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Brownian motion in a magnetic field
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We derive explicit forms of Markovian transition probability densities for the velocity-space, phase-space,
and the Smoluchowski configuration-space Brownian motion of a charged particle in a constant magnetic field.
By invoking a hydrodynamical formalism for those stochastic processes, we quantify a coftieuah the
local averageheat transfer from the thermostat to diffusing particles.
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[. INTRODUCTION space, phase-space, and the configuration-space processes.
Hydrodynamical balance equations and their behavior in the
We address an old-fashioned problem of the BrowniarSmoluchowski regime are discussed as well.
motion of a charged particle in a constant magnetic field.
This issue has originated from studies of the diffusion of
plasma across a magnetic fi¢t2] and nowadays, together
with a free Brownian motion example, stands for a textbook The standard analysis of the Brownian motion of a free
illustration of how transport a_nd _auto_correlatlon f””Ct'Onsparticle employs the Langevin equatiodﬁ/dt=—,3t]
should be computed in generic situations governed by the

Langevin equatiortto a suitable degree of approximation of .+A(t) whereu denotes the velocity of the particle and the

a kinetic theory, when collisions are stochastically modelednﬂueme.Of the surroundmg .medlum on the moticandom
in terms of a random forgecf. [3] but also[4,5]. acceleratiop of the particle is modeled by means of two

From a purely pragmatic point of view, this white-noise independent contributions. A systematic parf3u repre-
strategy is quite satisfactory. Aftéformally) evaluating ve- ~ Sents a dynamical friction. The remaining fluctuating part
locity autocorrelation functions, formulas for running and A(t) is supposed to display a statistic of the familiar white
asymptotic diffusion coefficients easily follow. To that end noise: (i) A(t) is independent ofu, (ii) (Ai(s))=0 and
an explicit form of the probability density or transition prob- (Ai(s)A(s"))=2q5;;8(s—s') for i,j=1,2,3, where q
ability density of the involved stochastic diffusion processes= (k;T/m)B is a physical parameter. The well-known
(in velocity space, space or configuration spasenot nec-  Ornstein-Uhlenbeck stochastic process comes out on that
essary, cf[1,3]. conceptual basifl2,13,9.

To our knowledge, except fd2] (mentioned in[5] as a The linear friction model can be adopted to the case of
footnote reference for the purpose of evaluation of the meagiffusion of charged particles in the presence of a constant
square velocity and its mean square displacement at equilignagnetic field that acts upon particles via the Lorentz force.
rium), for a Brownian particle in a constant magnetic field, The Langevin equation for that motion reads
no attempt was made in the literature to give a complete
characterization of the stochastic process itself, nor pass to

Il. VELOCITY-SPACE DIFFUSION PROCESS

the associated macrosogieydrodynamical formalismnbal- du = Oe- = =
ance equation&f. [6—11] for a number of reasons why to do qo = BUT L UXBHA, @
that.

Surprisingly enough, in Ref2], the Brownian motion in
a magnetic field is described in terms operator-valued Whereq, denotes an electric charge of the particle of mass
(matrix-valued functionsprobability distributions that addi- M
tionally involve fractional powers of matrices. In conse- Let us assume for simplicity that the constant magnetic
quence, there is no clean path towardsecessaryrelation-  field B is directed along the axis of a Cartesian reference
ship with the associated Kramers-Smoluchowski equationgame: B=(0,0B) and B=const. In this case Eq1) takes
(cf. Chap. 6.1 in Ref[4]), nor ways to stay in conformity the form
with the standard wisdom about probabilistic procedures
valid in case of the free Brownian motiofOrnstein-
Uhlenbeck processcf. [12,13,9. u .

Therefore, we decided to address an issue of the Brown- g - TAUFAQ, ()
ian motion in a magnetic field anew, to unravel its features of
a fully fledged stochastic diffusion process. In particular, we
derive transition probability densities governing the velocity-where

>
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B —o. O
A = wc ﬂ O y (3)
o o0 g8

and w.=g.B/mc denotes the Larmor frequency. Assuming

the Langevin equation to b@t least formally solvable, we
can infer a probability density(u,t|u,),t>0 conditioned
by initial velocity data choicai=u, att=0. Physical cir-
cumstances of the problem enforce a demand(u,t|u,)

—8(Uu-uy as t—0 and (i)  P(ut|up)
—(m/27kgT) ¥ exp(—mug|2ksT) ast— .
A formal solution of Eq.(2) reads
- - t -
u(t)—e*Atu0=f e M=9A(s)ds. (4
0

By taking into account that

coswct  sinwgt O
e M=e A —sinwt coswt 0|=e PU(t), (5
0 0 1

we can rewrite Eq(4) as follows:
- - t -
u(t)—e*ﬁtU(t)uo:f e P=9y(t—s)A(s)ds. (6)
0

Statistical properties oﬁ(t)—e‘AtJO are identical with

those of[Le ("9A(s)ds. In consequence, the problem of
deducing a probability densitl?(t],th]o) is equivalent to de-

riving the probability distribution of the random vector

S= f t:/;(s),&(s)ds, 7
0

wherey(s)=e A== At=9y(t—s).
The white-noise term&(s), in view of the integration
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N—-1

N-1
S= ;0 Y(jADB(AY) = ,Zo SP 9

where we introducs; = ¢(j At)B(At) = ¢;B(At).
The Wiener process argumgni®,13,4 allows us to infer
the probability distribution oﬁj . Itis enough to employ the

fact that the distribution oé(At) is Gaussian with mean
zero and variancg= (kgT/m) 3. Then

R 1 \%2 |B(At)|?
W[B(At)]=(4Wth) ex —m (10

and in view ofs;=y;B(At) by performing the change of
variables in Eq(10), we get

wis. 1= -1 -1g :L -1g
wlsj]=def; “Iwl¢; s;] wlyg 7si]. (1D

dety;
Since deiy(s)=e *#"9 and ¢ Ys)=U[—(t
—s)1eA"9) we obtain
. 1 3/2 1
W[Si]_ 47rqAt e 3B(t-jAY
ef(IA0Y[ — (t—jAL)]s;|?
><exp(—| Elqit D] (12)
and finally
1 1 3/2 |§|2
v e T S e L S
W[SJ]_<47Tth e—2B(I—jAI)) eXp( 4the—2ﬁ(t—JAt))'

(13

Clearly, §J- are mutually independent random variables
whose distribution is Gaussian with mean zero and variance
of=2qAte 2A714Y Hence, the probability distribution of
S=xJ's; is again Gaussian with mean zero. Its variance
equals the sum of variances osEj ie., 02=Ejaj2
=2q;Ate” 2A0IAD,

with respect to time, is amenable to a more rigorous analysis 1 aKing the limitN—c (At—0) we arrive at
that invokes the Wiener process increments and their statis-
tics [14]. Let us divide the time integration interval into a
large number of small subintervalg. We adjust them suit-
ably to assure that effectively(s) is constant on each sub-
interval (jAt,{j+1}At) and equal/(jAt). As a result we
obtain the expression

t kT
0'2=2qf dse 2 9=""(1-e 2. (14
0

Because ofS=u(t)—e u, the transition probability
density of the Brownian particle velocity, conditioned by the

initial datau, atto=0 reads
Lt (+1)At
S=> z//(jAt)J'_ A(s)ds. ) o 1 32
i=o ia P(U,t|Ug) =
kgT _
2m——(1—e 2R
m

Here B(At)=[{{"*'A(s)ds stands for the above-
mentioned Wiener process increment. PhysicﬁMt) rep-
resents thenet acceleration that a Brownian particle may
suffer (in fact accumulatgsduring an interval of time\t.

Equation(8) becomes

lu—e™Aag|?
xXexpl — (15

T
ZL(l— e 28
m
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The process is Markovian and time homogeneous, hendime-homogeneous transition density5) uniquely deter-
the above formula can be trivially extended to encompass thmine a stationary Markovian stochastic process for which we

case of arbitranyto#0: P(U,t|Uo,to) arises by substituting can evaluate various mean values. .
everywheret —t, instead oft. Expectation values of velocity components vanish:

Physical argumentfcf. demand(ii) preceding Eq(4)]  (u;(t))=/"..u;P(u)du=0 for i=1,2,3. The matrix of the
refer to an asymptotic probability distributiofinvariant second momenté&velocity autocorrelation functionseads

measure densijyP(u) of the random variablal in the
Maxwell-Boltzmann form

ol _)) ( )3/2 F{ m|6|2) 6
u)= exp — .
2mkgT 2ksT where i,j=1,23 and in view of P(U,t;Ug,to)

This time-independent probability density together with the= P(u,t|ug,ts) P(Uo) We arrive at the compact expression

<ui<t>uj<to>>=f UuPP(U,t;tg, to)dudUp,  (17)

cosw¢|t—ty|  Sinwclt—ty] O

kgT kgT .
%e—A\t—tolzie—ﬁlt—tol —sinwc|t—to] cosw|t—ty] 0. (18)
0 0 1
|
In particular, the autocorrelation functiofsecond mo- We define the spatial displacementof the Brownian
men) of the x component of velocity equals particle as follows:
ke T — Blt=to el ts
<U1(t)U1(to)>:We olcoswe|t—to|, (19 r—r0=J u(n)dn, (21)
0

in agreement with white-noise calculations of Refk]. and
[3], cf. Chap. 11, formul#&11.25. In particular, the so-called
running diffusion coefficient arises via straightforward inte-
gration of the functionR,,(7)={u4(t)u,(tg)) where r=t

whereﬁ(t) is given by Eq.(2) (except for disregarding the
third coordinatg

Our aim is to derive the probability distribution of at
time t provided that the particle position and velocity were

—t,>0: 2 N
° equal tory andug, respectively, at timeé,=0. To that end
t we shall mimic procedures of the previous section. In view
Dl(t)=f0<ul(0)ul(7))d7 of
_ kT B+[wcSin(wct) — B cog wet) Jexp(— Bt) . J ‘e Mg — J ‘dn J Tdse A-9A(s), (22)
m B2+ w? 0 o Jo
(200 we have
with an obvious asymptotic$the same forD,(t)]: Dg . B L t s
=lim__D1(t)=(keT/m)[ BI(B*+w2)] and the large fric- [ ~To~ A "(1—e "uo= fOA (1-etEDAs)ds,
tion (w. fixed and boundedversionD =kgT/mpg. (23
lll. SPATIAL PROCESS where
The cylindrical symmetry of the problem allows us to Al 1 B wc) (24
consider separately processes running onXieplane and B2+w§ -w. B

along theZ axis (where the free Brownian motion takes

place. We shall confine further attention to the two- js the inverse of the matriA [regarded as a rank two sub-
dimensionalXY plane problem. Henceforth, each vector will matrix of that originally introduced in Eq3)]. Let us define

carry two components that correspond to xendy coordi-  two auxiliary matrices

nates, respectively. We will directly refer to the vector and

matrix quantities introduced in the previous section, but Q=A"Y1-e2Y, (25)
while keeping the same notation, we shall simply disregard

their z-coordinate contributions. d(s)=A"11—e 7Yy,
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Because of o 1 ( B . _eﬁt( B wc)
o M_exn) ¢ B —w. ot COSwct  Sinwct B+ w2\ —o. B -0, B
w; P —Sinwt  coswt .
coswst  Sinwct )
— Bt
=e AU(t) (26) —siNwet  Ccoswt 29
we can represent matricés, ¢(s) in more detailed form.
We have and
|
1 B w.|[1-ef Vcoswy(s—t) —efE Vsinw(s—1)
s)=A"[1-e At 9U(t—s =—( _ . (28
¢(s) [ (t=9)] B\ —w. B e’ Vsinw(s—t)  1—ef Ycoswy(s—t) (28)

Next steps imitate procedures of the previous section. Presently[not to be confused with previous stefisl)—
Thus, we seek for the probability distribution of the random(15)] we have
(planai vectorR= [{4(s)A(s)ds whereR=r —r,— Q.

Dividing the time interval (@) into small subintervals to 1
assure thaitp(s) can be regarded constant over the time span detp(s) = e

{1+ 2P0 —2ef 5" Veosw (s—t)}

2 2
(jAt,{j+1}At) and equalkp(jAt), we obtain e (31)
LG (+1)At
R= qb(jAt)f A(s)ds
=0 jAt and
N—1
=2, ¢(jADB(AY) - !
=0 S Ry P SapeP
No1 1+e —2e COSw(S—t)
=1, (29) X[1—-efE U~ (s—t)}]A. (32)
=0
wherer ;= $(jAt)B(At) = ¢;B(At). So, the inverse of the matrig; has the form
By invoking the probability distributiorf10) we perform
an appropriate change of variables= ¢;B(At) to yield a LA
probability distribution ofr; b, = (33
WIF, 1= def ) WL g F;1= w4 ). (30
. . PO detg; T T where
|
. [1-ePUs cosw (jAt—t)  ePUADsing (jAt—t) B —w.
I —efiatsing (jat—t)  1—ePUr Ocoswy(jAt—t)) | o, B 34
|
and and as a consequence the probability distribution ;obe-
comes
y,= 1+e2,6’(iAt—t)_ZeB(jAt—t)COSwC(J‘At_t)_ (35 r}( 2
A
wlr] l ( 1 ) J(rjy) (37
wri]= exp| ————
There holds j 1 4mqAt p y124th
1 gl
detp; *=(detp;) " '=(B>+wy)— (36) _
Vi In view of
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2
=(B%+ ) y[(r)2+ ()] (39

-

X
rl

i

X
J

A

that finally leads to

2, 2
Bt o

4mqAty;

(B*+ wd)|r|?

Wﬁﬂ=(
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IV. PHASE-SPACE PROCESS

A. Free Brownian motion, Kramers equation, and local
conservation laws

We take advantage of the cylindrical symmetry of our
problem, and consider separately tffeee) Brownian dy-
namics in the direction parallel to the magnetic field vector,
e.g., along theZ axis. That amounts to invoking a familiar
Ornstein-Uhlenbeck procegsm velocity/momentum in its

Since this probability distribution is Gaussian with meanextended phase-space form. In the absence of external forces,

zero and variancer’ = 2qAt[1/(8%+ w})]y;, the random

vectorR as a sum of independent random variahfljelsas the
distribution

R§+-R§

W(R)= exp| — , (40)
2772_ (sz 22 01-2
i ]
2 2 1
0':2 onZqZ Atﬁ’yj. (41)
] j B+ wg
In the limit of At—0 we arrive at the integral
2 1 Jt
o?=2 s)ds 42
e R (42)

with [§y(s)ds=t+©, where
1
2B

— B coswct)e P,

0=0(t)=

(1—e*2m)—232+aﬂ[3+(wcgnwg

C

(43

That gives rise to an ultimate form of the transition prob-
ability density of the spatial displacement process

. R 1
P(r,tlrg,to=0,uy) =
( | 0:t0 0) kBT ﬂ
477——2(t+®)
m B2+ w2
TR
«exp Ir—ro—Qug
keT B
— 2(t+®)
m g%+ w,
(44)

with Q=Q(t) defined in Eqs(25) and (27). Notice that an
asymptotic diffusion coefficier g=D 8%/( 8%+ »?) of Sec.

the kinetic(Kramers-Fokker-Planck equatipreads

W+ UV, W= BV, ,(Wu)+qgA W, (45
whereq=D 2. Here 8 is the friction coefficientD will be
identified later with the spatial diffusion constant, afas
before we setD =kgT/mp in conformity with the Einstein
fluctuation-dissipation identity.

The joint probability distribution (in fact, density
W(z,u,t) for a freely moving Brownian particle that at
=0 initiates its motion ak, with an arbitrary inital velocity
Ug can be given in the form of the maximally symmetric
displacement probability law

W(z,u,t)=W(R,S)=[473(FG—H?)] 2

o -

where R=z—uy(1—e #)B™ !, S=u—ue # while F
=(D/B)(2Bt—3+4e Al—e 28 G=DB(1—e 2", and
H=D(1—e #Y2.

For future reference, let us notice that marginal probablity
densities, in the Smoluchowski regirftake for granted that
time scalesB™* and space scaleDB1)*? are irrelevant
[12]] display familiar forms of the Maxwell-Boltzmann
probability densityw(u,t)=(m/27kT)2exp(—mu/2kgT)
and the diffusion kernel(z,t) = (47Dt) " Y?exp(—Z/4Dt),
respectively.

A direct evaluation of the first and second local moment
of the phase-space probability density gives

GR?>-~HRS+FS&?
2(FG-H?% |’

(46)

(uy= f duuWz,u,t)=w(R)[(H/F)R+uge A,

.

(47)

H2

FG—H2
F ' F?

F
2

R)'

<u2>=f du u2W(z,u,t)=(

(49

><(277F)1’2exp< —3F

Il [cf. Eq. (20)] appears here as a spatial dispersion-

attenuation signatur@vhen w. grows up at fixeds).

We notice that after passing to the diffusig@molu-

The spatial displacement process governed by the abovdowski regime[7], one readily recovers the locaionfigu-

transition probability density surely isot Markovian. That

ration space conditiongdnoment(u),=(1M)(u) to be in

can be checked by inspection: the Chapman-Kolmogoro{he form

identity is not valid, like in the standard free Brownian mo-

tion example where the Ornstein-Uhlenbeck process induced

(sole spatial dynamics is non-Markovian as well.

z

Vw(z,t)
<u>z:z =

w(z,t) ’ (49)
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while for the second local momeru?),=(1/w){u?) we Remark 10nce local conservation laws were introduced,
would arrive at it seems instructive to comment on the essentially hydrody-
namical featuregcompressible fluid/gas casef the prob-
(u?),=(DB—DI2t)+(u); . (50 lem. Specifically, the “pressure” terQ is quite annoying

) . N from the traditional kinetic theory perspective. That is apart
By inspection one verifies that the transp@ramers  from the fact that our local conservation laws have a con-
equation forW(z,u,t) implies local conservation laws spicuous Euler form appropriate for the standard hydrody-
namics of gases and liquids. One should become alert that in
W+ V((u)w)=0 (53D the presentBrownian context they convey an entirely dif-
ferent message. For example, in case of normal liquids the
pressure is exerted upon any control volufdeopled by the
F({U) W) + V,((U2) W) = — B{u),w. (52) surrounding fluid. We may interp_ret that asa compressi_on of
a droplet. In the case of Brownian motion, we deal with a
At this point (we strictly follow the moment equations definite decompression: particles are driven away from areas
strategy of the traditional kinetic theory of gases and liquidsOf higher concentratioriprobability of occurence Hence,
compare, e.g/[11]) let us introduce the notion of the pres- typically the Brownian “pressure” is exerted by the droplet

and

sure functionPy, upon its surrounding.
Remark 2.The derivation of a hierarchy of local conser-
Puin(z,1)=((U?),— (U} w(z,t), (53  vation laws(moment equationsfor the Kramers equation

can be patterned after the standard procedure for the Boltz-
in terms of which we can analyze the local momentum conimann equation. Those laws do not form a closed system and
servation law additional specificationglike the familiar thermodynamic
v equation of stateare needed to that end. In case of the iso-
Pkin thermal Brownian motion, when considered in the large fric-
(dr+ (), V)(u),= = B{u),— w o (54) tion regime(e.g., Smoluchowski diffusion approximathn't
suffices to supplement the Fokker-Planck equation by one
One should realize that in the Smoluchowski regime themore conservation lawnly to arrive at a closed systef8]
friction term is canceled away by a counterterm coming fromand compare with the discussion of REF1].
(IW)V Py, so that

B. Planar process

(9p+(u),V){(u),= DVw__VP (55) Now we shall consider Brownian dynamics in the direc-
z z 1

2t w w tion perpendicular to the magnetic fieRl hence(while in
terms of configuration-space variablege address an issue
of the planar dynamics. We are interested in the complete

- e hase-space process, hence we need to specify the transition
Further exploiting the kinetic lore, we can tell few words P P P pecify

about thetemperature of Brownian particleas opposed to probability denS|tyP(r,u,t|ro,uo,t0f 02 of theﬁMérkov pro-
the (equilibrium) temperature of the thermal bath. Namely, cess conditioned by the initial date=uy andr=r, at time
in view of (we refer to the Smoluchowski regime with to=0. That is equivalent to deducing the joint probability
=81 Pun~(DB—D/2t)w where D=kgT/mB, we can distribution W(S,R) of random vectorsS andR, previously

whereP=D?wAInw, called osmotic pressure in RéfL3],
is the net remnant of the kinetic pressure contribution.

formally set defined to appear in the forS=u(t)—e u, and R=r
b b —ro— Quy, respectively, cf. Eq(15) and (44).
kBTkm:ﬂN(kBT_ —| <kgT. (56) Let us stress that_ presently, all vectors are rega_lrded as
W 2t two-dimensional versionghe third component being simply

That iifies the d fth | agitaticem disregardeg of the original random variables we have dis-
at quantifies the degree of thermal agitati@mpera- .\« o < tar in Sec. Il and Ill. VectofandR both share a

ture) of Brownian particles to bdessthan the thermostat aussian distribution with mean zero. Conseauently. the
temperature. Heat is continually pumped from the thermosta? ' q y:

to the Brownian “gas,” until asymptotically both tempera- Join't distribution W(_S,R) is determined by the matrix of
tures equalize. This may be called a “thermalization” of Variances and covariances:= (c;;) = ((x;X;)), where we ab-
Brownian particles. In the process of that “thermalization” Previate four phase-space variables in a single notior of
the Brownian “gas” temperature monotonically grows up =(S1,52,R1,Rp) and label components ok by i,]
until the mean kinetic energy of particles and that of mean=1,2,3,4. In terms oR andS the covariance matri€ reads
flows asymptotically approach the familiar kinetic relation-

ship: [(w/2)({u?),— (u)?)dx=KkgT, cf. Refs.[6,7] for more (81S1) (S1S2) (SiR1)  (SiRy)
extended discussion of that medium particles heat transfer ($S1) (SS) (SR (S;Ry)
issue and its possible relevance while associating habitual C= (RiS) (RiS) (RiRy) (RyRy) | (57)
thermal equilibrium conditions with essentially nonequilib- =1 ! i 12
rium phenomena. (ReS1) (R2S;) (R:Ry)  (RoRyp)
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The joint probability distribution o andR is given by
Rz—J’ ds—— [ wd1—e P 9cosw(t—9)}
+Be P 9sinw (t—s)]A
W(S,R) = W(X)— (detc p( E cij xxj), Be sinwc(t—s)]Ay(s)
t 1
58 +f ds———[we P Isinw (t—s)
0 [+ wg

wherec;; ldenotes the component of the inverse maix'.

The probability distributions o6 andR, which were es-

tablished in the previous sections, determine a number of o i o
expectation values: Multiplying together suitable components of vectdss

andR and taking averages of those products in conformity
with the rules (Ai(s))=0 and (Ai(s)Ai(s"))=2q45;; (s
9=(5,5,) =(S,S,) = kB_T(l_e—Zﬁt) (59) —s'), whereq=(kgT/m)B, i,j=1,2,3, we arrive at
m L

+B{1—e Pt 9cosw(t—s)} JAL(S).

cf. Eq. (14), while (S;S,)=(S,S;)=0. Furthermore, h=(R,S))=(R,S;)= 2q ste s

X[ B cosw(t—S)+ w, Sinw(t—s)— e~ F179)]

kgT
fE<R1R1>:<R2R2>:2% %(H@):ZDB(H@),
B+ o =q———(1-2e " cosot+e ) (62)
(60) B+ wg
cf. Egs. (20), (42, (43). In addition we have(R;R,) and
=(RzRy)=0.
As a consequence, we are left with only four nonvanish-
ing components of the covariance matri® C;3=Csy; k=(R;S,)=—(R,S,)= 2q f dse P9

=(SiRy), C14=C41=(S1Ry), Co3=C3=(S;R1), C24=Cap
=(S,;R,), which need a closer examination.

. . o X[ — B sinwy(t—s)+ w, Cosw(t—s)— we 9
We can obtain those covariances by exploiting a depen- [=Asinwu(t=9)+ wcCoswe(t=S) ]

dence of the random quantiti€andR on the white-noise 1 g we o
term /&(S) whose statistical properties are known. There fol- :qﬁ2+w2 2e " sinact = F(l_e )| (63
lows ¢
The covariance matri€=(c;;) has thus the form
t
S zf dse A9 cosw(t—S)A (s
1=, [ (t=95)Aq(s) g 0 h —k
+sinw(t—5)A(s)], (61) oo 0 g k h 64
h k f O
t -k h 0 f
Sz=f dse P9 —sinwg(t—s)A4(S)
0
while its inverseC ™! reads as follows:
+cosw (t—S)Ax(S)],
f 0 —-h k
Rjd L p1-e B9 ciit(gemoiy| O T !
1= 5,3 . [,8{ e cosw (t—s)} Jerc (f9- “h —k g o0/
+wcefﬂ(‘*s)sinwc(t—s)]Al(s) ko =h 0 65
t 1
! deSﬁZ ;[ —Be P Isinw(t—s) where deC=(fg—h?—k?)2.
w - -
¢ The joint probability distribution ofSs andR can be ulti-
+wfl—e At 9cosw (t—8)}]AL(S), mately written in the form
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1 The Fokker-Planck-Kramers equation, appropriate for the

W(S,R)= planar dynamics in its phase space version, reads
( 472(fg—h?—k?)

oW . N N 5
f|32+ g|R|2—2h& R+ 2k(SXR);_s or TUVIWEBVIWU ~ o Vix Wil +qV W,
xXexp — . (72

2(fg—h2—k?)

(66) where again the troublesontm the planar case all vectors

. . . are two-dimensionalvector product third component stands
In the above, all vector entries are two dimensional. Th%r

specifici=3 vector product coordinate in the exponent is
simply an abbreviation for théordinary R3-vector produdt

- J J
procedure that involves merely the first two components of [VixXWuli—g=—=(Wip) = — = (Wuy). (73
three-dimensional vectoi$he third is then arbitrary and ir- 1 2
relevany, hence effectively involves our two-dimensioral The first two moment equations are easily derivable.
andS. Namely, the continuityzeroth momentand the momentum

conservatior(first moment equations come out in the form

C. Kramers equation and local conservation laws

for the planar motion Iw+V-[(u)gw]=0 (74)

For the purpose of evaluating local velocity averages ofind
the Kramers equation, we need to extract the marginal con-

figuration space distribution. Let us notice that d ’ d
Al {up)rw]+ ——[(upew]+ ——[(u)r(Uz)aW]
1 2

W(S,R)dS=w(R)=P(r,t|ry,to=0lo), (6
J| WS RaS—w(R =P G0 to=050. (7 = — Buy)aw+ we{U)aw 79
where the last transition probability density entry coincides 9 5 J
with that of Eq.(44). [ (uz)rw] + aT[<U2>|iW]+ (97[<U1>FE<U2>FEW]

Let us introduce an auxiliarfweighted distribution; 2 .

. == B{U2)gW— wc(U1)RW.
- W(S,R) 1

W(SIR)= =—7 That implies
JW(é,ﬁe)dé ZW?(fg—hz—kz)

d d
‘9t+<u1>§m+<u2>§ﬁTj<ul>§

|S—m|?
X exp i —— (68 1 9
2

27 (fg—h*—Kk?) =~ Blun)at og(Ua)r— o 5 T(UDR— (g wl,

76

where (76
1 I (U e+ (Up) A (U)
> Up)g—— F{(Uz)r——|(U2)R
M=+ (hR;—kRy,hR, +kRy) (69) AR gry VTR R g, VTR

1 0
__ . .= 2\ . _ 2
and we recall thatS=u(t)—e A'U(t)u, and R=r—r, =~ AUz wc(Un)r warz[(<u2>R (uz))w],

— Q.
Thg local expectation valuggsompare, e.g., calculations which finally sums up to a local momentum conservation law
(here, the standar®® vector product on the right-hand side

of the previous subsectipnread: (u;)g=/uWdu and contributes its first and second components pnly

(u?)g=fu?Wdu wherei = 1,2. By evaluating those averages
we get . I N .
[+ (u)rVI(Wr=~ A{u)r— V- Pun=—B(U)&
(U= ((Upr.(Uz)r) =€ P'U(t)Uug+m (70 L
e - = Lo o
and + R<U>RXB_ &V Pan, (77

whereP,;, has tensor componenB", andV - P,;, stands

1
2\ . 2_ /2y, 2_~— _h2_ 2 ]
(DR (Un)R=(u2)r—(U2)g flfg=h"=k5. (71 for a vector whoséth component is equal;aP}"/r; and

ij
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ij=1,2. Here,  obviously P:‘ji”=<(ui—<ui>§)(uj deed, to reproduce a universilef. [6]) pressure-type func-
—(u;)g))aw and only diagonal entries do not vanish. Clearlytional dependence oR we must employ a suitable form of
Pﬁi”=(<ui2>§—<ui>%)w. the diffusion coefficient. The usage Bf alone to define an
Because of R “osmotic pressure” implies an apparent failure. On the other
hand, the usage @z=D B%/(B8%+ w?.) as suggested by Eq.
2 2
o= (Ui (upg=(Ud)a—(u2)g (49 leads to
1 VP DgVw
- 22 —p?2 ==
= f(fg he—k?) P=DgAInw= w W (82
B h?+k? Then, however, the momentum conservation law displays
=9~ f o (78) a supplementary scaling of the osmotic pressure contribu-

tion, which may trivialize(die ou} only for large values o8
we can introduce agaion®=Py;,/w=KkgT;, and pass to an (an ultimate Smoluchowski regimeNamely, we have
asymptotic regimeé>>t.=1/8. Then, we obtain Eq56) to
be valid in the present case as well thus quantifying an over- e . B2 !
all (magnetic field independenteating process involved. [t (WrVIWe=—| | (83)

In that asymptotic regime we hawe=D8—D/2t and by Bt o

employing an asymptotic form of(R), Eq.(44) we recover  sych process is yet non-Markovian and its approximation by
the Smoluchowski process becomes reliable wias large

V.5, — ( D3— E) V_W (79) while w. is kept moderately small.

kin 2t) w Basically, the large friction regime cancels all rotational

) featureq(arising due to the Lorentz forgen very short time
together with scales. If we are satisfied with the non-Markovian regime of

- moderate friction but arbitrarily varying, (i.e., B) then, in

AdDYs= — V_W conformity with Eq.(77), mean flows would display signa-
(Wr=—-DB—. (80) : . .

w tures of rotation that are bound to die out asymptotically.

) 1 This effect can be analyzed R® by observing that a three-
So, asymptotically t>> B~ ") the momentum conserva-

tion law takes the fornito be compared with considerations dlmen3|ohal extensuzn of the vectgrrof Egs.(69) and(70)
of Sec. IVA asymptotically readsn=(1/2t8)A(r—ry) where A comes

from Eq.(3) and ¢ —r,) € R®. In view of that, we havécf.
Eq. (70)] curku)z~curlm~(0,0,— w./tB) and the circula-
tion asymptotically vanishes. The effect can be slowed down

by a suitable adjustment @f. againstg.
However an asymptotic regime does not yet imply that

the _right—hand side of_ Ed82) represents an acc_gptable “0s- ACKNOWLEDGMENT

motic pressure” gradient contribution. We additionally need
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I D Vw
[(9t+<U>F‘<V]<U>F§:2—tw- (81
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