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Boltzmann approximation of transport properties in thermal lattice gases
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The transport properties of the Grosfils, Boon, and Lallemand model, a two-dimensional isotropic thermal
lattice-gas, are evaluated in the Boltzmann approximation. This includésetijediffusion, for which we have
introduced an additional and passive color label to the otherwise identical particles in the system. Indepen-
dently, those results are confirmed by the use of the decay of the velocity autocorrelation function. The
theoretical predictions of the dynamical structure factors and results obtained by simulations show an excellent
agreement up to fairly large wave vectors. In the hydrodynamic limit of small wave vectors, the Landau-
Placzek formulas form an alternative and satisfactory description.
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[. INTRODUCTION ticles to have different massesA requirement for heat-
conduction, in addition to heat-diffusion, is that the model
Lattice gas automatdLGA), as introduced by Frisch, should allow population-mixing, i.e., the number of particles
Hasslacher, and Pome&eHP) [1], are particle-based meth- in an energy level is not fixed but can change upon collision.
ods defined at the mesoscopic level and capable of simulafhis requires at least three different energy levels. The 19-
ing macroscopic fluid behavior. Stripped down to their barebits GBL model[2], proposed by Grosfils, Boon, and Lalle-
essence they describe particles, with discreet positions andand(GBL), is such a model. It is a two-dimensional model
velocities, that behave as hard-spheres and follow a cyclitormulated on a triangular lattice with hexagonal symmetry,
process of propagation to neighboring lattice sites and locdk macroscopically isotropic, and has no spurious invariants.
collisions. The collisions typically conserve mass and mo-This makes it a suitable candidate to study thermal phenom-
mentum, and in the case of a thermal model, energy. From ana. Detailed studies have shown that the GBL model exhib-
statistical mechanics point of view the LGA provide a meansts spontaneous fluctuations in equilibrium as produced in a
to examine many-body systems with considerable gain imeal thermal fluid2-4].
efficiency. The models exhibit exact conservation laws, un- In the Boltzmann approximation one neglects correlations
conditional stability, a large number of degrees of freedompetween the particles. This assumption results in a solvable
intrinsic spontaneous fluctuations, low memory consumpset of equations, which enables us to obtain the transport
tion, and the inherent spatial locality of the update rulesproperties. Although this approximation can be easily vali-
make it ideal for parallel processing. dated for low densities, it is remarkable that even for higher
Most LGA models are restricted to conservation of massiensities, where this assumption is not valid anymore, it still
and momentum only. Obviously this approximation is al-provides acceptable results. Within this approximation one is
lowed if one is interested in the behavior of an athermalable obtain the thermal diffusivity, the viscosity, and the
fluid, or systems where the role of temperature is negligiblesound damping from the linearized collision operator. The
But in order to make the connection with true fluid dynam- (self)-diffusion, however, is a property which cannot be ob-
ics, temperature should be included, otherwise even a simplained directly, because it requires patrticles to be distinguish-
thermal gradient, or problems related to heat-conduction andble. For this purpose we have expanded the GBL model to
Rayleigh-Bernard instability, cannot be simulated. Henceinclude color, a method used by Hanon and Boon on a FHP
the additional conservation of energy needs to be incorpomodel [5]. This color (red/blue is a passive label on the
rated in the collisions in order to obtain a thermal LGA. An particles and does not affect the dynamics. This introduces
additional benefit is that the equilibrium transport propertieshe extra conservations of red and blue particles, and a mu-
are dependent on both density and temperature, which praual exclusion such that a channel can be occupied by either
vides some extra freedom in tuning them with respect taa red or a blue particle, but not both. Hence, a color-blind
each other without the necessity to change the collision rulesbserver would not be able to distinguish this model from
A thermal LGA model requires the notion of different the normal GBL model.
energy levels. This can be done by allowing the particles in  The remainder of this paper is organized as follows. In
the LGA to move with different speedsr allowing the par-  Sec. Il we will give a brief overview of the GBL model and
the results of the Boltzmann theory. In Sec. lll we expand
those ideas by including color in the model. We derive the
*Present address: Department of Chemical Engineering, Univemecessary results for the Landau-Placzek formulas in Sec. IV
sity of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amster- and compare the theoretical predictions with results obtained
dam, The Netherlands; Electronic mail: by computer simulations. In Sec. V we provide some useful
dubbeldam@its.chem.uva.nl results regarding the symmetries of the linearized collision
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operator, which we exploit to evaluate the transport coefficellent agreement at low/intermediate densities, and a rea-
cients with minimal effort and higher numerical accuracy.sonably good agreement at high densities. At high densities
We finish in Sec. VI with a brief discussion of our results. the collisions are correlated, due to ring collisions. Success-
ful theories has been developed to correct for such correla-
Il. BOLTZMANN APPROXIMATION tions, even for models violating detailed-balan8e9].
Fluctuation theory plays a crucial role in the analysis of
The GBL model is defined on a triangular lattice with mjicroscopic models. Many techniques probe the dynamics of
hexagonal symmetry. Particles, residing on the nodes, can kesystem by introducing an externally induced field. An al-
in rest or move with discrete velocities 13, or 2 to a ternative route is taken by the Green-Kubo relations, where
(nexy-nearest-neighboring node. This results in a maximumransport phenomena are expressed as time integrals of auto-
of 19 particles per node, because no two particles at the sam@rrelations functions. According to Onsager, the distur-
node are allowed to have the same velo¢gyclusion. The  pances created by a weak external perturbation decay in the
states at a node is characterized by the boolean occupatiogame way as spontaneous fluctuations in equilibrium. We
numbersn;, wherei is the label running over all 19 chan- assume that the perturbations induced by intrinsic, spontane-
nels. Maximum collision rules are adopted, such that on colous fluctuations in the velocity field, are sufficiently weak to
lision an output state is randomly selected from all possiblgustify a first order perturbation analysig]. Therefore, we
states with the same mass, momentum, and energy, includingin make a Taylor expansion of the collision term in the
the input state itself. For a more detailed description we refepeighborhood of the equilibrium distributiofl). Only the
the reader to Ref2]. first order term in this expansion is required to evaluate the
Due to the boolean nature of LGA, the ensemble averaggansport coefficients, yielding the linearized collision opera-
of the occupation numbers in equilibrium, are described by aor
Fermi-Dirac distribution
AA;
1 Qjj =,

1
=— 2 P(A(s=8)(s/~s)s;, (5
fi=(n)= 1+e ot (12 pS-yg' @

] ss’

wherek;=(df;/da) g=f;(1—T;) is the variance in the occu-
where «, B8, and y are Lagrange multipliers and fixed by Pation number. Since the GBL model obeys detailed balance,
setting the value of the average dengityS; f;, momentum it follows directly that Q2 «);; is symmetric[7], where we
pu=3, f,c, and energy densitpe=1%, fiCiZI B is the in- used thatxij is a (_jiagonal matrix with elements . By in-
verse temperaturey/ 8 can be identified with the chemical troducing the notion of an equivalence class (M,P,E),
potential, andy is a parameter conjugate to the flow velocity. -€-» & set of all states having the same miss ;s;, mo-
However, we will restrict ourselves to the zero-momentummentumP=Z2;s;c;, and energyE=Ei%sici2, we can cast

case by puttingy=0. this in a more suitable form for computational purposes. By
The lattice-gas Boltzmann equation is given[By7] noting that all states in the same class have the same prob-
ability of occurrence
fi(r+c,t+1)="f(r,t) + A;(f), 2
where the collision term; is a summation over all pre- and VseC P(s)= P(C)=6“M_BE+7'PH (1-1), (6

post-collision states ands’
the maximum collision rules lead to a constant transition
Ai(f)=2 P(s)A(s—s')(s/ —s). (3)  probability A(C)

s,s’

The collision operator depends on the transition mai{s Vs,s'eC A(S—>S’)=A(C)=|7|, (7)
—s') and the probabilityP(s) of occurrence of a state

The transition matrix is determined by the choice of the col-,here we useft’| to denote the number of different states in
lision rules and can easily be obtained. The probabiitg), the clas, and by defining

however, is in general a complicated function due to corre-

lations. For low densities, however, we can adopt the mo-

lecular chaos assumption and approximate the particles to be Gi= E Si, 8
independent and not to exhibit any correlations. It follows sec

immediately that the probabilit?(s) in equilibrium can be

written as Ci=2> sis|, 9
seC
Sj =S H
P(S):H f (1—-fpt s (4) we can evaluate the symmetric matfd« by
It is hard to prove whether or not the Boltzmann approxima- Q=S P(C (%—C) 10
tion is valid. Comparison with simulation has shown an ex- i ; © IC| A (10
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true 38-bits model, because in such a model a red and blue
particle can have the same velocity, while in our case this is
explicitly excluded.

We now denote bys={s;,} the state of a single node,
where the first label refers to the velocity channel and the
second label to the color. Since we exclude the possibility of
two particles with the same speed but different color, we
adopt the convention that if only a label for the velocity is
used we have used a summation over color, &GS
+Sip,=Si1+Sio- In fact, such quantities are the ones which
would describe the system for the color-blind observer.

Since color is a passive label for the particles, the average
occupation number is given bf;,=P,f;, wheref; was
already defined in Eq1) and we introduced the probability
of finding a red or blue particle bf?, andP,=1-P,, re-
spectively. Note that an alternative but equivalent formula-
tion can be obtained by introducing two different chemical
potentials in Eq(1), «, /B for the red andx, /B for the blue
particles. A simple calculation shows that the connection is

FIG. 1. An example of a equivalence class of size 9: mass 3made by identifying e“=e“+e" and P,=e"/(e"
momentum é,l\/§), energy 3, and 2 red particles. The first row +e).
gives already all output states in the GBL model, the second and Apart from the additional color labels, the expression for
third row contain only color redistributions. the collision operatof3) is unchanged, but the probability

P(s) of finding states is now given by
The benefit of this result is that the double summation over
the 2'9 states is replaced by a single summation over 29 926
different classes. Since we will here only consider the zero-
momentum case, we hawe=0 in Egs.(1) and (6). Hence,
the probabilityP(C) does not depend on the total momen-Due to the increase in the number of states the transition
tum, and the classes can be grouped by summing over theatrix has to be modified also. Note that a naive generaliza-
label P. This results in 280 groups, each contributing a 1Stion of Eq. (4) would lead top(s):r[mfiS;Lu(l_fm)l*sm_
X 19 matrix which can be precomputed, leading to a moresych a generalization, however, would not take into account
efficient evaluation. In fact, a number of classes contain onlyhat only a single particle, either red or blue, can exist with a
a Single state and will therefore not Contribute, such that Onlbiven Ve|ocity' This exclusion leads to the above formula-
23388 classes and 248 groups remain. tion.

As a final note we mention that strictly speaking the in-  |n order to proceed we need to clarify the difference be-
troduction ofC;; is not necessary, because its summation inween the colored and the uncolored model. In particular the
Eq. (10) can be evaluated immediately, yieldi2gP(C)Ci;  equal-time correlation function of the fluctuation®; , ,

=fifj+«jj. However, it will enable us to make a close which is obtained from the=0 case of the kinetic propaga-
connection with the colored version of the GBL model in thetgr [3]

next section.

P(s) =T firipa—foi-s. 1y

(FK)iM,]V:<5ni,u.(klt) 5nrv(k!0)>! (12)
I1l. COLOR IN GBL
_ _ where * denotes complex conjugation ard, ;,(k,0)

We now introduce a color as a passive label for our par=g, , ., . In the Boltzmann approximation the different chan-
ticles, i.e., the collisions are not affected by the color of thenels are independent andis in general found to be a diag-
particles, and we denote the colors by ree=(L) and blue  onal matrix. Although here fluctuations between particles
(b=0). For a “color-blind” observer this is still the normal with different velocities are independent as well, this is not
GBL model. But apart from randomly selecting a different true for the fluctuationsn;, and n;, with the same velocity
output state, which conserves mass, momentum, and energyt different color. This is a direct consequence of the mu-
also the colors need to be randomly reassigned to the pafual exclusion of a red and blue particle with the same ve-

ticles such that color is conserved as well. An example ofocity, in other words the fact that color is a passive label,
such a collision is given in Fig. 1. It is obvious that we canand hencex is given by

do the collision in two steps, a GBL-like collision followed

by a redistribution of the colors over the occupied channels, Kip,jv=0ijfi (8, —Ti)). (13
rather than combining both in a single collision. Note that in

this model each channel has three states, it is empty or o€ollowing a similar derivation as for the GBL modd] the
cupied by either a red or a blue particle, which leads to dinearized collision operator can be obtained and this results,
total of 39 different states. It is therefore different from a combined with the matrix, in the symmetric matrix
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‘Mw already taken into account by the GBL model, leaving the
(QK)ip,jv= Tty eiv= 2 P(S)A(s—S')(S{,—Siu)Sj», fifth invariant to be related to their difference, and we can
(14) summarize the invariants by

. . . . a,|1=0 Qla,)=0, 1
where we have adopted the Einstein summation convention. (@l [an) (7

By introducing the colored equivalence class&® .

=(M,P,E,R), with R=3;s;, the total number of red par- lany={[1).lc.).lc,).| 5 ¢2),|diff)}. (18)
ticles, we can write this in a form similar to EGLO). How-

ever, since the collision of particles and the redistribution ofThe invariant|diff) is a linear combination of the red and
colors are independent we can continue a little further. Thélue mass vectorgR) and|B), and is fixed by constraining
probability of a state can be written ad(C*) itto be orthogonal to the other four invariants. This results in

=P5P{‘,"‘RP(C), the size of a colored class ag*|

=(¥)|c|, the summation ESEC*S,M C(x-)), and Rin=0ur, (19
ESEC*SI[LSjV Clj[( )5” ;w+(R n— V)(l 5”)] where
we used the numerical value of the color labglsind v in Bin=0urs (20

the last expressions. Finally by noticing thak«
=3.38_,, we find an expression for which the summation
over the number of red particld® can be evaluated exact,
and after some algebra we obtain

1 1
|d'ﬁ>:P_|R>_P_b|B>’ (21)

and |diff) becomes the difference between the normalized
red and blue densities.

(QK)ipjr= PMPVZ P(@( iC] Cij) We now proceed by following the method introduced by
Resibois and de Leendr 1], and consider the single-time

step Boltzmann propagator leading to the eigenvalue prob-
+Pu(0,,=P) 2 P(O) 8iCij |, lem
MICI
(15) e L+ Q)| y(k) ="M y(k)), (22
where Eq.(10), the uncolored expressidix;; , is immedi- (p(K)|e ™Y1+ Q)=e*B{p(Kk)|, (23

ately recognized in the first term.
wheree 'k ¢ has to be interpreted as a 38 dimensional diag-
IV. LANDAU-PLACZEK THEORY onal matrix, andl is the_ identity matrix: It can .e.asily be
shown from the symmetries of the linearized collision opera-
For a detailed derivation of the Landau-Placzek theory ofor (15), that the problem can be split in two independent
the GBL model we refer the reader to RES]. Here we will  19-dimensional problems. The first subproblem is the origi-
only highlight some of the results and focus on the colorechal problem for GBL with the right eigenvector equation
version of the GBL model, which can be derived in an analo-
gous manner and resembles the results of a colored FHP e 1+ Q) kx(k) =¥ rx(k), (24)
model [5]. However, all expressions for the colored model
reduce to expressions for the proper GBL model by summingyhere the matrice$) and « are the normal GBL versions
over all color indices. and we explicitly included the later one to compare it with
In order to proceed we first need to introduce a coloredhe second subproblem
version of the thermal scalar prodyét 10|

e Y1+ Q") fx' (k)= Wiy’ (k). (25)
(AIBY= 2, A(Gi,) ki, ,B(C,), (16)

i Here we used thdtis a diagonal matrix with elemenfs,

and have denoted the color independent, symmetric matrix in
the second term of Eqd5) by Q'f. The solution of the
second subproblem is similar to that of the GBL model, al-
Pelt that the thermal scalar product should be modified by
usingf as a kernel, rather thax.

The complete set of solutions for the full problé@®) is
now obtained by modifying the two sets of solutions for both
Subproblems with an additional color dependence

and adopt the same convention that the matris attached
to the right vector, i.e.|B);, =i, ;,B(cj,). This colored
product was earlier introduced by Hanon and Boon on par
of the matrix[5]. The second ingredient which is required
are the collisional invariants, which are left eigenvectors of
Q with zero eigenvalue. Four of them, mass, momentum
and energy, already follow directly from the GBL model. In
the colored model a fifth invariant emerges due to the fact Bt

that the number of red and blue particles are conserved in- , =y, M KD
dependently. The sum of them giving the mass, which is Viullo=xik) ik = ( )X' (k). (29
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TABLE I. The eigenvectors, currents, and eigenvalues to dominant order in theklinGt

Viscosity P O=c, j.=c,c, z, = —vk?
Thermal diffusivity WO=s jt=c,s 7r=—Dk?

Sound damping yO=p+ce, j+=c,5*cy(c2—p) z.=—(*ck+Tk?)
(self)diffusion P80 = (diff) j aif = ¢ (dliff) Zgin=—Dck?

As in the case for the GBL model, the symmetries of theblue particles as follows directly from the two color indepen-
matrices cause the left and right eigenvectors to be related lyent subproblem&4) and(25) and is expected on the basis
dm(k) =€y (k)/ M,,, and form a complete biorthonor- of physical arguments.
mal set An example of the full wave-vector dependent eigenvalue
spectrum is shown in Fig. 2. In the linjik| — 0 only the five
slow modes go to zer@he real part of the two sound damp-
D e =1 (Dl )= Sran» (27)  ing modes coincidg confirming the absence of any spurious
m invariants due to the introduction of color. In the hydrody-
namic regime of small wavevector we use the expressions
where we useadn andn to label the different eigenfunctions found in Table I to obtain the transport coefficients from the
and introduced the normalization constant,. Note that ~€igenvalue spectrum, as is illustrated in Fig. 3. We also in-
the eigenvector$26) that belong to a different subset are dicated the generalized hydrodynamic regime, where the
already orthogonal by contracting the color label. From a
physical point of view this is of course to be expected, be- 0
cause this will ensure that the two sets cannot couple. If they a)
would, a color-blind observer would have been able to detect
a difference between the GBL model and its colored relative.

The next step in the procedure would be to realize that the
slow hydrodynamic modes carrying the transport propertiesg -2k
havez(k)—0 for small values ok. This justifies a Taylor 7=
expansion of the eigenvectors and eigenvalues in terms oy
|k|, and we solve the resulting set of equations for successive
orders. However, since we have already indicated that the
color modes and uncolored modes do not couple, we refe 5
the reader to Ref.3] for a detailed analysis and have listed
the results for the lowest order eigenvector, the current, anc
up to second order eigenvalues of the GBL model in Table I, -$5;——t——t——t— 1 1
including the additional color mode which we have in our k=
model. These results contain the longitudinal and transvers: *
velocity, c,=k-c and ¢, =k, -c respectively, the micro-
scopic pressur@=3c?, and the entrop;szp—cﬁ, where
the adiabatic speed of soumd is determined such that the
microscopic pressure and entropy are orthogonal, (isgp) 2
=0. The transport coefficients turn out to be the second
order terms in the eigenvalue&), which are the viscosity

v, thermal diffusivityD;, sound dampind’, and the(self-)

o

-3

(3]

diffusion D and follow from the second order equations  ~* 0
=
< . 1 + 1 . >
lal oy T 5])a
Q 2
(2)= _ 2 .
Z = . (28
’ (W)
_ . o 0 — e
Although the existence of collisional invariants, and hence Kkek

zero eigenvalues, prevent us to invert the maftixthe ex-

pression is formally correct, because one can show that the giG. 2. Full eigenvalue spectrum of the Boltzmann propagator
currentsj belong to the orthogonal complement of the null of the colored GBL model as function of the wavevectkf in
space of. In addition we mention the fact that although the reciprocal lattice units. The density and energy densitypar®.0
transport coefficients do depend on the density and energy @hd e=6.7/6.0, respectively. The spectrum is independent of the
the system, none of them depends on the fraction of red anféaction of red particles, .
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1 1

D= glo—1zm(k) _ 1 +§’

(32

where property27) has been used to eliminate the mafiix
and the expression can be normalized after division by
pS(k)={(p|p) . Since the collisional invariarp) is a vector
that lies in the GBL part of the model, it is orthogonal to the
19 color modes, which therefore, as expected, do not con-
tribute.

In the colored model we can follow a similar approach to

031 ] obtain the red mass dynamic structure factor, which is de-
I II m 1 fined as the space and time Fourier transform of the red-red
09’5 : 0{1 : 0{2 : 0{3 . o! . density correlatio5]
k=k, (8p™4r,1)8p"%0,0), (33
10 where the red mass density is given by™qr,t)
b | =2;n;(r,t). Following the same procedure we obtain the
red mass dynamic structure factor
08l M
B PS5k, w) =2 R, N1ED,,, (34)
“x 0.6 m
= v
5 NE=(R| i) bl R). (35
o 041
T ] But since|R) does not fall completely within either of the
o2l r two subproblems, we now get a contribution from all 38
' modes.
I | I Apart from the five slow hydrodynamic modes related to
095 : 05 : 15 15 : 50 the transport properties, one also obtain a number of fast
' K=k ' kinetic modes. In the hydrodynamic regime of snkadind w

these have Rg,(0)<0 and decay exponentially. This is ex-

FIG. 3. The wave-vector dependent transport coefficients obploited by the Landau-Placzek formula, for which one ap-
tained from the small wave-vector approximatior(@tlow density ~ pProximates Eq(30) by summing only over the slow modes
p=1.1 ande=1.0, (b) high densityp=6.0 ande=6.7/6.0. The and expanding up t@(k?). This also requires the partial
wave vectork is measured in reciprocal lattice units. In the hydro- knowledge of the eigenvectors up to ord2¢k). The shear
dynamic regime | the transport properties are approximately conmode, however, does not contribute due to parity, and only
stant. Regime Il characterizes the generalized hydrodynamic regimgne thermal diffusivity, sound damping, and diffusion modes
where the transport properties become strokglgpendent. At still  remain for which we obtaif3]
higherk values to regime crosses over into the kinetic regime lll,
where the kinetic modes become of comparable order as the hydro-

dynamic modes. NE=P?N7=P <P|P>_+O(k2) (36)
transport properties become strondgiydependent, and the (plp)

kinetic regime, where the kinetic modes become of compa—/\/red PIN.=P— "2y 1+—[F+(7 1)D+]{ +O(K?),
rable order as the hydrodynamic modes. (37)

It has been shown that the dynamic structure factor
NEI=P2P2(diff| diff ) + O(K?), (39
_ io+ik-c__1__ -1, 1
pS(kw) =2 Rep|(e”"  =1-0) "+ 3[p), (29 ypere y=1+(s|s)/{p|p). By using the normalization
predseqk)=(R|R), we obtain for the Landau-Placzek ex-
in the Boltzmann approximation can be evaluated 3y pression of the red mass dynamic structure factor

S*tk,w) _Pplp) S(k,w)

pS(K,®)=2 Re>, NyDp, (30) seqk)  (RIR) Sk
P2P2(diff|diff)  2Dck2
. (39
Na={p¥m){¢mlp), (31) (RIR) w?+(Dck?)?
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FIG. 4. The red power spectrum at low dengity 1.1, e= 1.0, P,=0.5[a, b] and high density=6.0,e=6.7/6.0,P,=0.75[c, d]. The
wave vectors ar&,=5X27/256 [a, c| andk,=25x2#/256[b, d]. The solid line is the Boltzmann predicti¢@4), the dashed line is the
Landau-Placzek approximatiqB9), and the points are simulation resultgidsize 256< 256, time steps 3810°). The wave vectok is

given in reciprocal lattice unitsy in reciprocal time (2r/T, with T the total number of time stepsand the spectral functions in reciprocal
 units.

This is the normal dynamic structure factor, but with an ad-Following the same route this leads to a dynamical structure

ditional diffusion peak at the same location as the one due téactor containing terms of the typ@liff| ). Hence, it will

the thermal diffusivity. be completely independent of the modes found in the GBL
In Fig. 4 we show results for the red mass dynamicalmodel, and the Landau-Placzek approximation leads to a

structure factor for low and higher densities and two differ-single Lorentzian

ent wave vectors. We compare the Boltzmaf@#) and

Landau-Placzek predictior{89) with simulations performed S (K, w) 2D k2
on a 256< 256 grid. As expected for the smaller wave vector i = >3 (42
the agreement between them is good, but for the larger wave (k) @+ (Dck%)

vector the Landau-Placzek curve, specially for the lower o )

density, deviates significantly, while the Boltzmann predic-Note that it is not dependent on the fraction of red and blue
tion is still good. This is merely an illustration that we are Particles in the system. It also shows that the red mass dy-
outside the hydrodynamic regime. As we can see from Fig. $@mic structure faqtor is a simple _Imear combination of the
we are for the higher density already in the generalized hynormal and col_or_ difference dynamic structure factors, where
drodynamic regime, while for the lower density we evenOnly both coefficients depend on the fraction of red and blue

shifted to the kinetic regime. particles in the system, a result which also could have been
We also can consider the fluctuations in the differencePbtained from the identityR) =P [p) + P, Py|diff) and the
between the normalized red and blue densities fact that|p) and|diff) are orthogonal. .
In Fig. 5 an example of the color difference dynamic
red(r ¢ bluep ¢ structure factor at a densigy=10.0 obtained by simulations
i (r 1) = pArY _F §Y) _ (40) is shown and compared with the theoretical curves. From the
Py Py width of the peak at half-height the diffusion constant is
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60 - - - - - - the second method, because it allows for a more efficient and
a) | 1 accurate determination of the quantities of interest. More-

50 over, we do not have to concern ourselves with the problem,
which eigenvalue corresponds to which transport coefficient.
In what follows we first will restrict ourselves to the uncol-
ored GBL model, because the transport coefficients are not
dependent on the presence of color in the system. This also
means that we postpone the discussion of the diffusion to a
later point.

S
(=2

o)
(=)

e s )
3

A. Symmetries of the collision matrix

—
(=}

The solution of Eq(28) requires us to find a vectdk,
such thatQ|A,)=|j.). This vector is not unique, because
one could add an arbitrary linear combination of collisional
invariants, which are orthogonal to the currents. As an alter-
native one can decompolg) in terms of eigenfunctions of

b)3-0 the collision matrix() defined by

2.5 - Q|‘//n>:wn|lr//n>v (42)

S0l | because by using a relation similar 7) and the relation

’ between left and right eigenfunctions one obtains that a
oLs transport coefficient , is given by[7]

1 ial vl ( 1 1)
1.0 . L=~ —+ . 43
=T OOy & iy Vo 2) W

Note that since the currents are orthogonal to the collisional
invariants the eigenvalues appearing in the summation are all
0 ' 5 ' 10 ' 15 nonzero.

p For the 4-bits HPP model, 6- and 7-bits FHP models on a

triangular lattice, 8- and 9-bits models on a square lattice,
FI_G. 5. (a) Dynamic struc’Fure factor of the diffusion for znd even for the 24-bits ECHC model, it turns out th%}

density p=10.0, energy densitye=0.8, and wave vectok,  jiself js an eigenfunction of) (see Ref[7] and references
=12x(2m/256). (b) (Self-diffusion as a function of density for o rein In general, however, this is not the case and the
fixed energy densitg=1.0. The points are simulation results, the current is a combination of a number of eigenfunctions. In

solid line is the theoretical pr_edlctlop._The d!ﬁereqce between Bolt-order to understand which and how many eigenfunctions are
zmann and Landau-Placzek is negligible. Simulations were done o

n . .
a 256x 256 system withP,=0.75 and for time stepsx10°. c_oupled toa gl_ven_transp_ort property a more detailed analy-
sis of the matrix() is required.
Although the matrix();; itself is not symmetric in its la-
Bels, it obeys a number of other symmetries. Their origin is

obtained. The simulations show an excellent agreement wit

theory. Simulations at very high densify=18.5 gave no r§imply due to the symmetry of the lattice on which it is

evidence for the unexpected coupling between the diffusiont .. 4 : .
mode and any of the other hydrodynamic modes as Wageflned. In the_case of a triangular lattice with hex_agonal
found for the 14-bit mod€]l5]. As a possible explanation we symmeiry and in the absence of a symmetry breaking fea-

suggest that the®™ which was used depends in a nonIinearFure' such as an overall nonzero flow, the system should be

way onp. This would therefore lead to a nonzero Contribu_mvanant under any of the 12 transformations of the group

tion from the normal dynamic structure factor, and (::xplainmapplng a node on itself. These transformations are formed

the location and size of the additional peaks by being smaﬁrom the combinations of the rotatidR over an anglem/3

P - d its multiples, and the reflectid@y in the x axis.
contributions of the Brillouin peaks. an ’ ’
P If we now let Q act on an arbitrary vectoE, a,¢™,

where the¢("™ form a complete set of basis vectors, we
obtain

The transport coefficients can now be obtained in two
ways. One can solve the eigenvalue probl&8) numeri- Q. (n_ Q) 44
cally for small wave vectors and use the formulas in Table | ”; ) ; B (44
to obtain the desired results, or, alternatively, use the Green-
Kubo relations(28). The two routes are equivalent, and the where thea,, and 3, are some numerical coefficients.Gfis
choice made is a matter of convenience. We will adopt hera proper subgroup of the grodpof all transformations that

V. TRANSPORT COEFFICIENTS
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map a node on itself, and take the sum over all elemgnts sin(2¢), and cos(2). The last subspace depends on the ori-

e G acting on the above equations we get entation of the ring and is either coj3or sin(34). For the
zero-velocity channel only the subspace corresponding to 1
QE anX(“):E Box'™, (45) remains. Since in the GBL model the ring corresponding to
n n velocity /3 is rotated 30 degrees with respect to the rings of

) velocity 1 and 2, seven different subspaces are found related
where we have introduced a set of symmetry adapted vectogg the symmetries

x" corresponding to the grou@ by

2 2 2 2 2 2
1 ¢, ¢y ¢y cy—Cy Culcy—3cy) cy(cy—3cy).

1
xV== > g(¢™), (46) (47)
|G| ¢<6

) ) The dimension of the first subspace is four, the next four
and used thatt(()=€ for all teT. Since in general gypspaces are of dimension three and the last two of dimen-
9(¢™) # ¢(" and using some general properties of groupsion two and one respectively, which follows from a simple
theory it can easily be seen that some of these vectors will bgounting of contributions of different rings.
identical. Therefore the number QfS will be less than the The arguments and reasoning presented here are genera”y
number of¢’s and will span an invariant subspace®f If  true and applicable to any lattice gas, although the outcome
the groupG would be either the identity or a noncomplete will of course depend on the underlying symmetry of the
subgroup of the transformations ih their numbers could system under consideration. The matimultiplies the dif-
also be the same. ferent channels in a ring with the same factor and therefore

It is important to observe that the transformatidrsT  will have the same invariant subspaces, which, of course, is
only transform channels into channels belonging to the samg|so valid forQ .
“ring,” where a ring is formed by all channels which can be
obtained by applying all transformations Thon a specific
channel. In the GBL model such a ring would contain all six
channels corresponding to the same absolute velocity. Only The transport properties of the GBL model vary with tem-
the velocity zero would lead to a ring of one channel. If anperature. Temperature, however, is not well-defined in a
extension would be made by including higher velocities, e.g.thermal lattice ga§l12]. On the one hand we have the tem-
a 31-bits model, also rings with 12 channels exist. Becausperature as defined for a Fermion-dgd =1/8 [7], on the
of the hexagonal lattice symmetry a ring can contain onlyother hand we could define a kinetic temperakife= e [13]
one, six, or twelve channels. by assuming a local version of the equipartition theorem,

The fluctuations inside a single ring of 12 channels couldwhich states that the mean kinetic energy per particle is pro-
of course be written in terms of the 12 independent vectorportional to the temperature. The const&nst A2/272 acts
cospd) and sinfd), wheren=0,...,5 andn=1,...,6 re- like the Boltzmann constant but depends on distance be-
spectively, andd is the angle made by the direction of the tween neighboring lattice nodasand the time step. The
velocity with respect to the positive axis. Using these as temperature according todleads to the possibility of nega-
our basis vectorg", and the three groupgd, S}, {1,R®},  tive temperatures at higher densities, while the kinetic tem-
and{1,R?,R* as the subgroups we find th@t gives rise to  perature remains positive. The origin of the difference of the
at most eight different invariant subspaces. Four of thentemperature scales lies in the fact that a Fermion-gas is used
being one-dimensional are described by the symmetries Ifp model a normal gas. We therefore cannot expect the
cos(3), sin(3), and sin(@), and the other four all being model to behave as an ideal gas except in the low-density
two-dimensional and described by the sftes@),cos(%)},  limit.
{sin(6),sin(5)}, {cos(2),cos(#)}, and{sin(26),sin(46)}. The Another important restriction is the limited set of combi-
different subspaces are automatically orthogonal. The twaations of densitiep and energy densities that can be
vectors spanning a two-dimensional subspace, however, aggmulated. The space to which they are confined is shown in
only independent with respect to each other, but one cakig. 6. Since we will show the transport coefficients for con-
easily construct an orthogonal basis. Although we startegtant reduced temperatuge=e?'2, a few of those lines are
with the sine and cosine functions, this is not necessary, béncluded. Note that the case=1 with a constant energy
cause the correct forms are automatically obtained from thdensitye corresponds to an athermal model.
full analysis. For the current related to the shear viscosity we obtained

The extension made to include the different rings isj, =c,c, =c,c,, where we have chosen the wave vector to
straightforward after realizing that a set of vectors can bée along thex axis of the system. It is now obvious from our
made to correspond to each aw§)(or sin(d) by defining a  discussion in the previous subsection that it lies in a three-
¢ for each ring as described above and to be zero elsewherdimensional subspace, and hence at most three eigenfunc-
In this way a simple complete and orthogonal basis is contions of Q) are required in Eq(43) to obtain the viscosity of
structed, which decompos€kin invariant subspaces. In the which the results are shown in Fig. 7. Moreover, by using an
degenerate case that a ring contains only six channels somag@propriate basis transformation based on those consider-
of the vectors become identical or vanish. Of the eight subations, we do not even have to evaluate the full magix
spaces only six remain corresponding to 1, &in€os@, but only a 3x3 matrix. This results in a faster evaluation,

B. Temperature and Transport
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20

FIG. 6. The space to which the denspyand energy densitg
are confined is given by the solid boundaries. Some con8thnés
are included, with the special cage= 1 corresponding to the ather-  b)
mal model.

better numerical accuracy, and, in principle, it even enables
us to obtain an analytic formula for the viscosity, although
the expression would be rather lengthy. >

Only in the limit #— 0 do the transport coefficients show
divergencies at the densitigs=1, 7, 13, and 19. This is a
direct consequence of the fact that in this zero temperature
limit the transition probability of particle exchange between
different energy levels goes to zero. At these specific densi-
ties each ring of particles is either completely filled or com-
pletely empty and hence a static state is reached without an®~ © 3 10 15 20
transport. Something similar is observed for the lingit P

—% although. thes_e divergencies are foungato, 6, 1_2' FIG. 7. Shear viscosity as function of the dengityor various
and 18. The viscosity curves for constant energy density argjyes of(a) the reduced temperatureand (b) the energy density
truncated at a density<<19, which is simply due to the fact ¢

that for the given energy density no higher density can be . o
obtained in the GBL mode(Fig. 6). der, or alternatively, as the zero temperature limit of the dual

The currenthzc/s=cX(%c2—c§) also lies in a three- model of holes. . . - .

: . . > As a consequence the viscosity in both limits will corre-
dimensional subspace. But in this case the subspace aI%oOnd exactly to the ones obtained from the proper EHP
contains the collisional invariard, and therefore only the mpodels and ig almost identical to the curge 10*4pin LI):i
two remaining eigenfunctions will contribute to the thermal7 The thermal diffusivity. however. is not containedgin a
diffusivity D+, which is shown in Fig. 8. Note that the curve _ Y, '

with e=1.5 goes to zero at its highest density, which is not aFHP model, hence the limd—0 and the casé=0 are truly

numerical artifact. The currents of both sound dampin different. This is illustrated by the fact that fpe>7 the limit

) S 'Y almost identical to the one fat=10"* (Fig. 8 for which
modes can be expressed as a linear combination of fiv:

. . : "Vihe thermal diffusivity remains finite, and only in the range
eigenfunctions of}, but one can obtain the sound dampmg0< <7 will it 90 to zero as sudaested by that curve
also immediately from the identit] ., =3(y—1)Dt+ 3 ». p 9 99 y '

The zero temperature limi#=0 represents the ground- o
state of the model. This means that only in one of the rings C. (Self Diffusion
particles are able to move. All channels on every node with In order to obtain the diffusion we could use a similar
slower particles are completely filled, while those for fasteranalysis as in the previous section on the complete colored
particles are completely empty. This immediately impliesmatrix (). But, as we have already seen the current of the
that no energy exchange is possible, and hence the modeiffusion is perpendicular to all GBL modes, and is con-
becomes similar to one or several independent FHP-I modelgined in the matrix)’ in Eg. (25). So we can restrict our-
with maximum collision rules. Moreover, since energy hasselves to doing the analysis on this matrix only, where we
lost its significance, also the thermal diffusivity will disap- also need to replace the diagonal mateivy that off.
pear. The temperature limfi=c can be described in the Also in this case the a decomposition into subspaces can
same way, albeit that the rings are filled in the opposite orbe made, which is obviously the same, and one finds three
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20

0 5 10 15 20 0 ' 5 ' 10 ' 15 ' 20
[ p
FIG. 8. Thermal diffusivity as function of the densipy for FIG. 9. Self-diffusion as function of the densipyfor various
various values ofa) the reduced temperatuteand (b) the energy  values of(a) the reduced temperatuseand (b) the energy density
densitye. e

contributing eigenfunctions to the diffusion shown in Fig. 9. The angular brackets are here referring to an ensemble aver-
In contrast with the other transport coefficients, no divergenage andZ(1) can be evaluated by
cies are found in the zero temperature limit due to the com-
plete filling of rings. A fact that easily can be understood,
because even if a ring is completely filled, a redistribution of
colors is always possible, provided that the probability of
having two colors at a node is nonzero. wherem(s) andu,(s) are the mass and average speed in the
The diffusion coefficient can also be obtained from simu-x direction of a state. With some algebra it can be shown that
lations by using the momentum-propagation metfistl and  the summation can be related to the colored linearized colli-
is based on the decay of the velocity autocorrelation funcsjon operator, the vectddiff), and its corresponding cur-

tion, which turns out to be algebraic. However, in the Bolt-rent. This results in the following expression for the diffu-
zmann expression of neglecting correlations it leads to sion

1
(UO)u(1)=" Es P(s)m(s)u(s), (50)

1 . A
D=<v§(0)>(——— , (48 __ <Jdiff|]diff>( (i il ] air) })

1-2(D 2 O {aldift) | Gl Q) 20 P
whereZ(1) is the normalized velocity autocorrelation func- and comparison with Eq28) shows that this result would
tion for a single time-step have been the true Boltzmann diffusion if the current had

been an eigenfunction of), as for instance in an FHP
(v,(0)vy(1)) model. As mentioned before, however, the current is com-
Z(1)= > (49 posed of three eigenfunctions. Nevertheless, this estimate
(v5(0)) could be used as a first approximation to the Boltzmann
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value and is usually correct within a few percért, which A final note is made about the confirmation of transport
explains why the difference between the value for the diffu-coefficients in simulation. It is virtually impossible to accu-

sion obtained by this method and the one obtained from Eqgately measure a transport coefficient from a lattice-gas simu-
(43) is negligible. lation for a specific combination of density and temperature.

A Poiseuille viscometer fits a parabolic profile to the simu-

V1. DISCUSSION lation momentum-density profile. Since the transport coeffi-

cients are velocity dependent, due to the lack of Galilean-

In order to calculate transport coefficients in the Boltz-jnyariance of LGA models, several measurement with
mann approximation, we developed a generally applicablgecreasing velocities should be undertaken, where the zero-

scheme which allows for a fast and in principle analyticalyg|ocity transport value could be extrapolated by fitting the
evaluation in the case of no-flow. At the cost of some effi-qata with a curve. However, the density and temperature

ciency it could also be extended to in'clude. a drift veloci'ty.acrOSS the channel vary strongly. Another possibility is to
We use the scheme to evaluate the viscosity, thermal diffumeasure the transport coefficient from the dynamic structure

sivity, and sound damping in the two dimensional GBL tactor obtained from a simulation. The width of the channel
model, but it can easily be extended to other models angdnq the wave vector should be chosen in the hydrodynamic
higher dimensions. In order to evaluate tiself-) diffusion,  greq, i.e., the wave vector times the mean-free path should be

we extended the model by attaching a passive color label tgy,ch smaller than unity. The amount of simulation required
the particles and confirmed those results by the use of thg accurately extract the transport coefficients is huge. There-
Boltzmann approximation of the decay of the velocity auto-fore, the Boltzmann approximation provides a cheap alterna-

cies in the transport properties is observed, but can be comy purposes, even at high densities.

pletely understood.

A comparison of the dynamical structure factors in the
colored and uncolored model obtained from simulations with
the theoretical curves, show an excellent agreement. In the Part of this work was initiated in the group Section Com-
hydrodynamic regime the agreement between the Boltzmanputational Science of the University of Amsterdam, which
expression and the Landau-Placzek formula is good. we like to thank for their hospitality.
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