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Physics of polymer melts
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Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 31 August 2000; published 25 January 2001!

We have mapped the physics of polymer melts onto a time-dependent Landau-Ginzburgucu4 field theory
using techniques of functional integration. Time in the theory is simply a label for the location of a given
monomer along the extent of a flexible chain. With this model, one can show that the limit of infinitesimal
concentration of a polymer melt corresponds to adynamiccritical phenomenon. The transition to the entangled
state is also shown to be a critical point. For larger concentrations, when the role of fluctuations is reduced, a
mean-field approximation is justifiably employed to show the existence of tubelike structures reminiscent of
Edwards’ model.
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I. INTRODUCTION

Issues in polymer melt physics have continued to prov
an enduring source of theoretical investigations, owing to
complexity of the field. The basic physics of flexible pol
mer melts is embodied in Flory’s theorem@1#. This theorem
states that at a low number density, fluctuations in the m
are quite pronounced, while for a large density, fluctuatio
are so suppressed that the polymers behave as indepe
Gaussian chains again. de Gennes showed@1# that at a low
number density, the physics of melts can be mapped o
that of the critical point for ferromagnets. He derived scali
relations for global quantities such as the radius of gyrat
Rg ~end-to-end distance! of a polymer.

One purpose of this paper is to revisit polymer melt ph
ics in the interesting low-density regime. It is shown that t
connectivity of the chains in the system implies that t
physics can be mapped onto that of a dynamic critical p
nomenon@2#, rather than a critical point in the static sen
@1#. Our estimate of the Flory exponentn is approximately
0.631, in line with universality arguments, and differs fro
the usual estimate of 0.588. The new viewpoint also allow
computation of the local structure of individual chains,
addition to the radius of gyrationRg . In the old picture, the
radius of gyrationRg was shown to possess a scaling for
while local properties of chains could not be addressed.

Additionally, we show that our technique can be used
describe the onset of entanglement as a critical point in
theory of phase transitions. A study of this transition is b
yond the scope of the standard tube model, a mean-
approximation. The physics of the transition from the une
tangled to the entangled state has been probed by Schw
et al. @3# using mode-coupling methods. The problem h
also been treated more recently by Binderet al. @4# using
Monte Carlo techniques. These investigations come to
conclusion that the transition to the entangled state is c
acterized by a slowing down of the polymer dynamic
analogous to a critical slowing down in the theory of pha
transitions. Our method could be viewed as
renormalization-group generalization of Schweizer’s mo
coupling methods. This paper uses field-theoretic method
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clarify earlier studies regarding the nature of the critic
pointlike transition to the entangled state.

II. A PATH-INTEGRAL APPROACH

The self-consistent field theory~SCF! discussed by de
Gennes@1# is a mean-field approximation to study melts
flexible polymers. Generalizing this model beyond its mea
field roots has obvious advantages. Such a generalization
been attempted@5#. However, while this generalization wa
appropriate for the intended application, it ignored an imp
tant property of polymers. The theory involves a descript
of polymers in terms of a fieldc(rW), whererW is the location
in physical space of any segment, such thatuc(rW)u2 is the
probability of finding a segment atrW. If the polymer isN
segments long, there is no representation in this theory
which segment (1 throughN) this field refers to. In other
words, reference to the connectivity of the chains is missi
This can be achieved using ideas from functional integrati

The propagator for a single flexible chain may be rep
sented by@6#

G0~1,2;n![^1,nuF]n2S b2

6 D¹2G21

u2,0&

;E
RW 2

RW 1DRW ~n8!exp2F S 3

2b2D E
0

n

dn8S ]RW ~n8!

]n8
2D G ,

~1!

where b is the bond length of the polymer, and where]n
[]/]n. This expression is obtained by considering only t
entropy of a flexible chain.

Alternatively, one knows from methods in functional in
tegration that@7#

^1,nuF]n2S b2

6 D¹2G21

u2,0&

;E D 2c c* ~RW 1 ,n!c~RW 2,0!exp2@bF#,
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bF5E dn8d3x c* ~xW ,n8!F]n82S b2

6 D¹2Gc~xW ,n8!, ~2!

whereD 2c[Dc* Dc, b51/kBT, kB is Boltzmann’s con-
stant, andT is the temperature. Thus we have another way
thinking about a system of flexible polymers, in terms
c(xW ,n), and an energy functionalbF that is isomorphic to
one that describes diffusion. Here (xW ,n) labels the locationxW
in physical space of thenth segment of a chain, an
uc(xW ,n)u2 is the probability of finding a polymer segment
a given location in space, as suggested by Eq.~15! below.
While Eq. ~15! has been derived in the mean-field appro
mation, we have only considered small perturbations aro
the mean field, so that the interpretation ofucu2 as the prob-
ability density is correct in this paper. Consequently,
have a density-functional theory in the sense of Kohn a
Sham, which utilizes afictitious wave function such that its
absolute value squared yields thecorrectprobability density.
The important difference between our approach and
Kohn-Sham theory is that we have a classical theory. Kle
ert @8# and Semenovet al. @9# have proposed similar formal
isms. However this paper uses the new formalism to pr
the physics of polymer melts in a broader sense.

It is possible to derive from the partition functionZ
5*D 2cexp2@bF#, a 2p-point correlation function, which
decouples at the noninteracting level into a product
Green’s functions forp independent polymers. The main a
vantage of the functional path-integral formalism is that o
can now model more easily interactions in systems w
large numbers of polymers. The following model, written
look like a Kohn-Sham-type density-functional theory, d
scribes excluded volume effects:

H0→H5H01V2m,

H0[2S b2

6 D¹2, ~3!

V5
v
2

uc~xW ,n!u2,

wherev is the usual excluded volume interaction parame
@6# andm is the chemical potential invoked in the form of
Lagrange multiplier to conserve the number of polymer s
ments in the system.

The self-avoiding walk of a solitary chain can be mode
by starting from Eq.~1! @10# by adding to the argument o
the exponential on the right-hand side, a series of terms
describe the excluded volume interaction between poly
segments. Caution must be used to apply this approach
system of many polymers.

To understand the physics in theucu4 model, let us ex-
tremize the functional densityF, while considering only so-
lutions homogeneous in space and inn. This yields a maxi-
mum atc50 and minima at
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. ~4!

This of course leads to an infinity of solutions, equivale
within a phase difference. Following quantum field theo
ideas, the phase of the field can be related to scatterin
interaction effects. The physical system can be thought o
localized regions where Eq.~4! is satisfied, separated by do
main walls which permit the transition from one minimum
another.

Note that Eq.~4! is equivalent to an estimate of th
chemical potential (m05c0v) if the average number densit
c0 is known. From this viewpoint,c0→0 represents a system
of polymers that approaches a critical point frombelow.
Here we have in mind an analogy with the usual Land
Ginzburgf4 model, where the vanishing of the coefficient
the quadratic term in the energy functional leads to a sin
well potential, signifying a critical point in the phase dia
gram. This issue was treated by de Gennes by mapping
polymer problem onto one in a zero-componentf j

4 field
theory ~the self-avoiding walk of a solitary chain! @10#. The
different perspective offered by our theory is that the phys
of low concentration melts is really an issue indynamiccriti-
cal phenomena, given the degree of freedom represente
the variablen.

III. DIAGRAMMATIC CORRECTIONS TO THE
GAUSSIAN APPROXIMATION

It is necessary to go beyond the Gaussian approxima
in the low number density regime because this regime
close to a critical point, as discussed in the preceding sec
and fluctuations become important. Diagrammatic meth
permit us to go beyond the Gaussian approximation in
perturbative manner. In this way we can gain insight into
local structure of flexible chains in the low-density regim
as well as compute Flory’s exponentn for the radius of
gyration.

We can compute a dynamic correction to the free-part
Green’s function, from the so-called Saturn diagram sho
in Fig. 1 @11,2,12#. This diagram is the lowest-order nonva
nishingkW ,v-dependent contribution to the self-energy. To
this calculation, it is first convenient to writebF in a dimen-
sionless form, usingc→c/Ac0, and scaling all length scale
by c0

21/3. This yieldsv→a5c0v. In the limit of smallm0,

FIG. 1. The Saturn diagram, which makes the first nontriv
contribution to the two-point correlation function.
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Ĝ0~kW ,v!→@G0
21~kW ,v!2S~kW ,v!#21,

S~kW ,v!'48a2E d3k1

~2p!3E d3k2

~2p!3

1

2 iv1~c0
22/3b2/6!~kW1

21kW2
2!1~c0

22/3b2/6!~kW2kW12kW2!223m0

, ~5!
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whereĜ0(kW ,v) is the Fourier transform of the Green’s fun
tion introduced in Eq.~1!, and where we have performed th
frequency integrations involved in the diagram using
method of residues and we used the mean-field value for
chemical potentialm05c0v→0. This integral can be found
in Hohenberg and Halperin@2# and they use Wilson’s renor
malization scheme to analyze the properties of this integ
We have been able to evaluate this multidimensional inte
analytically. The integrals were performed using the iden
1/t5*0

`dlexp(2lt) and introducing a change of variables

the center-of-mass and relative coordinates ofkW1 ,kW2. This
allows a separation of variables to occur, permitting an in
gration over the momentum variables. The last integratio
performed using the identity*0

`exp(2Ax)xkdx5A11kG(11k).
Using the method of dimensional regularization@11,12#, the
final result is

S~kW ,v!5a2A~2m!321/C@2 iv1k2/~6m!23m0#2

3„C2 ln$2m@2 iv1k2/~6m!23m0#%…,
~6!

C5 ln@4A3p#1diGamma~3!'4,

S~kW ,v!'a2AC~2m!321/C@2 iv1k2/~6m!23m0#221/C,

whereA52A3p23/2 and m53/c0
2/3b2. The last approxima-

tion in Eq. ~6! applies when the argument of the logarith
has a magnitude less than 1. Sincem0<1, the approximate
scaling form thus holds foruvu<1 andk<A18/b, with an
error of a few percent or less. In writing down these eq
tions, we have implicitly performedmass renormalization
@2#. The effect of the self-energyS is more pronounced a
small length scales than it is at long wavelengths. The ren
malized Green’s function can also be written forukW u→0 as

Ĝ~kW ,v!'
1

2 iv1S B2~v,m0!

6 D k22m̃~v,m0!

, ~7!

where

m̃~v,m0!5m02a2A~2m!321/C~2 iv23m0!221/c,

B2~v,m0!5b2c0
2/31Db2~v,m0!,

~8!
Db2~v,m0!52a2~6A!~2m!321/C~221/C!

3~2 iv23m0!121/C.
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Note that this approximation holds in the regime discus
below Eq.~6!. Now 2 iv[]/]n;1/up2qu, with p,q refer-
ring to thepth andqth segments, respectively, whilek is the
inverse separation in physical space of these segments. I
vicinity of the critical pointm050, Db2 displays a scaling
property, viz., ;2up2qu2s in the appropriate regime
where we have defined a scaling exponents,

s5~121/C!;0.75. ~9!

In this regime, the coefficient of the scaling term behaves
;a0.2, a weak dependence, if we estimatev;b3.

It follows from Eq. ~8! that the effect of the gradient
smoothing term¹2 in the energy functional is reduced by a
amount2uDb2u, and this effect is dominant for segmen
separated by a relatively short distance, as it vanishes in
limit of infinite separation. It means that if segments on
chain happen to be in close proximity in the melt, they w
tend to stay together due to the reduction of the smooth
term. Neutron-scattering experiments or numerical simu
tions may provide verification of this notion. Neutron expe
ments are customarily employed in the long-wavelength
gime to investigate quantities such as the radius of gyra
of polymeric systems. Other techniques, such as those
by Smithet al. @13#, may be more useful.

The chain takes on the appearance of pearls on a s
that push the ends of the string further away from each ot
One way to calculate the scaling properties of the radius
gyration within the current model is to compute vertex co
rections within the current model, and then implement W
son’s scaling arguments. However, it is easier to go bac
the original theory defined by the energy densityc* (]n
1H)c and truncate it with]n→1/N, whereN is the average
chain length of the polymeric system. This is justified on t
grounds that we are interested only in long-range fluct
tions. Accordingly, we also have to restrict then8 integration
in bF to a small neighborhood aroundN. After performing
this renormalization, the entire machinery of the static the
of critical phenomena applies. And it follows that very ne
the critical pointm0501 and the correlation lengthj[Rg
;Nn, where the lowest-order field-theoretic techniques yi
n'0.6, the value obtained by Flory.

More accurate calculations yield@6# a value forn closer
to 0.631 @8,11#. The standard model for examining the e
fects of excluded volume interactions yields@14# n'0.588.
The difference between this model and ours was discus
below Eq.~3!.
9-3



in
o

a
ca
ha
li

Fl
m
fr
in

an
n
tic
on
go
-

s

fis
y
ng

a
n-

n
in
n
w
in

io
in

r,

at

or
ws
of

he
e
ur
in

a
an

his

im-

e-

the

t.

in

of

nt.
the
ea-
-

n-
it,

ime

n

SHIRISH M. CHITANVIS PHYSICAL REVIEW E63 021509
IV. APPROACH TO ENTANGLEMENT

As the number density of chains in a melt begins to
crease, there is a transition to an entangled state at s
value of the number densityc0,1/v. To see this, let us begin
by computing vertex corrections, which can be thought of
giving rise to an effective coupling constant. The physi
idea behind the computations is to show perturbatively t
as the number concentration increases, the effective coup
constant actually decreases. This is in accordance with
ry’s theorem for polymer melts, which states that as the nu
ber density increases, the polymers begin to behave as
chains again. But we shall go beyond the theorem in show
that the effective coupling constant decreases in conson
with the renormalization-group theory of phase transitio
and possesses a fixed point. By this we mean that at a cri
number density, the changes in the effective coupling c
stant are independent of the relevant length scale, analo
to the behavior of a liquid at its critical point. This conclu
sion clarifies the investigations Schweizer@3# and Binder@4#
by characterizing the transition to the entangled state a
continuous, second-order phase transition.

The lowest-order correction comes from the so-called
diagram~see Fig. 2! with two internal lines. The frequenc
integral involved in the calculation is performed by closi
the contour in the upper half-plane. Using standard renorm
ization techniques@11# leads to a renormalized coupling co
stantaR :

aR~q!5a2a2G̃~q!,
~10!

G̃~q!'S ~6m0!3/2

24p2c0b3D 1

2 ivq22m01qW 2/2m
1O~qW 2!,

where q[(qW ,vq). Notice that to this order in perturbatio
theory, an increasing concentration signified by an increas
a (5c0v) leads to a lower effective coupling constant, co
sistent with the latter half of Flory’s theorem. We can no
define a beta function as is done conventionally
renormalization-group theory. The role of the beta funct
is to measure the sensitivity of the renormalized coupl
constant to the relevant length scale:

FIG. 2. The fish diagram, which makes the first nontrivial co
tribution to the vertex correction.
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b~âR!5
]âR

] lny
'2âR1âR

2 ,

y52 ivq22m0[1/N22m0 , ~11!

âR[S ~6m0!3/2

24p2c0b3D aR~qW 50!,

where y[1/N22m0 plays the role of a scaling paramete
equivalent to an inverse length scale. Asy→0 @N
→(2m0)21#, we see that there is a nontrivial fixed point
âR51 when the beta function vanishes. ForâR,1, b,0,
so that in the long-wavelength limit, asy→0, the renormal-
ized constant flows towards the fixed point. Similarly f
âR.1, b.0, so that the renormalized constant again flo
towards the fixed point. Therefore, in the language
renormalization-group theory, this is an infraredstablefixed
point. In other words, the long-wavelength behavior of t
system is dominated byâR51 and is independent of th
microscopic details of the Hamiltonian. In this sense, o
fixed point is analogous to the conventional critical point
phase-transition theory.

This fixed point can be identified with the transition of
system of flexible polymers from an unentangled state to
entangled state. We offer evidence below in support of t
concept.

As an example, it can be checked in the case of polyd
ethylsiloxane~PDMS! that c0;331023 cm23, b;1.5 Å,
yielding Nc;167, which is close to the experimentally d
termined @15# critical entanglement chain length of;200.
Similarly, for polystyrene, usingb;1 Å, we getNc;320,
reasonably close to the critical chain length estimated by
viscosity measurements of Onogiet al. @16#. To the lowest
order, the structure factorŜ(q)5(2/3)G̃(q). It diverges as
uqW u22 at y50, analogous to the behavior at a critical poin
The Young’s modulusY of the system is given by@17# Y

}Ŝ(qW 50,v), and it will show a dramatic rise as the cha
length N is increased towardsNc for m0Þ0. For these rea-
sons we can identify this critical-like point with the onset
entanglement. Note that the approximation toŜ(q) we have
used here will not work past the transition to entangleme
There is some indication of fluctuating behavior near
entanglement transition in the classic viscoelasticity m
surements of Onogiet al. @16#, as indicated by earlier phe
nomenological analyses@17,18#.

V. TUBELIKE STRUCTURES IN THE ENTANGLED
STATE

Fluctuations in the system tend to decrease asc0 increases
away from the critical point just discussed. So for finite co
centrations we expect mean-field theory to hold. In this lim
we get a time-dependent Landau-Ginzburg equation (t
[n), by extremizingbF with respect toc* :

F ]

]n
2S b2

6 D¹22m01vuc~xW ,n!u2Gc~xW ,n!50. ~12!

-
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For the moment, let us suppose that there is non dependence
in c. Then the model reduces to the SCF equation. No
the similarity of this equation to the one used to descr
bosonic fluids@19#, we seek tubelike solutions in cylindrica
geometry, viz.,c(r,f)5exp(isf)f(r), wheres is an integer:

1

r

d

dr S r
d f~r!

dr D1S 12
s2

r2D f ~r!2 f 3~r!50, ~13!

wherer has been made dimensionless by the length sca

a5b/A6c0v. ~14!

We see that forr→0, assumingu f (r)u→0, we get a solution
proportional toJs(r);rs @19#. By choosing the amplitude o
this solution correctly, one can match it for larger to a
constant solutionf (r)56A12s2/r2 ~see Fig. 3!. This so-
lution may also be continued mathematically tos→0. But
then thes50 solution has an infinite slope at the origin. Th
radial extent of these solutions is;sa for sÞ0. From ex-
cluded volume considerations, the maximum density p
sible in the system is 1/v, and for densities approaching 1/v,
a;b/A6. Physically, these solutions are reminiscent of
tube model of Edwards@6#. They indicate that the tubes ar
not empty, but have a concentration of polymers given
@ f (r)#2. It may be possible to use numerical simulations
check if the qualitative features of the occupation pro
@ f (r)#2 can be reproduced@20#.

FIG. 3. Numerical solutions of Eq.~13! for s51 ands52. Both
curves asymptote to unity, but on different scales.
nt

s
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As discussed by Fetter, the higher the value ofs, the
higher the energy of the tubelike configuration, and the s
tem will prefer to have many tubes with a lows rather than a
few with a larges. We have thus derived from our theory
tube model with a tube radiusa, which is exceedingly large
for small densities, and asymptotes smoothly in an inve
square root fashion to;b/A6 as the density approaches 1/v.
Since the monomer lengthb is of the order of a few ang-
stroms, the magnitude of the tube radius forc0v;1022 is a
few monomer lengths. This is in qualitative agreement w
estimates that can be found in the literature@6#.

In the theory of superfluids@19#, these cylindrical struc-
tures are viewed as idealizations of vortices, caused by
rotation of the fluid. In our case we can derive an equation
continuity from Eq.~12!:

]ucu2

]n
52¹W • jW1S,

jW5S b2

6 D ~c* ¹W c1c.c.!, ~15!

S5S b2

3 D u¹W cu212m0ucu22vucu4.

It follows by examining the currentjW that the tubelike solu-
tions are not caused by rotation, but rather there is aradial
velocitydue to ther dependence of the solution. There is y
another solution to Eq.~12!, which is obtained by assumin
that it is dependent solely onn, which yields c(n)5@1
1exp(22na)#21/2. More general solutions can undoubted
be found numerically by studying Eq.~12! with various
boundary conditions.

We speculate that the phase of the fieldc may be useful
in quantifying the notion of entanglement in polymers. Ul
mately the theory needs to be generalized to handle poly
dynamics.
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