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Interface localization-delocalization transition in a symmetric polymer blend:
A finite-size scaling Monte Carlo study
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Using extensive Monte Carlo simulations, we study the phase diagram of a symmetric BiBrpglymer
blend confined into a thin film as a function of the film thickn@sThe monomer-wall interactions are short
ranged and antisymmetric, i.e., the left wall attractsAheomponent of the mixture with the same strength as
the right wall does thé8 component, and this gives rise to a first order wetting transition in a semi-infinite
geometry. The phase diagram and the crossover between different critical behaviors is explored. For large film
thicknesses we find a first order interface localization-delocalization transition, and the phase diagram com-
prises two critical points, which are the finite film width analogies of the prewetting critical point. Using
finite-size scaling techniques we locate these critical points, and present evidence of a two-dimensional Ising
critical behavior. When we reduce the film width the two critical points approach the symmetrgaxi& of
the phase diagram, and f@r~2R, we encounter a tricritical point. For an even smaller film thickness the
interface localization-delocalization transition is second order, and we find a single critical peint HP.
Measuring the probability distribution of the interface position, we determine the effective interaction between
the wall and the interface. This effective interface potential depends on the lateral system size even away from
the critical points. Its system size dependence stems from the large but finite correlation length of capillary
waves. This finding gives direct evidence of a renormalization of the interface potential by capillary waves in
the framework of a microscopic model.
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[. INTRODUCTION “soft-mode” phase the system is laterally homogenous—no

spontaneous breaking of the symmetry occurs. If the wetting

Confining a binary mixture, one can profoundly alter its transition of the semi-infinite system is of second order, one
miscibility behavior[1-5]. If a mixture is confined into a €encounters a second order localization-delocalization transi-

quasi-one-dimensiondk.g., cylindrical pore no true phase tion slightly below the wetting trgnsition_temperature. T_he
transition occurs, unlike the prediction of the mean fieldSystem phase separates laterally into regions where the inter-

theory. Fluctuations destroy long-range order, and only 4ace is located close to one surfadecalized statg The

pronounced maximum of the susceptibility remains in thePfder parameter, i.e., the distance between the interface and

vicinity of the unmixing transition in the bulk. In a two- the center of th_e film, grows continuously. This prediction _of
dimensional systerte.qg., a slitlike pore or a filinwith iden- phenomenological theories was corroborated by detailed

tical surfaces a true phase transition occlaaspillary con- simulation stuQieg{lO,l&lz}, and it is also in accord with
densatioh and the shift of the critical point away from its experlmenta[ flndlng§1.5,16_‘i. ' .

bulk value has been much investigaf&dl The confinement f Ifhthi'lwettmg transm0r|1| is of flrs;crolréjer, lamlj the ;r;lclkness
changes the universality class of the transition from a thre of the film not too small, mean field calculatiof$7,1§

e- . “n . .
; . . - o predict the occurrance of two critical points which corre-
dimensional(3D) Ising critical behavior in the bulk to a 2D spond to the prewetting critical point of the semi-infinite

Ising critical behavior in the film. The latter manifests itself system. Unlike the wetting transitiof6] the prewetting tran-
in much flatter binodals in a film close to the unmixing tran- sjtion can produce a criticésingulay behavior in a thin film,
sition than in the bulk. No such change of the critical xpo-pecause only the lateral correlation length diverges at the
nents is observed in mean field theory. prewetting critical point; the thickness of the enrichment lay-
The phase behavior of symmetric mixtures in a thin filmers at the surfaces remains finite. The mean field treatment
with antisymmetric surface interactions has attracted abidinghvokes approximations and it cannot be expected to capture
interest recentlyf7—12. The right surface attracts one spe- the subtle interplay between 2D Ising fluctuations at the criti-
cies with exactly the same strength as the opposite surfaasal points, “bulklike” composition fluctuations, and inter-
attracts the other species. In contrast to capillary condens#ace fluctuations typical of the wetting transitiph3]. Con-
tion, the phase transition does not occur close to the unmixsequently, a detailed test of the mean field predictions via
ing transition in the bulk, but rather in the vicinity of the Monte Carlo simulations is certainly warranted, and eluci-
wetting transition. Close to the unmixing transition in the dates the role of fluctuations. Using Monte Carlo simulations
bulk, enrichment layers at the surfaces are gradually built upef the Ising model, Ferrenbergt al. also studied the inter-
and an interface is stabilized in the middle of the film. In thisface localization-delocalization transition for the case when
the wetting transition of the semi-infinite system is of first
order[19]. This simulation study was centered on the depen-
*Email address: Marcus.Mueller@uni-mainz.de dence on the film thickness, which is a convenient parameter
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to vary in experiments. However, the study was restricted t@onentially as a function of the distance | between A2
the coexistence between strictly symmetric phases, and maryterface and a single wall:
guestions remained open.
General features of the phase behavior are shared by all _ IRV _ _
binary mixtures. Here we present large scale Monte Carlo Gwan(l) =2 €Xp(=N) =D exp( = 2\1)+c exp( = 3Al). )
simulations aiming at investigating the phase behavior of a
symmetric binary polymer blend confined between antisym-_ ] )
metric walls. Computationally, simulations of a polymer This expression retains only the lowest powers of exd{,
blend[20] are much more demanding than studying simpleWhich are necessary to bring about a first order wetting
fluids (e.g., the Ising modgl but recent mean field calcula- transition of the semi-infinite system. The coefficienis
tions made detailed predictions for the phase behavior ofXplicitly temperature dependent, while the temperature de-
confined polymer mixture§17,18, and serve to guide us Pendence ob andc is neglectedc>0 is assumed through-
when choosing the model parameters in the simulations2ut the discussion. All coefficients are of the same magni-
Simu|ating po|ymer b|endS, we can, at least in princip|e, Con_tude as the interfacial tensian be-tween the COGXlStlng bulk -
trol the importance of fluctuations by varying the degree ofPhases. For polymer blends this quantity scales with chain
interdigitation, i.e., the chain leng{i8,20. The mean field length N and monomer number densipy like \/N/Ré. N
theory is expected to become accurate in the limit of infinite:(pRS/[\j)2 measures the degree of interdigitationh He-
interdigitation. In a binary polymer blend the wetting transi- notes the spatial range of the interactions, and it is of the
tion occurs at much lower temperatures than the critical temgrder Ry. b<0 gives rise to a second order wetting transi-
perature of the unmixing transition in bulR1]. Hence, bulk-  tion ata=0, andb=0 to a tricritical transition. Fob>0
like composition fluctuations are not important in the vicinity one encounters a first order wetting transition aje
of the Wettlng transition temperature, and we can isolate the- b2/4C, where the thickness of the enrichment |ayer jumps
effect of interface fluctuation. Moreover, these systems argjiscontinuously from!|_=1/\ In(2c/b) to a macroscopic
also suitable candidates to examine the phase behavior eyajue[18]. The wetting spinodals take the values 0 (from
perimentally. Indeed, one of the first studies of the “soft-the wet phaseanda<b?2/3c (from the nonwet phageThe
mode” phase employed a binary polymer blgrd]. concomitant prewetting line terminates at the prewetting
Our paper is broadly arranged as follows: First, wecyitical point Bpwe=16a,e/9 and| = L\ In(9c/2b).
present a phenomenological description of the phase behav- we approximate the effective interface potential in a film
ior in a film with antisymmetric short-ranged surface inter-o pe the linear superposition of the interactions originating
actions. Using a standard model for the effective interfacgyt each wall and analyze the behavior. Self-consistent-field
potential we calculate the phase behavior in the mean fieldg|culationg 18] lend support to this approximation. The in-

approximation, discuss the regime of validity of the meanerface potential in a film of thickned takes the form
field approach, and consider the crossover between the dif-

ferent critical behaviors. Second, we briefly describe our  g(1)=g,a(1)+ gwai(D =) — 20yai(D/2)
coarse grained lattice model for a binary polymer mixture.

Then we present our Monte Carlo results: We obtain the =2aexp —AD/2)(cosh\[|-D/2])—1)

phase diagram for film thicknesses ranging from 1.1R, _ _ _ _

to 7Ry, whereR, denotes the radius of gyration of the poly- 2b exp(—AD)(cost2A - D/2]) 1)

mer chains, investigate the critical behavior and present evi- +2c exp(—3AD/2)(cosi3\[I-D/2])—1). (2)

dence that interface fluctuations renormalize the effective in-

terface potential. We close with a comparison of the phasén general, the phase boundaries depend on the variables

diagram to the behavior of the bulk and of films with sym-a/c, b/c, and\D. If we proceeded as in Refl13] by ex-

metric boundary conditions. panding the cosh in powers ¢f —D/2], further analysis
would be rather cumbersome. A more transparent procedure
employs the variable

Il. BACKGROUND m2=2 exg —\D/2)(cosh\[l —D/2])— 1)

Rather than describing the configuration of the system by 2, 1
a detailed composition profile across the film, much qualita- (exp=AD/4N[1=D/2])"+ higher orders off | ~D/2]
tive insight into the thermodynamics can be deduced from 3
the effective interface potential. Below the bulk critical tem- . _ o
perature, enrichment layers of the prefered components for# rewrite the interface potential in the form
at the surfaces and stabilize A interface which runs par- . _
allel to the walls. The effective interface potentig(l) g(h=c[m?(m*~r)?+tm?]
describes the free energy per unit area as a function of the
distancel between thisAB interface and a wall. In the case With
of short-ranged forces between the monomers and the walls,
the interface profile becomes distorted in the vicinity of the (— b—6cexp(—AD/2)
walls, and this gives rise to an interaction which decays ex- 2C
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and r

. a—aye—bexp—AD/2)
- . i

(4)

o R . tricritical
The qualitative form of the effective interface potential was point
inferred previously on the basis of a Landau expan§i@). T
Here it is derived explicitly from the standard form of the
interface potentidlEq. (1)] for a first order wetting transition
in a semi-infinite system. Negative valuesraforrespond to
second order localization-delocalization transitions0 to a
tricritical one, and positive values ofgive rise to first order 10
transitions.t measures the distance from the tricritical tran-
sition temperaturdfor r<0), andt=0 denotes the triple
temperature in the case of a first order interface localization-
delocalization transition(see below. For r<0 the phase
boundaries depend only on the two parameter combinations
and t. In these variables the limikD—o is particularly

transparentcr—b/2, ct—a—aye, andm— exp(—Al).

e
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A. r=<0: Second order and tricritical interface
localization-delocalization transition

A second order interface localization-delocalization tran-
sition (i.e., r<0) will occur either if the wetting transition is
second ordefi.e., b<<0) or if the wetting transition is first
order but the film thicknes® small enough to comply with
0<b<6c exp(—AD/2). This behavior is in accord with pre- _ _ )
vious findingg9,19,18, and we shall corroborate this further ~ FIG- 1. (@ lllustration of the different regimes for a second
by our present simulations. Since the coexisting phases aﬁgder and tricritical transition. 2DTMF: mean field tricritical behav-

. . . ; 2DMF: mean field critical behavior; 2DI: two-dimensional
symmetric with respect to exchangih@ndD —I, phase co- ' - X : N — .
y etne espe exc gihg P co Ising critical behavior; 2DT: two-dimensional tricritical behavior.

existence occurs ak pucoe =0 Or 9/l =(ag/dm)(dnVdl)  The'inset shows the temperature dependence of the order parameter
=0. From this condition, for the binodals we obtain m for r=— 0.4 as calculated within mean field thegsee Eq(5)].
Fort,—t<16r2/3, 2DMF behavior is found, while 2DTMF behav-
-~ 2|r 3 ior is observed at larger distances from the critical poiht.De-
m2=T 1+ FAt— 1 pendence of the critical temperatureon the distance from the
r
At/4lr| for At<r? (2DMF)
T VA3 for At>r? (2DTMF).

tricritical point. The curves correspond to different values bf, as

indicated in the key. Thick lines, which bracket the behavior, cor-
(5) respond ta,=7r?/5 (valid for smallr) andt,=7r?/9 (valid in the

limit AD—%). The inset presents the binodals at fixed strergth

=4.44 of the wetting transition of the individual surface, and sev-

eral values of\D as indicated in the key. For the choice of param-
The critical temperature is given tl;gz—rz, and At=t, eter b/c=4.44>3 exp(~\D/2) (and, hencer>0), there are two
—t denotes the distance from the critical temperature at fixedritical points for all values of the film thickness.
r. For r<0 the binodals at the critical point open with the
mean field exponenB,pye=1/2. This corresponds to mean m=(At/3)"4 The crossover in the binodals for= —0.4 is
field critical behavio(2DMF) of a system with a single sca- illustrated in the inset of Fig. (&).
lar order parameter, i.em=[I/D—1/2]. At larger distance Of course, the above considerations neglect fluctuations
the order parameter grows like~ (At)P20™vF with B,orme and the behavior close to the transition is governed by Ising
=1/4. The latter exponent is characteristic of the mean fielcritical exponents and two-dimensional tricritical exponents,
behavior at a tricritical point2DTMF). The crossover be- respectively. The crossover between Ising critical behavior
tween mean field critical and tricritical behaviors occurs(2DI) and tricritical behavior(2DT) occurs at|Atg.sd
around |Atgosd~r%. As we decrease the magnitude of ~rY¢coss where the crossover critical exponent is not (8
—0 we approach the tricritical point and the regime wherefor the crossover between the mean field regintes rather
mean field critical behavior is observable shrinks. At the tri-4/9 [22—-24. Following Ref.[13] we calculate the critical
critical point only the tricritical regimg2DTMF) exists, i.e., amplitudes, and estimate the location of the crossover be-
At o5 0, and the binodals take the particularly simple formtween mean field critical behavior and the region where fluc-

021602-3



M. MULLER AND K. BINDER PHYSICAL REVIEW E 63 021602

tuations dominate the qualitative behavior. For small valuedluctuations of the order parameter in a volume of linear

of the order parametem=[I/D—1/2] we approximatem  dimension§; are small in comparison to the mean value of

~mexpD/4)/(\D), and obtain, for the mean field critical the order parameter. For our quasi-two-dimensional system
amplitudes, (d=2), we obtain

5 expAD/4) 4B expAD/4) ® .
=——— an = '
2DMF 2\/m)\D 2DTMF N _d<m2:>

exp(—daD/4)
§]

( Cl—2/d)\2) dr2

The susceptibility of the order parameter above the critical | iAt(“‘d)/z for r<0 second order

temperature is related to the inverse curvature of the inter- <{ |r] (9)
; ; ; ; 2

face potential in the middle of the film XD At(3- )2 for r=0 tricritical.

=(0°9/91%))1—p2. Using Eq.(4), for critical and tricritical
mean field transitions we obtain

This result is as expected: For a second order inter-
. face localization-delocalization  transition in  our
- ZC()\D)Zexp()\D/Z)At quasi-two-dimensional system we obtail\t<Giyp,
~|r|exp(—)\D/2)/\/N, in accord with Ref[13], while we
and obtain At<Gi,pr~exp(—=AD)/N upon approaching the tric-
ritical point. For bulk @=3) tricritical phenomena Landau
theory is marginally correct.

Combining the above results we find the following behav-
ior upon approaching the critical temperature: Far away from
the tricritical point, i.e.r>exp(—)\D/2)/\/N, we find a mean
At A . ) field tricritical behavior(2DTMF) for At>r?, a mean field
The ratioCy,e/Cy of the critical amplitudes above and be- iical behavior (2DMD) for r2<At<|r|exp(-\D/2),

low the critical point is universal, and takes a mean fieldypq finally a two-dimensional Ising critical behavi(2DI)
value 2 at the critical point and 4 at the tricritical point. At ¢, |rlexp(—AD/2)>At. Closer to the tricritical point

the transition the correlation length diverges. This lateral . — . . -
length is associated with quctuat?(ﬂ)ns of the local interfac .e.,_r<exp(—)\D/2)/\/ﬁ, we find a mean field tr_lcrmce_ll be-
position, i.e., capillary waves. In mean field approximation avior (ZDTMF). for At>exp(-AD/4), a two-dlmegglonal
the parallel correlation length takes the form tricritical pehav[qr (2DT) f°f exp(-AD/4)<At=<Creross
and an lIsing critical behaviaf2DI) for CrY%crossAt. The
1 #%g —12 prefactor C must be chosen such that all crossover lines
glz(——z) =\JoD%y (2DI+2DT, 2DT+-2DTMF, 2DTMR-2DMF, and
7 4l 2DMF+2DI) intersect at a common point. This yiel@

~[N exp\D)] 1+¥2¢a0ss Of course, the term ‘“crossover

X

N 1
Cup=—————expAD/2), =1. 7
MF 2¢(AD)2 f ), YMF (7)

hence line” is not meant as a sharp division between different be-
Jo haviors, but should rather be understood as the center of a
%,\*,,F=—exp()\D/4), yme=1/2, (8) smooth crossover region. Likewise, the above cons@nt
V2c may involve a constant of order unity which has been sup-
R R pressed for simplicity. The two different sequences can be
and&ye/ £ye=1/2 and 2, respectively. clearly distinguished in the Monte Carlo simulations, be-

Knowing the critical amplitudes we can estimate the im-cause the probability distribution of the order parameter ex-
portance of fluctuations via the Ginzburg criterii2b]. As  hibits a three peak structuf86] only close to the tricritical
it is well known, mean field theory is self-consistent if the point (2DT). We shall use this property to analyze our Monte

TABLE I. Compilation of the boundaries of the different regimes in the vicinity of the tricritical point and
the correlation lengths at the crossover. The latter quantity gives an estimate of the system size required to
observe the crossover in the Monte Carlo simulations.

Crossovers |Atcrossl Ecrosd Rg
2DT « 2DI (Wexp()\D)) -1+ 1/2d’crosq' Uecross exp()\ D ( 3/4— Vtri/2¢crosg )ﬁl/Z* Vtrilzd’crossr = viri/ deross
2Dl < 2DMF [rIN~Y2exp(~\D/2) r|~Y2NY*exp\D/2)
2DMF < 2DTMF  r? [r|~*exp(D/4)
2DTMF < 2DT N~ !exp(-\D) NY2exp(D/4)
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(_Zarlo (MC) simulations. The anticipated behavior is summa- £~ Ry exp(AD/4) At~ YF (At/Gipy)
rized in Fig. 1a).
In the Monte Carlo simulation this rich crossover scenario Ry expAD/4) At~ Y2 for At>Giyp,

is further complicated by finite-size rounding. The Monte (10
Carlo results are subjected to pronounced finite-size effects
whenever the correlation length becomes of the order of the _
lateral system size. In the mean field regime the correlationvhere we have assumed that the scaling functi@ssumes
length scales like§~Ry exp(\D/4)At~ Y2 Knowing the a power law behavior for small and large arguments, and we
Ginzburg number for the crossover from 2DMF to 2Dl be- have used the value,p,=1 appropriate for the divergence
havior, we estimate the correlation length in the Ising criticalof the correlation length in the 2DI regime. Similarly, we

regime[13], determine the correlation length in the 2DT regime:

— y .
Ryr|Y2N"HAt~1  for At<Giyp,

Ry exp(AD/4) At~ 12 for At>Giypr

_ . 11
Rg eX[X)\D(3/4— Vm))Nllz? V"iAtiytri for At<GI2DT' ( )

&~ Ry exp(\D/4) At~ Y (At/Gippy) —

vyi=5/9 denotes the exponent of the correlation length in théletermined them numerically. The dependence of the critical
2DT universality clas§22—24. The correlation lengths at temperature. onr for several values okD is presented in
the various crossovers are compiled in Table I. The largedtig. 1(b). The coexistence curve fdr/c=4.44 and various
correlation length occurs at the crossover from 2DT to 2DIvalues ofAD are presented in the inset of FighlL As the

behavior: film thickness is decreased the critical temperature decreases,
and the critical points move closer to the symmetry axis of
gﬁDTHzD@ Ry Xd ND(3/4— vi/2¢rosd | the phase diagram. They are determined by the condition
X Nl/Z* Vtrilzd’crossi r| ~ viri/ beross (12)
g g - -~
—=—=0 att=t, and m=m,. (19

In order to observe the true Ising critical behavior for nega-
tive values ofr, the system sizé has to exceed this corre-
lation length. In the vicinity of the tricritical point.e., for
small negative values af) this requirement is very difficult In two limiting cases a simple behavior emerges.

a2 a3

to be met in computer simulations. (I) If |)\(| —D/2)|<l we can replace the derivative with
respect td by derivatives with respect tm and, obtair{ 18]

B. r>0: First order interface localization-delocalization t.=7r%/5 andm.= = \2r/5. This approximation holds for
transition r<exp(—\D/2). Expandingg in powers ofdm=m-—m, we

For positive values of the interface potential exhibits a obtain (omitting an irrelevant term linear iam)

three valley structure. The three minimamat = \r andm

=0 have equal free energy &t 0. This corresponds to the _ g . 7c . _

triple point. At lower temperatures airrich phase coexist g(m)=~c(te—t)dm?+4rcom*+ ?6m5+ com®. (15)
with a B-rich phase, and since the two phases are symmetri-

cal the coexistence occurs &fi..=0. The binodals below

the triple point take the form This allows us to calculate the binodals in the vicinity of the
critical points, the susceptibility, and the parallel correlation
- 2r r t length. The presence of a fifth order termdm in expansion
m==* §+ 9 3 for t<0, r>0. (13 (15 is a manifestation of the fact that the phase boundaries

of the prewetting transitions are not symmetric around
Above the triple temperatute-0 there are two two phase This lack of symmetry is also evident from the numerical
coexistence regions symmetrically located aroune-0. results in Fig. @) (Eset). The critical amplltude§ scale in
These phase coexistences terminate at two critical pointdhe same way with, N, andAD as forr <0. In particular we
Since the coexisting phases correspond to thick and thin erfind. for the crossover between 2DMF and 2DI behaviors,
richment layers of the prefered phase at each wall, there is rﬁi2D|~|r|exp(—)\D/2)/\/ﬁ.
symmetry between the coexisting phases, and the exchange (ii) In the limit of large film thicknesa D — o, the critical
potential A ucqex at coexistence differs from zero. Unfortu- point tends toward a prewetting critical point &t—tg,
nately, the phase boundaries for0 andr>0 depend not =7r?/9. In this limit confinement effects are negligible, and
only onr andt but also onAD explicitly, and we have the coexistence curves in the vicinity of the critical points
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correspond to the prewetting lines at the corresponding sur- 11 F T D_2'4
faces. We expect the same critical behavior as at the prewet- o Duss
ting critical point. In this case the Ginzburg number does not 10 |V ¥ ==
depend on the film thickness. FaiD —o we employ the
interface potential at a single wall, and for the validity of the 209 | ve o
mean field description we find & *
a—a A2 o8 1 — 140.85D
— s N 2-Gi,y for r>0, AD—c. T A
Apwe o 0.7 0 001 002 003 004 0.05.
(16) ! 1/D
1 5 9 13 17 21
I1l. BOND FLUCTUATION MODEL AND SIMULATION z [lattice units]
TECHNIQUE

FIG. 2. Density of blocked lattice sites normalized by the bulk

Modeling polymeric composites from the chemical detailsvalue as a function of the distance from the walleat0.06 and
of the macromolecular repeat units to the morphology of thee,=0.16 for film thicknesseP = 24 and 48. Note the strong pack-
phase separated blend within a single model is not feasibl@g effects at the wall for<5. For these parameters an interface is
today, even with state-of-the-art supercomputers. Howevesgtabilized at the center of the film. The position of the interface
there is ample evidence that by a careful choice of simulatioffuctuates in the intervaR,~7<z<D—R, (cf. Fig. 6 The inset
and analysis techniques, coarse grained models of ﬂexib@_resgnts the normalized dengity averaged over layers 5-8. This re-
polymers—like the bond fluctuation mode0,26—provide ~ 9ion is marked by the arrow in the main panel.
useful insights into the universal polymeric features. In the
framework of the bond fluctuation model each effectivethe energetically unfavorable contacts between unlike spe-
monomer blocks a cube of eight neighboring sites from furcies [29]. Both effects are not incorporated into the mean
ther occupancy on a simple cubic lattice in three dimensiondield calculationd 17,18 and cause the density in the bulk-
Effective monomers are connected by bond vectors of lengtlike region of the film to be slightly larger for thinner films
2, 5, \6, 3, or10 in units of the lattice spacing. The than for thicker ones. In the following we employ the density
bond vectors are chosen such that the excluded volume conf occupied lattice sites in the layerss@=8 as a measure
dition guarantees that chains do not cross during their motionf the density of the film. For large the data are compatible
[27]. Each effective bond represents a groumsf3—5 sub-  with a behavior of the formp=pg(1+0.85D). The film
sequent C-C bonds along the backbone of the ch2@j.  thickness ranges fro®=12~1.7R; to D=48~7R,, and
Hence the chain length =32 employed in the present simu- we vary the lateral extension over a wide range<48
lations corresponds to a degree of polymerization of 100-<264 to analyze finite-size effects. In the two layers nearest
150 in a real polymer. If we increased the chain lerigtlthe  to the walls, monomers experience a monomer-wall interac-
mean field theories would yield a better description of thetion. An A monomer is attracted by the left wall and repelled
equilibrium thermodynamicsself-consistent-field theory is by the right wall; the interaction betwedh monomers and
believed to be quantitatively accurate in the lildit>), but  the walls is exactly opposite. Each monomer-wall interaction
the length scale of the ordering phenomena would be largechanges the energy by an amougt=0.16 in units ofkgT.
Hence our choice oN is a compromise determined by the For these parameters the wetting transition and the phase
computational resources. The statistical segment lebgth  diagram of a blend confined between symmetric walls has
the relation for the radius of gyratioRg:b\/N_IG is b been investigated previous[21].
=3.05(i.e., Ry=7 for N=32). Binary interactions between monomers are catered for by

We study thin films of geometryt XL XD. Periodic a short ranged square well potentia — expn= — €gg= €pp
boundary conditions are applied in the two lateral directions=1/kgT, which is extended up to a distang®. The phase
while there are hard impenetrable wallszat0 andz=D separation is brought about by the repulsion between the
+1, modeling a film of thicknes®. The average number unlike species. The Flory-Huggins parameteryis 2zge,
density in the film ispy=1/16, i.e., half of the lattice sites wherez~2.65 denotes the effective coordination number
are occupied by corners of monomers. This density correin the bulk[30,2Q at py,=1/16. Fore,,=0.16 previous simu-
sponds to a melt or concentrated solution. The density profiléations find a strong first order wetting transition B},
of occupied lattice sites, normalized by the bulk value, is=1/e,s=14.1(7)[21]. This value corresponds tpN~12,
presented in Fig. 2 for film thickness&=24 and 48. For which is well inside the strong segregation limit.
this choice of temperature and monomer-wall interaction an The polymer conformations are updated via a combina-
interface is stabilized in the center of the film. Due to thetion of random monomer displacements and slithering snake-
extended shape of the monomers and the compressibility dke movements. The latter relax the chain conformations
the fluid there are packing effects at the waR4]. Overall  about a factor oN faster than the local displacemen89].
the walls are repulsive, and the monomer density is slightlyWe work in the semi-grand-canonical ensen{ld#|, i.e., we
reduced in the boundary region. The spatial extension of thisontrol the temperatur&=1/e and the exchange potential
region is independent of the film thickness. Moreover, theA u between the two species, and the concentration fluctu-
density is reduced at the center of the interface as to reduages. This semi-grand-canonical ensemble is realized in
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Monte Carlo simulations via switching the polymer identity A. Critical points
A=B at a fixed chaln F:onformathn. D|_ffere.nt Monte Carlo D=8~1.1R, and D=12~1.7R,: second order interface
moves are applied in the ratio slithering snake:local

displacements:semi-grand-canonical identity switches, which i _ ] )
For film thicknesses which are comparable to the radius

is 12:4:1. During production runs, we record all 150 slither- : AR
ing snake steps—the composition, energy, and surfac8f gyration of the molecules, the effective interface poten-

energy—and obtained the joint probability distribution in thetT"';“'.s originating frOThthe o i“tr:]ac‘?st S;m“g'ly '”lt.erft‘?re'
form of a histogram. We use semi-grand-canonical identity. "> M change the order of fhe interiace focalization-

y I - ) :
switches in conjunction with a reweighting schefi2®,32, g,enl OI(; alclii%t(':g? t(r)a;:ts glé):ugo(r)nnf;]set ;O ;Er’"r?gtr; d.a:;‘;hlls/zc?e, a
i.e., to the Hamiltonian of the system we add a reweightin 9 b Y Y

. , %he phase diagram. The transition is thought to belong to the
function H“N:ﬂqfingW(‘ﬁ)’ WQ'Ch dBependi only 0?3 the Hp Iging univegrsality class. In Fig.(8 we p?esent the pgrob—
overall compositiong =N,/ (Npoy+ Npoly) - Mpoty 1A Mooty apility distribution of the composition for various inverse
denote the number oA and B polymers in the simulation temperatureg, film thicknessD =8, and lateral film exten-
cell, respectively. The choic&V(¢)~—InP(¢) , where  sjon L =80. Upon increasing the monomer-monomer inter-
P(¢) denotes the probability distribution of the composition action e the probability distributionP(¢#) changes from
in the semi-grand-canonical ensemble, encourages the sysingle peaked to bimodal, which indicates that a phase tran-
tem to explore configurations in which both phases coexist isition occurs in this temperature range. No signature of
the simulation cell. Otherwise these configurations would behe trimodal distribution occurs, and hence we conclude
severely suppressed due to the free energy cost of interfacdbat the system is far away from the tricritical point, i.e.,
In the framework of this reweighting scheme the system 0f‘|r|>exp(—)\D/2)/\/ﬁ. In this case, we expect a crossover
ten “tunnels” from one phase to the other, and this allows usrom 2DME to 2DI behavior.
to locate the phase coexistence accurately and measure theAlong the coexistence curvd=0 and its extension to
free energy of the mixture as a function of the compositionhigher temperatures we use the cumulant intersection method
¢. Use of histogram extrapolation techniq{@3] permits to locate the critical poin35]. In the vicinity of the critical
histograms obtained at one set of model parameters to h@oint the probability distribution of the order parameter
reweighted to yield estimates appropriate to another set of ¢ — ¢oex= ¢ — 1/2 scales to leading order liK85]
model parameters. We employ this analysis technique to ob-
tain estimates for the reweighting functiov( ¢). P(m,L,t)~LA"P*(LA"m,L 1), 17)

localization-delocalization transition

wheret=(e.— €)/ €. denotes the distance from the critical
IV. RESULTS point along the coexistence curve, gicand v are the criti-
cal exponents of the order parameter and the correlation
e . . .
First, we locate the critical points of the phase diagrams!ength'P is characteristic of the universality class, and was

obtained from simulations of the Ising modgd4] at the

For a very small film thickness we find a second orderCritical temperature t=0. Cumulants of the form

Iocali_zgtio_n—delgcalization trapsition even though the wgtting<m2>/<|m|>2 are expected to exhibit a common intersection
.transmon is of first order. Swifet aI._predlcted this behavior point for different system sizels at the critical temperature
in the framework of a square gradient the¢®, and such a 35 The value of the cumulant at the intersection point is
be.haV|or is also borne out in our self-cqn&stgnt—fleld calcuyniversal. Our simulation data are presented in péneind
lations for polymer blend$17,18 and simulations of the = exhibit some corrections to scaling due to the crossover
Ising model[19]. Upon increasing the film thickness we en- 2pMmF to 2DI behavior. Similar corrections were observed in
counter a nearly tricritical transition. A truly tricritical tran- sjmulations of a second order interface localization-
sition cannot be achieved by tuning the film thickness only delocalization transition in the Ising modgl3]. From the
because of the discreteness of the lattice, but it could bintersection points of neighboring system sizes and from the
brought about by varying the monomer-wall interaction. Inintersection of the cumulant with the universal value of the
an experiment using real materials, of course, the film thickising model, we estimate the critical temperature toebe
ness can be varied continuously, and a truly tricritical tran-=0.052(5).
sition is in principle always accessible. For an even larger In the inset of Fig. ) we show the probability distribu-
film thickness the interface localization-delocalization transi-tion normalized to unit variance and norm at our estimate of
tion is first order and we find two critical points &t# 1/2. the critical temperature.=0.052, and compare the distribu-
Second, we locate the triple line for the two largest valuedgion to the universal scaling curve of the 2D Ising universal-
of the film thicknesses, and discuss how capillary waves leady class. The probability distributions for the smaller system
to a strong dependence of the effective interface potential ogsizes are slightly broader than the universal scaling curve,
the lateral system size. but the deviations decrease as we increase the system size.
Third, we detail our results on the thickness dependence The simulation data fob =12 are presented in Figs(c3
of the phase diagram, and relate our findings to the binodaland 3d). As we lower the temperature the probability distri-
of the bulk and the mixture confined into a film with sym- bution of the composition fot. =48 changes from single
metric boundaries. peaked to bimodal. At intermediate valuesepthowever, a
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FIG. 3. (a) Probability distribution of the composition for system sifes 8 andL =80. The inverse temperatures are indicated in the
key. Histogram reweighting has been applied to extrapolate the data along the coexistence curve. The shape of the distribution function
changes from single peaked to bimodal, but there is no indication of a third pefk &t2. (b) Cumulant ratio(m2)/(|m|)? along the
coexistence curva u=0 for film thicknessD =8 and various lateral extensiohs as indicated in the key. In the finite size scaling limit
L—o, t=(e—e)le,—0, andLt finite, the cumulant intersection should occur at the valo®)/{|m|)?=1.072, highlighted by the
horizontal straight line. Our estimate of the critical temperateye 0.0520(5) is indicated by the double arrow. The inset shows the
distribution function of the order parameter—scaled to unit norm and variance—at our estimate of the critical temperature, and compares the
MC results to the universal distribution of the 2D Ising universality clagsSame aga), but for system sizeB =12 andL =48. Note that
there is a broad range efwhere the distribution has three peaks, unlike the Ising model. This indicates the vicinity of the tricritical point.
(d) Cumulant ratiolm?)/{|m|)2 for film thicknessD = 12 and various lateral extensiobsas indicated in the key. Our estimate of the critical
temperature,=0.0589(10) is indicated by the double arrow. The inset shows the distribution function of the order parameter at our estimate
of the critical temperature, and compares the MC data to the universal distribution of the 2D Ising universality class.

three-peak structure is clearly discernible. This is characterdispensable in determining the type of transition, and accu-
istic of the 2DT regime, and indicates the vicinity of the rately locate the transition temperature.

tricritical point. In the phenomenological considerations this The temperature dependence of the cumulant is presented
regime occurs only fotr|<exp(—7\D/2)/\m. We note that in Fig. 3(d). There is no unique intersection point, and the
the distribution for that small lateral system sizes resemblegalue of the cumulants at the crossing is larger than the uni-
at no value ofe the universal shape of the order parameterversal value of the cumulant of the Ising class. This behavior
distribution of the 2D Ising model. We conclude that theindicates pronounced corrections to scaling due to the cross-
finite-size rounding for this lateral system size sets in beforever from 2DT behavior away from the critical point, to 2Dl
we observe the crossover from 2DT to 2DI behavior, i.e., thébehavior at the critical point. From the intersection points of
correlation lengthéf®T 2" in Eq. (12) exceeds the lateral neighboring system sizes and from the intersection of the
systems sizé. For such small lateral extensions the univer-cumulant with the universal value of the 2D Ising model we
sal properties of the transition are completely masked. Largegstimate the critical temperature to bg=0.0589(10).

system sizes and a careful finite-size scaling analysis are in- The inset of paneld) compares the distribution of the
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order parameter at our estimate of the critical temperatureter. Of course, no perfect data collapse can be expected,
and the Ising scaling function. As we increase the laterabecause we can tune the film thickness only in units of the
system size the “third” peak in the distribution vanishes, lattice spacing. In view of the statistical accuracy and pos-
andP(¢) gradually approaches the universal scaling curvesible systematic corrections to scaling, however, we did not
This indicates that our largest system sizes exceed the corrattempt to vary the monomer-wall interactios), as to
lation length at the crossover from 2DT to 2DI behavior. Theachieve a better collapse. For= 14 the system is very close
comparison ofP(¢) with the universal scaling curve for to the tricritical transition.

several system sizes accurately locates the critical point, and

gives evidence that the transition belongs to the 2D Ising 3 D=24~3.5R, and D=48=7Ry: critical points for ¢#1/2

universality class. FoD<12 we find a single interface  Though the system is strictly symmetric the critical points
localization-delocalization transition of second orderdat fqor larger film thickness D >D,;) do not occur atp=1/2,
=1/2. but rather there are two critical points at critical composi-
tions ¢, and 1—- ¢.. These critical points are the finite film
2. D=14~2R: tricritical interface localization-delocalization ~ thickness analogs of the prewetting critical points, which oc-
transition cur in the limitD—o [17]. Below the critical temperature
the phase diagram comprises two miscibility gaps. The co-
existing phases correspond to surfaces with a thin and a thick

) e - S enrichment layer of the preferred component. Due to the
ity of the tricritical interface localization-delocalization tran-

S . ; ) missing symmetry between the coexisting phases the coex-
sition. Increasing the film thickness we need larger and larg g5y Y gp

85tence value of the chemical potentif, differs from
lateral extensions to observe the 2DI behaviogds' 2P P Kcoer

. : o ‘ SVIVISIP zero. We determiné\ uqqex Via the equal weight rul¢38],
diverges. Right at the tricritical point the distribution of the ; o e adjustA & such that

composition is expected to exhibit a three-peak structure for

all lateral system sizes, and the distribution, when scaled to - |y L

unit variance and norm, coincides with a universal scaling :f *:f

function. Wilding and Nielabd36] obtained this scaling 0 dé P(¢) ¢*d¢ P(¢) and ¢ od¢ P($)é.
function via simulations at the tricritical point of the spin-1 (18
Blume-Capel mode]37] in two dimensions. Assuming that

the tricritical interface localization-delocalization transition  Along this coexistence curve and its finite-size extension
belongs to the same universality class, we vary the filmto higher temperatures we use the cumulant intersection to
thicknessD and the interaction strength as to match the locate the critical temperature. This is shown in Fig)Sor
probability distribution of the composition onto the predeter-the film thicknes =24. For the system sizes accessible in
mined scaling function of the tricritical universality class. the simulations the intersection points between cumulants of
This strategy largely facilitates the search of the tricriticalneighboring systems sizes systematically shift to lower tem-
interface localization-delocalization transition. Figuré)4 peratures and the value of the cumulant at the intersection
displays the probability distribution of the composition for point gradually approaches the value of the 2D Ising univer-
film thicknesses ranging fro =12 to 18 and the universal sality class from above. The latter is indicated in the figure
scaling curve. The temperature was adjusted for each filly the horizontal line. From these data we estimate the criti-
thickness such that the relative heights of the central andal parameters to be.=0.0611), ¢.=0.182), and ¢,
outer peaks correspond to the ratio of the universal scaling-0.82(2) respectively. This corresponds to a critical thick-
curve. For smalD <Dy, the “valley” between the peaks is nessl =D ¢.=0.62R, of the enrichment layer. A similar
too shallow and forD>D,; the probability between the procedure has been employed to locate the critical tempera-
peaks is too small. FdD> D, this situation corresponds to ture in the film of thicknes =48. The temperature and
the triple point(see below, and the probability of finding a system size dependence of the cumulants are displayed in
system between the peaks is suppressed by the free enerfig. 5(c). From this we extract the estimatg=0.0625(10)
cost of the interface between the phases with compositiofor the critical temperature andp.=0.09(2) and ¢,
close to 0 or 1 and the “soft-mode” phase with composition =0.91(2) for the critical compositions. This value corre-
¢=1/2. As we increase the film thickness the temperature agponds to a distance between the wall and the interface of
which the ratio between the peak height equals 1.2 shifté;=0.63R,. Since increasing the film thickness from BpH
toward lower temperatures and approaches the wetting trane 7Ry does not changé, or | substantially, we are in the

The three-peak structure in the probability distribution for
D =12 and small lateral extensiohshas indicated the vicin-

sition temperature from above. regimeAD>1 and the critical behavior is characteristic of
Panel(a) of Fig. 4 suggests that the tricritical transition the prewetting critical point in the semi-infinite system.
occurs close to the film thicknedd3=14. This is further The behavior of the cumulants and the very gradual ap-

corroborated in Fig. @), where we show the distribution proach of the probability distribution towards the Ising curve
function ate=0.06151 for various system sizes. Within the indicate pronounced corrections to scaling. For the simula-
statistical accuracy of our data the distribution functions fortion of the bulk phase diagraf@39] a nice cumulant intersec-
the larger systems sizes collapse well onto the universal scaiion was obtained with system sizes in the rang? t456°.

ing curve. For smaller systems the outer peaks are slighthin the present study we employ systems with about an order
sharper and centered at smaller values of the order paramf magnitude more polymers and obtain no clear intersection
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15 [ Creoosm ' ] of the cumulants! There are three reasons for strong correc-
' i “‘\'H (@) tions to the leading 2D Ising scaling behaviti): The aspect
f L-155-0.06261 || | ratio D/L of our simulation cell is always finite. Truly two-

:u__ Lo e-0.06290 Al h‘ dimensional behavior can only be observed for a vanishing
10t H © 2D triit JA )A' i aspect ratio, and our data might fall into the broad crossover
% ol region between three- and two-dimensional critical behav-
‘ iors. Such a crossover was studied in our polymer model for
neutral walls[40] and walls, which attract both the same
specieqi.e., capillary condensatiof21]. However, we note
that unlike these situations there is no three-dimensional
critical point in the vicinity for antisymmetric boundary con-
ditions. The temperature of the unmixing transition in the
bulk is a factor 4 higher than the critical point in a thin film.
Since the critical point in a thin film is related to the prewet-
ting transition of the semi-infinite system, i.e., a transition
with no three-dimensional analogy, we expect the correc-
tions to be qualitatively different from the case of neutral or
symmetric boundariesii) Unlike the situation for small film
thicknessD =12 the probability distribution of the order pa-
rameter is asymmetric, because the critical point does not lay
on the symmetry axis of the phase diagram. This missing
symmetry between the two phases gives rise to field—mixing
effects [34], which manifest themselves in corrections of
relative orderL~1=*=A)» These corrections are antisym-
metric to leading order and, hence, are not expected to influ-
ence even momenttike the cumulantsof the order param-
eter distribution profoundly. The effects are, however,
detectable in the order parameter distribution which we
present in Figs. ®) and 3d). The distribution functions at
¢ our estimate of the critical temperature clearly lack symme-
try, and very gradually approach the symmetric scaling curve
1.25 T - g of the 2D Ising universality clasgiii ) Additionally, there are
corrections to scaling by nonsingular background terms. One
source of(noncritica) composition fluctuations are bulklike
fluctuations in theA- and B-rich domains. In a bulk system,
i.e., with periodic boundary conditions in all directions, the
susceptibility is rather small. A¢=0.065 it takes the value
X3*=V(A $?)=0.047, withA = ¢— (). In a system of
size 96x 96X 24 this susceptibility corresponds to composi-
tion fluctuations of the ordef(A ¢?)~5x10"*. Therefore,
we believe that bulklike composition fluctuations are not the
major source of background terms. However, we cannot rule
out that the presence of akB interface gives rise to en-
hanced composition fluctuations. Another source of correc-
-1 0 1 tions to scaling stems from the fluctuations in the average
m interface position itself. Since the effective interaction be-
S . _ tween the interface and the wall is rather weak, they give rise
FIG. 4. (a) Probability distribution of the composition for vari- _to a finite but large susceptibility away from the critical

ous film thicknesses as indicated in the key. The lateral system S'Zﬁoint We have estimated the susceptibility from the curva-

is L=96. We have adjusted the interaction strengtuch that the . . L -
central peak is a factor 1.2 higher than the outer peaks. In acco}—ubr;i?]fegpv(;ﬁltglsos(; t%éh%rtélplefglgti.gé, g—ang.?cs)r’nzrlllgr
dance with convention, we have scaled the distributions to unif’ a

norm and variance. Circles mark the universal distribution of thevalue is obtained if the interface is close to a walflor the

2D tricritical transition.(b) Temperature dependence of the cumu- S_ame system size as above, this yields Composmon fluctua-
lants forD =14 and lateral system sizes as indicated in the key. Thdions of the ordery(A ¢<)~0.04 [a value which should be
horizontal line marks the cumulant value of the universal tricritical COmpared to¢ (D =24)=0.18(2)]. This observation par-
distribution. (c) Probability distribution of the composition at; tially rationalizes why the peak in the probability distribution
=0.06151(50) scaled to unit norm and variance. The universal 2®f the composition close t¢p=1/2 is always broader than
tricritical distribution(from Wilding and Nielabd36]) is shown for ~ the peak which corresponds to the phase in which the inter-
comparison. face is close to the wall. As we approach the critical tem-
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FIG. 5. (a) Temperature dependence of the cumulant)/(|m|)? for D =24 and various system sizes as indicated in the key. The arrow
marks the critical temperature rangg=0.0611). (b) Probability distribution of the composition scaled to unit norm and variance at our
estimate of the critical temperatuee= 0.061. Thin lines denote the results of the Monte Carlo simulations. Histogram reweighting has been
applied to extrapolate the data along the coexistence curve. Circles show the universal distribution of the 2D Ising universaldy class.
Same ada), but for film thicknessD =48. The inverse critical temperature és=0.0625(10).(d) Same agb) but for film thicknessD
=48 ande.=0.0625.

perature, composition fluctuations grow. At the critical pointand a phase where the interface is located in the middle of
the typical composition fluctuations are of the ord&x$?  the film (¢=1/2) coexist. The coexisting phases correspond
~JL”"=9~L~Y8 where we have used the critical expo- to three peaks in the distribution of the composition. Upon
nents for the susceptibility=7/4 and the correlation length increasing the lateral system size the peak positions do not
v=1 appropriate for the 2D Ising universality class. Henceshift (as opposed to the behavior at the tricritical ppitite

for small system sizes typical fluctuations yield compositionsPeaks become more pronounced, and configurations with in-
which differ substantially from the critical composition; only termediate compositions are more and more suppressed, be-
for very large sizes does the composition fluctuate in thecause of the presence of interfaces between the coexisting
vicinity of the critical value. Moreover, the critical density is Phases.

much displaced from the symmetry axis=1/2 and typical The composition of the system and the average interface
fluctuations in a finite system are cut off by the constraintposition are related vie= ¢D (integral criteriun), where we
0< ¢ or ¢<1. Therefore, the susceptibility of a small sys- assume that the coexisting bulk phases are almost pure, i.e.,
tem is reduced compared to the value expected from théggékﬁo or 1. From the probability distribution we then cal-
leading scaling behavior. This observation is in accord withculate the effective interface potentg(l):

our Monte Carlo data, and a similar reasoning was used by
Bruce and Wilding[41] in discussing background terms to
the specific heat and the concomitant corrections to scaling
in the energy distribution.

9= "5 InP(¢=1/D). (19)

In principle, not only fluctuations of the interface position
(Al?), but also bulklike fluctuations, contribute to composi-
For the largest two film thicknessd3=24 and 48 the tion fluctuations (A $?)~1/D*(Al%)+(x2™/L?D). Since
interface localization-delocalization transition is first orderthe wetting transition in a binary polymer blend occurs far
and the concomitant two miscibility gaps join in a triple below the critical point of the bulk, the bulk susceptibility is

point. At this temperature aA-rich phase, &-rich phase, very small, and the latter contribution can be neglected.

B. Triple point
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only via the local positiot(x,y) of the interfacgsharp kink
approximation we write the coarse grained free energy in
form of the capillary wave Hamiltoniaf¥4,46,4§,

0.002

0.001 |

a()

H[|]=fd2x[%(w)2+g(|) , (20)

0.000
where o approaches théB interface tension between the
coexisting bulk phases for large separations between the wall
and the interface. An increase afat smaller distancelsas
revealed by previous MC simulations is neglecfed]. In

the vicinity of a minimum ofg(l), we may approximate the
interface potential by a parabola:

-0.001 |

0.002 | g(ol)=constt+ %Ukﬁﬁ'z. (21
ol denotes the deviation of the local interface position from
the position whereg(l) attains its minimumg;=2w/k; is
the parallel correlation length of interface fluctuations. For
lateral distances much smaller thgnthe fluctuations of the
local interface position are hardly perturbed by the interac-
tion between the interface and the wall; the interface behaves
like a free interface. For lateral distances which excégd
capillary waves are strongly supprességis larger for the
minimum of g(l) in the center of the film than for the
minima, in which the interface is localized at a wall. From
the curvature of the effective interface potengél) for film

FIG. 6. (a) Dependence of the effective interface potential onthicknessD =24 we estimatek;=+/(d’g/d¢?)/cD?=0.26
the lateral system sizé in a thin film of width D=24 at e and k,=0.031, where we have used the bulk value
=0.065. (b) same aga), but for D=48 ande=0.069. The inset =0,0382 for the interfacial tension at=0.068. For the
presents an enlarged view of the minimum close to the wall. Thehjcker film we obtaink,;=0.3, but the curvature in the
scale on the absc_issa _corresponds to the distance between the Wallddle of the film could not be accurately estimated. The
and the interface in units dt; . value is of the ordek,~0(0.005), and we expect this value

to decrease exponentially with the film thickness. Hence this

The dependence of the free energy per unit area on thfyctuation effect is the stronger the larger the film thickness.
position of the interface is a key ingredient into the theory offFor the system sizes employed in the MC simulatidqis,is
wetting [42,43,3,44-4Y The interface interacts with the of order unity.
boundaries and thévare interface potential exhibits three  |n our Monte Carlo simulations the finite lateral system
minima. These correspond to the three coexisting phases. KjzeL acts as an additional cutoff for the spectrum of inter-
the two phases withp close to 0 and 1, the interface is face fluctuation§14], and upon increasing we extend the
localized close to the wall, the interaction between the walkpectrum of interface fluctuations. Allowing for interface
and the interface is rather strong, and the effective interfacguctuations we decrease the free energy of the system.
potential possesses a deep minimum. In the “soft-mode’Therefore, we expect the free energy density of the system to
phase the interface is only weakly bound to the center of thglecrease when we increase the lateral system size, and we
film, and the minimum is much broader. In Fig. 6 we presentexpect the effect to be the stronger the largjeis. Therefore,
the effective interface potentials for film thicknesé®s 24  the free energy of the soft-mode phase becomes smaller
(@ and D=48 (b), and various lateral system sizes in the compared to the free energy of the phase, where the interface
vicinity of the triple temperature. The three minima areijs |ocated close to a wall when we incredseThis effect is
clearly visible; however, the shape of the interface potentiatiearly observed in the MC simulations. To be more quanti-
and the value of the minima depend on the lateral systerative, we consider a system where the laterally averaged
sizeL. Moreover, the minima which correspond to the |Oca|-interface position is at the minimum g‘“), and we expand

ized states broaden ardlightly) shift to larger distances the deviationsl(x,y) from the minimum in a Fourier series,
between the wall and interface upon increasingcf. the

0.001 H/.

a()

0.000

insed. °°
Fluctuations of the local interface position, i.e., capillary  dl(x,y)= E {a,mcogg,x)coggmy) +bnmcoggnx)
waves, lead to a renormalization of the effective interface n.m=0

potentialg(l), and cause a dependenceg¢f) on the lateral X SiN(Qy) + Crm SIN(GX) COS 1Y)
system size, which we observed in a microscopic model of a m nm " "
polymer mixture. Describing the configuration of the system +dpmSin(g,X)sSin(dmy) }, (22
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FIG. 7. Free energy difference per unit area dpd of the
localized and delocalized state as a function of the lateral system FIG. 8. Temperatures of the critical points and the triple point as
size. The symbols represent the MC data, while the solid lines aré function of the film thicknes®. Open symbols mark the results

calculated from the effective interface Hamiltonian. The temperaof the finite size scaling analysis. We have applied a correction
ture was chosen such thAg—0 for L—co. factor (1+0.85D) ! to account for the film thickness dependence

of the density at the centéfilled symbolg. Dashed lines are only
with g,=27n/L. The coefficientsagy=bgo= Coo= dgo=bom guides to the eye. The arrow on the right hand side marks the value
dno vanish identically, and all other coeffi- ©f the wetting transition temperature obtained independently via the

=Com=dom= :
Young equatiorf21].

cients can take any real value. Using expangi#) and the
effective interface HamiltoniahEqg. (20)], we calculate the

. : vanishes. This corresponds to the equal height criterium for
average size of fluctuations,

the triple point. The equal weight condition, which we have

22 1 applied to determine the binodals close to the critical points,
+(_) (n2+m2)} ’ (23)  would requireAg=(1/L?) In(k, /k,). Both conditions agree,
Lkj of course, when we extrapolate our results_te>c. From
this procedure we obtain the following estimates for the
triple point: lkgyipe=14.7(4) andgyiye=0.015, 0.5, 0.985
for D=24 and 1¢;=14.2(4) andpy;pe=0.0066, 0.5, 0.9934
for D=48. The thickness of the microscopic enrichment
layer at the wetting transition temperature is of the order
lwer=0.0Ry, a value which is consistent with expectation
for strong f|rst order wetting transitions.

The dependence of the critical temperature and the triple
temperature on the film thickness is summarized in Fig. 8.
When we increase the film thickness the critical temperature
1/e;. shows a non-monotonic dependence.DAt 14 the tri-
critical point (where the critical temperature and the triple
temperature mergeoccurs ate,;=0.061%5); at film thick-
=1/2, and#,,=1 for n+0 andm+0 in order to account nessD=24 we find e.=0.0610(10), and aD=48 e,
for the restriction on the coefficients, b, c, andd. The  =0.0625(10). This effect is rooted in two opposing effects.
additive constant is independent of the wave vector cutofOn the one hand, self-consistent-fi¢RICH calculations pre-

k. The dependence of the free energy on the system size hct the Flory-Huggins paramethCF(D) to decrease upon
dominated by the smalj behavior. In this regime the dis- increasing the film thicknes® for an incompressible fluid.
crete nature of the wave vector space matters and, hence, Wais shift in temperature decreases exponentially with the
do not replace the sum overby integrals. Using the mea- film thickness. One the other hand, packing effects, which
sured values of the wave vector cutoffs, we calculate there not incorporated in the self-consistent-field calculations,
lateral system size dependence of the free energy differendecrease the density in the bulklike portion of the film when
between the soft-mode phase and the delocalized state. Thee decrease the film thickness. These packing effects at the
results are compared to the MC data in Fig. 7. Good agreewalls depend strongly on the computational model, but quali-
ment is found for larget, whereas there are deviations for tatively similar effects might occur in experimental systems
smallerL. For smallL the amplitude of the fluctuations be- as well. This thickness dependence of the density in the
comes large, and the parabolic interface potential is naniddle of the film modifies the relation between the depth of
longer a good approximation—especially for the localizedthe square well potential and thyeparameter. This leads to a
state where the interface is located very close to the wallsbehavior of the forme.~ x¢7(1+0.85D), where we use
We have used histogram extrapolation to adjust the temperahe dependence of the density profité. Fig. 2 on the film

ture such that the differenc®g(l)=g,—g; of the minima  thickness as obtained by direct measurement in the Monte

(afm =

1
a(Lk)®

InJ’D[I] p( [I])

=const — E Tom
L2 nm=0

and the free energy

kgT L2

2 2
kH +

xln[ KaT (n2+ mz)”, (24

where the factory,, takes the values;)po=0, 7,0= 7om
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Carlo simulations. A dependence of the fluid packing struc- 80
ture on the density is neglected. A similaD1torrection to

the difference in surface free energies betweenAhand

B-rich phases was observed in previous simulatj@isg. At-

tempting to separate these two effects we also preggdnt
+0.85D)e.] "%, which corresponds to the inverse Flory- KT/e
Huggins parameter. Within the error bars the behavior of this
guantity is consistent with the mean field prediction. The

critical value of the inverse Flory-Huggins parameter in-
creases, and the triple value decreases as we increase the film
thickness. The latter approaches the wetting transition tem-
peraturg[21] T,e= 14.1(7) from above.

80 — :
C. Phase diagram — bulk o
For a film thicknes® = 48 we have determined the com- 60 L B::g o
plete phase diagram. Close to the critical point we assume a Fa
2Dl behavior, with an exponer=1/8 for the order param- /
.. . - - iy kT/e 40 + 4
eter, and employ finite-size scaling to estimate the critical -
amplitude. Outside the critical region but above the triple e
temperature, we have estimated the location of the binodals 20 | //
via the equal weight criterium in a system of slze 64, but ( "
no finite-size analysis has been applied. The phase diagram (b)
for a blend confined into a film with antisymmetric walls is 0 o8 0B 04 02 00 o2
presented in Fig. 9. Figure® shows that confinement into ' ' A;J/kT ’ ' |

a film with antisymmetric boundary conditions enlarges the

one phase region up to the prewetting critical temperature. FIG. 9. (a) Phase diagram of a binary polymer blerid=32).
Since the wetting transition in binary polymer blends occursThe upper curve shows the binodals in the infinite system; the
far below the unmixing critical temperature in the bulk, the middle one corresponds to a thin film of thickn€ss 48 and sym-
effect is quite pronounced. The temperature region betweemetric boundary fields,,=0.16, which both “prefer” specieg\.

the prewetting critical point and the triple point is about 11%The lower curve corresponds to a thin film with antisymmetric sur-
of the wetting transition temperature. This value strongly defaces. The arrow marks the location of the wetting transition. Full
pends on the details of the structure at the walls. The strorgircles mark critical points; open circles and dashed line denote the
ger the wetting transition, the larger the prewetting lines andriple point. (b) Coexistence curves in thef(Ax) plane. Circles
the more extended the region of the two miscibility gaps.ma”_( critical p_omts, and the dlamo_nd' |n_d|c_at_es the location of the
The phase diagram of the bulk and a film with symmetricwett'ng transition temperature. This is indistinguishable from the

walls are displayed for comparison in Fig. 9. The symmetrictemperature of the triple point.

film, has the same thickness as the antisymmetric film, andependence of the coexistence curve close to the wetting
the monomer-wall interactions at one wall are identical andyansition temperature, but the coexistence curve stays far
att(act theA component. While the prewetting at the wall away from the prewetting line. If the two lines were to in-
which “prefers” the A component leads to a two phase re-tersect there would also be a triple point in the symmetric
gion in the antisymmetric case, there is only a change inase[21,50. Since the shift of the chemical potenti@je is
curvature of the_ binodal detectable in the symmetric case. roughly proportional to the inverse film thickneg€elvin

_ Panel(b) of Fig. 9 presents the phase diagram as a funcgquation, we expect a triple point to occur only for much
tion of temperature and exchange chemical potential. In theyyger film thicknesses. This is in accord with self-consistent-
antisymmetric Casé ucoe=0 UPp to the triple temperature. fig|q calculations[21]. The typical distancé between the
There, two coexistence lines emerge which are the thin filmyiarface and the wall at coexistence is of or@ge in the
analogies of tht_e prewgttmg lines at the two walls. Since t_heantisymmetric case, while it is only of the ordRy In D/Ry in
monomer-wall interactions are short ranged, the prewetting,e symmetric case. Hence smaller film thicknesses are suf-
line in the bulk and the coexistence curves in the film deviat§icient to study the interaction between the interface and the
from the bulk coexistence value linearyp to logarithmic a1 and antisymmetric boundary conditions are computa-

correction[49]. They end in two critical points. Though the tionally more efficient to investigate the wetting behavior.
system is strictly symmetric with respect to exchanging

A=B, phase coexistence is not restricted\ta =0, and the
coexisting phases are not related by the symmetry of the
Hamiltonian. The coexistence curve of the symmetric film is We have studied the phase diagram of a symmetric poly-
shown for comparison. The coexistence value of the chemimer mixture in a thin film with antisymmetric boundary con-
cal potential is shifted to values disfavoring the componentlitions via large scale Monte Carlo simulations. The walls
attracted by both walls. There is a change in the temperaturiateract with monomers via a short range potential; one wall

V. SUMMARY AND DISCUSSION
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attracts theA component and repels tle2component, while  of the triple temperature by the mean field calculations.

the interaction at the opposite wall is exactly reversed. The Moreover, our simulations indicate that packing effects in
salient features of the phase diagram and its dependence 8rin films result in corrections of the orderito the density

the film thickness, as obtained by our MC simulations, are irof the film or to the effective Flory-Huggins parameter. Such
accord with the results of mean field thed8;17,19. Fluc-  corrections are likely to mask completely the subtle thick-
tuations, which are neglected in the mean field calculationg}ess dependence of the triple temperature and the triple tem-
do not modify the qualitative phase behavior. However, theyPerature predicted by the mean field calculations. For short

give rise to a rich crossover behavior between the Ising critif@Nge interactions between walls and monomers the pre-
cal behavior, the tricritical behavior, and their mean fielgdicted shifts decrease exponentially with the film thickness

counterparts. This has been elucidated by phenomenologicR): Hov:lever, power-law dedpen\(/jvencu_est are t_expe(t:)tetd for the
considerations, and is qualitatively consistent with our simy£ase ot long rangé.e., van der Waajsinteractions between
lation results. walls and monomers.

Since the critical point of the thin binary polymer film The gross features of the phase diagram, as well as our

occurs at a much lower temperature than the unmixing tran§imu|ation and analysis techniques, are not restricted to bi-

sition in the bulk, bulklike composition fluctuations are only nary polymer fluids, but generally apply to binary liquid

of minor importance. The dominant fluctuations of the Com_mixtu_res in co_nfined geometries. Moreover, mean field cal-
position of the film arise from capillary waves at the inter- culations[17] indicate that for small deviations from per-

face between thé- and B-rich regions in the film. The in- fectly antisymmetric boundary conditions a qualitatively

teraction between the walls, and the interface is rather smal\ﬁ;"j[g.ar pthase'tpehawto ;hemsrgez. The sttk:onlger thetrfwsgorQer
because it is mediated via the distortion of the interface pro-. N mfg ran5|t_|ons a ; € boun abrlles, 'the targlater te' et\r']'a'
files at the walls and the strength of the interaction decreasdP"'S from antisymmetry permissible without alternating the

exponentially with the distance. Hence the interface is onl)}O%OItog%’ of th? p?a_se dlg/gram. Hence ahthln tk;:narygn;n (t)n a
very weakly bound to the minimum of the effective interface SUPStraté aganst air and/or vacuum, where the substraté en-

potential. These large fluctuations give rise to rather pro_ergetlcally favors one component of the mixture while the

nounced corrections to scaling in our systems of limited size(.)ther component has an affinity to the air surface, is an ex-

However, using the cumulant intersection mettid8] and perimental realization of the boundary conditions discussed

the matching of the order parameter distribution onto théﬂ'ere‘ Our findings also imply that ulirathin enrichment layers
predetermined universal scaling functif®4], we give evi- at one surface are unstable in the temperature range
dence of the 2D Ising universal character of the criticaI<T<T°: SL.’Ch effects were obser_ve(_j experlmentﬁlj_/] n
points. The same strategy has proven computationally ver olymeric f||_msl, a_lthqugh fo_r_a liquid-vapor transition n-
convenient to locate the tricritical point as a function of the tead of a liquid-liquid dem|x!ng. Hovye.ver., recent experi-
film thickness[36]. This technique allows us to locate the ments have observed the wetting transition in binary polymer
critical points of the confined complex fluid mixture with an P1€Nds(52,53.
accuracy of a few percent.

Interface fluctuation do not only impart 2D Ising critical
behavior onto the critical points, but they are important in the It is a great pleasure to thank N. B. Wilding for stimulat-
whole temperature range. Monitoring the probability distri-ing discussions and for providing the universal probability
bution of the laterally averaged interface position, we extractlistributions of the order parameter at the 2D Ising critical
the effective interface potentigi(l). Its dependence on the point and 2D tricritical point. We have also benefited from
lateral system size yields direct evidence of the renormalizadiscussions with E. V. Albano and A. De Virgiliis. Financial
tion of the interface potential by interface fluctuations. Inter-support by the DFG under Grant No. Bi 314/17 in the prior-
face fluctuations lead to a broadening of the minima in thaty program “wetting and structure formation at interfaces”
interface potential, a shift of the minima toward the center ofand the DAAD/PROALAR2000, as well as generous grants
the film, and a relative reduction of the free energy of theof computing time at the NIC Jigh, the HLR Stuttgart, and
broader minimum. This leads to a systematic overestimatiothe computing center in Mainz, are gratefully acknowledged.
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