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Physics of polymer melts
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We have mapped the physics of polymer melts onto a time-dependent Landau-Gihzlduiigld theory
using techniques of functional integration. Time in the theory is simply a label for the location of a given
monomer along the extent of a flexible chain. With this model, one can show that the limit of infinitesimal
concentration of a polymer melt corresponds ttyaamiccritical phenomenon. The transition to the entangled
state is also shown to be a critical point. For larger concentrations, when the role of fluctuations is reduced, a
mean-field approximation is justifiably employed to show the existence of tubelike structures reminiscent of
Edwards’ model.
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[. INTRODUCTION clarify earlier studies regarding the nature of the critical
pointlike transition to the entangled state.
Issues in polymer melt physics have continued to provide

an endur_ing source of theoreticai investigations, oyving to the Il. A PATH-INTEGRAL APPROACH
complexity of the field. The basic physics of flexible poly- _ _ _
mer melts is embodied in Flory’s theordr]. This theorem The self-consistent field theorySCH discussed by de

states that at a low number density, fluctuations in the melenned1] is a mean-field approximation to study melts of
are quite pronounced, while for a large density, fluctuationdlexible polymers. Generalizing this model beyond its mean-
are so suppressed that the polymers behave as independgﬁid roots has obvious advantag'es. S_uch a gen_erai|zat|on has
Gaussian chains again. de Gennes shoidhat at a low been atiempte{fs]. However, Whlie ti_iis g'e_neralization. was
number density, the physics of melts can be mapped ontBPPropriate for the intended apphcatlon, it ignored an impor-
that of the critical point for ferromagnets. He derived scalingtant property. of polymers. The tf‘eory '”V9'Yes a deSC.I’Ip'[IOFI
relations for global quantities such as the radius of gyratior?f Polymers in terms of a fielgh(r), wherer is the location
Ry (end-to-end distangeof a polymer. in physical space of any segmenE such thﬂtr)|2 is the

One purpose of this paper is to revisit polymer melt physprobability of finding a segment at If the polymer isN
ics in the interesting low-density regime. It is shown that thesegments long, there is no representation in this theory of
connectivity of the chains in the system implies that thewhich segment (1 througN) this field refers to. In other
physics can be mapped onto that of a dynamic critical phewords, reference to the connectivity of the chains is missing.
nomenon[2], rather than a critical point in the static sense This can be achieved using ideas from functional integration.
[1]. Our estimate of the Flory exponentis approximately The propagator for a single flexible chain may be repre-
0.631, in line with universality arguments, and differs from Sented by6]
the usual estimate of 0.588. The new viewpoint also allows a
computation of the local structure of individual chains, in R (bz) 2

-, ) . . Go(1,2;n)=(1n||d,—| =|V
addition to the radius of gyratioRy . In the old picture, the 6
radius of gyratiorRy was shown to possess a scaling form,

r|2,0>

- i i Ry = 3\ (n. [4R(n
while Iggal properties of chains could ngt be addressed. ~|F 1’DR(n’)exp— (_Z)J dn’ (n"), ,
Additionally, we show that our technique can be used to Ry 2b%) Jo an’
describe the onset of entanglement as a critical point in the
theory of phase transitions. A study of this transition is be- @

yond the scope of the standard tube model, a mean-field )

approximation. The physics of the transition from the unenWhereb is the bond length of the polymer, and whete
tangled to the entangled state has been probed by Schweizer?/9n. This expression is obtained by considering only the
et al. [3] using mode-coupling methods. The problem hasentropy of a flexible chain. . _ _
also been treated more recently by Bindgral. [4] using Altgrnatively, one knows from methods in functional in-
Monte Carlo techniques. These investigations come to théegration thaf7]

conclusion that the transition to the entangled state is char-

acterized by a slowing down of the polymer dynamics, b ]t

analogous to a critical slowing down in the theory of phase (Lnl}on— 6 v 2,0

transitions. Our method could be viewed as a

renormalization-group generalization of Schweizer's mode- Nj 2 -

coupling methods. This paper uses field-theoretic methods to Do g™ (R (R, 00exp—[ 7],
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where D2y=Dy* Dy, B=1/kgT, kg is Boltzmann’s con-
stant, andr is the temperature. Thus we have another way of
thinking about a system of flexible polymers, in terms of
4//(>Z,n), and an energy functiongdF that is isomorphic to
one that describes diffusion. Herg, () labels the locatiox
in ehySICaI space of thenth segment of a chain, and FIG. 1. The Saturn diagram, which makes the first nontrivial
|(x,n)|? is the probability of finding a polymer segment at contribution to the two-point correlation function.
a given location in space, as suggested by @§) below.
While Eq. (15) has been derived in the mean-field approxi-
mation, we have only considered small perturbations around |¢|2:ﬁ_ (4)
the mean field, so that the interpretation| ¢f2 as the prob- v
ability density is correct in this paper. Consequently, we
have a density-functional theory in the sense of Kohn andrhis of course leads to an infinity of solutions, equivalent
Sham, which utilizes dictitious wave function such that its within a phase difference. Following quantum field theory
absolute value squared yields tharectprobability density. ideas, the phase of the field can be related to scattering or
The important difference between our approach and thénteraction effects. The physical system can be thought of as
Kohn-Sham theory is that we have a classical theory. Kleinfocalized regions where E@4) is satisfied, separated by do-
ert[8] and Semenoet al.[9] have proposed similar formal- main walls which permit the transition from one minimum to
isms. However this paper uses the new formalism to prob@nother.
the physics of polymer melts in a broader sense. Note that Eq.(4) is equivalent to an estimate of the

It is possible to derive from the partition functiof  chemical potential £o=cqv) if the average number density
= [D?yexp—[BF], a 2p-point correlation function, which ¢, is known. From this viewpoint,—0 represents a system
decouples at the noninteracting level into a product ofof polymers that approaches a critical point frdmlow
Green's functions fop independent polymers. The main ad- Here we have in mind an analogy with the usual Landau-
vantage of the functional path-integral formalism is that oneGinzburg¢* model, where the vanishing of the coefficient of
can now model more easily interactions in systems withthe quadratic term in the energy functional leads to a single
large numbers of polymers. The following model, written towell potential, signifying a critical point in the phase dia-
look like a Kohn-Sham-type density-functional theory, de-gram. This issue was treated by de Gennes by mapping the

g(x,n'"), (2

,8]—"=J dn’d3x ¢* (x,n’)

scribes excluded volume effects: polymer problem onto one in a zero-compone;ﬂ‘i field
theory (the self-avoiding walk of a solitary chaiflQ]. The
Ho—H=Ho+V—p, different perspective offered by our theory is that the physics

of low concentration melts is really an issuedynamiccriti-
cal phenomena, given the degree of freedom represented by
(bz)Vz @ the variablen.

IIl. DIAGRAMMATIC CORRECTIONS TO THE
GAUSSIAN APPROXIMATION

v >
V= =|y(x,n)|?,
ZW | It is necessary to go beyond the Gaussian approximation

in the low number density regime because this regime is

wherev is the usual excluded volume interaction parametefc/0S€ to a critical point, as discussed in the preceding section,
[6] and « is the chemical potential invoked in the form of a and fluctuations become important. Diagrammatic methods

Lagrange multiplier to conserve the number of polymer segP€rMit us to go beyond the Gaussian approximation in a
ments in the system. perturbative manner. In this way we can gain insight into the
The self-avoiding walk of a solitary chain can be modeleglocal structure of flexible chains in the low-density regime,
by starting from Eq(1) [10] by adding to the argument of @S wgll as compute Flory’s exponent for the radius of
the exponential on the right-hand side, a series of terms th&byration. . _ .
describe the excluded volume interaction between polymer W€ can compute a dynamic correction to the free-particle
segments. Caution must be used to apply this approach to@€en’s function, from the so-called Saturn diagram shown
system of many polymers. in Fig. %[11,2,12. This diagram is the lowest-order nonva-
To understand the physics in the|* model, let us ex- nishingk, w-dependent contribution to the self-energy. To do
tremize the functional densit§, while considering only so- this calculation, it is first convenient to wrifg¥ in a dimen-
lutions homogeneous in space andinThis yields a maxi- sionless form, usingi— ¥l \/co, and scaling all length scales
mum aty=0 and minima at by ¢y ¥3. This yieldsv— a=cgqv. In the limit of small u,,
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Go(k,@)—[Gg (K, w)—2(k,w)] %,

d3k d3k 1
1 J 2 5

3 (K, )~ 48 2J —— — :
(k) =480 | 5] 2y ot (o3 20716) (R4 1) + (02 P26 (R— Ky — Ky)?— 370g

Whereéo(ﬁ'w) is the Fourier transform of the Green’s func- Note that this approximation holds in the I’egime discussed
tion introduced in Eq(1), and where we have performed the below Eq.(6). Now —iw=d/dn~1/[p—q|, with p,q refer-
frequency integrations involved in the diagram using thefing to thepth andqth segments, respectively, whikes the
method of residues and we used the mean-field value for thi@verse separation in physical space of these segments. In the
chemical potentiajuo=Ccou— 0. This integral can be found Vicinity of the critical pointuo=0, Ab® displays a scaling

in Hohenberg and Halperii2] and they use Wilson's renor- property, viz., ~—|p—q|~“ in the appropriate regime,
malization scheme to analyze the properties of this integralhere we have defined a scaling exponent

We have been able to evaluate this multidimensional integral

analytically. The integrals were performed using the identity o=(1—1/C)~0.75. (9)

1= [gd\exp(—\t) and introducing a change of variables to

the center-of-mass and relative coordinateskpfk,. This | this regime, the coefficient of the scaling term behaves as
allows a separation of variables to occur, permitting an inte-_ 02 4 \veak dependence, if we estimate b®.

gration over the momentum variables. The last integration is ; follows from Eq. (8) that the effect of the gradient-
performed using the idgntitj/gexp(—Ax)xkd?<=A1+kF(1+k). smoothing tern¥V? in the energy functional is reduced by an
Using the method of dimensional regularizatidi,12, the  3mount—|Ab?|, and this effect is dominant for segments
final result is separated by a relatively short distance, as it vanishes in the
limit of infinite separation. It means that if segments on a

" — 2 3-1/C H 2 2
2 (k,w)=aA(2m) [—Tew+k%(6m)—3puo] chain happen to be in close proximity in the melt, they will

X (C—In{2m[ —i w+K2/(6m)—3uo]}), tend to stay together _due to th_e reduction of thg smo_othing
©6) term. Neutron-scattering experiments or numerical S|mul_a—
C=In[4\/37]+diGamma3)~4, tions may provide verification of this notion. Neutron experi-
ments are customarily employed in the long-wavelength re-
E(Iz,w)~a2AC(2m)3‘l’C[—iw+k2/(6m)—3,u0]2‘1’c, gime to investigate quantities such as the radius of gyration

of polymeric systems. Other techniques, such as those used

where A=237~32 and m=3/cZ%?. The last approxima- Py Smithet al.[13], may be more useful. .
tion in Eq. (6) applies when the argument of the logarithm  The chain takes on the appearance of pearls on a string
has a magnitude less than 1. Sincg<1, the approximate that push the ends of the strlng further away from each 'other.
scaling form thus holds fofo|<1 andk=\18/b, with an One way to (_:alculate the scaling properties of the radius of
error of a few percent or less. In writing down these equadY'ation within the current model is to compute vertex cor-
tions, we have implicitly performednassrenormalization rect,|0ns thhm the current model, and_ then _|mplement Wil-
[2]. The effect of the self-energ§ is more pronounced at son’s scaling arguments. However, it is easier to go back to

small length scales than it is at long wavelengths. The renofthe original theory defined by the energy densi (4,
lized Green'’s function can also be written fef—0 as *H)y and truncate it withi, — /N, whereN is the average
ma chain length of the polymeric system. This is justified on the

1 grounds that we are interested only in long-range fluctua-
B%(w. 10) , (7)  tions. Accordingly, we also have to restrict theintegration
—"“0> K2— (@, o) in BF to a small neighborhood arourd After performing
6 this renormalization, the entire machinery of the static theory
of critical phenomena applies. And it follows that very near
the critical pointuy=0" and the correlation lengti= Ry
~N”, where the lowest-order field-theoretic techniques yield
v~0.6, the value obtained by Flory.

2 —h2:23 2 More accurate calculations yie[&] a value forv closer

B(@,10)=b"Co™+ Ab™(@, o), ® to 0.631[8,11]. The standard model for examining the ef-
2 2 3-1/C 5 _ fects of excluded volume interactions yieldst] v~0.588.
Ab*(,po) a*(6A)(2m) (2-1/C) The difference between this model and ours was discussed
X (—iw—3ug)t e, below Eq.(3).

G(K,w)~

—iw+

where

1, 10) = o= a®A(2M)* VO —iw=3pug) 1,
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(9a'R ~

Blar)= Ju =~ ~ art g,
y=—ilwg—2mo=1IN—-2u,, (11)
~ (6M0)3/2 >

=\ 2am2cp3) 4970

wherey=1/N—2u, plays the role of a scaling parameter,
equivalent to an inverse length scale. As—~0 [N
—(2u0) 1], we see that there is a nontrivial fixed point at

FIG. 2. The fish diagram, which makes the first nontrivial con- ar=1 when the beta function vanishes. Feg<1, <0,

tribution to the vertex correction. so that in the long-wavelength limit, 8s-0, the renormal-
ized constant flows towards the fixed point. Similarly for
IV. APPROACH TO ENTANGLEMENT agr>1, B>0, so that the renormalized constant again flows

_towards the fixed point. Therefore, in the language of

crease, there is a transition to an entangled state at Sorﬁgljormallzanon-group theory, this is an mfrarsiﬁble_ﬂxed
value of the number density<<1/v. To see this, let us begin point. In. other Words, trle Iong-wav-ele.ngth behavior of the
by computing vertex corrections, which can be thought of agystem is dominated byr=1 and is independent of the
giving rise to an effective coupling constant. The physicalMicroscopic details of the Hamiltonian. In this sense, our
idea behind the computations is to show perturbatively thafixed point L_c,_analogous to the conventional critical point in
as the number concentration increases, the effective couplifg\ase-transition theory. N
constant actually decreases. This is in accordance with Flo- This fixed point can be identified with the transition of a
ry’s theorem for polymer melts, which states that as the numsystem of flexible polymers from an unentangled state to an
ber density increases, the polymers begin to behave as frédtangled state. We offer evidence below in support of this
chains again. But we shall go beyond the theorem in showin§ONncept. _ _ .
that the effective coupling constant decreases in consonance AS an example, it can be checked in the case of polydim-
with the renormalization-group theory of phase transitionsethylsiloxane(PDMS) that co~3x 10°° em?, b~15 A,

and possesses a fixed point. By this we mean that at a critic¥i€lding N.~167, which is close to the experimentally de-
number density, the changes in the effective coupling contérmined[15] critical entanglement chain length ef 200.
stant are independent of the relevant length scale, analogo@milarly, for polystyrene, using~1 A, we getN.~320,

to the behavior of a liquid at its critical point. This conclu- reasonably close to the critical chain length estimated by the
sion clarifies the investigations SchweiZ8t and Binderf4] ~ Viscosity measurements of Onoefi al. [16]. To the lowest

by characterizing the transition to the entangled state as aerder, the structure factd®(q)=(2/3)I'(q). It diverges as

continuous, second-order phase transition. ~ |q|~2 aty=0, analogous to the behavior at a critical point.
The lowest-order correction comes from the so-called fishrhe Young’s modulusy of the system is given bj17] Y
Fhagram(see F|g.'2W|th two '”t.e”‘"’!' lines. The frequenqy «§(q=0,w), and it will show a dramatic rise as the chain
integral involved in the calculation is performed by Clos'ngllengthN ,is ihcreased towardd_ for uy#0. For these rea
. . Cc 0 . -
the contour in the upper half-plane. Using standard renorMalg s we can identify this critical-like point with the onset of

ization techniquefl1] leads to a renormalized coupling con- L
entanglement. Note that the approximatiorS{@) we have

As the number density of chains in a melt begins to in

stantag: . "
used here will not work past the transition to entanglement.
_ There is some indication of fluctuating behavior near the
ap(q)=a—a?T'(q), entanglement transition in the classic viscoelasticity mea-
(10) surements of Onoggt al. [16], as indicated by earlier phe-
nomenological analysd47,18.
(o)~ (649)%” o)
d 24m2cob® | —iwg— 2o+ q?2m @ V. TUBELIKE STRUCTURES IN THE ENTANGLED

STATE

whereqz(&,wq)_ Notice that to this order in perturbation Fluctuations in the system tend to decreasej,dacreases
theory, an increasing concentration signified by an increasingway from the critical point just discussed. So for finite con-
a (=cqu) leads to a lower effective coupling constant, con-centrations we expect mean-field theory to hold. In this limit,
sistent with the latter half of Flory’s theorem. We can nowwe get a time-dependent Landau-Ginzburg equation (time
define a beta function as is done conventionally in=n), by extremizing3F with respect toy™:
renormalization-group theory. The role of the beta function
is to measure the sensitivity of the renormalized coupling

g [b? . .
_ 2_ 2 —
constant to the relevant length scale: ( )V rotolgOCm|%|pxm =0 (12)

on 6
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As discussed by Fetter, the higher the valuespthe
higher the energy of the tubelike configuration, and the sys-
tem will prefer to have many tubes with a lavather than a
few with a larges. We have thus derived from our theory a
tube model with a tube radiws which is exceedingly large
for small densities, and asymptotes smoothly in an inverse
square root fashion te-b/\/6 as the density approaches 1/
Since the monomer length is of the order of a few ang-
stroms, the magnitude of the tube radius égo~10 2 is a
few monomer lengths. This is in qualitative agreement with
estimates that can be found in the literat[6¢

In the theory of superfluidgl9], these cylindrical struc-
tures are viewed as idealizations of vortices, caused by the
FIG. 3. Numerical solutions of E¢13) for s=1 ands=2. Both  rotation of the fluid. In our case we can derive an equation of

2 4 6 8

curves asymptote to unity, but on different scales. continuity from Eq.(12):

2
For the moment, let us suppose that there is dependence 9| ] - V. f+ s
in . Then the model reduces to the SCF equation. Noting an '

the similarity of this equation to the one used to describe
bosonic fluidg19], we seek tubelike solutions in cylindrical >
geometry, viz.ii(p, p) = explis¢)f(p), wheresis an integer: J

1 d( df(p)
pdplP dp

b? -
=(€)(¢*V¢+ c.c), (15

b2\ .
oIS 2ud gl

2
+<1—27)f(p)—f3(p)=0, (13 S=

wherep has been made dimensionless by the length scale |t fo|lows by examining the current that the tubelike solu-
N e tions are not caused by rotation, but rather there riadial
a=b/6cov. (14 velocitydue to thep dependence of the solution. There is yet
We see that fop— 0, assumindf(p)|—0, we get a solution another_ solution to Eq.12), which is pbtained by assuming
proportional tal(p) ~ p° [19]. By choosing the amplitude of that it is degeigdent solely on, which yields y(n)=[1
this solution correctly, one can match it for largeto a 1 €XP(-2na)] == More general solutions can undoubtedly

constant solutiorf(p)= = y1—s2/p? (see Fig. 3 This so- be found numerically by studying Eq12) with various

lution may also be continued mathematicallyse-0. But boundary conditions.

then thes= 0 solution has an infinite slope at the origin. The in Weni?eﬁ]ulatf tzaiitf:]e [?harlienofl t?ﬁ frlfli(:]naylbr?] urs‘efﬂllti
radial extent of these solutions issa for s#0. From ex- quantifying the notion of entangleme POlymers. )

cluded volume considerations, the maximum density pos[nately the theory needs to be generalized to handle polymer

sible in the system is &/ and for densities approaching1/ dynamics.
a~b/ /6. Physically, these solutions are reminiscent of the

tube model of Edwardg5]. They indicate that the tubes are

not empty, but have a concentration of polymers given by This research is supported by Department of Energy Con-
[f(p)]?. It may be possible to use numerical simulations totract No. W-7405-ENG-36, under the aegis of the Los Ala-
check if the qualitative features of the occupation profilemos National Laboratory LDRD polymer aging DR pro-

ACKNOWLEDGMENTS

[f(p)]? can be reproducef®0]. gram.

[1] P.G. de Genne$caling Concepts in Polymer Physi&ornell [7]1 M. Kaku, Introduction to SuperstringéSpringer-Verlag, Ber-
University Press, Ithaca, NY, 19¥79 lin, 1988.

[2] P.C. Hohenberg and B.I. Halperin, Rev. Mod. P48, 435 [8] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics
(1977). and Polymer PhysicéWorld Scientific, Singapore, 1990

[3] K.S. Schweizer, J. Chem. Phy&l, 5802(1989; M. Fuchs and [9] A.N. Semenov, J.-F. Joanny, A. Johner, and J. Bonet-Avalos,
K.S. Schweizerjbid. 106, 347 (1997). Macromolecules30, 1479(1997.

[4] T. Kreer, J. Baschnagel, M. Muller, and K. Binder, e-print [10] J. des Cloizeaux, Phys. Rev. 1, 1665(1974).
cond-mat/0008355. [11] J.J. Binney, N.J. Dowrick, A.J. Fisher, and M.E.J. Newman,

[5] M. Laradji, Europhys. Lett47, 694 (1999. The Theory of Critical Phenomena: An Introduction to the

[6] M. Doi and S.F. EdwardsThe Theory of Polymer Dynamics Renormalization GrouOxford Science Publications, Oxford,
(Oxford University Press, Oxford, 1986 1995.

021509-5



SHIRISH M. CHITANVIS PHYSICAL REVIEW E63 021509

[12] P. RamondField Theory: A Modern PrimefThe Benjamin/ [16] S. Onogi, T. Masuda, and K. Kitagawa, Macromolecules

Cummings Pub. Co., Reading, MA, 1981 109 (1970.
[13] D.E. Smith, H.P. Babcock, and S. Chu, Scierg&3 1724  [17] S.M. Chitanvis, Phys. Rev. &8, 3469(1998.
(1999. [18] S.M. Chitanvis, Phys. Rev. B0, 3432(1999.

[14] J.C. Guillou and J. Zinn-Justin, Phys. Rev. L8&8, 95 (1977). [19] A.L. Fetter, e-print cond-mat/9811366.
[15] S. Pahl, G. Fleischer, F. Fujara, and B. Geil, Macromoleculeg20] M. Murat, G.S. Grest, and K. Kremer, Macromoleculg?
30, 1414(1997. 595(1999.

021509-6



