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Relaxation of classical particles in two-dimensional anharmonic single-well potentials
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The canonical ensemble relaxation function of a particle in a symmetric anharmonic potential Well in
=1 is known to exhibit slow algebraic behavi®. Sen, R. S. Sinkovits and S. Chakravarti, Phys. Rev. Lett.
77, 4855(1996; R. S. Sinkovits, S. Sen, J. C. Phillips, and S. Chakravarti, Phys. RB9, &97(1999]. In
the present work, we report a study of relaxation of a particle in symmetric and asymmetric quartic anharmonic
potential wells of the fornV(x,y) = 3 (x>+ Cy?) + 7 (x?+ Cy?)? in D=2. The relaxation in the above system
is identical to that inD=1 wells whenC=0 (since it is then &D=1 system and C=1. However, for 0
<C<1 and forC>1, the frequencies associated with well dynamics are strongly affected and hence the power
spectra are altered as a function ©f Our calculations suggest that the exponents of the long-time tails
associated with the relaxation processes are insensitiize ko closing, we comment on the consequences of
our analysis for the study of slow dynamics in interacting many-particle systems that are connected by
harmonic springs with the individual particles in anharmonic potential wells.
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[. INTRODUCTION rized in Sec. V with comments on the possible future of
our efforts.

The study of relaxation processes in disordered lattices
remains a problem of fundamental interest in the physics of II. THE MODEL AND ITS ANALYSIS
glassy system§l,2]. An essential difficulty encountered in ) L !
studying the dynamics of these systems concerns the limita- W& begin by considering a system defined by the poten-
tions in our ability to study relaxation processes of thesetlal
systems across many decades in tiif8g Such limitations A B
force us to make assumptions about ergodicity and noner- V(X,y)= = (X34 Cy?) + — (x2+ Cy?)2 (1)
godicity of these systemigl]. These assumptions typically 2 4
remain unproven. The available theories of glassy relaxation
are therefore purely phenomenological, leaving significantvhose behavior is controlled by the paramet@sB,0. In
voids in our understanding of the microscopic dynamicalthe present study we takke=B=1. (We remind the reader
processes in these systems and in our ability to predict anéfat A= —1 leads to a double-well potential, which we do
control the properties of glassy systefs. not address in this work6,7,9).) The paramete€ controls

In the present study, we build on earlier work to addresghe symmetry of the potential surfaceC=0 and 1 yield a
the problem of nonlinear dynamics at fixed energies and oP=1 system and the planar-symmetiic=2 system, re-
canonical ensemble relaxation functions at fixed temperaturgpectively. The other values @ yield aD =2 surface with
in single anharmonic wells i =2. We refer to arguments Pplanar asymmetry. As we shall sé&=0 and 1 lead to re-
presented in detail in Ref§6],[7], which imply that such a laxation behavior observed iD=1. Interesting behavior
study might be relevant to the development of a microscopi@rises wherC+ 1. This case is discussed in Sec. IV.
understanding of the long-time relaxation processes encoun- The equations of motion for this system are
tered in studying the dynamics of disordered interacting sys-

tems. %=—Ax—Bx3—BCxy?, 2)
This article is arranged as follows. In Sec. I, we present
the model system and outline the method of study. In Sec. llI y=—ACy—C?By>—BCx¥y, ©)

we present the canonical ensemble results for the symmetric

two-dimensional2D) system. In Sec. IV we probe the more and represent an unsolved set of equations whose solution is
difficult asymmetric quartic well potential that can be char-numerically constructed using the velocity version of the
acterized by a parameté® (defined below taking values Verlet algorithm, with step size of 0.01 time units. Note that
between 0 ande. We find linearity in the directional fre- all values in this and subsequent equations are dimension-
quencies as a function of energy as we approach zero enerdgss. Observe that fa€=0 Egs.(2) and(3) reduce to the
which in turn allows us to infer the long-time tail in the well known equation for the Duffing oscillat¢B]. The dy-
canonical ensemble relaxation functi®i, in aD=2 asym- namics of the Duffing oscillator was solved back in 1918.
metric single-quartic-well potential. The study is summa-Relaxation in Duffing potentials has been reportef6if7,9|.
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A. Symmetric potentials vl vl vl ol

In a previous study6,7] for symmetric potentials, it was . b -

shown that the relaxation behavior at fixed temperatures, i.e. 8:2_ n
in canonical ensembles, is obtained by performing a Boltz- 1 0.4 | -
mann weighted sum of relaxation functionsfiaed energies 0.2 ~
(i.e., in the context of a microcanonical ensemble context 00 ===
The normalized relaxation function of some dynamical vari- 0.0 1-00)2-0 3.0
able ¥ (t,E) in the canonical ensemble is then given by an

energy integration over various levels of the microcanonical 0.1
ensemble relaxation function,

<\If(t)\P(0)>

v20) [,
_ffE't,‘I'(t’,E)‘lf(t’+t,E)g(E)exq—,BE)dt’dE
 [feoW(tE)g(E)exp(— BE)dt'dE

Power
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(4)

whereg(E) denotes the density of states. The reader may ;91 L

note thatg(E) is a constant at low enough energies and can T

be mc_orporated into an ana_IyS|s where uneven step sizes al 0.01 01 1 10 100 1000

used in the energy integration to account for peakg(ig)

across some energy rang&7,9. t
For this study,W(t,E) is chosen to be the velocity and  FIG. 1. Plot of the absolute value of the VACF versus time for

B=1. Thus, we consider the behavior of the velocity auto-a particle in a symmetric quartic potential characterizedOy1.

correlation function(VACF). The choice of3=1 does not The long-time relaxation is flin nature. Note that the power spec-

restrict the conclusion of this study regarding long-time tails,trum in the inset is given in arbitrary units.

which, as we show later, turn out to be temperature indepen-

dent. The integration was performed using 5000 energy Ievfollowing paragraph. In cases where relaxation behavior ex-

els whose values Tanged from nga(tlﬁ)e yveII m'”'“.”“m to hibits exponential-like decay, one typically finds a combina-
E~25. Note that in the calculation using E@) first the . . . .
tion of very fast time-scale dynamics and relatively slow

microcanonical relaxation function is determined at all the,. . . ) . .
time-scale dynamics. Examples drgthe intermediate time

energy levels by determining the dot product of the velocit . . S . .
9y y 9 P yrelaxatlon of a massive object in a system of light oscillators

(in a chosen directignat some reference time'() with that o : . o 1 .
of the velocity (in the same directionat some later time [10]; (ii) relaxation of an impurity in as=3 XY chain[11]

(t'+1). This quantity is summed over many periods and/n the case of relaxation of a particle in a 2D anharmonic

normalized to provide the microcanonical relaxation functionell. there are no obviously disparate time scales. Hence,
at that energy level. one would not expect exponential relaxation to equilibrium

but rather a decay in which characteristic time scales are
absent, such as an algebraic decay. It is noteworthy that the
1/t decay found in 2D systems is the same as that in 1D

A convenient feature of the symmetric potential studied issystems and that removal of system symmetry leaves the
the ability to extract long-time information on a constant asymptotic relaxation behavior invariant.

energy system through use of the period of the motion of the
system. However, whe@ # 1, this symmetry does not exist Il SYMMETRIC POTENTIAL: RESULTS
and it is hence necessary, through many time steps, to ascer-
tain the position and velocity of the system directly at long For the symmetric C=1) system, analysis is facilitated
times. Since the autocorrelation functions of many energyy analyzing thex andy directions separately. However, the
levels are required for this study, the method used previouslperiod of motion of the system is the same for a given energy
for the symmetric potentials is precluded. in both directions which leads to the same microcanonical
However, as proved in recent work by Sarkét, if we autocorrelation functions. Thus, the canonical autocorrela-
can establish that the frequeney<E asE— 0, this implies a tion function and corresponding power spectrum will be in-
decay of 1t for the velocity autocorrelation function in a variant of the direction studied. Hence we will work in only
canonical ensemble. Thus, we attempt to find this relationthe x direction knowing that thg direction will be identical.
ship in order to establish atlflecay for these asymmetric Figure 1 shows the velocity autocorrelation function and cor-
wells. responding power spectrum for this symmetric potential. A
As an aside for readers whose knowledge of autocorrelaregression on the peak heights of the VACF as a function of
tion function decay is limited to exponentials, we provide thetime yields a decay-1/t, as shown in Fig. 1. The results

B. Asymmetric potentials
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FIG. 2. Plot ofx component of velocity of the particle,, as a
function of positionx for various values of the symmetry parameter
C atE=0.05(see extended discussion in Sec).IV FIG. 3. Plot ofy component of velocity of the particle, , as a

function of positiony for various values of the symmetry parameter
agree completely with the relaxation behavior reported in thec at E=0.05 (see extended discussion in Sec).lV
1D studies in Refd/6], [7].
we once again lose symmetry. Figure 2 shows the states for
C=1.01, a solid line spiraling in toward the center. Like-
wise, they direction for this state shows a solid line spiraling

The goal here, once again, is to ascertain whether we caaway from the center. For very large values@fthe prob-
express the lowest frequencies as a linear function of théem once again approaches a one-dimensional problem, this
energy, as we approach the well minimyine., asE—0).  time in they direction. TheC=100 case is shown in Fig. 2
Since the potential energy is now asymmetric, we need t@s the small circle in the center while Fig. 3 shows the
specify the direction; thus we will study both theandy  direction, which is a vertical oval.
directions separately. After sufficient study, it was deter- In order to determine if the frequency is linear in energy
mined that exploring energies between 1@nd 10 2 would

IV. ASYMMETRIC POTENTIAL: RESULTS

enable us to expose the behavior we wished to study. 1.04 . . ' . L
For the energy range tested, we performed simulations

using various values of the parame@rFor very small val- C=08ndC=1

ues ofC the potential becomes very nearly a 1D problém

thex direction, but clearly the cross terms in Ed8) and(3) 1.03 =

become less important, making this almost two separate 1C
problems, one ix and the other ity. That this is true is seen

in the phase space plots for both directions, given in Figs. 2
(x direction and 3 (y direction for 100 time units at an
energy of 0.05. In Fig. 2, the outermost circuit is fGr
=0.2 and the effect of thg direction coupling is negligible.
Likewise, in Fig. 3 the horizontal oval is fo£=0.2 and
there is negligiblex direction coupling in they direction. As

C increases toward 1, the cross terms in Egsand(3) are

of the same order of magnitude as the diagonal terms and th
effects of the coupling are seen very clearly in the phase
space plots. In Fig. 2, the dashed line that is spiraling away
from the center is foIlC=0.99. Figure 3 shows this same 100 T T T I T

effect in they direction; this time the dashed line spirals 000 001 002 °£3 004 005 006
toward the center. AC=1.0, we recover the symmetric case

and, accordingly, the phase space plots are exactly circles for FIG. 4. Plot of w, versusg for 500=C=0 showing thatw,
both thex andy directions. AtC slightly greater than unity, «E asE—0.

g 1.02

1.01
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FIG. 5. Plot ofw, versusC for E=0.05. Observe thab, is the 0.00 0.02 0.04 0.06 0.08 0.10
same forC=0 and 1. The systems begins to become sharply lD-(a) E
like for C~0.9.

and thus make a statement about the decay rate of the VACI W
in the canonical ensemble of this potential, we explore the

frequency in each directiofiboth x andy) as a function ofC
andE. 20 — —

A. x direction

In Fig. 4 we show the direction frequency as a function 15 —
of energy for various values @. It is clear from Fig. 4 that
there is a linear dependence of frequency as a function of &
energy for small enough energies. It is interesting, however,
to note what occurs whe@ takes on values between 0 and 1.
Recall that theC=0 state is a 1D problem, while thé N
=1 state is the symmetric 2D problem. Both of these sym-
metric systems should provide the samedirection fre- 5 - L
guency and this is seen in Fig. 4. When we look at how the
x direction frequency changes with at a constant energy, G o
we find the function to be unimodal in that range, with each I o
end point giving the same frequency. This is shown in Fig. 5 0 4 I I I I =

I
for the state wher&=0.05. 000 002 004 006 008 010

(b) E

10 — —

B. y direction

. N , FIG. 6. Plot ofw, versusE for various values of the symmetry
In Fig. 6 we Show they direction frequency as a function parametelC. In (8), the values plotte¢reading from top to bottojn

of energy for various values @, both less than and greater g3rec=0.9 0.5, and 0.1: irfb), C=500, 50, 5, and 1.

than unity[Figs. 6a) and(b)]. It is clear from these figures

that there is a linear dependence of this frequency on the yjith poth thex andy directions having a linear depen-
energy of the system at low energy. However, it is of interesyence on the frequency as a function of energy as enefyy
to see if fitting parameters for this linear form can be givenye can, via the work of Sarkd@], conclude that the decay

as a function ofC, thus reducing all the data shown in Fig. 6 of the VACF for these asymmetric potentials in the canonical
into one function ofE andC. The form is reported as ensemble will be 1/

E,C)~\/C+(0.536C%5¢)E, 5
0y(E,C) Ve ( ) ©) V. CONCLUSIONS

and the quality of fit is demonstrated by the lines in Figs. In this article we have demonstrated via extensive numeri-
6(a) and Gb). cal studies that the long-time tail of the VACF of a particle
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in an asymmetric 2D single-well quartic potential behaves agonnected via harmonic springs and with on-site anharmonic
1/t. This long-time tail turns out to be the same as that foundPotentials[12].
in 1D quartic wells and is possibly independent of the spatial ACKNOWLEDGMENTS
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