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Brownian motion in a magnetic field
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We derive explicit forms of Markovian transition probability densities for the velocity-space, phase-space,
and the Smoluchowski configuration-space Brownian motion of a charged particle in a constant magnetic field.
By invoking a hydrodynamical formalism for those stochastic processes, we quantify a continual~net on the
local average! heat transfer from the thermostat to diffusing particles.
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I. INTRODUCTION

We address an old-fashioned problem of the Brown
motion of a charged particle in a constant magnetic fie
This issue has originated from studies of the diffusion
plasma across a magnetic field@1,2# and nowadays, togethe
with a free Brownian motion example, stands for a textbo
illustration of how transport and autocorrelation functio
should be computed in generic situations governed by
Langevin equation~to a suitable degree of approximation
a kinetic theory, when collisions are stochastically mode
in terms of a random force!, cf. @3# but also@4,5#.

From a purely pragmatic point of view, this white-nois
strategy is quite satisfactory. After~formally! evaluating ve-
locity autocorrelation functions, formulas for running an
asymptotic diffusion coefficients easily follow. To that en
an explicit form of the probability density or transition pro
ability density of the involved stochastic diffusion process
~in velocity space, space or configuration space! is not nec-
essary, cf.@1,3#.

To our knowledge, except for@2# ~mentioned in@5# as a
footnote reference for the purpose of evaluation of the m
square velocity and its mean square displacement at equ
rium!, for a Brownian particle in a constant magnetic fie
no attempt was made in the literature to give a comp
characterization of the stochastic process itself, nor pas
the associated macrosopic~hydrodynamical formalism! bal-
ance equations~cf. @6–11# for a number of reasons why to d
that!.

Surprisingly enough, in Ref.@2#, the Brownian motion in
a magnetic field is described in terms ofoperator-valued
~matrix-valued functions! probability distributions that addi
tionally involve fractional powers of matrices. In cons
quence, there is no clean path towards a~necessary! relation-
ship with the associated Kramers-Smoluchowski equati
~cf. Chap. 6.1 in Ref.@4#!, nor ways to stay in conformity
with the standard wisdom about probabilistic procedu
valid in case of the free Brownian motion~Ornstein-
Uhlenbeck process!, cf. @12,13,9#.

Therefore, we decided to address an issue of the Bro
ian motion in a magnetic field anew, to unravel its features
a fully fledged stochastic diffusion process. In particular,
derive transition probability densities governing the veloci
1063-651X/2001/63~2!/021105~9!/$15.00 63 0211
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space, phase-space, and the configuration-space proce
Hydrodynamical balance equations and their behavior in
Smoluchowski regime are discussed as well.

II. VELOCITY-SPACE DIFFUSION PROCESS

The standard analysis of the Brownian motion of a fr
particle employs the Langevin equationduW /dt52buW

1AW (t) whereuW denotes the velocity of the particle and th
influence of the surrounding medium on the motion~random
acceleration! of the particle is modeled by means of tw
independent contributions. A systematic part2buW repre-
sents a dynamical friction. The remaining fluctuating p
AW (t) is supposed to display a statistic of the familiar wh
noise: ~i! AW (t) is independent ofuW , ~ii ! ^Ai(s)&50 and
^Ai(s)Aj (s8)&52qd i j d(s2s8) for i , j 51,2,3, where q
5(kBT/m)b is a physical parameter. The well-know
Ornstein-Uhlenbeck stochastic process comes out on
conceptual basis@12,13,9#.

The linear friction model can be adopted to the case
diffusion of charged particles in the presence of a cons
magnetic field that acts upon particles via the Lorentz for
The Langevin equation for that motion reads

duW

dt
52buW 1

qe

mc
uW 3BW 1AW ~ t !, ~1!

whereqe denotes an electric charge of the particle of ma
m.

Let us assume for simplicity that the constant magne
field BW is directed along thez axis of a Cartesian referenc
frame: BW 5(0,0,B) and B5const. In this case Eq.~1! takes
the form

duW

dt
52LuW 1AW ~ t !, ~2!

where
©2001 The American Physical Society05-1
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L5S b 2vc 0

vc b 0

0 0 b
D , ~3!

and vc5qeB/mc denotes the Larmor frequency. Assumin
the Langevin equation to be~at least formally! solvable, we
can infer a probability densityP(uW ,tuuW 0),t.0 conditioned
by initial velocity data choiceuW 5uW 0 at t50. Physical cir-
cumstances of the problem enforce a demand:~i! P(uW ,tuuW 0)
→d3(uW 2uW 0) as t→0 and ~ii ! P(uW ,tuuW 0)
→(m/2pkBT)3/2exp(2muuW0u2/2kBT) as t→`.

A formal solution of Eq.~2! reads

uW ~ t !2e2LtuW 05E
0

t

e2L(t2s)AW ~s!ds. ~4!

By taking into account that

e2Lt5e2btS cosvct sinvct 0

2sinvct cosvct 0

0 0 1
D 5e2btU~ t !, ~5!

we can rewrite Eq.~4! as follows:

uW ~ t !2e2btU~ t !uW 05E
0

t

e2b(t2s)U~ t2s!AW ~s!ds. ~6!

Statistical properties ofuW (t)2e2LtuW 0 are identical with
those of*0

t e2L(t2s)AW (s)ds. In consequence, the problem

deducing a probability densityP(uW ,tuuW 0) is equivalent to de-
riving the probability distribution of the random vector

SW 5E
0

t

c~s!AW ~s!ds, ~7!

wherec(s)5e2L(t2s)5e2b(t2s)U(t2s).
The white-noise termAW (s), in view of the integration

with respect to time, is amenable to a more rigorous anal
that invokes the Wiener process increments and their st
tics @14#. Let us divide the time integration interval into
large number of small subintervalsDt. We adjust them suit-
ably to assure that effectivelyc(s) is constant on each sub
interval (j Dt,$ j 11%Dt) and equalc( j Dt). As a result we
obtain the expression

SW 5 (
j 50

N21

c~ j Dt !E
j Dt

( j 11)Dt

AW ~s!ds. ~8!

Here BW (Dt)5* j Dt
( j 11)DtAW (s)ds stands for the above

mentioned Wiener process increment. Physically,BW (Dt) rep-
resents thenet acceleration that a Brownian particle ma
suffer ~in fact accumulates! during an interval of timeDt.

Equation~8! becomes
02110
is
is-

SW 5 (
j 50

N21

c~ j Dt !BW ~Dt !5 (
j 50

N21

sW j , ~9!

where we introducesW j5c( j Dt)BW (Dt)5c jBW (Dt).
The Wiener process argument@12,13,6# allows us to infer

the probability distribution ofsW j . It is enough to employ the
fact that the distribution ofBW (Dt) is Gaussian with mean
zero and varianceq5(kBT/m)b. Then

w@BW ~Dt !#5S 1

4pqDt D
3/2

expS 2
uBW ~Dt !u2

4qDt
D ~10!

and in view of sW j5c jBW (Dt) by performing the change o
variables in Eq.~10!, we get

w̃@sW j #5det@c j
21#w@c j

21sW j #5
1

detc j
w@c j

21sW j #. ~11!

Since detc(s)5e23b(t2s) and c21(s)5U@2(t
2s)#eb(t2s) we obtain

w̃@sW j #5S 1

4pqDt D
3/2 1

e23b(t2 j Dt)

3expS 2
ueb(t2 j Dt)U@2~ t2 j Dt !#sW j u2

4qDt
D ~12!

and finally

w̃@sW j #5S 1

4pqDt

1

e22b(t2 j Dt)D 3/2

expS 2
usW j u2

4qDte22b(t2 j Dt)D .

~13!

Clearly, sW j are mutually independent random variabl
whose distribution is Gaussian with mean zero and varia
s j

252qDte22b(t2 j Dt). Hence, the probability distribution o

SW 5( j 50
N21sW j is again Gaussian with mean zero. Its varian

equals the sum of variances ofsW j i.e., s25( js j
2

52q( jDte22b(t2 j Dt).
Taking the limitN→` (Dt→0) we arrive at

s252qE
0

t

dse22b(t2s)5
kBT

m
~12e22bt!. ~14!

Because ofSW 5uW (t)2e2LtuW 0 the transition probability
density of the Brownian particle velocity, conditioned by th
initial datauW 0 at t050 reads

P~uW ,tuuW 0!5S 1

2p
kBT

m
~12e22bt!D 3/2

3expS 2
uuW 2e2LtuW 0u2

2
kBT

m
~12e22bt!D . ~15!
5-2
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The process is Markovian and time homogeneous, he
the above formula can be trivially extended to encompass
case of arbitraryt0Þ0: P(uW ,tuuW 0 ,t0) arises by substituting
everywheret2t0 instead oft.

Physical arguments@cf. demand~ii ! preceding Eq.~4!#
refer to an asymptotic probability distribution~invariant
measure density! P(u) of the random variableuW in the
Maxwell-Boltzmann form

P~uW !5S m

2pkBTD 3/2

expS 2
muuW u2

2kBT
D . ~16!

This time-independent probability density together with t
e-

to

s
-

ill

nd
u

ar
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e
time-homogeneous transition density~15! uniquely deter-
mine a stationary Markovian stochastic process for which
can evaluate various mean values.

Expectation values of velocity components vanis

^ui(t)&5*2`
` ui P(uW )duW 50 for i 51,2,3. The matrix of the

second moments~velocity autocorrelation functions! reads

^ui~ t !uj~ t0!&5E
2`

`

uiuj
0P~uW ,t;uW 0 ,t0!duW duW 0 , ~17!

where i , j 51,2,3 and in view of P(uW ,t;uW 0 ,t0)
5P(uW ,tuuW 0 ,t0)P(uW 0) we arrive at the compact expression
kBT

m
e2Lut2t0u5

kBT

m
e2but2t0uS cosvcut2t0u sinvcut2t0u 0

2sinvcut2t0u cosvcut2t0u 0

0 0 1
D . ~18!
re

ew

-

In particular, the autocorrelation function~second mo-
ment! of the x component of velocity equals

^u1~ t !u1~ t0!&5
kBT

m
e2but2t0ucosvcut2t0u, ~19!

in agreement with white-noise calculations of Refs.@1# and
@3#, cf. Chap. 11, formula~11.25!. In particular, the so-called
running diffusion coefficient arises via straightforward int
gration of the functionR11(t)5^u1(t)u1(t0)& where t5t
2t0.0:

D1~ t !5E
0

t

^u1~0!u1~t!&dt

5
kBT

m

b1@vc sin~vct !2b cos~vct !#exp~2bt !

b21vc
2

~20!

with an obvious asymptotics@the same forD2(t)#: DB

5 lim
t→`

D1(t)5(kBT/m)@b/(b21vc
2)# and the large fric-

tion (vc fixed and bounded! versionD5kBT/mb.

III. SPATIAL PROCESS

The cylindrical symmetry of the problem allows us
consider separately processes running on theXY plane and
along theZ axis ~where the free Brownian motion take
place!. We shall confine further attention to the two
dimensionalXY plane problem. Henceforth, each vector w
carry two components that correspond to thex andy coordi-
nates, respectively. We will directly refer to the vector a
matrix quantities introduced in the previous section, b
while keeping the same notation, we shall simply disreg
their z-coordinate contributions.
t
d

We define the spatial displacementrW of the Brownian
particle as follows:

rW2rW05E
0

t

uW ~h!dn, ~21!

whereuW (t) is given by Eq.~2! ~except for disregarding the
third coordinate!.

Our aim is to derive the probability distribution ofrW at
time t provided that the particle position and velocity we
equal torW0 anduW 0, respectively, at timet050. To that end
we shall mimic procedures of the previous section. In vi
of

rW2rW02E
0

t

e2LhuW 05E
0

t

dhE
0

h
dse2L(h2s)AW ~s!, ~22!

we have

rW2rW02L21~12e2Lt!uW 05E
0

t

L21~12eL(s2t)!AW ~s!ds,

~23!

where

L215
1

b21vc
2 S b vc

2vc b D ~24!

is the inverse of the matrixL @regarded as a rank two sub
matrix of that originally introduced in Eq.~3!#. Let us define
two auxiliary matrices

V[L21~12e2Lt!, ~25!

f~s![L21~12eL(s2t)!.
5-3
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Because of

e2Lt5expH 2tS b 2vc

vc b D J 5e2btS cosvct sinvct

2sinvct cosvct
D

5e2btU~ t ! ~26!

we can represent matricesV, f(s) in more detailed form.
We have
io
m

a

02110
V5
1

b21vc
2 H S b vc

2vc b D 2e2btS b vc

2vc b D
3S cosvct sinvct

2sinvct cosvct
D J ~27!

and
f~s!5L21@12e2b(t2s)U~ t2s!#5
1

b21vc
2 S b vc

2vc b D S 12eb(s2t)cosvc~s2t ! 2eb(s2t)sinvc~s2t !

eb(s2t)sinvc~s2t ! 12eb(s2t)cosvc~s2t !
D . ~28!
Next steps imitate procedures of the previous sect
Thus, we seek for the probability distribution of the rando
~planar! vectorRW 5*0

t f(s)AW (s)ds whereRW 5rW2rW02VuW 0.
Dividing the time interval (0,t) into small subintervals to

assure thatf(s) can be regarded constant over the time sp
( j Dt,$ j 11%Dt) and equalf( j Dt), we obtain

RW 5 (
j 50

N21

f~ j Dt !E
j Dt

( j 11)Dt

AW ~s!ds

5 (
j 50

N21

f~ j Dt !BW ~Dt !

5 (
j 50

N21

rW j , ~29!

whererW j5f( j Dt)BW (Dt)5f jBW (Dt).
By invoking the probability distribution~10! we perform

an appropriate change of variables:rW j5f jBW (Dt) to yield a
probability distribution ofrW j

w̃@rW j #5det@f j
21#w@f j

21rW j #5
1

detf j
w@f j

21rW j #. ~30!
n.

n

Presently@not to be confused with previous steps~11!–
~15!# we have

detf~s!5
1

b21vc
2 $11e2b(s2t)22eb(s2t)cosvc~s2t !%

~31!

and

f21~s!5
1

11e2b(s2t)22eb(s2t)cosvc~s2t !

3@12eb(s2t)U$2~s2t !%#L. ~32!

So, the inverse of the matrixf j has the form

f j
215

Ãj

g j
~33!

where
Ãj5S 12eb( j Dt2t)cosvc~ j Dt2t ! eb( j Dt2t)sinvc~ j Dt2t !

2eb( j Dt2t)sinvc~ j Dt2t ! 12eb( j Dt2t)cosvc~ j Dt2t !
D S b 2vc

vc b D ~34!
and

g j511e2b( j Dt2t)22eb( j Dt2t)cosvc~ j Dt2t !. ~35!

There holds

detf j
215~detf j !

215~b21vc
2!

1

g j
~36!
and as a consequence the probability distribution ofrW j be-
comes

w̃@rW j #5
1

1

b21vc
2
g j

S 1

4pqDt DexpH UÃj S r j
x

r j
yD U2

g j
24qDt

J . ~37!

In view of
5-4
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UÃj S r j
x

r j
xD U2

5~b21vc
2!g j@~r j

x!21~r j
y!2# ~38!

that finally leads to

w̃@rW j #5S b21vc
2

4pqDtg j
DexpH 2

~b21vc
2!urW j u2

4qDtg j
J . ~39!

Since this probability distribution is Gaussian with me
zero and variances j

252qDt@1/(b21vc
2)#g j , the random

vectorRW as a sum of independent random variablesrW j has the
distribution

w~RW !5
1

2p(
j

s j
2

expS 2
Rx

21Ry
2

2(
j

s j
2D , ~40!

s25(
j

s j
252q(

j
Dt

1

b21vc
2
g j . ~41!

In the limit of Dt→0 we arrive at the integral

s252q
1

b21vc
2E0

t

g~s!ds ~42!

with *0
t g(s)ds5t1Q, where

Q5Q~ t !5
1

2b
~12e22bt!22

1

b21vc
2 @b1~vc sinvct

2b cosvct !e
2bt#. ~43!

That gives rise to an ultimate form of the transition pro
ability density of the spatial displacement process

P~rW,turW0 ,t050,uW 0!5
1

4p
kBT

m

b

b21vc
2 ~ t1Q!

3expS 2
urW2rW02VuW 0u2

4
kBT

m

b

b21vc
2 ~ t1Q!D

~44!

with V5V(t) defined in Eqs.~25! and ~27!. Notice that an
asymptotic diffusion coefficientDB5Db2/(b21vc

2) of Sec.
II @cf. Eq. ~20!# appears here as a spatial dispersio
attenuation signature~whenvc grows up at fixedb).

The spatial displacement process governed by the ab
transition probability density surely isnot Markovian. That
can be checked by inspection: the Chapman-Kolmogo
identity is not valid, like in the standard free Brownian m
tion example where the Ornstein-Uhlenbeck process indu
~sole! spatial dynamics is non-Markovian as well.
02110
-

-
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IV. PHASE-SPACE PROCESS

A. Free Brownian motion, Kramers equation, and local
conservation laws

We take advantage of the cylindrical symmetry of o
problem, and consider separately the~free! Brownian dy-
namics in the direction parallel to the magnetic field vect
e.g., along theZ axis. That amounts to invoking a familia
Ornstein-Uhlenbeck process~in velocity/momentum! in its
extended phase-space form. In the absence of external fo
the kinetic~Kramers-Fokker-Planck equation! reads

] tW1u¹zW5b¹u~Wu!1qnuW, ~45!

whereq5Db2. Hereb is the friction coefficient,D will be
identified later with the spatial diffusion constant, and~as
before! we setD5kBT/mb in conformity with the Einstein
fluctuation-dissipation identity.

The joint probability distribution ~in fact, density!
W(z,u,t) for a freely moving Brownian particle that att
50 initiates its motion atx0 with an arbitrary inital velocity
u0 can be given in the form of the maximally symmetr
displacement probability law

W~z,u,t !5W~R,S!5@4p2~FG2H2!#21/2

3expH 2
GR22HRS1FS2

2~FG2H2! J , ~46!

where R5z2u0(12e2bt)b21, S5u2u0e2bt while F
5(D/b)(2bt2314e2bt2e22bt), G5Db(12e22bt), and
H5D(12e2bt)2.

For future reference, let us notice that marginal probab
densities, in the Smoluchowski regime@take for granted that
time scalesb21 and space scales (Db21)1/2 are irrelevant
@12# # display familiar forms of the Maxwell-Boltzmann
probability densityw(u,t)5(m/2pkT)1/2exp(2mu2/2kBT)
and the diffusion kernelw(z,t)5(4pDt)21/2exp(2z2/4Dt),
respectively.

A direct evaluation of the first and second local mome
of the phase-space probability density gives

^u&5E duuW~z,u,t !5w~R!@~H/F !R1u0e2bt#,

~47!

^u2&5E du u2W~z,u,t !5S FG2H2

F
1

H2

F2 R2D
3~2pF !21/2expS 2

R2

2F D . ~48!

We notice that after passing to the diffusion~Smolu-
chowski! regime@7#, one readily recovers the local~configu-
ration space conditioned! moment^u&z5(1/w)^u& to be in
the form

^u&z5
z

2t
52D

¹w~z,t !

w~z,t !
, ~49!
5-5
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while for the second local moment^u2&z5(1/w)^u2& we
would arrive at

^u2&z5~Db2D/2t !1^u&z
2 . ~50!

By inspection one verifies that the transport~Kramers!
equation forW(z,u,t) implies local conservation laws

] tw1¹~^u&zw!50 ~51!

and

] t~^u&zw!1¹z~^u
2&zw!52b^u&zw. ~52!

At this point ~we strictly follow the moment equation
strategy of the traditional kinetic theory of gases and liqui
compare, e.g.,@11#! let us introduce the notion of the pre
sure functionPkin

Pkin~z,t !5~^u2&z2^u&z
2!w~z,t !, ~53!

in terms of which we can analyze the local momentum c
servation law

~] t1^u&z¹!^u&z52b^u&z2
¹Pkin

w
. ~54!

One should realize that in the Smoluchowski regime
friction term is canceled away by a counterterm coming fr
(1/w)¹Pkin so that

~] t1^u&z¹!^u&z5
D

2t

¹w

w
52

¹P

w
, ~55!

whereP5D2wn ln w, called osmotic pressure in Ref.@13#,
is the net remnant of the kinetic pressure contribution.

Further exploiting the kinetic lore, we can tell few word
about thetemperature of Brownian particlesas opposed to
the ~equilibrium! temperature of the thermal bath. Name
in view of ~we refer to the Smoluchowski regime witht
>b21) Pkin;(Db2D/2t)w where D5kBT/mb, we can
formally set

kBTkin5
Pkin

w
;S kBT2

D

2t D,kBT. ~56!

That quantifies the degree of thermal agitation~tempera-
ture! of Brownian particles to beless than the thermosta
temperature. Heat is continually pumped from the thermo
to the Brownian ‘‘gas,’’ until asymptotically both tempera
tures equalize. This may be called a ‘‘thermalization’’
Brownian particles. In the process of that ‘‘thermalization
the Brownian ‘‘gas’’ temperature monotonically grows u
until the mean kinetic energy of particles and that of me
flows asymptotically approach the familiar kinetic relatio
ship: *(w/2)(^u2&z2^u&z

2)dx5kBT, cf. Refs.@6,7# for more
extended discussion of that medium→ particles heat transfe
issue and its possible relevance while associating hab
thermal equilibrium conditions with essentially nonequili
rium phenomena.
02110
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Remark 1.Once local conservation laws were introduce
it seems instructive to comment on the essentially hydro
namical features~compressible fluid/gas case! of the prob-
lem. Specifically, the ‘‘pressure’’ term¹Q is quite annoying
from the traditional kinetic theory perspective. That is ap
from the fact that our local conservation laws have a c
spicuous Euler form appropriate for the standard hydro
namics of gases and liquids. One should become alert th
the present~Brownian! context they convey an entirely dif
ferent message. For example, in case of normal liquids
pressure is exerted upon any control volume~droplet! by the
surrounding fluid. We may interpret that as a compression
a droplet. In the case of Brownian motion, we deal with
definite decompression: particles are driven away from ar
of higher concentration~probability of occurence!. Hence,
typically the Brownian ‘‘pressure’’ is exerted by the dropl
upon its surrounding.

Remark 2.The derivation of a hierarchy of local conse
vation laws ~moment equations! for the Kramers equation
can be patterned after the standard procedure for the B
mann equation. Those laws do not form a closed system
additional specifications~like the familiar thermodynamic
equation of state! are needed to that end. In case of the is
thermal Brownian motion, when considered in the large fr
tion regime~e.g., Smoluchowski diffusion approximation!, it
suffices to supplement the Fokker-Planck equation by
more conservation lawonly to arrive at a closed system@6#
and compare with the discussion of Ref.@11#.

B. Planar process

Now we shall consider Brownian dynamics in the dire
tion perpendicular to the magnetic fieldBW , hence~while in
terms of configuration-space variables! we address an issu
of the planar dynamics. We are interested in the comp
phase-space process, hence we need to specify the tran
probability densityP(rW,uW ,turW0 ,uW 0 ,t050) of the Markov pro-
cess conditioned by the initial datauW 5uW 0 and rW5rW0 at time
t050. That is equivalent to deducing the joint probabili
distributionW(SW ,RW ) of random vectorsSW andRW , previously
defined to appear in the formSW 5uW (t)2e2LtuW 0 and RW 5rW

2rW02VuW 0, respectively, cf. Eqs.~15! and ~44!.
Let us stress that presently, all vectors are regarded

two-dimensional versions~the third component being simpl
disregarded! of the original random variables we have di
cussed so far in Sec. II and III. VectorsSW andRW both share a
Gaussian distribution with mean zero. Consequently,
joint distribution W(SW ,RW ) is determined by the matrix o
variances and covariances:C5(ci j )5(^xixj&), where we ab-
breviate four phase-space variables in a single notion ox
5(S1 ,S2 ,R1 ,R2) and label components ofx by i , j
51,2,3,4. In terms ofRW andSW the covariance matrixC reads

C5S ^S1S1& ^S1S2& ^S1R1& ^S1R2&

^S2S1& ^S2S2& ^S2R1& ^S2R2&

^R1S1& ^R1S2& ^R1R1& ^R1R2&

^R2S1& ^R2S2& ^R2R1& ^R2R2&

D . ~57!
5-6
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The joint probability distribution ofSW andRW is given by

W~SW ,RW !5W~xW !5
1

4p2 S 1

detCD 1/2

expS 2
1

2 (
i , j

ci j
21xixj D ,

~58!

whereci j
21denotes the component of the inverse matrixC21.

The probability distributions ofSW andRW , which were es-
tablished in the previous sections, determine a numbe
expectation values:

g[^S1S1&5^S2S2&5
kBT

m
~12e22bt!, ~59!

cf. Eq. ~14!, while ^S1S2&5^S2S1&50. Furthermore,

f [^R1R1&5^R2R2&52
kBT

m

b

b21vc
2 ~ t1Q!52DB~ t1Q!,

~60!

cf. Eqs. ~20!, ~42!, ~43!. In addition we have^R1R2&
5^R2R1&50.

As a consequence, we are left with only four nonvani
ing components of the covariance matrixC: c135c31
5^S1R1&, c145c415^S1R2&, c235c325^S2R1&, c245c42
5^S2R2&, which need a closer examination.

We can obtain those covariances by exploiting a dep
dence of the random quantitiesSW and RW on the white-noise
term AW (s) whose statistical properties are known. There f
lows

S15E
0

t

dse2b(t2s)@cosvc~ t2s!A1~s!

1sinvc~ t2s!A2~s!#, ~61!

S25E
0

t

dse2b(t2s)@2sinvc~ t2s!A1~s!

1cosvc~ t2s!A2~s!#,

R15E
0

t

ds
1

b21vc
2 @b$12e2b(t2s)cosvc~ t2s!%

1vce
2b(t2s)sinvc~ t2s!#A1~s!

1E
0

t

ds
1

b21vc
2 @2be2b(t2s)sinvc~ t2s!

1vc$12e2b(t2s)cosvc~ t2s!%#A2~s!,
02110
of

-

n-

-

R25E
0

t

ds
1

b21vc
2 @2vc$12e2b(t2s)cosvc~ t2s!%

1be2b(t2s)sinvc~ t2s!#A1~s!

1E
0

t

ds
1

b21vc
2 @vce

2b(t2s)sinvc~ t2s!

1b$12e2b(t2s)cosvc~ t2s!%#A2~s!.

Multiplying together suitable components of vectorsSW

and RW and taking averages of those products in conform
with the rules ^Ai(s)&50 and ^Ai(s)Aj (s8)&52qd i j d(s
2s8), whereq5(kBT/m)b, i , j 51,2,3, we arrive at

h[^R1S1&5^R2S2&52q
1

b21vc
2E0

t

dse2b(t2s)

3@b cosvc~ t2s!1vc sinvc~ t2s!2be2b(t2s)#

5q
1

b21vc
2 ~122e2bt cosvct1e22bt! ~62!

and

k[^R1S2&52^R2S1&52q
1

b21vc
2E0

t

dse2b(t2s)

3@2b sinvc~ t2s!1vc cosvc~ t2s!2vce
2b(t2s)#

5q
1

b21vc
2 F2e2bt sinvct2

vc

b
~12e22bt!G . ~63!

The covariance matrixC5(ci j ) has thus the form

C5S g 0 h 2k

0 g k h

h k f 0

2k h 0 f

D ~64!

while its inverseC21 reads as follows:

C215
1

detC
~ f g2h22k2!S f 0 2h k

0 f 2k 2h

2h 2k g 0

k 2h 0 g

D ,

~65!

where detC5( f g2h22k2)2.
The joint probability distribution ofSW andRW can be ulti-

mately written in the form
5-7
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W~SW ,RW !5
1

4p2~ f g2h22k2!

3expS 2
f uSW u21guRW u222hSW •RW 12k~SW 3RW ! i 53

2~ f g2h22k2!
D .

~66!

In the above, all vector entries are two dimensional. T
specific i 53 vector product coordinate in the exponent
simply an abbreviation for the~ordinaryR3-vector product!
procedure that involves merely the first two components
three-dimensional vectors~the third is then arbitrary and ir
relevant!, hence effectively involves our two-dimensionalRW

andSW .

C. Kramers equation and local conservation laws
for the planar motion

For the purpose of evaluating local velocity averages
the Kramers equation, we need to extract the marginal c
figuration space distribution. Let us notice that

E W~SW ,RW !dSW 5w~RW !5P~rW,turW0 ,t050,uW 0!, ~67!

where the last transition probability density entry coincid
with that of Eq.~44!.

Let us introduce an auxiliary~weighted! distribution:

W̃~SW uRW !5
W~SW ,RW !

E W~SW ,RW !dSW
5

1

2p
1

f
~ f g2h22k2!

3expS 2
uSW 2mW u2

2
1

f
~ f g2h22k2!D , ~68!

where

mW 5
1

f
~hR12kR2 ,hR21kR1! ~69!

and we recall thatSW 5uW (t)2e2btU(t)uW 0 and RW 5rW2rW0

2VuW 0.
The local expectation values~compare, e.g., calculation

of the previous subsection! read: ^ui&RW 5*uiW̃duW and

^ui
2&RW 5*ui

2W̃duW wherei 51,2. By evaluating those average
we get

^uW &RW 5~^u1&RW ,^u2&RW !5e2btU~ t !uW 01mW ~70!

and

^u1
2&RW 2^u1&RW

2
5^u2

2&RW 2^u2&RW
2
5

1

f
~ f g2h22k2!. ~71!
02110
e

f

f
n-

s

The Fokker-Planck-Kramers equation, appropriate for
planar dynamics in its phase space version, reads

]W

]t
1uW ¹ rWW5b¹uW~WuW !2vc@¹uW3WuW # i 531q¹uW

2
W,

~72!

where again the troublesome~in the planar case all vector
are two-dimensional! vector product third component stand
for

@¹uW3WuW # i 535
]

]u1
~Wu2!2

]

]u2
~Wu1!. ~73!

The first two moment equations are easily derivab
Namely, the continuity~zeroth moment! and the momentum
conservation~first moment! equations come out in the form

] tw1¹W •@^uW &RW w#50 ~74!

and

] t@^u1&RW w#1
]

]r 1
@^u1

2&RW w#1
]

]r 2
@^u1&RW ^u2&RW w#

52b^u1&RW w1vc^u2&RW w ~75!

] t@^u2&RW w#1
]

]r 2
@^u2

2&RW w#1
]

]r 1
@^u1&RW ^u2&RW w#

52b^u2&RW w2vc^u1&RW w.

That implies

F] t1^u1&RW
]

]r 1
1^u2&RW

]

]r 2
G^u1&RW

52b^u1&RW 1vc^u2&RW 2
1

w

]

]r 1
@~^u1

2&RW 2^u1&RW
2
!w#,

~76!

F] t1^u1&RW
]

]r 1
1^u2&RW

]

]r 2
G^u2&RW

52b^u2&RW 2vc^u1&RW 2
1

w

]

]r 2
@~^u2

2&RW 2^u2&RW
2
!w#,

which finally sums up to a local momentum conservation l
~here, the standardR3 vector product on the right-hand sid
contributes its first and second components only!

@] t1^uW &RW ¹W #^uW &RW 52L^uW &RW 2
1

w
¹W •PJ kin52b^uW &RW

1
qe

mc
^uW &RW 3BW 2

1

w
¹W •PJ kin , ~77!

wherePJ kin has tensor componentsPi j
kin , and¹W •PJ kin stands

for a vector whosei th component is equal( j]Pi j
kin/]r j and
5-8
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i , j 51,2. Here, obviously Pi j
kin5^(ui2^ui&RW )(uj

2^uj&RW )&RW w and only diagonal entries do not vanish. Clea
Pii

kin5(^ui
2&RW 2^ui&RW

2)w.
Because of

s25^u1
2&RW 2^u1&RW

2
5^u2

2&RW 2^u2&RW
2

5
1

f
~ f g2h22k2!

5g2
h21k2

f
, ~78!

we can introduce agains25Pkin /w5kBTkin and pass to an
asymptotic regimet..tc51/b. Then, we obtain Eq.~56! to
be valid in the present case as well thus quantifying an o
all ~magnetic field independent! heating process involved.

In that asymptotic regime we haves25Db2D/2t and by
employing an asymptotic form ofw(RW ), Eq. ~44! we recover

¹W •PJ kin5S Db2
D

2t D ¹W w

w
~79!

together with

L^uW &RW 52Db
¹W w

w
. ~80!

So, asymptotically (t..b21) the momentum conserva
tion law takes the form~to be compared with consideration
of Sec. IV A

@] t1^uW &RW ¹W #^uW &RW 5
D

2t

¹W w

w
. ~81!

However an asymptotic regime does not yet imply th
the right-hand side of Eq.~82! represents an acceptable ‘‘o
motic pressure’’ gradient contribution. We additionally ne
a large friction regime to deal with a consistent picture o
Markov diffusion process in the Smoluchowski form. I
al

m

02110
r-

t

deed, to reproduce a universal~Ref. @6#! pressure-type func-
tional dependence onP we must employ a suitable form o
the diffusion coefficient. The usage ofD alone to define an
‘‘osmotic pressure’’ implies an apparent failure. On the oth
hand, the usage ofDB5Db2/(b21v2

c) as suggested by Eq
~44! leads to

P5DB
2D ln w⇒2

¹W P

w
5

DB

2t

¹W w

w
. ~82!

Then, however, the momentum conservation law displ
a supplementary scaling of the osmotic pressure contr
tion, which may trivialize~die out! only for large values ofb
~an ultimate Smoluchowski regime!. Namely, we have

@] t1^uW &RW ¹W #^uW &RW 52S b2

b21vc
2D 21

¹W P

w
. ~83!

Such process is yet non-Markovian and its approximation
the Smoluchowski process becomes reliable whenb is large
while vc is kept moderately small.

Basically, the large friction regime cancels all rotation
features~arising due to the Lorentz force! on very short time
scales. If we are satisfied with the non-Markovian regime
moderate friction but arbitrarily varyingvc ~i.e., B) then, in
conformity with Eq.~77!, mean flows would display signa
tures of rotation that are bound to die out asymptotica
This effect can be analyzed inR3 by observing that a three
dimensional extension of the vectormW of Eqs.~69! and~70!

asymptotically readsmW 5(1/2tb)L(rW2rW0) whereL comes
from Eq. ~3! and (rW2rW0)PR3. In view of that, we have@cf.
Eq. ~70!# curl̂ uW &RW ;curlmW ;(0,0,2vc /tb) and the circula-
tion asymptotically vanishes. The effect can be slowed do
by a suitable adjustment ofvc againstb.
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