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Multiple current reversal in Brownian ratchets
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We address the problem of stationary transport of overdamped Brownian particles in a one-dimensional
spatially periodic potential composed Hfhills within one period. We show that in a system driven by both
thermal equilibrium fluctuations and symmetric dichotomic fluctuations, a proper manipulation of the barrier
heights and slopes of the potential leads to multiple drift velocity reversal. Under optimal conditions, the drift
velocity as a function of temperature and intensity of dichotomic fluctuations possesses as Naxtrasa
of alternating signs. There exidt—1 values of a critical temperature which separate regimes of opposite
directions of particle transport.
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[. INTRODUCTION ratchet under study. It is a model with a fluctuating force;
exponentially correlated symmetric two-state Markov noise.
Transport phenomena play a crucial role in a large varietyT his is one of the simplest correlated noises which can in-
of processes in nature, from physical through biological toduce transport in periodic structures with broken reflection
social systems. In the past ten years or so, the concept /mmetry. A Brownian ratchet with this driving was already
stochastic transport realized in Brownian ratchets has caphvestigated in the literaturs—8]. In Ref.[6] it was shown
tured the attention of researchdfg. Ratchets are one ex- that asymmetric dichotomic noise and a simple piecewise
ample of simple nonequilibrium model systems which, in thelinear potential can produce a current reversal. Its origin
absence of any bias forces and gradients, can rectify zer§omes from the interplay between the asymmetry of the pe-
mean nonequilibrium fluctuations into unidirectional motion. riodic potential and the asymmetry of the noise. Here we do
Various ratchetlike mechanisms have been intensively stud?ot adopt this mechanism: the noise considered is symmetric.
ied, including an analysis of sources of driveteterministic ~ However, potentials are asymmetric and much more compli-
and/or randomforces or potentia|s, statistics of nonthermal cated. In Sec. Il we construct such potentials, which consist
fluctuations, conditions for optimal transport, ef@]. The  of N hills within one period. For simplicity, we have consid-
subject has become attractive for at least two reasons: tHfed piecewise linear functions. In Sec. IV we show that the
possibility of a satisfactory explanation of directed motion ofratchet system exhibits a multiple current reversal which is
molecular motors which transport macromolecules in bio-generated by the potentials constructed in Sec. IIl.
logical cells[3], and attempts to construct well-controlled
devices of high resolution for separation of macro-particles Il. MODEL
and microparticles like cells, latex spheres, DNA, or proteins ) )
[4]. In both cases the magnitude and direction of the drift e analyze the stochastic dynamics of overdamped and
velocity of particles are important characteristics of transNOninteracting Brownian particles moving in a one-
port. In this context, the current reversal phenomenon is ondimensional spatially periodic potenti&gl(x)=V(x+L) of
of the most interesting aspects of the theory of Browniameriod L and of the maximal barrier heigm;\"/:\?max

ratchets. ~Vmin, and driven by two random forces. The Langevin

In this paper we study a system which exhibits multiple o, ,ation of motion in dimensionless form(tse scaling and
current reversal. We show that the right deformation of shap@; ensionless variables were discussed in detail in Y.
of the spatially periodic potential can almost arbitrarily

change the qualitative features and properties of the system.
In real systems the shape of the potential is a feature which
can be changed or adjusted. In biological systems, the poten- . ) ) - )
tial is related to the size, shape, and components of proteing/herex=x/L is a dimensionless position of the Brownian
which in general are very complicated, and the potential i?article, andv(x)=V(x+1) is a rescaled periodic potential
reckoned to be highly fine tuned by biological evolution. With & unit period and a unit maximal barrier heighThe
Protofilaments, which form a microtubulin, are one-random forcel'(t) represents equilibrium thermal fluctua-
dimensional spatially periodic systems consisting ofaan tions. It is Gaussian white noise of zero avera@g(t))=0,
tubulin andg tubulin, which influence transport of kinesin or and the correlation functiof’(t) I'(s)) = 2D 6(t —s), where
dynein along microtubulins. In separation devices the shap® =kgT/AV is its intensity,kg stands for the Boltzmann
of the potential can be obtained, e.g., by microlithographicconstant, and is the temperature of the system. The random
techniques, and they can be quite complex. force &(t) represents nonequilibrium fluctuations, and is

The remainder of this paper is organized as follows. Inmodeled by asymmetricdichotomic Markovian stochastic
Sec. Il we describe the mathematical model of the thermaprocess,

x=f(x)+T(1)+ &), f(x)=—dV(x)/dx, 1)
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FIG. 1. The rescaled sawtooth potentials of unit period and unit 1
maximal barrier hight within one period witN=1, 2, 3, and 4 0051 .
hills (top to bottom. The values of barrier-heights and slopes are o1k ]
given in Eq.(12). ) ]
0.01 0.1 "1
ét={-aza}, a>0, D
(2) T T LR T Tt
P(—a—a)=P(a——a)=u, -
0.2+ B
whereP(—a—a) is a probability per unit time of the jump 0.1- ]
from state—a to statea. This process is of zero average, I
(&(t))=0, and exponentially correlated, o
-0.1F .
(é0)E(s))=a’e 97, (3 -
-0.2r h
where 7=1/2u is the correlation time of the proceg$t). o3l 1
Thus, it is characterized by two parameters: its amplitade ’ T R e
(or equivalently the variancés?(t))=a?) and the correla- : D
tion time 7. . : : :
Master equations corresponding to Et). have the forms 0.4 i
[10]
02 i
9P+ (XY 0 f(x)+a]P. (X0 + D > P (xt ’
o &[ (x)+a]P,(x,t) P +(X,t) 0
= P () +uP_(x1), (4) o ]
04 4
oP-(x1) i f P t)+D ” P t [0 (§ A 1 B
——=——[f(x)—a]P_(x —P_(x 0.001 0.0 01
p R 0 =alP- (0 +D—5P_(xD) 5
+uP . (X,t)— uP_(x,t), (5) FIG. 2. The dimensionless current vs dimensionless intelsity
- N of thermal fluctuationgor temperature of the systerfor potentials
where the probability densities are (11) with 1, 2, 3, and 4 hills. Values of the amplitudeof dichoto-

mic fluctuations ar@=1.8 forN=1,a=4.78 forN=2, a=10.58
P.(x,t)=p(x,a,t), P_(Xx,t)=p(x,—a,). (6) for N=3, anda=16.7 forN=4. The correlation time of dichoto-

From Egs.(4) and(5) it follows that the probability density mic noise is7=1.0.

P(x,t)=P,(x,t)+P_(x,t) (7) where the probability current
of the procesx(t) alone obeys the continuity equation
JP(X,1)
IP(x,1) 3J(x,1) ® I =FX)Px,) =D ———+a[P.(x,) =P_(x,)].

at ax 9
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MULTIPLE CURRENT REVERSAL IN BROWNIAN RATCHETS

This is a fundamental quantity characterizing transport prop-
erties of the system. In particular, the averaged ddiftnen-
sionles$ velocity v (t) of the particles is given by the relation

. 1 1
v(t)z(x)zfo f(X)P(x,t)dx= fo J(x,t)dx, (10

and the latter follows from the former by use of E§).

Ill. POTENTIALS

If nonequilibrium fluctuationsé(t) are symmetric[11],
transport and directed motion of particles is possible only
when the spatial reflection symmetry of the potentéx) is
broken. IfV(x) is a simple piecewise linear function having
one maximum within a perioda generic ratchet potential
used in literaturg the current reversal phenomenon can oc-
cur only when fluctuations are asymmetricl]. In the case
of symmetric fluctuationg(t), this phenomenon can occur if
the shape of the potential is deformed in a special {&y.

We show this by analyzing a case of a potential which is
composed oN hills of various heights and shapes. For the
sake of simplicity, piecewise linear potentials on the unit
interval [ 0,1] will be considered, assuming that their mini-
mal values are zero and(0)=V(1)=0. We define a saw-
tooth potential by fixing two independent sets of numbers: its
maximal valuesV=[V,V,, ... Vy] and values of the
slope (force) f=[f; ,f;,f,,f;,....fy.fu]. Hence the
triple[V;,f; ,f;"] characterizes thith tooth of the potential.
We expect that, by appropriate manipulation of its heights
and slopes, thé&\-sawtooth potential gives rise to the mul-
tiple current reversal. This conjecture follows from two ob-
servations. First, i#(t)=0 the motion of a Brownian par-
ticle in a potential with hills of various heights consists of
subsequent barrier crossings in one of three regimes:

(i) V,<D; the motion of the particle is not essentially
disturbed by the barrier, and is of diffusive type.

(i) V;=D; the motion of the particle is of activation type.

(iii) V;>D; the long-distance motion of the particle is not
possible without driving forcéhere by dichotomic fluctua-

tions).

by dichotomic noise only depends on the relation between
the slopes and the amplitu@eof fluctuationsé(t). Taking
the above into account, we construct potentials fulfilling the

following conditions:
(a) Potentials have increasing barrieX§<V, , ;.

(b) The smaller barrier has steeper slopes than slopes of

all higher barriers, i.e., it;<V, then|f. |,|f;"|>|f, .| f¢].

(c) Barriers have alternating asymmetry, i.e., |ff |
>|f*| (or vice versathen|f ,|<|f." | (or vice versa

As an example, we analyze four cases of the following
potentials(see Fig. 1

N=1: V=[1], f=[3,—1.5], (11)
N=2: V=[05,1], f=[6.83-10.253.42-1.71],
N=3: V=[0.25,0.5,1,

02110

Second, at zero temperature the barrier crossing induced
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FIG. 3. The dimensionless current vs dimensionless intensities
of dichotomic and thermal fluctuations for the potentidl&) with
1, 2, 3, and 4 hills. Dashed and solid lines denote negative and
positive values of the current, respectively. The correlation time of
dichotomic noise igr=1.0. The scale oD is logarithmic, and the

scale ofa is linear.
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f=[17.65-14.12,7.06;10.59,3.53- 1.77] J.=[Ia)+I(—a)]/2 (14)
and
N=4: V=[0.125,0.250.5],
1_e*a/D
J(a)=D p] .
—(V(x)—ax)!/ —ay)/

f=[21.41-24.98,17.84- 14.27,7.14- 10.70,3.57- 1.78]. foe v aX’DL eV ~an’Bdy dx

(19

IV. RESULTS From a numerical analysis it follows that for ahythe cur-

) ) ) ) ) . rentJ(7) as a function of the correlation timecan change

Wg conS|de.r a stationary regime in WhICh. Fhe probab|I|tySign at most once, i.e., there is such a valuersfr; that
density P(x) =lim,_... P(x,t), and the probability current  j7.y—0. Belowr; and abover; particles are transported in
=lim;_. J(x,t)=const. The stationary meafdimension-  gpposite directions. On the other hand, for fixidthere
lesg velocity v of the particle is equivalent to the curreht  exists such a domain of values of the amplitedand cor-
relation timer of fluctuationsé(t) that the currend(D) as a
function of the thermal noise intensify (i.e., temperatune
possessell extrema of alternating signs. As a consequence,
J(D)=0 for N—1 values ofD=Dy, D,,...,Dy_1>0
(see Fig. 2 In each, two adjacent domains separatedby
particles move in opposite directions. We have observed that
if N becomes greater and greater then extrembforf higher
temperatures are smaller and smaller. Of course, this is only
true for potentials constructed in such a way as presented in
Sec. lll. In Fig. 3 we present a contourplot of the current as
a function of the thermal-noise intensityand the amplitude
a of the dichotomic noise. One can see that, for fikednd
a correlation timer, a multiple current reversal occurs when
. L . a is varied.
where the prime denotes a derlvat|ve.W|th respeo_t.to The multiple current reversal can be detected for slow

For an arbitrary potential, the stationary solution of theq,cations as well. Indeed, from numerical analysis of for-
system of equation4) and (5) is not known, with the ex- )5 (14), we have qualitatively obtained the same behavior
ception of some limiting cases. For a piecewise linear potenof the current as presented in Fig. 2. We have investigated
tial this system can be solved analytically. The method ofhe dependence of the original unscaldiinensional mean
solution was presented in RefLO] for the simplest piece- \g|qcity ()= (AV/yL)J of particles on their linear sizB,
wise linear potential wittN=1 hill. Though this potential is \yhich, via the Stokes formula, is hidden in the friction coef-
very simple, the calculations require an algebra manipulatiogsjent yxR. The detailed procedure was described in Ref.
package, and the final analytical results have to be invest{10]. we have noted that the mean velocity can change its
gated numerically due to their complexity, illegibility, and sign only once wheiR is changed monotonically and, unfor-
length. Here, in order to obtain reliable results, we haveunately, multiple velocity reversal is not possible in this
decided to obtain numerically a stationary solutioncagse.
{P+(x),P_(x)} of the system of equationi@) and(5). For In conclusion, we have shown that in a system driven by
this purpose we have adapted the finite elements methodymmetric fluctuations and noise, the phenomenon of mul-
Next, the stationary currerdtis obtained from relatiorfi13).  tiple current reversal can be precisely controlled by the
In practice, this allows one to obtain the solution in theproper deformation of a spatially periodic potential. This
shorter CPU time and of the same accuracy as the ana|ytiCphenomenon occurs upon variation of not all but only se-
approach. Moreover, it is much easier to implement thidected basic parameters of the modegre by the thermal-
method for an arbitrary form of the potentid(X). noise intensityD and the amplitude of the nonthermal noise

A general note concerns the dependence of the current af). Multiple current reversal can appear in other systems
the correlation timer of dichotomic noise. In the fast noise [13,14. However, the mechanism is radically different than
limit, when 7— 0, the current diminishesk— 0. For smallr  that studied in this paper.
it behaves aglo 7. The value of the exponent depends
strongly on the regularity of the potent(x). Its value has
been evaluated for a smooth potenti@] as well as for a

v=($<)=f01f(x)P(x)dx=J. (12)

The stationary probability current can be obtained from Eq
(9), and takes the form

J=f(X)P(xX)—DP'(x)+a[P,.(x)—P_(x)], (13
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