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Crystal structures and freezing of dipolar fluids
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We investigate the crystal structure of classical systems of spherical particles with an embedded point dipole
at T=0. The ferroelectric ground state energy is calculated using generalizations of the Ewald summation
technique. Due to the reduced symmetry compared to the nonpolar case the crystals are never strictly cubic.
For the Stockmayefi.e., Lennard-Jones plus dipolanteraction three phases are found upon increasing the
dipole moment: hexagonal, body-centered orthorhombic, and body-centered tetragonal. An even richer phase
diagram arises for dipolar soft spheres with a purely repulsive inverse power law potential A crossover
between qualitatively different sequences of phases occurs near the experfghtThe results are applicable
to electro- and magnetorheological fluids. In addition to the exact ground state analysis we study freezing of
the Stockmayer fluid by density-functional theory.
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[. INTRODUCTION Stockmayer model and, in addition, determined for the first

The last years have seen a revival of interest in simpldime portions of the phase boundaries between isotropic and
dipolar fluids, which consist of spherical particles with em-ferroelectric liquid and between ferroelectric liquid and
bedded point dipoles, triggered by two unexpected observasolid. Although these results support the basic conclusion in
tions: At high interaction strengths and high densities a lig-Ref.[15] they found that the stable solid phase of the Stock-
uid phase with long-range ferroelectric orientational ordemayer model is body-centered orthorhomidco) and addi-
but without any positional order occufs]; at low densities tionally observed a metastable distorted hexagonal structure,
the particles form a gas of chains behaving like living poly-possibilities that have not been taken into account in the
mers[2]. The latter effect was suggested as an explanatiotheoretical wor 15—18 so far. Both bco and bct as well as
for the apparent absence of gas-liquid condensation in dipan fcc crystal with helically varying polarization direction
lar hard sphereg3], but this subject is still under discussion have been reported before in simulations of dipolar hard
[4]. Both phenomena have first been detected in computesphereq24], but the thermodynamically stable state could
simulations[5-9], followed by theoretical work10-14. not be determined. Certain structures may be suppressed in
This discussion applies to electric and magnetic dipoles irsimulations due to the periodic boundary conditions if the
complete analogy; in the following we will use the electric cell shape is not flexible enough.
language. A simple heuristic argument why a cubic structure is not

Knowledge about the solid phase of these systems is neexpected runs as follows. All these crystals are ferroelectric
essary in order to know under which circumstances formaand hence have less symmetry than in the nonpolar case; the
tion of the ferroelectric liquid is preempted by freezing. This point symmetries can only be reflections at planes that con-
question has been tackled theoretically within two differenttain the polarization axis and rotations around this axis.
versions of density-functional theory. Groh and Dietifi@ds]  Therefore if, e.g., in a cubic crystal a polarization[it00]
found a stable ferroelectric liquid for the Stockmayee.,  direction is switched on, the additional introduction of a con-
dipolar Lennard-Jongsnodel if the dipole moment is high traction along this direction does not further reduce the re-
enough. Klapp and co-workers, however, found within theirmaining symmetry. Hence generically the crystal will have
approach that the ferroelectric liquid is always metastable iran axis ratio different from unity, i.e., it will be tetragonal.
comparison with the solid both for Stockmayer and dipolarFor polarization along the initigl110] and[111] directions
hard sphere fluid§16,17]. But in a recent study they dem- the same reasoning leads to orthorhombic and trigonal crys-
onstrated that their result depends sensitively on the appliegls. Thus a ferroelectric solid can never be strictly cubic, in
approximationg18]. The only solid structures considered in contrast to the assumptions made in the density-functional
these papergl5-184 are face-centered cubifcc), which is  work described above and in similar work on the Heisenberg
the known crystal structure in the nonpolar limit, and body-fluid [25].
centered tetragonalbct) with the special axis raticc/a Thus up to now it is quite unclear which crystal struc-
=/2/3, which had been determined before as the grountlre(s) actually are stable in these widely used dipolar model
state of dipolar hard sphergE9] and has also been observed systems. As a first step to elucidate this region of their phase
in simulations[20] and in experiment$21,22 with elec- diagram in the present work we determine the ground state
trorheological fluids, i.e., suspensions of polarizable colloi-structure as a function of density, dipole strength, and soft-
dal particles. ness of the isotropic interaction potential. Since in principle

In a recent simulation Gao and Zeh23] confirmed the an infinite number of crystal structures exists, characterized
occurrence of a stable ferroelectric liquid phase for theby an increasing number of parameters with increasing num-
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ber of particles in the basis, an exhaustive search for the o\ [g\6

ground state is not possible. However, we include a rather Wy (r)=4e e I

large class of candidate structures, comprising among others

all reasonable simple Bravais lattices. A relatively complex

phase behavior is found dt=0. There is reason to expect The parameters ando define the energy and length scales,
too high temperatures and thus provide a valuable startingagyced dipole momemt* =[m2/(o>€)]¥2 and the reduced
point for a more complete analysis of the fu_II phase diagr_amparticle densityp* = o3N/V of N particles in the voluma.

In a recent worK26] ground state energies and ordering gince in the SS case only the combinatien” enters the

temperatures for ferroelectric and antiferroelectric arrangepotential, the only independent thermodynamic parameter is
ments of Ising dipoles on several lattices have been detef;_ . 2/p*"M3-1 |n the LJ case the ground state energy per
mined, but no attempt has been made to optimize the lattice

H — B A% m*
structure. In this study also the presence of isotropic interacQartICIeU has the forml = eE(p™, m*) whereas for the S3

tions was not taken into account. case one ha = ep* "3E(m* /p*"3"1) whereE andE are
In our analysis we always assume a spatially homogedimensionless scaling functions which conFain all the struc-
neous polarization throughout the sample. In real ferroelecture dependence. For soft spheres the optimum structure re-
tric materials domains will form due to the long range natureMains the same as long asis kept constant because the
of the dipolar interactioi27]. The domain structure in the Prefactorp*"? is the same for all structures belonging to a
liquid ferroelectric phase for a cubic sample shape has beegjven reduced densitp*. Furthermore one can show that
analyzed in detail in Ref.28]. This more complicated situ- &lso phase coexistence densiti¢'sdetermined for one value
ation is avoided in two case$i) a needle-shaped sample of m* can be scaled to another dipole momerit’ accord-
(infinite aspect ratip implying a vanishing depolarization ing to p*/=(m*/m*")®"=3)p* = hecause d(p* U)/dp*
factor; (i) cancelling of the induced surface charges by free= ep* "°E,(x) with another scaling functiof,. Hence for
charges which are present in a conducting surrounding mehe SS model without loss of generality we s&t=1.
dium or as impurities in the material itself. Explicitly the ground state energy per patrticle is
After having reached a basically complete overview of the
thermodynamically stablground states in such systems, L
which is interesting in its own right, in a second step by _ B /
using density-functional theory we return to the issue of U_Udip+Uiso_§ ;T [Waip(R+7) +Wiso(R+7)],
which solid phase the ferroelectric liquid phase of the Stock- (4)
mayer fluid forms uporireezing This closes the aforemen-
tioned gap between the analysis of the solid phases as con-
sidered so far in the theoretical analy§d$—18 and the whereR runs over theN, lattice vectors of a Bravais lattice
observation of those types of solid structures as found irand = over theM positions of the basis particles within one
simulations[23]. It consolidates the theoretical prediction unit cell so thatN=N,;M; the prime on the summation sign
[15] that the Stockmayer fluid can exhibit a thermodynami-indicates that the term witR+ =0 must be omitted. Here
cally stable ferroelectric liquid phase, in accordance with theve implicitly have replaced a double sum over the lattice
simulation results. sites by a single sum, assuming that the average energy per
particle is equal to the energy of the particle at the origin. It
is a nontrivial issue whether this assumption is justified for
the long-ranged dipolar potential. In the Appendix we show
We study systems of spherical dipolar particles interactthat it is correct for a spatially homogeneous configuration in
ing via the dipolar potential an ellipsoidal sample shape, but not, e.g., for a parallelepi-
ped.[But we recall that only under the conditions mentioned
2 9 9 in the last but one paragraph of the Introduction the ground
—mre+3(m-r) : ; :

Waip(r) = . , (1)  state has spatially homogeneous orientational order as as-
sumed in Eq(4).] Straightforward numerical calculation of
these lattice sums is hampered by their slow convergence.

wherer is the interparticle vector anu the dipole moment, 1herefore generalizations of the Ewald technique are em-
which is assumed to have the same orientation for all parPloyed to transform the sums into a more rapidly converging
ticles. In addition there is an isotropic interaction, which ~ 1orm- The basic idea for evaluating adroitly a general sum
is taken as either the purely repulsive soft spt&® poten-  >rf(R) is to write f(R)=h(R) +g(R) whereh(R) decays
tial rapidly in real space and the Fourier transforgik)
=[d®r e "g(r) decays rapidly in reciprocal spa¢a9].
o\ The sum ofg is then evaluated in reciprocal space using the
Wssif)=46(—> 2 Poisson sum formula. For the inverse power sums with
r f(R)=R™" one uses h(R)=I'(n/2,v°R?)/[R"T'(n/2)],
wherel'(a,x) is the incomplete Gamma function and obtains
or the Lennard-Joned.J) potential for a Bravais latticg 30,29

()

II. MODELS AND METHODS
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2 2
P $= ﬁ go %F(n/Z,vZRZ) udip=m7 RE O (R+7)+ ‘\1/—7: go E COik-T)%
72 k\"™3 [3-n K k2| 40°
V. E(z) T(T'ﬁ) Xexp(‘ﬁ)‘gﬁ ©
2 2 2 If the dipoles are not oriented along tlzeaxis of the
- ﬁVan n—-3 Ve o3 ) lattice but have a general orientatiom the dipole sum has

the form3;;m; T;;m; with a symmetrical matrisT;; [see Eq.

, ) ) (1)]. The optimum direction is then necessarily along one of
Here k_ runs over the reciprocal Iat.tlc&.’,c is the v_qume of  the eigenvectors of which coincide with high symmetry
the unit cell and the last two contributions take into accounfagtice directions. Thus it suffices to consider only one or two
the omissions of the ternR=0 andk=0. The parameter possible orientations for each lattice.

can be chosen arbitrarily and the independence of the The following crystal structures, displayed in Figs. 1 and
total sum _prowdes a convenient check of the algorithm. I> were included in the search for the minimum of the energy
practicer is chosen such that both sums converge approxitexcept for trigonal lattices the polarization is always along
mately with the same rate. Typically a few hundred latticethe ¢ axig):

vectors in real and reciprocal space are sufficient to obtain (1) pody-centered orthorhombidco with axis lengths
machine precision (10°). The straightforward generaliza- 5, b, ¢; reduces to bct fom=b, to fcc polarized along

tion to M particles in the basis leads to [110] for b/a=c/a=1/\/2 (see Fig. 1, and to fcc polarized
along[001] for b/a=1, c/a=2;
- 2¢o0" L' (n/2,3(R+ 7)?) (2) face-centered orthorhombidco)—note that for the
n)_ ! ! — - - -
Uss T (n2) ;T IR A" tetragonal caseb(=a) face-centered and body-centered lat

tices are equivalent;
32 ( )n_3 3-n K2 (3) trigonal (trig): three equal axes with angle between

any pair of them, polarized alorid 11]; reduces to various
cubic lattices polarized alondL11] for special values of;
(4) hexagonal with axis lengtha, ¢ and a second basis
6) particle at7=a/2(1,1A/3,c/a) polarized along thec axis
(hexg; corresponds to hexagonal close packédp for
cla=/8/3;
(12)_ (5) an orthorhombic lattice with four basis particles at

— (6)
Clearly for the LJ case)iso=Uss’~Uss. _ =0, 7=(al6pl2cl2), m,=(al2,0c2), and 7
An analogous expression for the dipolar lattice sum Can=(2a/3 b/2,0) which can be viewed as a distorted hcp lat-
be obtained from the well-known result for the potential of a .

. . tice with polarization in theab-plane(hexal; this structure
lattice of point chargef31] was obseprved in Ref23]. P ( b
These possibilities have been chosen for the following

m2 At k2 k2 4,83 reasons. The structures bco, hexc, and hexab are generated
z . . . .
Ugip="5| 2 P (R)++~ > —exg ——|——— by slight distortions of the close packed fcc and hcp lattices
P
2 | &70 V¢ k7o k2 402 3 ;
¢ v 7’ which represent the ground state for=0. The structures

(7)  fco and trig are included, because they approach reasonable
low density configurations in certain limits, which have been
with observed in electrorheological fluifi2]. For y— 2#/3 trig
degenerates into a hexagonal array of dipolar chains, and for

2, c,b<<a fco develops into a collection of parallel sheets. The

d (R)= 4(R2—3R§—2v2R2R§)e* v?R? _onIy remaining Bravai; Ifattices, monoclinic and triclinic, are
N improbable and also difficult to handle because of the larger
number of free parameters. We tested a monoclinic variation
RZ_ 2 . e ..
n 2 orfd vR 8 of bco and always found that the energy is minimized for a
R5 eric(vR). (8) right angle between the axes. Concerning more complex lat-

tices it is difficult to define a reasonable parameter space

) ) without a physically motivated structure to start from.
Due to the slow decay ofvg, the dipolar sum is actually

only conditionally convergent, i.e., the result is shape depen- . RESULTS
dent. In the Appendix we present the derivation of Eq. 7 and
show that it corresponds to the case of a needle-shaped
sample which is of interest here. The corresponding gener- If one starts from the fcc structure of the nonpolar LJ
alization to lattices with a basis reads system and introduces a dipole moment, all orientations of

A. Stockmayer model atT=0
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FIG. 1. (Color) Geometries of
the first four lattice structures con-
sidered in the search for the en-
ergy minimum. For bco the situa-
tion at the fcc—bco transition is
shown: when a small dipole mo-
ment is introduced in a nonpolar
fcc crystal, polarization along
[110] is preferred and the crystal
contracts in this direction. Thick
and thin lines mark the conven-
tional unit cells of fcc and bco, re-
spectively. Red particles lie on the
face centers for fcc and fco and at
half height = c/2) for hexc.

the polarization have the same energy, as long as the cubfindings indicate that thg110] direction is selected, corre-
symmetry is preserved. However, as discussed in the Intrasponding to a bco distortion as shown in Fig. 1. Intuitively
duction, the crystal actually distorts towards bco, bct, or trigthis can be understood as a preference for the formation of
depending on the direction of the polarization. The numericathains along the polarization directidrt10] points towards

hexab

FIG. 2. (Color The “hexab” crystal structure
which arises from a distortion of a hexagonal
close packed lattice polarized in a nearest-
neighbor direction within the hexagonal plane. It
is an orthorhombic structure with three additional
basis particles shown in red(), green &), and
blue (m3) with coordinates as given in the main
text. Four orthorhombic unit cells are shown. The
thin lines mark the hexagonal unit cell that is re-
covered for the special axis ratida=1/y3.
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FIG. 3. Axis ratios of the bco phase of a Stockmayer solid at
T=0 andp*=1.24 as a function of the dipole moment. Faof
=0 one hax/a=b/a=1/\/2 corresponding to fcc. The diamonds
denote simulation results of Gao and Zerng3] for p*
=1.24, m*=25, andT*=0.7. At m} =4.25 a continuous transi-
tion to bct takes place. Note that for* <1.95 the hexc structure is
slightly more stable than bco, while fon* >2.55 gas-solid phase
separation occurs. Thus for this density bco is stable within th
indicated window and metastable outside.

FIG. 4. Ground state phase diagram of the Stockmayer model.
The solid(dotted line denotes firstsecondl order transitions. The
dashed line indicates the global minimum of the energy per particle
over all densities. The unlabeled area to the left of this line is a
two-phase region where an infinitely diluted gas coexists with the
solid. The maximum of the pressupe=p29U/dp in the depicted
eoarameter range occurs in the lower right corner where
=500¢/ 0. Using parameter values for argon this corresponds to
about 20 GPa which is accessible in a laboratory.

the nearest neighbors so that the particle distance along thi the balance towards one or the other phase. TheTiull
chains is smallest in this case. Indeed, upon increasing the 0 phase diagram is shown in Fig. 4. The hexc-bco transi-
dipole moment the length of theaxis decreases, reflecting tion is first order but exhibits only a tiny density jump
the strong attractive interactions along the chains. Figure 3 p* =5x 103, The dashed ling*, (m*) marks the abso-
displays the dependence of the bco axis ratios on the reducggte minimum of the energy per particle over all densities. If
dipole momentm*. The result of Gao and Zen@3] for 5 system is prepared with a density belpiy., it spontane-
p*=1.24, m* =25, andT*=kgT/e=0.7 denoted by the oygly shrinks to this minimum and leaves a corresponding
diamonds lies very close to thie=0 result. Obviously the hortion of empty space. Thus the regiph<p?* . is a two-
ground state gives a good approximation to the equilibriunphage coexistence region between the lowest energy solid
state at least up to half the triple temperatWife=1.3[23].  anq an infinitely diluted gas. FGF>0 it connects to gas-
The same authors also report a metastable hexab structureggfjig coexistence while the liquid phdseappears only at
m*=2.5, T*=0.8, andp” =1.146 with the axis ratios/a  pigher temperature above a triple point. Thal;, corre-
=0.497 andb/a=0.953. The corresponding values in the gponds to a phase coexistence density can also be shown

ideal hcp lattice arec/a=0.577 andb/a=0.942, respec- more formally by performing a double tangent construction
tively. At T=0 the hexab crystal is only metastable t00, with 5y the (freg) energy densityu(p) =pU(p). For finite tem-

c¢/a=0.510 andb/a=0.961. With increasing dipole moment peratures an entropic term Tp In p must be added for the

the two bco axis Ienthb and a perpendicular tcm ap-  gas phase, so that a double tangenpatand ps can be
proach each other until at a critical valug a continuous  constructed with

transition to bct takes plaogig. 3). After a cusp am; in

the bct phase/a decreases again and is much lower than the 0 % _u ¢ T,0
“ideal” value y2/3=0.816 found for dipolar hard spheres. ~ P92 Ps7"Pmin: g = . for 10
The true ground state of the nonpolar LJ model, however, Pmin Pmin (10)

is hcp which has an energy very slightly below the fcc value

(by 0.01-0.02% depending on dengityrhis difference is  The |ast equation is equivalent to the minimum condition
only due to second nearest neighbors because the numt@o/dpzo_

and distances of the 12 nearest neighbors is equal in fcc and s we conclude that at=0 the Stockmayer crystal in
hcp. The dipolar energy of the hcp lattice with polarization, commonly studied range* <3 is either hexc or bco,

along thec axis[20] is lower than with polarization along the 54 1ot fcc nor bet as assumed in various studies before.
a axis [19]. Therefore for small dipole moments a slightly

contracted hcp latticéhexg is preferred over bco, although
the energy differences are always very small, e.g., below
0.16% for p* =1.24. At larger dipole moments bco takes In this section we present the predictions of the density-
over as the stable phase. Because of the smallness of thesactional theory(DFT), which we applied to freezing of the
differences entropy effects at finite temperature may easilfstockmayer fluid in our previous woifld5], when the addi-

B. Stockmayer model atT>0

021203-5



B. GROH AND S. DIETRICH PHYSICAL REVIEW BE63 021203

0.7
v
R
© *
= [
w 068
>
©
— c¢/a
066 ........ b/a
0 02 04 06 08 1 12 14 16
N p*

FIG. 6. Phase diagram of the Stockmayer fluid as calculated
from density-functional theory fom* =2. The ferroelectric solid
has hexc structure. The dotted line indicates the gas—ferroelectric
liquid—ferroelectric solid triple temperature. The dashed lines are
the corresponding phase boundaries if an fcc solid is assumed. The

. . unlabeled areas are two-phase regions.
tional crystal structures hexc and bco are taken into account.

This approach is based on a perturbation expansion around . ) _
the hard sphere solid which is treated in the modifiedth® theory.[For large values o™ the crystalline density

weighted-density approximation of Denton and AshcroftPeaks become very narrow which leads to convergencelprob—
[32]. The long-ranged isotropic and dipolar interactions ard®Ms, for example, in Eq(11).] In DFT usually both axis
added in such a way that a successful theory of the Lennard@tios decrease with increasing dipole moment, decreasing
Jones fluid[33] is reproduced in the nonpolar limit. The temperaiure, or decreasing density.
detailed definition of the density functional is given in Ref. ~ FOrm”*=2 hexc turns out to be the stable crystal structure
[15] and therefore is not repeated here. at all temperatures. In Fig. 6 we show the calculated ferro-
In order to treat the hexc phase with more than one basiglectric liquid—ferroelectric solid and gas—ferroelectric solid
particle some of the expressions given in Ra5] must be transition densities. For comparison our previous data as-

generalized; e.g., the expression for the long-range contrib UMing an fcc structure are displayed too. The shift due to
tion to the excess free energy turns into the new crystal structure is relatively small and has no im-

pact on the occurrence of the ferroelectric liquid phase as

AELR) 8 such. The axis raticc/a always lies below the ideal hcp
exc _ _ _”pzmzaz( 1-63 |S(k)|2P, value \/8/3=1.633; it varies between 1.58 and 1.62 along the
\ 27 ! K0 parts of the coexistence lines shown in Fig. 6. Surprisingly it

FIG. 5. Axis ratios of the bco structure of a Stockmayer solid at
p*=1.24 andT* =0.7 calculated from density-functional theory.
Ferroelectric order sets in fon* =0.67. The detailed behavior near
this point could not be clarified due to numerical problems.

. decreases with increasing density while the opposite trend is
X(Cosek)ekZIZy“(kU)> (11) observed in the ground state. For the lower dipole moment
ko m* =1 the free energy differences between hexc, bco, and
fcc are smaller than the numerical accuracy so that with the
present tools it is not possible to decide which phase is the
with S(k)=M~*X_exp(-ik-7) and the other quantities as stable one. In any case, however, the loci of the phase bound-
defined in Ref[15]. Besides the peak widtly and the ori-  aries remain practically the same as calculated in R
entational order parameters, the axis ratios now appear dhus we conclude that our DFT prediction of the occurrence
additional variables in the minimization. of a stable ferroelectric liquid phase within a certain param-
Figure 5 shows the variation of the bco axis ratios aseter range is not altered by taking into account more possi-
function of the dipole moment at fixed temperature and denpilities for the crystal structure and thus is in agreement with
sity. For lowm* the particles in the crystal are orientation- the findings of the simulations.
ally disordered and both axis ratios are equal tg2ltorre-
sponding to an fcc lattice. When ferroelectric order sets in
both axis ratios eventually decrease but exhibit a peculiar
minimum and maximum in an intermediate range of values In this case fcc is more stable than hcp fof =0, or,
for m*. The contraction along the polarization direction ( equivalently, form* #0 andp* —. For large exponents
axis) is in accordance with the ground state result. On thewith decreasing density qualitatively the same sequence of
other hand, in contrast to the DFT results, botiTat0 and  transitions fcc—bco—bct occurs as discussed for the Stock-
in the simulations the value df/a is larger than Y2 and  mayer system. But as shown by the phase diagram in Fig. 7
increases withm* (compare Fig. B A quantitative compari-  within the bco range hexc is stable in an intermediate range.
son with the simulation results fan* =2.5 is not possible Also in contrast to the Stockmayer model the vapor phase
because such high dipole moments could not be reached iran coexist only with the bct solid.

C. Dipolar soft spheres atT=0
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3 9 1\ p 2
_p*Z_p* _p*2__ , -
8 64 4 a

occur in which each particle has ten nearest neighbors at
distanceo. At p*=1.383 a two-phase bco—hexc region
starts that extends up to the maximum possible density
=2 where the ideal hcp lattice witt/a=/8/3 is stable.
For n—« the values of the axis ratios along the various
phase boundaries in Fig. 7 converge towards the aforemen-
tioned hard sphere values.
A quite different behavior occurs for small exponents
1/n Here the isotropic repulsion cannot be overcome by the di-
polar attraction in a three-dimensional structure so that the
............................... energy is lowest ap=0 which means that the solid phase
........................... ) trig remains stable down to arbitrarily low densities without
encountering a gas-solid phase separation.
0.25 T A semi-quantitative understanding of this effect can be
02 o bet obtained by considering arrangements of parallel chains, to
a which all crystal structures degenerate for-0. The intrac-
0.15 ‘ hain energy per particle of a soft sphere chaifplig]

c
a
(12

0 0.05 0.1 0.15 0.2

0.1 fco
2

m o\"
0.05 uch:—2§<3>—3+4e(—) {(n), (13
a a

0.08 0.082 1/12 0.086 0.088 0.09 v n . .
where {(n)=2,_,k™" is the Riemann zeta function arad

the particle distance. The equilibrium distance follows by
minimization:

(b) 1/n

acq [ 2ng(m MY
— =\ . (14
o 3Z(3)m*

@ The purely dipolar interaction energy between two parallel
chains with distance and longitudinal offsez was calcu-
lated by Tao and Sufl9]:

o 16m2m? 2mkr 2mkz
Ugfl’lpch_ 3 2 KO CO{
0 0.005 0.01 0015 0.02 0.025 0.03 0.035 0.04 a k=1 a a
© /n 8m’m? [a 2mkz
=~ — —e 2™3¢o , (15)
FIG. 7. Ground state phase diagram of the dipolar soft sphere a r a

model form* =1. The meaning of the line styles is the same as in
Fig. 4. The abbreviations for the various crystal structures are exwhereK , denotes modified Bessel functions. Using similar

plained in the main text. The unlabeled areas are two-phase regiongethods one finds for the isotropic contribution of a single
The plots in the middle and at the bottom are magnifications of theyower-law repulsion

regions arounch=12 and near the hard sphere limit=o, respec-

tively. The phase diagram for other dipole moment$ can be n—1

inferred from the one given here by rescaling the reduced density (_)

according tgp* /m*%("=3)_|n the limit p* — o the upper bco phase 5o _4ea” Jr 2

turns into fcc continuously. ch-eh™ g T'(nf2)| yn-1

For n—oo one recovers the limit of dipolar hard spheres.

Here the lowest energy state is the “ideal” bct witha g\ (=12 2 mkr 2kz
=/2/3 atp* =4/3[19] which coexists with an infinitely di- +4k2 a K(ln)IZ( a )COS( a )
luted state ap* =0. For higher densities close packed bco -t

structures with (16)
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exhibit additional short-ranged steric anisotropies which be-
come important at freezing densitiE34]. Such a sensitive
dependence of the phase behavior on the details of the repul-
sive part of the interaction potential is supported by our find-
ings concerning the decay exponenisee Fig. 7. The clos-
est effective realization of our models are -colloidal
suspensions of monodisperse spherical particles. The dipole
' moment can either be a permanent magnetic moment as in
ferrofluids[35] or an induced electric or magnetic moment as
AN in electrorheologicalER) or magnetorheological fluids6].
At present it is still difficult to prepare stable ferrofluids at
sufficiently high densities. However, recently the occurrence
r/c of gas—liquid—solid phase transitions in nearly monodisperse
FIG. 8. Interaction potential between parallel chains of dipoIarSOIU'[Ions of maghemlte_/-l:_ez(_)g nanopa_lrtlcles n WE_;lter_has
soft spheres, with a longitudinal shift of half the intrachain particle been rgporte@;%?]. In this ionic ferrofl_wd the effective iso-
distancen, for different values of the exponentas a function of the ~ [FOPIC interaction between the particles can be tuned by
chain separation. The plot is form* = 1; corresponding curves for changing the screened Coulomb interaction via adding salt.
other dipole moments can be obtained by rescaling the distanchis kind of intervention into the interaction potential is very
with m* ~2"~3) and the energy witm* 2"("~3), interesting since our analysis demonstrates that, as men-
tioned above, the occurrence of different solid phases de-
Al but the first term decay exponentially for-. The total ~ Pends sensitively on the details of the isotropic repulsion.
chain-chain interaction g, o= U4P, +U'S°_. evaluated at The electrostatic energy of an arrangement of polarizable

a=a,, andz=a/2 behaves qualitatively different for large ER spheres with radiua and dielectric constanép in a

and small exponents, as shown in F|g 8. For |argB it solvent of dielectric COI’]StaI’H,: and an external fieldE is
exhibits a minimum withU ;,..«<0 at intermediate fol- [19]

lowed by a maximum and eventually an algebraic decay for 3g2

r—oo, whereas for smalh it is repulsive and monotonously Ueg= — aepd (17)
decreasing for all distances The minimum reaches zero at 2(1+ 2aa3U§ip)

n=11.93 and disappears at=11.89. Thus the most fre-

quently used value 12 for the exponent, mainly chosen folVith a=(ep—€g)/(er+2ep) andUf;,=U g, /m” the corre-
historical reasons, just marks the crossover between attragPonding reduced energy for permanent dipole moments
tive and repulsive soft dipolar chains which is also reflectedor smalla (|a|<1/2 by definition,a=0.3 has been esti-

in the phase diagram. Near=12 a low density fco phase mated for a silicon oil ER fluid38], while a=—1/2 for
appears. In this phase far—0 the particles form parallel Water based fluidsEq. (17) can be expanded and the struc-
sheets, due to the small attraction between chéire Fig. ture dependent terms take on the same form as for permanent
8). For slightly smaller values af the ground state becomes dipoles with an effective momentZ;= aera®E? so that
trigonal with opening angle/— 2/3 for p—0, i.e., a hex- the calculated phase diagrams apply without changes. More-
agonal lattice of chains with relative longitudinal shift/3 ~ over with typical values[22] E=1 kV/mm and a
between nearest neighbors. Using the equations above ore0.5 um the dipolar energy at contantz,/(2a)° is larger

can verify that this limiting structure is more favorable thanthan the thermal energlsT at room temperature by three

a hexagonal arrangement with shifts 0 @@ which can be orders of magnitude, justifying the use of our ground state
obtained from a bco lattice with/a= /3. In the same region analysis. Concerning the effective isotropic interactions, dis-
the bct phase disappears so that the transition sequence upegrsion forces as modeled by the LJ potential are present in
increasing density becomes trig—bco—hexc—bco—fcc. ER fluids[39] but usually negligibly small40]. Steric repul-

In both models the hexab phase turns out to be metastabon at small distances is achieved by polymer coating. The
for all parameters. All solid lines are first order transitions.length and density of polymers determine the softness of the
Except for the transitions bco-hexc nea=~ and fco-bct  repulsion although it will be difficult to reproduce a power-
nearn=12 the density gaps are always very small. Dashedaw dependence as considered theoretically above. Thus
lines denote the continuous bco—bct and fco—bct transitionghemical tailoring of the particle surface represents an option

to produce softly repulsive potentials which differ from the
IV. DISCUSSION hard sphere behavior usually assumed in ER models. We
expect that our calculated phase diagrams at least qualita-

Even atT=0 the investigated model systems show a richtively reflect the behavior of such ER fluids. While the subtle
phase behavior with a variety of solid-solid phase transitiongssue of the relative stability of the fcc and hcp phases and
as function of dipole moment, density, and softness of thehe corresponding bco—hexc transitions are probably masked
repulsion(see Figs. 4 and)7 Concerning the experimental by neglected effects such as higher multipoles, many-particle
relevance of these phenomena molecular dipolar fluids arteractions, and polydispersity, the phase sequence fcc—
natural first candidates. However, for them quantitative combco—bct upon increasing field strength should be insensitive
parison is impeded by the fact that typically such particleso these details.

18 2 22 24 26 28 3 32
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At small field strengths or if the colloidal particles are and
covered by nonmagnetic or hardly polarizable spherical
shells the dipolar energy at contact becomes comparable to 1 1 82
kgT. In Sec. Ill B a previously developed density-functional hs(6)= 7 sir’ 6+ —cos 0) : (A4)
theory has been applied to calculate the phase diagram in- k
cluding the temperature as a relevant thermodynamic vari- . _ )
able. The overall effect of considering crystal structures dif-Where® is the angle betweeR,, and thez axis. For rapidly
ferent from fcc on the position of the phase boundaries i€/€caying potentials in the thermodynamic liait- h can
rather small. The occurrence of a stable ferroelectric liquicP® replaced by 1 because the differeitcel becomes ap-
phase within a certain parameter range is confirmed and iRréciable only for large values d;, comparable withL
agreement with corresponding conclusions based on simul4¢hich, however, have a small weight in Hé\1) due to the
tion data. Nonetheless it is conceivable that some trends iManishing ofw(Ry,). But it is unclear whether this line of
the behavior of the axis ratios, such as the density deperfgument also holds for the slowly decaying dipolar poten-
dence ofc/a in the hexc phase and the valuelwf in the  tial. In order to check this we choose a cutoff radigs
bco phase, are not correctly described by DFT, which conPeyond which one may approximate the summation in Eq.
tains a number of uncontrolled approximations. However, afAl) by an integral. In this limit the terms witlR,,>R;
present no better theory for the quite demanding problem opecome
freezing of dipolar fluids is available.

1 2Lg(0)  m? r

27er ld cos&f drrzr—3 Pz(cosa)h( G,E)

APPENDIX THE DIPOLAR LATTICE SUM Re

The dipolar sum is only conditionally convergent, which 1
means that its value depends on the order of summation, or, =2wpm2f d cosfP,(cosh)|Ing(#)+h,(6)g(6h)
equivalently, on the sample shape. To clarify this often over- -1
looked difficulty, here we explicitly perform the thermody- 1 1
namic limit starting from finite lattices and letting the sample + §h3( 0)g(6)3|+0 E) . (A5)

size diverge for fixed shape. We consider rotational ellip-
soids with axis length&L along thez direction andL along

the x andy directions. Here p is the density of dipolesP,(x)=(3x?—1)/2 is the

second Legendre polynomial, and the functiay(6)

= (sir? 6+cos a/k®) Y2 parametrizes the surface of the ellip-
soid[11]. Due to the specific forms of the functiohsandg

The dipolar energy per patrticle is the last two terms vanish so that indeed one obtains the same
result if h=1 is set from the beginning. The same is obvi-
ously true for the contributions fronR,,<R. for L—o».
These considerations justify that the average energy per par-

1. Reduction to a single lattice sum

1
Uhip:m; > Wgip(R—R’)

R'#R
ticle may be replaced by the energy of the central particle.
1 S Riz Wyio(Ryp) (A1) We emphasize that this argument hinges on the ellipsoidal
) R0 L dipi 12/ shape of the sample. For example, by explicit calculations

one can show that the replacemenhdt correct for a paral-
where the superscript refers to a finite system and the lat- lelepiped with general aspect ratio.
tice vectorsR andR’ run over theN sites inside the sample.
In the second form one summation has been carried out so 2. Shape dependence in the Ewald method
thatR, runs over a sample of doubled size, and the function ) ) ,
h counts the number of occurrences of a given interparticle _ '€ Ewald form of the dipolar lattice sum is often used
vectorR,, divided by the number of particles. If for large without any discussion of the shape dependence of the origi-
systems the discrete array of sites is approximated by a un
form distribution of the same density, the functioms given
by the ratio of the intersection volume of two ellipsoids
shifted byR, relative to each other and the volume of one
ellipsoid. The explicit result derived in RefL1] is

pal sum[41,42,34. In the following we show that it actually
corresponds to a specific choice of the sample shape and we
derive the corrections that must be applied for other shapes.
To this end the dipolar lattice is constructed by superposition
of two slightly shifted opposite point charge lattices. Hence
we first recapitulate the derivation of the corresponding
Ry, Ry, 3 Ewald sum for the electrostatic potentiglr) of a finite
=1+hy( 0)T +hy( 0)<T> (A2) Bravais lattice of positive unit point charges plus an opposite
uniform background charge. The Ewald method proceeds by
rearranging the charge densijtyr) into two contributions,
employing a suitable addition of zero: figst(r) correspond-
ing to a lattice of positive Gaussian charge distributions plus

1/2
hy(6)=— §( S 9+ icosz 0 (A3) the. negative backgrounq, secopg(r) corrg;pond!ng to a
2 k? lattice of negative Gaussians plus the positive point charges:

Ri2
h( 6, T

with
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©) ©) The potential of a corresponding arrangement of dipoles
P(f)=91(f)+Pz(r)=; [p1 (r=R)+p3 (r=R)], is now obtained from the superposition of two slightly
(AB) shifted point charge lattices with opposite signs:

where m . A
baip(r) = Iima[¢L(r—d/2)— S-(r+d/2)+ ¢t i(r—df2)
2\ 3/2 ) 1 40
p(lo)(r)=(;) e "' —V—CG)c(r) (A7) —¢L(r+d/2)], d=dm. (A14)
q The potentials¢y,,; of the uniform background charges,
an

which do not cancel each other in this limit, have been sub-

»2\ 312 tracted. Furthermore the hats indicate that the Coulomb po-

p(r)= 5(r)—(—) e v (A8)  tential 1t must also be subtracted, because the field of the
77 dipole at the origin must not be included. The energy of the

with ®(r)=1 if r is in the unit cell around the origin and Central dipole follows as

O.(r)=0 otherwise. The Fourier transform

L _mad | _ om L
";1(k):f dre % Tpy(r) (A9) Ugip=7% ﬁd)diplr:o__?E[qs (1) + duni(N -0,
5 (A15)

of the first contribution is

where the limitd—0 generates the second derivative. The
first term reproduces Eq7) for L—« [see Eq(A13)]. The
Bli(k):?)(lo)(k)g/ e ik-R (A10) generallz_ano_n to lattices with ba3|s_ follows from summing
R the contributions from each sublattice. The second term is

. ) ) ~calculated using
The L dependence arises via the summation over the finite

number of lattice vectors, indicated by the prime on the sum-

mation sign. The sum in EGA10) is strongly peaked around buni(r=(0,07))

the reciprocal lattice vector& for large systems and ap-

proaches (#)3/V.Zg6(k—G) in the thermodynamic limit. :pf d3r 1
The corresponding electrostatic potential is [r—r’|

1 2Lg(6)
:ZWPJ dcosﬁf dr'r'2(r2+r'?
-1 0

PL(r)= T JR3d3keik'r7>'i(k)/k2. (A11)

(2m)3 —2rr' cos@) 12, (A16)
If the unit cell is chosen as the volume spanned by the basis

vectors and as centered arourid0 one finds® (G) =0 for By performing the inner integration and expanding in terms

all G#=0 andp{”(k=0)=0 due to local charge neutrality. of r one finds

For the second contributiop,(r) the potential is easily ob-
tained by integration of the Poisson equation in spherical
coordinates yielding 92

1 (1
— buni(Nr=0=—4mp —+f d coséP,(cosh)Ing( h)
0z° 3 1

, erfov|[r—R])

b= TR (A12)
R =—47pD(k). (A17)
For L—oo the total potential i$31]
A 1 &, G? erfo(v|r—R|) The expression in large parentheses is the depolarization fac-
b(r)=- Gélo &e exp — 22 +§R: T r=R] tor D(k) of an ellipsoid with aspect rati& [11]. All other
¢ v terms are independent &ffor L—oc. Thus we have derived
+C(v), (A13) an explicit result for the shape dependence of the dipolar

energy which is the same as for the homogeneous dipole
whereC(v)=— 7/(v?V,) is a constant stemming from the density studied in Ref[11]. SinceD(k—x)=0 Eq.(7) is
small k contributions in Eq.(A11). In this form both sums correct for a needle-shaped sample. In other sample shapes
are rapidly converging ane(r) is independent ob. the dipolar energy can be lowered by domain formation.
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