution onto
predetermined universal scaling function@34#, we give evi-
dence of the 2D Ising universal character of the criti
points. The same strategy has proven computationally v
convenient to locate the tricritical point as a function of t
film thickness@36#. This technique allows us to locate th
critical points of the confined complex fluid mixture with a
accuracy of a few percent.

Interface fluctuation do not only impart 2D Ising critic
behavior onto the critical points, but they are important in
whole temperature range. Monitoring the probability dist
bution of the laterally averaged interface position, we extr
the effective interface potentialg( l ). Its dependence on th
lateral system size yields direct evidence of the renormal
tion of the interface potential by interface fluctuations. Int
face fluctuations lead to a broadening of the minima in
interface potential, a shift of the minima toward the center
the film, and a relative reduction of the free energy of t
broader minimum. This leads to a systematic overestima
,
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of the triple temperature by the mean field calculations.
Moreover, our simulations indicate that packing effects

thin films result in corrections of the order 1/D to the density
of the film or to the effective Flory-Huggins parameter. Su
corrections are likely to mask completely the subtle thic
ness dependence of the triple temperature and the triple
perature predicted by the mean field calculations. For sh
range interactions between walls and monomers the
dicted shifts decrease exponentially with the film thickne
D. However, power-law dependencies are expected for
case of long range~i.e., van der Waals! interactions between
walls and monomers.

The gross features of the phase diagram, as well as
simulation and analysis techniques, are not restricted to
nary polymer fluids, but generally apply to binary liqu
mixtures in confined geometries. Moreover, mean field c
culations @17# indicate that for small deviations from pe
fectly antisymmetric boundary conditions a qualitative
similar phase behavior emerges. The stronger the first o
wetting transitions at the boundaries, the larger the de
tions from antisymmetry permissible without alternating t
topology of the phase diagram. Hence a thin binary film o
substrate against air and/or vacuum, where the substrate
ergetically favors one component of the mixture while t
other component has an affinity to the air surface, is an
perimental realization of the boundary conditions discus
here. Our findings also imply that ultrathin enrichment laye
at one surface are unstable in the temperature rangeTwet
,T,Tc . Such effects were observed experimentally@51# in
polymeric films, although for a liquid-vapor transition in
stead of a liquid-liquid demixing. However, recent expe
ments have observed the wetting transition in binary polym
blends@52,53#.
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