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Weighted density functional theory of spherically inhomogeneous hard spheres
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The weighted density functional theory of hard sphere fluids proposed by Tarazona is applied to spherically
inhomogeneous hard sphere fluids. The density profile of a hard sphere fluid around a hard sphere particle with
structureless hard wall and varying radii is obtained. Our results are compared with previously obtained
computer simulation with good agreement. We also calculate the density profile of a hard sphere fluid confined
to spherical pores. We compare these results with those obtained by @alddjain which both theory and
computer simulation are used. In this case the results are also in agreement.
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I. INTRODUCTION functional, which includes both local thermodynamics and
short range correlation, to find the density profile of a fluid
The structural properties of an inhomogeneous fluid Withnear. a hard wall. This functional is closely relf:lted to that
a special geometrical symmetry, such as a fluid confined to gtudied by Nordholnet al.[22], where the theory is referred
planar slit[1—3], a fluid bounded to a cylindrical channel {0 @S generalized van der Waals theory. Taraj@Bhdevel-
[4—6] or spherical cavitie§7,8], and a fluid around a large oped a free energy density functional of the hard sphere fluid

hard spherg¢9], have been studied in the last two decades?" 2 semiemprical basis following the preceding idgz.

. X ~In this formalism one tries to get a quantitatively good de-
Several theoretical methods have been applied for Studylngcription of the hard sphere system in any likely situation, at

these kinds of systerfil0]. There are two main theoretical o 'same time making it possible to use it for the description

approaches for considering these types of problems: integrgl e reference system in a perturbative analysis of any re-
equations based on liquid theories and density functiona}jistic model[24,25. This functional theory, which is some-
theory [10-13. A system of spherically inhomogeneous times called the weighted density functional approximation
hard spheres has been studied theoretically and by usingypA), can be used to describe an inhomogeneous system
Monte Carlo simulatioi13—15. Attard[9] solved the inho-  of hard spheres. Even for uniform density distribution it
mogeneous Ornstein-ZernikgOZ) equation and the gives the good description of the structure. It also gives a
Triezenberg-Zwanzwig expression for the density profile incorrect location of the solid-fluid phase transition, which im-
the vicinity of an isolated hard sphere particle. For fluids in aplies a good description of the hard sphere cryl2al. The
spherically symmetric external field, he showed that the OZheory has been applied to obtain the density profile and
convolution integral becomes a simple algebraic equatiosurface tension of hard sphere fluid in contact with a hard
upon Legendre transformatigi6]. Tang and Lu[13,14  wall. The results are in good agreement with computer simu-
expanded the radial distribution function of an arbitrary po-lations, especially at high bulk densitg3].
tential around the hard sphere and obtained a general solu- The purpose of the present work is to apply the WDA
tion of the OZ equation. The density profile of an inhomo-theory introduced by Tarazona to find the density profile of a
geneous hard sphere fluid around a large colloidal har@ard sphere fluid arou.nd harq spheres with various radii and
sphere was calculated by Degreve and Hendefshusing ~ compare the results with previous computer simulat[da$. .
Monte Carlo simulation. Furthermore, we study the structure of a hard sphere fluid
In the present article, we are interested in applying densit onfme(kj) to spglebrlcal Fl’lofes almd we C(ﬁmparhe our re(?utljts f\'lN ith
functional theory to spherically inhomogeneous hard spher gi?yoarfglgimpztgas%%tlaatio[nlsl]’ where they used bot
fluids. This theory has been widely used in recent years t : N . .
consider the structure of confined or homogeneous quid%eTCinzlﬁ,Pegfég‘ﬁsiglﬁfniiﬁiglmvevg&nofetﬁé”hvgfdogg'hneere
[2,3,17. Henderson and Sokolowski studied adsorption ing,iq introduced by Tarazona and we derive the Euler-
spherical cavities using density functional thept$]. Rick-

. o Lagrange equation for an inhomogeneous hard sphere fluid.
ayzen and Augousiil] introduced a modified hypemetted |, sec “jjj we discuss the weighted density functional theory

chain density functional containing a third order term in theof a spherically inhomogeneous hard sphere fluid and we

density, chosen to ensure that the density functior_1a| gives th@alculate the density profile of the hard sphere fluid near hard
correct bulk pressure. This theory was then applied to stud

¥pheres of varying radii. In Sec. IV the density profile of a

the density profile of hard sphergs] and Lennard-Jones ..y sohere fiuid confined to a spherical cavity is calculated
fluids [19,20 confined to a slit. Callej&t al. [11] obtained Finallypin Sec. V we describe arﬁ)d discuss thg results.
the density profile of hard sphere and Lennard Jones fluids '

confined to spherical pores, using both computer simulation || WEIGHTED DENSITY FUNCTIONAL OF HARD

and the density functional theory proposed by Rickayzen and SPHERES
Augousti. In the case of the hard sphere fluid, the results of
the theory and simulation are in good agreement. Tarazona has introduced a free energy functional of

Tarazona and Evarj21] introduced a simple free energy smoothed density distributign(r), which, at each point, is
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a nonlocal functional op(r). Any sharp change in the real

density will be smeared down ip(r), which can be imag-

ined as the mean density around a particle at poarid in a .

volume that can be related to the range of interaction. Thahis equation is an integral equation used to defiG© in

Helmholtz free energy functional can be taken as terms of p(r). We assume that the analytic dependency of
the functionw(r,p) on the density is given by

F(r>=f dr’p(r'yw(r—r'|,p(r)). 4

Flol=Fulpl+ | drp(nap(oin), ® W(E )W) S s o)t o (B

whereF4[ p] is the_ free energy functional of an ideal_gas atyhere the normalization condition of(r,p) at any density
temperaturel and is exactly given by the local density ap- g

proximation:
Flp(D)1=keT [ drp(r)InAp(r)1-1) | dmwirp=1 ©
which implies
- [ drotuatoirn. @
1 for i=0
Here A\=h(2mmksT) Y2 is the thermal de Broglie wave- f drw;(r,p)= 0 for i=12, (7)

length,kg is the Boltzman constant, an/(p) is the excess

free energy per particle above the ideal gas, The weighting functiorw;(r) is obtained by requiring close
_ agreement, over a range of densities, of the two-particle di-
Adlp)=9(p) = Vialp), @ regct correlation functio% which is predicted by thg Percus-
wherey(p) andiiq(p) are the free energy per particle of the Yevick approximation for the homogeneous hard-sphere
liquid and ideal gas, respectively. In Eq), we choose\y  fluid [23,24,
as a functional ot;(r). To avoid purely local treatment of
narrow peaks irp(r) and to reach a really good description

_ _ _ Wo(r)=—— 8(a—]r]), ®)
of direct correlation, we choose the functipfr) as Ao
|
0.475-0.648r/0)+0.113r/0)?, r<o
wy(r)=1 0.2880/r)—0.924+0.764r/0)—0.187r/0)?, o<r<2c 9
0, r>20
|
and e 2po(1)
5703 [1=p(N)]+[|1=p1(N)[>=4po(r)po(r)]H2
wz(r)=m[a—12(r/a)+5(r/o)2]a(a—r), (10) (13

_ ) ) The functional derivative oﬂr) with respect tgp(r) can be
whereo is the diameter of the hard sphere a#(@) is the  gypressed as

Heaviside step function. By using Eq¢l) and (5), we can
derive the relation

Sp(r w(lr—r'|,p(r
S p(’): _(I |_p())_ _ 14
p()=po(r)+p1(Np(r)+pa(N[p(N]? (1 Sp(r')  1=pa(r)=2p,(r)p(r)
where In density functional theory, the grand canonical potential
Q[ p] and intrinsic(Helmholtz free energy functionaf[ p],
both unique functionals of the one-particle dengity), are
E<r>=Jdr'p<r'>wi<|r—r'|). (19  related by
The functionp(r) can be obtained from Eq11), Q[p]:F[p]+f drp(r)[Uexd(r) =1, (19
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whereu is the chemical potential of the system amg(r) wia(po) =kgTINX3pg, (233
is an external potential. The equilibrium density distribution
of the inhomogeneous fluid corresponds to the minimum of wig(p(N)=kgTINA3p(r), (23b

the grand potential satisfying
we obtain the density of the hard sphere fluid,

50
[p] _o, (16)
3p(r) _ —
p(r)=poexp) — B| Ag(p(r))
which leads to the Euler-Lagrange equation B
— .. op(r)
_ 9Flp] + | dr'p(r) Ay (p(r")
M—Uext(f)—m- (17) f op(r)
According to Eq.(1), the functional derivative oF[ p] with —Ay(pg)—poA ¥’ (po) ] (29
respect to the density is
5F[p] _ We insert&Rr’)/ﬁp(r) from Eq.(14) in Eq. (24) and obtain
W=Mid(P(f))+A¢(P(f))
e p(r)=poeXF{—B A¢(F(r>)+f dr’p(r) Ay (p(r")
+f dr'p(r")Ay (p(r")) (1)’ (18) B
w(r—r'[,p(r"))
where uiq(p(r)) is the ideal-gas chemical potential and —— = = A¥lpo)
ST N , o — 1=pa(r')=2po(r)p(r’)
Ay’ (p(r")) is the first derivative ofA ys(p(r")) with respect
0 p(r’). —poA ¢’ (po) } (29

IIl. DENSITY PROFILE OF A HARD SPHERE FLUID
AROUND A HARD SPHERE PARTICLE If we want to find the density profile around the hard

We use Eq.(18) to find the density profile of a hard sphere particle, it is required to calculate the integral in Eq.

sphere fluid around a hard sphere particle. In this case tHg> numerically. We insert the functiow(|r—r'[,p(r"))
external potential has spherical symmetry, from Eq. (5) in the integral given in Eq(25) and write

®,  |r|<R |(R,r)=f°° dr'p(r')Ay (p(r))

= = ————[wo(|r—r'])
Uext(T) 0, |r|>R, (19 R+a/i2 1—p1(r')—2p,(r")p(r") °
whereR s the radius of the hard sphere particle. The number +wa([r=r"Dp(r" ) +wy(Jr=r'Dp%(r)].  (26)

densityp(r) is a function ofr only and ) ]
We calculate each integral in E(R6) as

p(1)=0, |r|<R. (20)

Combining Eqs(17) and(18) and using the external poten- f drg(r)wi(Jr=r'])
tial given by Eq.(19), we have L
_ =2 Jdr’r’zj dég(r)yw;(|r—r’
5o m  dég(r)wi(lr—r’])
op(r)
(21) =277f dr'r"2g(r" )W(r,r"), (27)

For an inhomogeneous fluid in contact with a homogeneous h
bulk fluid, the chemical potentiglk is equal to that of the where
homogeneous bulk fluid, and hence using &) we have

=g+ AU+ [ a4 o)

[r=r'|?=r2+r"2=2¢&rr ", (28)
T ’ ’ 1t 6;“.,) 1 ,
Hig(p(r)+A¢(p(r))+ | dr'p(r")A¢’ (p(r")) 5p(1) Wi(r r,):J d§w-(|r—r’|)=iJ|r+r ldr”r"W-(r")
I 1 1 I rr, ||’—|"| I 1
= pid(po) +A(po) +pod ¥’ (po), (22) (29

whereA ' (po) is the derivative ofA y(p,) with respect to  andg(r’) is an arbitrary function of . Equation(26) can be
po- If we use the definition oft(pg) and wig(po), written as
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FIG. 1. Radial distribution function of the hard sphere fluid at FIG. 2. The normalized density profile about the hard sphere

7=0.386. The solid line corresponds to the Tarazona theor)& a(;tg:é(es,o \;v:;;e: Oth3e0 I‘Ir]\lgirzilic;jll?nn;e(t:irrre(;f ;233 ?(?rtlr(;lze(::?/vork
(present work the solid circles are taken from the Monte Carlo : e P P

(MC) simulation of Degreve and Henderson, and the dashed Iiné’janI the dotted line is taken from the Monte CaiC) simulation

corresponds to the Carnahan-Starli@) calculation. of Degreve and Henderson.

whereR is the radius of the cavity, the number density is a

- 112 ’ P (et .
|(R,I’)=277j drir” Pff VAP (p(r ))[Wo(r,r’) function ofr only, and
R+al2 L=pi(r’)—=2pa(r)p(r) p(1)=0, [r|>R.
Wi (r,r ) p(r) +Wo(r,r)p3(r')], (30)

Again, we can use E¢31) to find the density profile, but Eq.

and the density profile is given by (30) is changed to the expression:

Y s 112 ’ Iy
p(1)=poexpl— BLA (1) +1(R,1) ~ A po) |<R,r>=zwfR ’ T Lot )2_“’ COD ey
0 — 1y —
—poA ¢’ (po)}- (31) p1(r')=2pa(r)p(r)

’ ’ I\ A2(p!

We calculate the density profilp(r) for the caseR FWALr () +Wo(rr)po(r) ] (32
=g/2 and n=mpy0°/6=0.386; then we obtain the radial For the reduced density} = 0°py=0.62 andR=50, we
distribution functiong(r)=p(r)/p, for a hard sphere fluid. calculate the density profile inside the cavity and we com-
In Fig. 1, the functiong(r) is displayed and compared with pare our results with those obtained by Callefaal. [11],
the Monte Carlo simulation results of Degreve and Henderwho applied both density functional theory and computer
son[15] and those obtained by Carnahan and Starl2l].  simulation. The result are displayed and compared in Fig. 3.
The reduced density profile,(r)=p(r)/po for a hard The same calculation is done fpf =c3p,=0.75 and the
sphere fluid near a large hard sphere particle is calculated fesults are compared in Fig. 4. As is seen in both cases, the
0/R=0.0850 andy=0.30. In Fig. 2, we compare the result regyits obtained by Tarazona theory are in agreement with

with those obtained by computer simulatidb]. The origin those obtained by other methods.
in Fig. 1 and 2 is taken at the wall of the particle.

V. CONCLUSIONS
IV. HARD SPHERE FLUID CONFINED

TO SPHERICAL PORES The weighted density functional theory for a hard sphere

o _ ~ fluid near a hard wal[23], proposed by Tarazona, has been
We assume the hard sphere fluid is confined to a sphericgiktended to a spherically inhomogeneous hard sphere fluid.
cavity with a hard structureless wall; thus The theory appears to be fairly accurate for describing the
structure of this kind of inhomogeneous hard sphere fluid.
According to the results obtained in this and other articles

0, |r|<R, such as[23,27], one can claim that the density functional

o, [r|=R
uext(r):
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FIG. 3. The reduced density profijet (r)=p(r)o® inside the
cavity where the radius of the cavity R=50¢ andp§ =0.62. The

FIG. 4. Same as Fig. 3 except fpf =0.75.

solid line corresponds to the Tarazona theory, the solid circles arsphere, a hard sphere with Yukawa tail, a sticky hard sphere
taken from the Monte Carl@MC) simulation, and the dashed line is fluid, and others. Kim and Suf24] have considered such
taken from theory, both from Callejet al [11]. fluids confined to a planar slit. They introduced a density
functional perturbative approximation that is based on both
theory introduced by Tarazona works quite well for a varietythe weighted density approximation for the hard sphere con-
of inhomogeneous hard sphere fluids. Of course, these cdlribution and the density functional of Rickayzen and
culations may be used for the hard sphere part of a fluid witiAugousti[1]. We plan to apply these calculations to inhomo-

interaction such as a charged hard sphere, a dipolar hageneous fluids with special spherical symmetries.
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