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Caging of ad-dimensional sphere and its relevance for the random dense sphere packing
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We analyze the caging of a hard sphére., the complete arrest of all translational motiohg randomly
distributed static contact points on the sphere surface for arbitrary dimesi@nand prove that the average
number of uncorrelated contacts required to cage a sphefi)ig=2d+1. Computer simulations, which
confirm this analytical result, are also used to model the effect of correlations between contacts that occur in
real hard-sphere systems. Our analysis predicts an average coordination number (af 102 for caged
spheres, which agrees surprisingly well with the experimental coordination number for random sphere pack-
ings reported by MasofNature217, 733(1968]. This result supports the physical picture that the coordina-
tion number in random dense sphere packings is primarily determined by caging effects. It also suggests that
it should be possible to construct such packings from a local caging rule.
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I. INTRODUCTION neighbor spheres, which touch the test sphere, cannot inter-
penetrate each other.

A “particle cage” is a very useful concept for the under-  To make a start with quantifying caging phenomena we
standing of packed granular matter or dense colloidal particlave investigated a simple geometrical model fostatic
systems. For example, hindered self-diffusion of colloidalsphere cage, which completely and permanently arrests the
spheres in a concentrated colloidal suspension can be seens@here. In this reference model, neighbor spheres only expe-
a sequence of “caging” events: a test sphere is temporarilyience hard-sphere excluded volume interaction with the cen-
trapped by a mobile cage of neighbor spheres, and eventualf{@l test sphere, whereas any interactions between the neigh-
diffuses into another cage due to thermal fluctuatidjsAs ~ Pors themselves are absent. o
the sphere concentration increases, the cages become lessOUr main result is that, within this approximation, the

mobile, up to the point where the test sphere is permanent/§@9ing problem can be solved analytically, for arbitrary di-
arrested by a cage of static neighbor spheres. mensiond=1. In our model we consider a single test sphere,

Such permanent caging of spheres will also occur in ran\_/vith immobile point contacts randomly distributed on its sur-

- . ; face, and investigate the probability that configurations of
dom dense sphere packings, prepared by remicthe diffu- . .
sion time scalpsedimentation of colloid spherég]. These these static contacts block all translations of the test sphere

) . . in d dimensions. We show that the average num{éyy of
random packings or sphere glasses, with typical sphere vol- . : .
. . , such random contacts, which cage the sphere, increases lin-
ume fractions of¢p~0.64, are instances of Bernal’'s random early with the dimension ad\)y=2d+1
close sphere packing—6]. Other instances are the widely d :

) : _ The caging of a sphere by random contacts was only
studied random packings of macroscopic sphdi®s2l,  soveqd earlier for a sphere in two dimensiofshich is

where the jamming of spheres can also be seen as a Cagi@auivalent to the caging of a disc in a plarf@2]. For a
effect. three-dimensional3D) sphere only numerical results for the
The concept of a sphere cage is appealing, but still Very¥yerage cage size have been repof@2]24. The method
qualitative. For example, one obvious question has not yefrom Ref.[22] for a 2D sphere is difficult to extend to higher
been answered satisfactorily: how many sphere contacts agimensions. We have found a very convenient procedure to
tually are needed to cage a test sphere in a system such agwaluate caging probabilities which is easy to generalize to
random sphere packing? A tetrahedron of four neighbohigher dimensions. The procedure is based on regrouping all
sphere contacts will keep a test sphere in a mechanicallgossible configurations of thid contact points into equiva-
stable position. In a random sphere system, however, neighent subsets of a finite number of configurations. Every sub-
bors need not form this tetrahedral configuration, so the avset contains all information required for a calculation of the
erage number of spheres required to form a cage must exceedging probability(for that particulaN andd). Therefore, it
four. The calculation of this average numhkére “average is not necessary to consider the tafalfinite numbey of all
cage size') is a complicated problem of statistical geometry, possible configurations.
due to the correlations between contacts in a hard-sphere We start in Sec. Il with some definitions needed for the
stacking. These correlations result from the fact that thenalysis in later sections. For clarity, but without loss of
generality, we use terminology for the case of a sphere in
d=3. The regrouping procedure is further explained in Secs.
* Author to whom correspondence should be addressed. Il and IV, and elaborated in Sec. V for the cate 3. The
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FIG. 1. (A) Direction vector, and contact, on a sphere(B) FIG. 2. The seR consists of configurations of contacts which
Contactc, forbids all direction vectors in shaded hemisphé(@®. may or which may not be reflected. Each membeRajenerates

Contactc, is reflected in the plane containing equaf to its  the whole set. Each surface sector is free only in one configuration
antipodet, . (D) This reflection turns the forbidden surface sector of R

from B into a free one, and vice versa.

generalization to arbitrary dimensions is made in Sec. VI. APlaceN contacts at fixed, random positions 84 The con-
comparison with simulations of sphere caging is made irfacts produceN equators which intersect each other; the
Sec. VII. Simulations confirm the analytical result for ran- probability that by this operation two equators coincide is
dom point constraints. In addition, we extended our simulazero. The intersecting equators form surface sediwtsch

tions to the caging of a test sphere by spherical constraintgre bounded by segments of these equatditse number of

with the same size as the central sphere, to model the effestirface sectors only depends on the chosen valudsafd

of excluded-volume repulsions between the constrainingl. Clearly, a sector is forbidden when it is forbidden by at
spheres in a real hard-sphere system. The relevance of ol@ast one contact. For a free sector we therefore can state the
findings regarding an interpretation of experimental resultgollowing: (1) A sector is free if and only if it is free for all

for coordination numbers in random sphere packings is diseontacts

cussed in Secs. VIl and IX. In the foregoing we use the fact that for ea@ontac}
point ¢ on S? there is only one unique great circle, which
Il. DEFINITIONS plays the role of the equat®;, with c as a pole. On the other

hand, for any great circle there can be only two point§of

A configuration is defined as any distribution Nfcon- : .
. . which are its pole$25]. In other words, every contacthas
straints on a sphere surface. These constraints may be ran-

domly placed contact points or spherical constra{mikich a d|z_1metr|ca_lly opposite or ant_lp_ode poiEt formed by re-
. . . L o . flection of c in the plane containing equat& (the equator
are point constraints with an additional condition concernin

the distance between thenA configuration iscagingif the gplane). We call this acontact reflectionThis contact reflec-
'?n changes surface points, free with respect,toto for-

constraints are placed in such a way that the sphere Cann%ldden ones, and vice versa. One consequence of a reflection
translate in any direction. The caging probability is the prob-is the following: (2) A free surface sector for contact c is a

ability that a randomly chosen configuration is caging.forbidden surface sector for its antipode ¢
Clearly, this probability depends on the dimensionadignd The (infinite) set of all possible configurations is divided

on the number of constraints, in subsetR as follows(see Fig. 2 Take any configuration
Direction vectorsl are vectors from the center of the e 9. y contigt .
from the infinite set. Each of th&l contact points in this

sphere to its surfacs’. The sphere center can move only in : . : ) .
S L . configuration may be reflected to become its antipode. In this
the direction of afree direction vector, but cannot move in . : L e
way a reflection seR is generated containing™2different,

the direction of dorbiddendirection vector. Thus a sphere is . ; : i .
gut equivalent, configurations. These configurations are

caged when it has no free direction vector. The sphere is . . )
: S equivalent in the sense that they can all be transformed into
noncagedwhen it has at least one free direction vector. A .
each other by at mo${l contact reflections. In other words,

free point onS? is the end of a free direction vector. ffee he followi h ber of flecti
surface sectois a part ofS? which contains free points only we can state the following3) Each member of a reflection
' set R generates the whole set by contact reflections

(Likewise we can define forbidden points, forbidden seg- . ) C )
X . . Since a contact and its antipod& necessarily share the
ments, and forbidden surface sectp#s.contactis a point- it foll hat th o
like obstacle by which we create a forbidden point33n Let same equatok, it fo ows that the partitioning of surface
sectors by thé\ equators is the same for all members of the

¢, be such a contact at positian (see Fig. 1 The contact same subseR. Nevertheless, even though a particular sur-

irgaelf/eesru10%2?&%%0\/552050?%A?éﬁshg);zdgoerz bgﬁé nts?n h face sector does not change in shape or position, the sector
y P ay be free in one configuration & and forbidden in an-

direction of G;. These forbidden vectors form a forbidden other. There is, however, an important restrictiof): Each

?#facti seﬁtor n tﬁe fo_rm Off a hem:(sphere \;m;ra{c_rl]ts {ooler.] surface sector in the reflection set R is a free surface sector
e other hemisphere is a free surface sector. The two hemys . o 0 oe p only

spheres are separated by the equaiogreat circle25]) E, Proposition(4) follows from the foregoing propositions.

associated with contac . Let a be a free surface sector in configurat®The sectoa
is free because it is free for all contact poifiroposition
(1)]. The whole seRR can be generated from by contact

Using definitions from Sec. Il we introduce theflection  reflectiong Proposition(3)]. But every reflection turna into
set Rvia a number of propositions about surface sectorsa forbidden sectofProposition(2)]. Hencea can only be

Ill. REFLECTION SET R
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free in the configuratios. The same reasoning applies to all E,
other sectors in the reflection $&twhich proves proposition o [53
(4).

We will now prove the following proposition(5) For
every member of R there is at most one surface sector free
Let a; be a free surface sector in configuratgrand leta, Eq
be another surface sectorsnin going froma; to a, at least
one equatofsurface sector boundarig must be crossed. Let

¢ be the contact associated with Surfacea, is free for all |

contact points[Proposition(1)]. Then by crossingg, the

hemisphere of free directions associated vtis left. Thus

a, is forbidden(with respect tac [propositions(1) and(2)]). ) _

As a result of proposition$4) and (5) we can finally con- FIG. 3. Each great circlg, generated by a contact, intersects all

clude:(6) The number of surface sectors is equal to the numpther great circles twice. The line segment between two intersec-

ber of noncaging members of R tions divides an existing surface sector into two parts.

Equation(4) reduces the caging problem fdf contacts to

the evaluation of the numbé¥(N,d) of surface sectors pro-
Let A(N,d) be the total number of surface sectors pro-duced by these contacts. For the cese3 this evaluation is

duced by(the equators 9fN random contact points onc  as follows.

dimensional sphere. According to propositi@), this num-

IV. CAGING PROBABILITY

ber equals the number of noncaging configuratiges, con- V. SPHERE CAGING IN d=3
figurations with one free surface segtar the setR. There-
fore the probabilityC(N,d) that a member oR doesnot PlaceN contacts at random on sphes& or equivalently:
cage a sphere is draw at randonN equatorg(or great circleson S? (Fig. 3).
As stated before, the probability that two equators coincide is
C(N,d)=A(N,d)/2N. (1) zero. This also applies to equathg,, of the next contact

Cn+1. Which has to intersect all existing equators. Since
All members of the infinite set of configurations Mfcontact  intersecting circles intersect each other twié] (for two
points are equivalent in the sense that each of them can begaeat circles orS? in two diametrically opposite poinkst
member of one reflection s&only. (A reflection of a con-  follows that addition of contaaty,; produces & new in-
tact point by definition only produces its antipode, and nottersections. While connecting thes8l 2ntersectionsEy ;1
any other contact position d, which would be required to also crosses 2 times a surface sector, thereby dividintyl 2
go from one reflection s to another. Since each reflection surface sectors into two parts and thus creatiNgrgw sur-
set R has the same fraction of noncaging membés  face boundaries. In short, the equaffy,,; generates R
presentN andd values, it follows that C(N,d) is also the additional surface sectors, so the number of surface sectors
probability that N contacts do not cage d-dimensional follows from the recursion relation
sphere.

The number of contacts required to cage the sphere is A(N+1,3=A(N,3)+2N for N=1. (5
called thecage size The average cage sizéN)y follows
from Note thatN=0 corresponds to one surface sector, whereas

N=1 creates two sectors:

<N>d:N21 P(N,d)N, ) A(0,3=1, A(1,3=2 6

whereP(N,d) denotes théaverage probability that apply- Using the second condition as the initial condition for Eq.
ing the Nth random contact point cages the sphere, while it(5), we find
still was free forN—1 contacts. Clearly,

A(N,3)=N°-N+2 for N=1. 7
P(N,d)=C(N—1,d)—C(N,d). (3)
Substitution of the numbers of surface sectors in Ej.
Therefore finally yields
- — ~(N-1)_ -N ”
(N)g szl [ANN=1d)2 AN d)2 N (N)g=1+ >, (N?>-N+2)2"N=7. (8)
N=1
_ 2 A(N,d)2~N. (4 This is precisely the result obtained earlier by numerical
N=0 ’ simulation[23,24].

021404-3



PETERS, KOLLMANN, BARENBRUG, AND PHILIPSE PHYSICAL REVIEW B3 021404

VI. CAGING PROBABILITY IN d DIMENSIONS

In d dimensions the calculation is essentially the same as
for d=3. Each contact point generatesca{1)-dimensional
equator(hypepplane that cuts the-dimensional spheréd
spherg into two d-dimensional hemisphere@ote that the
intersection of thel sphere and the equat@rypepplane is a
d—1 sphere. If we placeN contacts on thel sphere, itsd
—1 dimensional surfacg8®~? is then divided by thé\ asso-
ciated equatothypepplanes intaby definition A(N,d) sur-
face sectors. Now add arN@-1)th contact point and its
associated equatothypepplane. The intersection of the
equator (hypefplane with thed sphere creates a—1 FIG. 4. The shortest distance between contact points in the case
sphere, which is part of thetsphere’s surface. By definition, o toyching spheres is equal to the sphere radius
the N other equatofhypenplanes cut thisl—1 sphere into
A(N,d—1) surface parts. Thes®(N,d—1) parts form new
boundaries in the-sphere surface sectors themsely€am-
pare to thed=3 case, where the two-dimensional equator
circle segments formedN2 new boundaries in I8 surface
sectors of the 3 sphereTheseA(N,d—1) new surface sec- VIl. NUMERICAL SOLUTIONS OF SPHERE CAGING

tor boundaries on thd sphere therefore cl&(N,d—1) of .
the total of A(N,d) d-sphere surface sectors in two, so that, . we ghecked the re;ult f@(N‘.d) [Eq. (1)] by numerical
mulations. To obtain approximate values f&(N,d),

by placing the extra contact, the number of surface sectors i . . . . k
the d-sphere increases bY(N,d—1). This gives the recur- many random configurations 6f points on ad-dlr_nensmngl
rence relation ' ' unit sphere were generated, and the noncaging fraction of

them was determined as follows.
_ A random configuration is constructed by choosihgan-
A(N+1d)=A(N,d)+A(N,d—1) for N>1. . .
( D=AN.d+AN,d-1) fo © dom points on the surface of thiesphere. Then using all
The initial values are found as follows. A nondivided ppssmle sets _Oﬂ_l_ points out of thes&l points, all pos-
d-dimensional sphere consists of one surface sector. A on&iP'e (d—1)-dimensional equatdhypejplanes through the
dimensional sphere consists of two poifiiso surface sec- sphere center are constructed that contain tdes#& points.

tors, no matter how many times it is cut in two. Therefore, FOr €ach of thesghypepplanes one can easily check whether
the remainingN—d+ 1 contact points lie all on one side or

for the average number of random contact points needed to
cage a sphere id dimensions.

A(0d)=1, (10) on both sides of the hyperplafiey taking the dot product of
theseN—d+1 points with the normal vector of the hyper-
A(N,1)=2 for N>0. (11) plane under consideratipn

If all N—d+ 1 remaining points are located on one side of
For smallN values (N<d), A(N,d) has the trivial value ¥. the chosen hy_perplane, then &!Ipom_ts “? on one heml—
sphere, and this particular configuration is a free configura-

Up to N=d the addition of an extra contact point means_ . ) )
probing an extra spatial dimension, so that all existing equat-'on' If the points lie on both sides of the hyperplane, then

tor planes are cut in two parts. For high¢walues this is no t_he chosen configuratior_1 s not fr_ee with respect to this par-
longer the caseA(N,d) then becomes smaller thaf\' 2and ticular hyperplane, bu_t It may S.t'." be free with respect to
one has to rely on Eq(9). Using relation(9), multiplying another hyperplanéwhich is sufficient for the sphere to be

both sides by 2N, summing from one to infinity, and sub- frfee)li If the'tﬁonglguratllon IS r][?]t frefte. with respect tof_any (t)_ne
stituting expressiori4) gives of all possible hyperplanes, then it is a caging configuration.

By repeating this procedure 1@imes and counting the frac-

_ tion of free configurationsA(N,d) is calculated. The agree-
(N)a=(N)a-1+2A(0d) (12 ment between the theoretical predictions and the simulation
results was found to be excellefsee, for example, Fig.)5

We also calculated values for the caging probabilities for
random configurations of harspheres(instead of uncorre-
lated contactstouching a test sphere. This problem, which is
not treated analytically in this paper, is relevant to model the
% o effect of contact correlations which inevitably are present in

_ ~N_ ~N_ real hard-sphere systems.
(N)y Nzo AlN.1)2 1+NE:l 2%z 3 (4 These simulations were performed in the same way as
described above, except that the randomly generated contact
The final result is points on the surface are now regarded to be contacts of the
central sphere with constraining spheres, having the same
(N)gq=2d+1 (15  radius as the central sphere. Figure 4 illustrates that in this

=(N)g-1+2 13

This single recurrence relation fON)4 can easily be solved
by using, as the initial value,
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TABLE |. Simulation results of sphere caging.

No. free Total no. C(N,d) C(N,d) (N) (Ny
confor- confor- sphere point sphere point
d N mations mations contacts contacts contacts contacts
2 2 - - iy 12
3 3406 591 10000 000 0,3407 0,7500
4 0 10000 000 i) 0,5000 3,34 5
3 3 - - P 12
4 5997 315 10000 000 0,5997 0,8750
5 1794911 10000 000 0,1795 0,6875
6 142701 10000 000 0,0143 0,5000
7 562 10000 000 0 0,3438
8 - - @ 0,2268 4,79 7
4 4 — — P 12
5 7708936 10000 000 0,7709 0,9375
6 4079862 10000 000 0,4080 0,8125
7 1383658 10000 000 0,1384 0,6563
8 271906 10000 000 0,02719 0,5000
9 12137 4500000 0,00270 0,3633
10 10 150000 0,00007 0,2537
11 - - @ 0,1719 6,35 9
5 5 — - ? 12
6 8742127 10000 000 0,8742 0,9688
7 6083073 10000 000 0,6083 0,8906
8 3245033 10000 000 0,3245 0,7734
9 389323 3000000 0,1298 0,6367
10 382818 10000 000 0,03828 0,5000
11 16 377 2000000 0,00819 0,3770
12 252 200000 0,0013 0,2744
13 - - @ 0,1938 7,98 11
6 6 — - iy 12
7 2799581 3000000 0,9332 0,9844
8 2270544 3000000 0,7568 0,9375
9 1540468 3000000 0,5135 0,8555
10 860823 3000000 0,2869 0,7461
11 395 147 3000 000 0,1317 0,6230
12 99 241 2000000 0,0496 0,5000
13 7674 500 000 0,0153 0,3872
14 - - @ 0,2905 9,69 13

&Theoretical value
bEstimated value; the resulting error (N) is smaller than 0.01.

case the shortest distance between different contact points @y correlation which increases the average distance between
equal to the sphere radius. In the simulations this condition ishe contacts will increase their caging probability. A hard
fulfilled by generating new, random configurations of tie sphere attached to contacts is such a “repulsive” correlation.
points until the shortest distance between all contact points is One could maximize the effect of such correlations by
larger than or equal to the radius of the unit sphere. Then theequiring that the distance between any pair of constraints on
simulation is continued as described above. The results ametest sphere must be maximéfor an extensive discussion
given in Table I. of such maximization problems, see RE27].) This would
Figure 5 compares the average cage size for hard-sphebe a way to find the minimum number of constraints needed
constraints to the analytical resUlEq. (15)] for random to cage a sphere. For example, an equilateral trianiyle (
point contacts. The hard-sphere cage simhich increases =3) cages a sphere th=2, and a tetrahedroiN(=4) cages
nearly linearly with the dimensiod) is at a givend always a 3D sphere. This already suggests that
smaller than the cage size for random poigich in-
creases exactly linear witth). This can be understood from
the inefficiency of random point constraints to cage a sphere: Nming=d+1 (16

021404-5



PETERS, KOLLMANN, BARENBRUG, AND PHILIPSE PHYSICAL REVIEW B3 021404

For spherical constraints both the increase and decay of
the probability is much more pronounced than for random
contacts. Note that for random points there is, of course, no
limit to the number of contactll on a free, uncaged sphere.
For hard spheres there is obviously a maximum value. For
d=1, 2, and 3 there is a maximum number Nf= 1, 4, and
9 spheres, respectively, which may contact a test sphere
without caging it(the maximum apparently equat€). The
4 Min. no. of contacts: 3D maximum concerns a triangle of three spheres which

<N>g=d +1 “support” the test sphere such that only one free direction
0 ‘ ‘ ‘ vector(perpendicular to the trianglés left. Then a hexagon
! 2 8 4 5 6 of six spheres can be added which all leave the direction
d vector free. However, the next contddt= 10 always closes
the cage. Therefore, in Fig. &(N=3)=0 for N=10. For

FIG. 5. Simulation results for the average number of contacts3<<N< 10, the probability is finite, but it is clear from Fig. 6
(N)4 needed to cage a spheredmlimensions. The caging occurs that random sphere cages larger than 8 are rare events. These
by random point contacts or by spherical constraitar d=1,  predictions are confirmed by computer generated contact dis-
both data points are theoretical valyes. tributions for 3D random sphere packin@s]. Interestingly,

10 is the largest contact number obser{28], realized only
is the minimal size of a cage for arbitrary dimension. Indeedpy an extremely small fraction of spheres.
Eq. (16) follows from the fact thatl contacts form a number
_of surface s_ectors given bx\'(d,d_)z 29, Then Fhe probabil- VIIl. COMPARISON WITH RANDOM SPHERE
ity C(d,d) in Eqg. (1) equals unity. As explained near Eq. PACKINGS
(11), A(d+1,d)<29*1 so thatC(d+1,d)<1 (d+1,d)
<1. Therefore one can always construct a caging configura- In a random dense sphere packif®pPP) the majority of
tion with d+1 contacts. A consequence of Eq&5) and  spheres is arrested by its neighbors. If this arrest implies
(16) is that the average cage size due to repulsive contactsbsence of any free direction vector, the majority of spheres
must satisfy in a RDP is caged, according to definitions in Sec. Il. There-
fore, we have re-examined coordination numbers in experi-
d+1<(N)y=2d+1. (17) mental and simulated hard-sphere packings from a caging
point of view, in particular because there seems to be no

Our simulations for hard-sphere contacts in Fig. 5 complydn@nimous agreement on the val@d physical meaning

with this requirement. Figure 6 compares analytical and®f these coordination numbefg—21].

simulation results for the caging probability for a sphere in Often, neighboring spheres that do not touch the test
three dimensions. sphere are still included in reported coordination numbers.

However, we adopt the view that only neighbor spheres that
are in real contact with a test sphere form its constraining

® Sphere constraints:
12 | [<N>¢=0.046 d° +1.22d +0.73

s Contact points:
1091 cN>q=2d+1

0.45 - cage. Therefore, comparison with literature results should be
0.40 - ,//’\ Soheres made with care, as one needs t.o specify a minimal distance
0.35 f/ \ between two surfaces below which the surfaces are regarded
. to be in “real” contact. Variations in this cutoff distance and
0307 \ its extrapolation to zero give rise to a variety of average
g 0251 | \ coordination numbergc) in the literature[4—21]. Early in-
T 0209 | \ vestigatorg 7] estimated thafc)~10. Bernal and Masof8]
045 | / \\“\.\ arrived at a more realistic average of about 6, on the basis of
010 / y ‘*\ . _ experlmgnts as well as the argument that “each spher_e may
[/ ‘ “w. Points be considered in general to rest on three others and in turn
0.05 / \ ‘\"""“L\.\s supports another three[8]. Some author$29] even used
0.00 # ‘ T w — (c)=6 as thecriterion for choosing the “correct” cutoff
8 4 5 6 7 8 9 0 1 12 13 distance of 1.057 sphere diameters, which is certainly too

large in view of Fig. 7, as discussed below. Benh&H also
argued that mechanical stability requirgs =6.0, and also
FIG. 6. ProbabilityP(N,3) that a sphere becomes caged in three0UNd this value by extrapolation from his simulation data.

dimensions on placing thiith random constraint. The simulation IS extrapolation, however, is not quite straightforward,
results(®) for spherical constraints show that a test sphere is veny@nd, moreover, the simulated packing densitigs=0.61)
likely caged by a number of hard spheres in the range 4—7. Th@re below the experimental value ¢f=0.64. This suggests
analytical results(l) show that uncorrelated point contacts are that Bennett’s sphere deposition techni] does not re-
much less effective “cage formers(Lines are drawn to guide the produce all details of a real RDP. Such a shortcoming was
eye) also noted in other simulation studig$4,16 where mean
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(Fig. 7) equals the average cage size for an individual test
& sphere contacted by hard spheres. This is an interesting result
because it indicates that the coordination number is deter-
mined by only two basic features of a RDP, namely, that the
majority of spheres is arrestédaged and that the spheres
cannot interpenetratghe volume exclusion which produces
10 - the contact correlations
e This interpretation of the physical origin of tifealue of
° the coordination number implies that the random sphere
& packing is basically the same as the random caging of
° spheres by spherical constraints. Therefore the RDP volume
fraction $=~0.64 seems in a sense an accidental consequence
° of caging effects, rather than the result of some maximiza-
tion procedure for the density or coordination numbers. A
caged test sphere could still in some cases accommodate ad-
ditional spheres in its “coordination shell” of contacting
neighbors(consider, for example, a sphere caged by only
four other$. However, this accommodation may be ob-
structed by the fact that the majority of the spheres in the
I I I I , vicinity of the caged test sphere are immobilized as well.
10 1.1 12 13 14 15 Therefore, we expect that the coordination numizerd the
—» radial distance r in diameters corresponding_ densﬂyn a real RDP cannot rise much above
the average sizéig. 5 of a random hand-sphere ca@ad
FIG. 7. Number of neighbor spheres within a radial distainge  the corresponding densjty
of the central sphere according to Magadd] obtained from experi- Our caging analysis also makes clear why the coordina-
ments of Scot{9] on large numbers of randomly packed, smoothtion number in a RDP must be a distributed quantity. This is
steel balls.(Sphere positions were determined with an accuracyinherent to the statistics of the cage sifég. 6). Note the
better that 1% of their diamet¢®].) Note the steep gradient near strong difference from the hexagonal close sphere packing
the contact number at=1.0. which maximizes the density for single-valuedcoordina-
n number ofc=12.
Whether our analysis ultimately implies that random close
0sphere packings can be generatpantitativelyby a local
caging rule is still an open question. If such a rule applies,
one would expect, on the basis of Fig. 6, that the tail of the

-
[6)]
|
[+]

—> number of spheres within distance r
(6]
ol

0

. tjo
nearest neighbor numbers close to 6 were also found, though

and Finney[17] used(c)=6.0 as input for their calculation
of the RDP density. They admitted that this number is still

not_r(ra:(cludel_lowe_rtcoordinailtiorll nur:nbe(rcs><d6. ed 5O random sphere packings.

IS honlinéarity was clearly shown and emphasized by Finally it should be noted that in the simulation of sphere
'V'asof‘[lll who reanalyzed the o_ngmgl Qatq from eXteNSIVe ., oiraints in Fig. 6, spheres dired after being placed in
experiments of Scofi9] on the radial distribution of spheres contact with the test sphere. In the experiments of St

in a RDP. The outcome of Maspn’s analységee Fig. 7 however, a RDP is formed by pouring and shaking so that
clearly shows the steep gradient in the experimental conta roups of spheres may reorganize. Perhaps this difference
num_ber when sphere §urfaces are very close toggther. Mas mobility affects the comparison of contact numbers. The
confirmed Scott’s finding that there are .8.8 neighbors extensive computer simulations of RE28], for a very small

within 1.1 diameters from the center of a test SpHeig. 7). cutoff distance of 107 sphere diameters, yielded an average
However, he concludefll1] that on average there are only contact number ofc) =5.8295, consistent with EGL7), but

about five actual contacts. Since Sd&t reported an accu- larger than expected from Fig. 7. It remains to be investi-
racy of better than 1% in the radial distance measurementa,ated how contact numbers d.ep.end on details of the con-
this conclusion. Is justified: Th? experimental Coordi.nationstruction of a random sphere packing by either experiments,
humber determlned frqm F|g: 7 is actually 476.02, which simulations[28,29, or application of a simple caging rule.
agrees well with our S|mulat|pn result QN>3.=4:79i 0.02.  \whatis clear, nevertheless, is that the widely quoted value of
Note that the contact numbére., the coordination number (c)=6.0[21,30 very likely represents an underestimation of

atr=1.0 in Fig. 7 is in any case sandwiched between theye efficiency with which hard spheres cage each other in
minimal value ofd+1=4 and the cage sized2-1=7 for random denge packings. P g

random contactfEq. (17)].

IX. DISCUSSION X. CONCLUSIONS

We have found that the averageperimentalcoordina- The average number of randomly placed point constraints
tion number of a RDP obtained from proper extrapolationneeded to cage d-dimensional sphere is equal {iN)4
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=2d+1. To prove this result, configurations of contactthat RDP properties might well be derived from tfiecal)
points can be grouped into equivalent subse#dled reflec- caging behavior of individual spheres.

tion sets, from which caging probabilities can be deduced

without a need for averaging over all possible configurations.
Simulations of the caging by spherical constraints show that
hard spheres are much more effective “cage formers” than
random contacts. The simulation value ©¢N);=4.79 M. Lanen, M. Uit de Bulten, and |. Van Rooijen are ac-

(+0.02) agrees with the experimental average coordinatioknowledged for their help and patience in preparing the
number(of 4.76+0.02 in the random dense sphere packing, manuscript. G. Koenderink and W. Kegel are thanked for
according to Mason11]. This result supports the physical stimulating discussions. J. K. G. Dhont is thanked for his
picture that the coordination number in random close packeritical comparison of earlier versions of the theory. The EC
ings of spheres is foremost determined by the individualColloid Physics Network meeting in Varenna 1998 initiated
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[1] P. N. Pusey, irLiquids, Freezing and Glass Transitioedited
by J. P. Hansen, D. Levesque, and J. Zinn-Juéfisevier,
Amsterdam 199]] p. 899.

[2] P. N. Pusey and W. van Megen, Natuteondon 320, 340
(1986.

[3] J. D. Bernal, Trans. Faraday S@®&S, 27 (1937).

[4] J. D. Bernal, NaturéLondon 183 141 (1959.

[5] J. D. Bernal and J. Mason, Natufieondon 188 910 (1960.

[6] J. D. Bernal, Proc. R. Soc. London, Ser280, 299 (1964.

[7] W. O. Smith, P. D. Foote, and P. F. Busang, Phys. Rdy.
1271(1929.

[8] J. D. Bernal and J. Mason, Natufieondon 188 111 (1960.

[9] G. D. Scott, NaturéLondon 194, 956 (1962.

[10] D. P. Haughey and G. S. G. Beveridge, Chem. Eng. &Li.
905 (1966.

[11] G. Mason, NaturéLondon 217, 733(1968.

[12] R. H. Beresford, Natur€_ondon 224, 550 (1969.

[13] J. L. Finney, Proc. R. Soc. London, Ser.3A9, 479(1970.

[14] W. M. Visscher and M. Bolsterli, Naturé_ondon 239 504
(1972.

[15] C. H. Bennett, J. Appl. Phy€l3, 2727 (19712).

[16] E. M. Tory, B. H. Church, M. K. Tam, and M. Ratner, Can. J.
Chem. Eng51, 484 (1973.

[17] K. Goto and J. L. Finney, Naturg.ondon 252, 202 (1974).

[18] G. D. Scott and D. M. Kilgour, Br. J. Appl. Phy®, 863
(1969.

[19] J. D. Bernal, I. A. Cherry, J. L. Finney, and K. R. Knight, J.
Phys. E3, 388(1970.

[20] D. J. Cumberland and R. J. Crawfoithe Packing of Particles
(Elsevier, Amsterdam, 1987

[21] Disorder and Granular Mediaedited by D. Bideau and A.
Hansen(North-Holland, Amsterdam, 1993

[22] A. P. Philipse and A. Verberkmoes, Physica 285 186
(1997).

[23] S. G. J. M. Kluijtmans, Ph.D. thesis, Utrecht University, 1998.

[24] A. P. Philipse and S. G. J. M. Kluijtmans, Physic&2&4, 516
(1999.

[25] D. A. Brannan, M. F. Esplen, and J. J. Gr&gometry(Cam-
bridge University Press, Cambridge, 1999

[26] Euclid, The ElementsBook IlI, translated by S. L. HeattDo-
ver, New York, 1956

[27] H. Melissen,Packing and Covering with Circle®h.D. thesis,
Utrecht University, 1998.

[28] B. D. Lubachevsky, F. H. Stillinger, and E. N. Pinson, J. Stat.
Phys.64, 501 (1991).

[29] A. S. Clarke and H. Jusson, Phys. Rev. &7, 3975(1993.

[30] Advances in the Mechanics and Flow of Granular Matetials
edited by M. ShahinpodiGulf Publishing Company, Houston,
1983, Vol. 1.

021404-8



