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Caging of a d-dimensional sphere and its relevance for the random dense sphere packing
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We analyze the caging of a hard sphere~i.e., the complete arrest of all translational motions! by randomly
distributed static contact points on the sphere surface for arbitrary dimensiond>1, and prove that the average
number of uncorrelated contacts required to cage a sphere is^N&d52d11. Computer simulations, which
confirm this analytical result, are also used to model the effect of correlations between contacts that occur in
real hard-sphere systems. Our analysis predicts an average coordination number of 4.79~60.02! for caged
spheres, which agrees surprisingly well with the experimental coordination number for random sphere pack-
ings reported by Mason@Nature217, 733 ~1968!#. This result supports the physical picture that the coordina-
tion number in random dense sphere packings is primarily determined by caging effects. It also suggests that
it should be possible to construct such packings from a local caging rule.
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I. INTRODUCTION

A ‘‘particle cage’’ is a very useful concept for the unde
standing of packed granular matter or dense colloidal part
systems. For example, hindered self-diffusion of colloid
spheres in a concentrated colloidal suspension can be se
a sequence of ‘‘caging’’ events: a test sphere is tempora
trapped by a mobile cage of neighbor spheres, and eventu
diffuses into another cage due to thermal fluctuations@1#. As
the sphere concentration increases, the cages become
mobile, up to the point where the test sphere is permane
arrested by a cage of static neighbor spheres.

Such permanent caging of spheres will also occur in r
dom dense sphere packings, prepared by rapid~on the diffu-
sion time scale! sedimentation of colloid spheres@2#. These
random packings or sphere glasses, with typical sphere
ume fractions off;0.64, are instances of Bernal’s rando
close sphere packing@3–6#. Other instances are the wide
studied random packings of macroscopic spheres@7–21#,
where the jamming of spheres can also be seen as a ca
effect.

The concept of a sphere cage is appealing, but still v
qualitative. For example, one obvious question has not
been answered satisfactorily: how many sphere contacts
tually are needed to cage a test sphere in a system such
random sphere packing? A tetrahedron of four neigh
sphere contacts will keep a test sphere in a mechanic
stable position. In a random sphere system, however, ne
bors need not form this tetrahedral configuration, so the
erage number of spheres required to form a cage must ex
four. The calculation of this average number~the ‘‘average
cage size’’! is a complicated problem of statistical geomet
due to the correlations between contacts in a hard-sp
stacking. These correlations result from the fact that

*Author to whom correspondence should be addressed.
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neighbor spheres, which touch the test sphere, cannot in
penetrate each other.

To make a start with quantifying caging phenomena
have investigated a simple geometrical model for astatic
sphere cage, which completely and permanently arrests
sphere. In this reference model, neighbor spheres only e
rience hard-sphere excluded volume interaction with the c
tral test sphere, whereas any interactions between the ne
bors themselves are absent.

Our main result is that, within this approximation, th
caging problem can be solved analytically, for arbitrary
mensiond>1. In our model we consider a single test sphe
with immobile point contacts randomly distributed on its su
face, and investigate the probability that configurations
these static contacts block all translations of the test sph
in d dimensions. We show that the average number^N&d of
such random contacts, which cage the sphere, increase
early with the dimension aŝN&d52d11.

The caging of a sphere by random contacts was o
solved earlier for a sphere in two dimensions~which is
equivalent to the caging of a disc in a plane! @22#. For a
three-dimensional~3D! sphere only numerical results for th
average cage size have been reported@23,24#. The method
from Ref.@22# for a 2D sphere is difficult to extend to highe
dimensions. We have found a very convenient procedur
evaluate caging probabilities which is easy to generalize
higher dimensions. The procedure is based on regroupin
possible configurations of theN contact points into equiva
lent subsets of a finite number of configurations. Every s
set contains all information required for a calculation of t
caging probability~for that particularN andd!. Therefore, it
is not necessary to consider the total~infinite number! of all
possible configurations.

We start in Sec. II with some definitions needed for t
analysis in later sections. For clarity, but without loss
generality, we use terminology for the case of a sphere
d53. The regrouping procedure is further explained in Se
III and IV, and elaborated in Sec. V for the cased53. The
©2001 The American Physical Society04-1
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PETERS, KOLLMANN, BARENBRUG, AND PHILIPSE PHYSICAL REVIEW E63 021404
generalization to arbitrary dimensions is made in Sec. VI
comparison with simulations of sphere caging is made
Sec. VII. Simulations confirm the analytical result for ra
dom point constraints. In addition, we extended our simu
tions to the caging of a test sphere by spherical constra
with the same size as the central sphere, to model the e
of excluded-volume repulsions between the constrain
spheres in a real hard-sphere system. The relevance o
findings regarding an interpretation of experimental res
for coordination numbers in random sphere packings is
cussed in Secs. VIII and IX.

II. DEFINITIONS

A configuration is defined as any distribution ofN con-
straints on a sphere surface. These constraints may be
domly placed contact points or spherical constraints~which
are point constraints with an additional condition concern
the distance between them!. A configuration iscaging if the
constraints are placed in such a way that the sphere ca
translate in any direction. The caging probability is the pro
ability that a randomly chosen configuration is cagin
Clearly, this probability depends on the dimensionalityd and
on the number of constraintsN.

Direction vectorsuW are vectors from the center of th
sphere to its surfaceS2. The sphere center can move only
the direction of afree direction vector, but cannot move i
the direction of aforbiddendirection vector. Thus a sphere
caged when it has no free direction vector. The spher
noncagedwhen it has at least one free direction vector.
free point onS2 is the end of a free direction vector. Afree
surface sectoris a part ofS2 which contains free points only
~Likewise we can define forbidden points, forbidden se
ments, and forbidden surface sectors.! A contact is a point-
like obstacle by which we create a forbidden point onS2. Let
c1 be such a contact at positionuW 1 ~see Fig. 1!. The contact
makesuW 1 a forbidden vector. But ifuW 1 is forbidden byc1 , so
is every other direction vector which has a component in
direction of uW 1 . These forbidden vectors form a forbidde
surface sector in the form of a hemisphere withc1 at its pole.
The other hemisphere is a free surface sector. The two h
spheres are separated by the equator~or great circle@25#! E1
associated with contactc1 .

III. REFLECTION SET R

Using definitions from Sec. II we introduce thereflection
set Rvia a number of propositions about surface secto

FIG. 1. ~A! Direction vectoruW 1 and contactc1 on a sphere.~B!
Contactc1 forbids all direction vectors in shaded hemisphere.~C!
Contactc1 is reflected in the plane containing equatorE1 to its
antipodec̃1 . ~D! This reflection turns the forbidden surface sec
from B into a free one, and vice versa.
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PlaceN contacts at fixed, random positions onS2. The con-
tacts produceN equators which intersect each other; t
probability that by this operation two equators coincide
zero. The intersecting equators form surface sectors~which
are bounded by segments of these equators!. The number of
surface sectors only depends on the chosen values ofN and
d. Clearly, a sector is forbidden when it is forbidden by
least one contact. For a free sector we therefore can stat
following: ~1! A sector is free if and only if it is free for al
contacts.

In the foregoing we use the fact that for each~contact!
point c on S2 there is only one unique great circle, whic
plays the role of the equatorE, with c as a pole. On the othe
hand, for any great circle there can be only two points ofS2

which are its poles@25#. In other words, every contactc has
a diametrically opposite or antipode pointc̃, formed by re-
flection of c in the plane containing equatorE ~the equator
plane!. We call this acontact reflection. This contact reflec-
tion changes surface points, free with respect toc, into for-
bidden ones, and vice versa. One consequence of a refle
is the following: ~2! A free surface sector for contact c is
forbidden surface sector for its antipode c˜ .

The ~infinite! set of all possible configurations is divide
in subsetsR as follows~see Fig. 2!. Take any configuration
from the infinite set. Each of theN contact points in this
configuration may be reflected to become its antipode. In
way a reflection setR is generated containing 2N different,
but equivalent, configurations. These configurations
equivalent in the sense that they can all be transformed
each other by at mostN contact reflections. In other words
we can state the following:~3! Each member of a reflection
set R generates the whole set by contact reflections.

Since a contactc and its antipodec̃ necessarily share th
same equatorE, it follows that the partitioning of surface
sectors by theN equators is the same for all members of t
same subsetR. Nevertheless, even though a particular s
face sector does not change in shape or position, the se
may be free in one configuration ofS, and forbidden in an-
other. There is, however, an important restriction:~4! Each
surface sector in the reflection set R is a free surface se
for one member of R only.

Proposition~4! follows from the foregoing propositions
Let a be a free surface sector in configurations. The sectora
is free because it is free for all contact points@Proposition
~1!#. The whole setR can be generated froms by contact
reflections@Proposition~3!#. But every reflection turnsa into
a forbidden sector@Proposition~2!#. Hencea can only be

r

FIG. 2. The setR consists of configurations of contacts whic
may or which may not be reflected. Each member ofR generates
the whole set. Each surface sector is free only in one configura
of R.
4-2
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CAGING OF A d-DIMENSIONAL SPHERE AND ITS . . . PHYSICAL REVIEW E 63 021404
free in the configurations. The same reasoning applies to a
other sectors in the reflection setR, which proves proposition
~4!.

We will now prove the following proposition:~5! For
every member of R there is at most one surface sector.
Let a1 be a free surface sector in configurations, and leta2
be another surface sector ins. In going froma1 to a2 at least
one equator~surface sector boundary! E must be crossed. Le
c be the contact associated withE. Surfacea1 is free for all
contact points@Proposition ~1!#. Then by crossingE, the
hemisphere of free directions associated withc is left. Thus
a2 is forbidden„with respect toc @propositions~1! and~2!#….
As a result of propositions~4! and ~5! we can finally con-
clude:~6! The number of surface sectors is equal to the nu
ber of noncaging members of R.

IV. CAGING PROBABILITY

Let A(N,d) be the total number of surface sectors p
duced by~the equators of! N random contact points on ad
dimensional sphere. According to proposition~6!, this num-
ber equals the number of noncaging configurations~i.e., con-
figurations with one free surface sector! in the setR. There-
fore the probabilityC(N,d) that a member ofR doesnot
cage a sphere is

C~N,d!5A~N,d!/2N. ~1!

All members of the infinite set of configurations ofN contact
points are equivalent in the sense that each of them can
member of one reflection setR only. ~A reflection of a con-
tact point by definition only produces its antipode, and n
any other contact position onS2, which would be required to
go from one reflection setR to another.! Since each reflection
set R has the same fraction of noncaging members~for
presentN and d values!, it follows that C(N,d) is also the
probability that N contacts do not cage ad-dimensional
sphere.

The number of contacts required to cage the spher
called thecage size. The average cage sizêN&d follows
from

^N&d5 (
N51

`

P~N,d!N, ~2!

whereP(N,d) denotes the~average! probability that apply-
ing theNth random contact point cages the sphere, whil
still was free forN21 contacts. Clearly,

P~N,d!5C~N21,d!2C~N,d!. ~3!

Therefore

^N&d5 (
N51

`

@A~N21,d!22~N21!2A~N,d!22N#N

5 (
N50

`

A~N,d!22N. ~4!
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Equation~4! reduces the caging problem forN contacts to
the evaluation of the numberA(N,d) of surface sectors pro
duced by these contacts. For the cased53 this evaluation is
as follows.

V. SPHERE CAGING IN dÄ3

PlaceN contacts at random on sphereS2, or equivalently:
draw at randomN equators~or great circles! on S2 ~Fig. 3!.
As stated before, the probability that two equators coincid
zero. This also applies to equatorEN11 of the next contact
cN11 , which has to intersect all existingN equators. Since
intersecting circles intersect each other twice@26# ~for two
great circles onS2 in two diametrically opposite points! it
follows that addition of contactcN11 produces 2N new in-
tersections. While connecting these 2N intersections,EN11
also crosses 2N times a surface sector, thereby dividing 2N
surface sectors into two parts and thus creating 2N new sur-
face boundaries. In short, the equatorEN11 generates 2N
additional surface sectors, so the number of surface sec
follows from the recursion relation

A~N11,3!5A~N,3!12N for N>1. ~5!

Note thatN50 corresponds to one surface sector, wher
N51 creates two sectors:

A~0,3!51, A~1,3!52 ~6!

Using the second condition as the initial condition for E
~5!, we find

A~N,3!5N22N12 for N>1. ~7!

Substitution of the numbers of surface sectors in Eq.~4!
finally yields

^N&3511 (
N51

`

~N22N12!22N57. ~8!

This is precisely the result obtained earlier by numeri
simulation@23,24#.

FIG. 3. Each great circleE, generated by a contact, intersects
other great circles twice. The line segment between two inters
tions divides an existing surface sector into two parts.
4-3
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VI. CAGING PROBABILITY IN d DIMENSIONS

In d dimensions the calculation is essentially the same
for d53. Each contact point generates a (d21)-dimensional
equator~hyper!plane that cuts thed-dimensional sphere~d
sphere! into two d-dimensional hemispheres.~Note that the
intersection of thed sphere and the equator~hyper!plane is a
d21 sphere.! If we placeN contacts on thed sphere, itsd
21 dimensional surfaceSd21 is then divided by theN asso-
ciated equator~hyper!planes into~by definition! A(N,d) sur-
face sectors. Now add an (N11)th contact point and its
associated equator~hyper!plane. The intersection of th
equator ~hyper!plane with the d sphere creates ad21
sphere, which is part of thed sphere’s surface. By definition
the N other equator~hyper!planes cut thisd21 sphere into
A(N,d21) surface parts. TheseA(N,d21) parts form new
boundaries in thed-sphere surface sectors themselves.~Com-
pare to thed53 case, where the two-dimensional equa
circle segments formed 2N new boundaries in 2N surface
sectors of the 3 sphere!. TheseA(N,d21) new surface sec
tor boundaries on thed sphere therefore cutA(N,d21) of
the total ofA(N,d) d-sphere surface sectors in two, so th
by placing the extra contact, the number of surface sector
the d-sphere increases byA(N,d21). This gives the recur-
rence relation

A~N11,d!5A~N,d!1A~N,d21! for N.1. ~9!

The initial values are found as follows. A nondivide
d-dimensional sphere consists of one surface sector. A o
dimensional sphere consists of two points~two surface sec-
tors!, no matter how many times it is cut in two. Therefor

A~0,d!51, ~10!

A~N,1!52 for N.0. ~11!

For smallN values (N<d), A(N,d) has the trivial value 2N.
Up to N5d the addition of an extra contact point mea
probing an extra spatial dimension, so that all existing eq
tor planes are cut in two parts. For higherN values this is no
longer the case;A(N,d) then becomes smaller than 2N, and
one has to rely on Eq.~9!. Using relation~9!, multiplying
both sides by 22N, summing from one to infinity, and sub
stituting expression~4! gives

^N&d5^N&d2112A~0,d! ~12!

5^N&d2112 ~13!

This single recurrence relation for^N&d can easily be solved
by using, as the initial value,

^N&15 (
N50

`

A~N,1!22N511 (
N51

`

2322N53. ~14!

The final result is

^N&d52d11 ~15!
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for the average number of random contact points neede
cage a sphere ind dimensions.

VII. NUMERICAL SOLUTIONS OF SPHERE CAGING

We checked the result forC(N,d) @Eq. ~1!# by numerical
simulations. To obtain approximate values forC(N,d),
many random configurations ofN points on ad-dimensional
unit sphere were generated, and the noncaging fraction
them was determined as follows.

A random configuration is constructed by choosingN ran-
dom points on the surface of thed sphere. Then using al
possible sets ofd21 points out of theseN points, all pos-
sible (d21)-dimensional equator~hyper!planes through the
sphere center are constructed that contain thesed21 points.
For each of these~hyper!planes one can easily check wheth
the remainingN2d11 contact points lie all on one side o
on both sides of the hyperplane~by taking the dot product of
theseN2d11 points with the normal vector of the hype
plane under consideration!.

If all N2d11 remaining points are located on one side
the chosen hyperplane, then allN points lie on one hemi-
sphere, and this particular configuration is a free configu
tion. If the points lie on both sides of the hyperplane, th
the chosen configuration is not free with respect to this p
ticular hyperplane, but it may still be free with respect
another hyperplane~which is sufficient for the sphere to b
free!. If the configuration is not free with respect to any o
of all possible hyperplanes, then it is a caging configurati
By repeating this procedure 107 times and counting the frac
tion of free configurations,A(N,d) is calculated. The agree
ment between the theoretical predictions and the simula
results was found to be excellent~see, for example, Fig. 5!.

We also calculated values for the caging probabilities
random configurations of hardspheres~instead of uncorre-
lated contacts! touching a test sphere. This problem, which
not treated analytically in this paper, is relevant to model
effect of contact correlations which inevitably are present
real hard-sphere systems.

These simulations were performed in the same way
described above, except that the randomly generated co
points on the surface are now regarded to be contacts o
central sphere with constraining spheres, having the s
radius as the central sphere. Figure 4 illustrates that in

FIG. 4. The shortest distance between contact points in the
of touching spheres is equal to the sphere radiusa.
4-4
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TABLE I. Simulation results of sphere caging.

d N

No. free
confor-
mations

Total no.
confor-
mations

C(N,d)
sphere

contacts

C(N,d)
point

contacts

^N&
sphere

contacts

^N&
point

contacts

2 2 – – 1a 1a

3 3 406 591 10 000 000 0,3407 0,7500
4 0 10 000 000 0a 0,5000 3,34 5

3 3 – – 1a 1a

4 5 997 315 10 000 000 0,5997 0,8750
5 1 794 911 10 000 000 0,1795 0,6875
6 142 701 10 000 000 0,0143 0,5000
7 562 10 000 000 0 0,3438
8 – – 0b 0,2268 4,79 7

4 4 – – 1a 1a

5 7 708 936 10 000 000 0,7709 0,9375
6 4 079 862 10 000 000 0,4080 0,8125
7 1 383 658 10 000 000 0,1384 0,6563
8 271 906 10 000 000 0,02719 0,5000
9 12 137 4 500 000 0,00270 0,3633
10 10 150 000 0,00007 0,2537
11 – – 0b 0,1719 6,35 9

5 5 – – 1a 1a

6 8 742 127 10 000 000 0,8742 0,9688
7 6 083 073 10 000 000 0,6083 0,8906
8 3 245 033 10 000 000 0,3245 0,7734
9 389 323 3 000 000 0,1298 0,6367
10 382 818 10 000 000 0,03828 0,5000
11 16 377 2 000 000 0,00819 0,3770
12 252 200 000 0,0013 0,2744
13 – – 0b 0,1938 7,98 11

6 6 – – 1a 1a

7 2 799 581 3 000 000 0,9332 0,9844
8 2 270 544 3 000 000 0,7568 0,9375
9 1 540 468 3 000 000 0,5135 0,8555
10 860 823 3 000 000 0,2869 0,7461
11 395 147 3 000 000 0,1317 0,6230
12 99 241 2 000 000 0,0496 0,5000
13 7674 500 000 0,0153 0,3872
14 – – 0b 0,2905 9,69 13

aTheoretical value
bEstimated value; the resulting error in^N& is smaller than 0.01.
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case the shortest distance between different contact poin
equal to the sphere radius. In the simulations this conditio
fulfilled by generating new, random configurations of theN
points until the shortest distance between all contact poin
larger than or equal to the radius of the unit sphere. Then
simulation is continued as described above. The results
given in Table I.

Figure 5 compares the average cage size for hard-sp
constraints to the analytical result@Eq. ~15!# for random
point contacts. The hard-sphere cage size~which increases
nearly linearly with the dimensiond! is at a givend always
smaller than the cage size for random points~which in-
creases exactly linear withd!. This can be understood from
the inefficiency of random point constraints to cage a sph
02140
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any correlation which increases the average distance betw
the contacts will increase their caging probability. A ha
sphere attached to contacts is such a ‘‘repulsive’’ correlati

One could maximize the effect of such correlations
requiring that the distance between any pair of constraints
a test sphere must be maximal.~For an extensive discussio
of such maximization problems, see Ref.@27#.! This would
be a way to find the minimum number of constraints need
to cage a sphere. For example, an equilateral triangleN
53) cages a sphere ind52, and a tetrahedron (N54) cages
a 3D sphere. This already suggests that

Nmin d5d11 ~16!
4-5
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is the minimal size of a cage for arbitrary dimension. Indee
Eq. ~16! follows from the fact thatd contacts form a number
of surface sectors given by:A(d,d)52d. Then the probabil-
ity C(d,d) in Eq. ~1! equals unity. As explained near Eq
~11!, A(d11,d),2d11, so that C(d11,d),1 (d11,d)
,1. Therefore one can always construct a caging configu
tion with d11 contacts. A consequence of Eqs.~15! and
~16! is that the average cage size due to repulsive conta
must satisfy

d11<^N&d<2d11. ~17!

Our simulations for hard-sphere contacts in Fig. 5 comp
with this requirement. Figure 6 compares analytical a
simulation results for the caging probability for a sphere
three dimensions.

FIG. 5. Simulation results for the average number of conta
^N&d needed to cage a sphere ind dimensions. The caging occur
by random point contacts or by spherical constraints.~For d51,
both data points are theoretical values.!

FIG. 6. ProbabilityP(N,3) that a sphere becomes caged in thr
dimensions on placing theNth random constraint. The simulation
results~d! for spherical constraints show that a test sphere is v
likely caged by a number of hard spheres in the range 4–7. T
analytical results~j! show that uncorrelated point contacts a
much less effective ‘‘cage formers.’’~Lines are drawn to guide the
eye.!
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For spherical constraints both the increase and deca
the probability is much more pronounced than for rand
contacts. Note that for random points there is, of course,
limit to the number of contactsN on a free, uncaged spher
For hard spheres there is obviously a maximum value.
d51, 2, and 3 there is a maximum number of,N51, 4, and
9 spheres, respectively, which may contact a test sph
without caging it~the maximum apparently equalsd2!. The
3D maximum concerns a triangle of three spheres wh
‘‘support’’ the test sphere such that only one free directi
vector~perpendicular to the triangle! is left. Then a hexagon
of six spheres can be added which all leave the direc
vector free. However, the next contactN510 always closes
the cage. Therefore, in Fig. 6,P(N53)50 for N>10. For
3,N,10, the probability is finite, but it is clear from Fig.
that random sphere cages larger than 8 are rare events. T
predictions are confirmed by computer generated contact
tributions for 3D random sphere packings@28#. Interestingly,
10 is the largest contact number observed@28#, realized only
by an extremely small fraction of spheres.

VIII. COMPARISON WITH RANDOM SPHERE
PACKINGS

In a random dense sphere packing~RDP! the majority of
spheres is arrested by its neighbors. If this arrest imp
absence of any free direction vector, the majority of sphe
in a RDP is caged, according to definitions in Sec. II. The
fore, we have re-examined coordination numbers in exp
mental and simulated hard-sphere packings from a cag
point of view, in particular because there seems to be
unanimous agreement on the value~and physical meaning!
of these coordination numbers@4–21#.

Often, neighboring spheres that do not touch the t
sphere are still included in reported coordination numbe
However, we adopt the view that only neighbor spheres t
are in real contact with a test sphere form its constrain
cage. Therefore, comparison with literature results should
made with care, as one needs to specify a minimal dista
between two surfaces below which the surfaces are rega
to be in ‘‘real’’ contact. Variations in this cutoff distance an
its extrapolation to zero give rise to a variety of avera
coordination numberŝc& in the literature@4–21#. Early in-
vestigators@7# estimated that̂c&'10. Bernal and Mason@8#
arrived at a more realistic average of about 6, on the basi
experiments as well as the argument that ‘‘each sphere
be considered in general to rest on three others and in
supports another three’’@8#. Some authors@29# even used
^c&56 as thecriterion for choosing the ‘‘correct’’ cutoff
distance of 1.057 sphere diameters, which is certainly
large in view of Fig. 7, as discussed below. Bennett@15# also
argued that mechanical stability requires^c&56.0, and also
found this value by extrapolation from his simulation da
This extrapolation, however, is not quite straightforwa
and, moreover, the simulated packing densities (f50.61)
are below the experimental value off50.64. This suggests
that Bennett’s sphere deposition technique@15# does not re-
produce all details of a real RDP. Such a shortcoming w
also noted in other simulation studies@14,16# where mean
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nearest neighbor numbers close to 6 were also found, tho
the physical justification was reported to be unclear. G
and Finney@17# used^c&56.0 as input for their calculation
of the RDP density. They admitted that this number is s
open to argument. Indeed, Goto and Finney@17# depicted a
nonlinear extrapolation to zero cutoff distance which do
not exclude lower coordination numbers^c&,6.

This nonlinearity was clearly shown and emphasized
Mason@11#, who reanalyzed the original data from extensi
experiments of Scott@9# on the radial distribution of sphere
in a RDP. The outcome of Mason’s analysis~see Fig. 7!
clearly shows the steep gradient in the experimental con
number when sphere surfaces are very close together. M
confirmed Scott’s finding that there are 9.360.8 neighbors
within 1.1 diameters from the center of a test sphere~Fig. 7!.
However, he concluded@11# that on average there are on
about five actual contacts. Since Scott@9# reported an accu
racy of better than 1% in the radial distance measureme
this conclusion is justified. The experimental coordinati
number determined from Fig. 7 is actually 4.7660.02, which
agrees well with our simulation result of^N&354.7960.02.
Note that the contact number~i.e., the coordination numbe
at r 51.0! in Fig. 7 is in any case sandwiched between
minimal value ofd1154 and the cage size 2d1157 for
random contacts@Eq. ~17!#.

IX. DISCUSSION

We have found that the averageexperimentalcoordina-
tion number of a RDP obtained from proper extrapolat

FIG. 7. Number of neighbor spheres within a radial distance~r!
of the central sphere according to Mason@11# obtained from experi-
ments of Scott@9# on large numbers of randomly packed, smoo
steel balls.~Sphere positions were determined with an accur
better that 1% of their diameter@9#.! Note the steep gradient nea
the contact number atr 51.0.
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~Fig. 7! equals the average cage size for an individual t
sphere contacted by hard spheres. This is an interesting r
because it indicates that the coordination number is de
mined by only two basic features of a RDP, namely, that
majority of spheres is arrested~caged! and that the sphere
cannot interpenetrate~the volume exclusion which produce
the contact correlations!.

This interpretation of the physical origin of the~value of!
the coordination number implies that the random sph
packing is basically the same as the random caging
spheres by spherical constraints. Therefore the RDP volu
fractionf'0.64 seems in a sense an accidental consequ
of caging effects, rather than the result of some maximi
tion procedure for the density or coordination numbers.
caged test sphere could still in some cases accommodat
ditional spheres in its ‘‘coordination shell’’ of contactin
neighbors~consider, for example, a sphere caged by o
four others!. However, this accommodation may be o
structed by the fact that the majority of the spheres in
vicinity of the caged test sphere are immobilized as w
Therefore, we expect that the coordination number~and the
corresponding density! in a real RDP cannot rise much abov
the average size~Fig. 5! of a random hand-sphere cage~and
the corresponding density!.

Our caging analysis also makes clear why the coordi
tion number in a RDP must be a distributed quantity. This
inherent to the statistics of the cage size~Fig. 6!. Note the
strong difference from the hexagonal close sphere pack
which maximizes the density for asingle-valuedcoordina-
tion number ofc512.

Whether our analysis ultimately implies that random clo
sphere packings can be generatedquantitativelyby a local
caging rule is still an open question. If such a rule appli
one would expect, on the basis of Fig. 6, that the tail of
contact distribution does not extend much abovec57 or 8.
This is indeed the trend observed in various studies@21,28#
on random sphere packings.

Finally it should be noted that in the simulation of sphe
constraints in Fig. 6, spheres arefixedafter being placed in
contact with the test sphere. In the experiments of Scott@9#,
however, a RDP is formed by pouring and shaking so t
~groups of! spheres may reorganize. Perhaps this differe
in mobility affects the comparison of contact numbers. T
extensive computer simulations of Ref.@28#, for a very small
cutoff distance of 1027 sphere diameters, yielded an avera
contact number of̂c&55.8295, consistent with Eq.~17!, but
larger than expected from Fig. 7. It remains to be inve
gated how contact numbers depend on details of the c
struction of a random sphere packing by either experime
simulations@28,29#, or application of a simple caging rule
What is clear, nevertheless, is that the widely quoted valu
^c&56.0 @21,30# very likely represents an underestimation
the efficiency with which hard spheres cage each othe
random dense packings.

X. CONCLUSIONS

The average number of randomly placed point constra
needed to cage ad-dimensional sphere is equal tôN&d
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52d11. To prove this result, configurations of conta
points can be grouped into equivalent subsets~called reflec-
tion sets!, from which caging probabilities can be deduc
without a need for averaging over all possible configuratio
Simulations of the caging by spherical constraints show
hard spheres are much more effective ‘‘cage formers’’ th
random contacts. The simulation value of^N&354.79
(60.02) agrees with the experimental average coordina
number~of 4.7660.02! in the random dense sphere packin
according to Mason@11#. This result supports the physica
picture that the coordination number in random close pa
ings of spheres is foremost determined by the individ
sphere mobility and caging behavior. This result sugge
J.

02140
s.
at
n

n
,

-
l
ts

that RDP properties might well be derived from the~local!
caging behavior of individual spheres.
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