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Simple fluids with complex phase behavior

Gianpietro Malescio and Giuseppe Pellicane
Dipartimento di Fisica, Universitali Messina and Istituto Nazionale Fisica della Materia, 98166 Messina, Italy
(Received 26 May 2000; published 22 January 2001

We find that a system of particles interacting through a simple isotropic potential with a softened core is able
to exhibit a rich phase behavior including: a liquid-liquid transition in the supercooled phase, as has been
suggested for water, a gas-liquid-liquid triple point, a freezing line with anomalous reentrant behavior. The
essential ingredient leading to these features resides in the presence of two effective radii in the repulsive core.
The potential investigated appears appropriate for a class of spherical polymeric micelles recently investigated.
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Predicting the phase behavior for a given interparticle in- The purpose of this article is to report the findings of a
teraction is a central problem in statistical physics. The issustudy of the phase behavior of a system of particles interact-
is relatively well assessed for pure systems interactingng through a potential with a softened-core and an attractive
through a variety of radially symmetric pair potentials, suchwell. Our analysis, based mainly on thermodynamically self-
as hard-spheres, Lennard-Jones systems, inverse-power gensistentTSC) integral equations for fluidg8] and partly
tentials, etc. The complexity of the phase diagram increase@n Monte Carlo(MC) simulations, shows the existence of a
for pure substances characterized by complex interactiorljuid-gas critical point in the stable fluid phase and of a
depending on the intermolecular orientation, e.g., waterliquid-liquid critical point in the supercooled region. The
C,S,Ga, Se,Tg|Cs,SiQ, etc.[1]. For the above materials liquid-gas and liquid-liquid coexistence lines meet in a gas-
somewhat exotic features appear in the phase diagram, sulifiuid-liquid triple point. Moreover, the behavior of the
as fluid-fluid or liquid-liquid transitions, polyamorphism, and freezing line, estimated through one-phase critg@iall],
multiple crystalline structures. Exploring the possibility that such as the Hansen-Verl@tlV) rule [10] and the entropic
simple fluids interacting through suitatiBotropic potentials ~ criterion based on the analysis of residual multiparticle en-
may exhibit similar behaviors represents a major challengelropy [11], is consistent with the existence of multiple crys-
The importance of such model systems is not limited to profalline structures in the solid phase. Unlike previous studies
viding a better understanding of the components of the intert12,13, we show that a microscopic theory, directly linking
action responsible for the above phase behaviors. They mdfe behavior of the system to the form of the interparticle
also represent an adequate description for systems havingpPair potential, predicts for a simple fluid the existence of a
completely different nature: the suspensions of colloidal parliquid-liquid critical point and of a gas-liquid-liquid triple
ticles dispersed in a fluid medium. In fact, in these systemspoint.
through the experimental control of particle and solvent The chosen potential has a repulsive p4d,(r) consist-
properties[2], it is possible to generate “nonstandard” ef- ing of a hard core of radius,=oc and a repulsive square
fective pair interactions similar to those investigated in thisshoulder of height and radius'; =2.50, plus an attractive
Rapid Communication. componentV,,(r) having the form of a square well of

Such features of the phase diagram as fluid-fluid transidepth 1.2% extending fromr;=2.5¢0 to r,=30¢ [13]. To
tions, polyamorphism, etc. may be related to the competitiomieach a thorough comprehension of the role played by the
between expanded and compact structures. This suggests tldéifferent components of the potential we first study its purely
the potential should possess two equilibrium positifBls  repulsive part, and then consider the effect of adding the
The most obvious form with such a feature is one with twoattractive component.
wells. Such potentials were shown to give rise to waterlike Let us consider a system of particles interacting through
thermodynamic anomalies, though the presence of a nethe potentiaV ¢,(r). We study its structural and thermody-
critical point could not be directly observdd]. Another  namical properties using the TSC Roger-YouiRY) inte-
form of interparticle interaction which could produce differ- gral equation[14]. Figure 1 illustrates the structure factor
ent equilibrium positions is that in which there is a region of S(k) for different densities, at a constant temperature, as
negative curvature in the repulsive core: these so-calledalculated within the above theory and through MC simula-
softened-core potentials were proposed by Hemmer and Stelbns[15,16. We note the unusual behavior of the first peaks
[5] who argued that they might produce an additional transiof S(k) which, as the density increases, progressively rise
tion, if a first already exists. Recently, through a mixedand fall (with the exception of the third peak, which grows
numerical-mean field type calculation, it was found that amonotonously with the density This anomalous structure
potential consisting of a softened-core plus an infinite rangdactor recalls in its essential features that which is observed
van der Waals attractive term may give rise to a secondn dense star polymer solutiod6]. The “rising and fall-
critical point[6]. Very recently, molecular dynamics simula- ing” of the peaks ofS(k) reflects the turning on and off,
tion showed for a softened-core potential with an attractiveupon the density increasing, of different effective length
well evidence of a transition between two fluid phases in thescales. Whem and p are sufficiently small, the soft core is
supercooled regiofi7]. practically impenetrable and the particles behave as hard
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FIG. 1. Purely repulsive potential. Structure factors within the RY equaaotid line) and MC simulation(circles at a reduced
temperaturél* =kgT/e=0.285 and at different values of the reduced dengity- po°.

spheres of radius;. As T and p increase, more and more tion of particles penetrating the soft core increases with the
particles penetrate the soft core until this becomes scarce§ensity (at constantr), thus “generating” additional space
influent and the system is essentially equivalent to an assenfPr the system. This effect is particularly important where
bly of hard spheres of radius,. In general, the system can one length scale begins to become less effective in favor of
be considered a “mixture” of two populations of hard the smaller one. In these regions the phenomenon may over-
spheres, of radius, andr, respectively. The relative con- compensate the general decrease, upon the density increas-
centration of the two species is fixed by the value§ @ind ing, of the space available to the particles, thus causing a
p. Thus, in contrast to standard simple fluids, the system ha&endency of the system to become less ordered: accordingly,
three possible length scales:;, rio=(r,+rg)/2 andry, and the freezing line may have a negative derivative, i.e., the
as many indicators of structural ordering, namely, the peaksystem may undergo crystallization upon the densiéy
of the structure factor corresponding to the wave vectorgreasing To this regard we note that reentrant freezing and
ki, ki, andk, associated with these lengths. melting transitions originated by an ultrasoft repulsive pair
According to the HV rule a fluid is expected to undergo potential have been observed, through MC calculations, in
crystallization when the firstmain) peak ofS(k) attains the  star polymers solutionfd 7]; in the same work the validity of
value 2.8910]. This statement usually refers to simple fluids v ryle for such systems was confirmed.
with”a single length scale, so its extension to the “anoma- A reentrant behavior of the freezing line is also observed
lous” simple fluid investigated is not straightforward. Since ;,, the 1ow T-low p region shown in the inset in Fig. 2. Here,

in our case different Iepgth s'cal_es come into play, one ha; e freezing line starts nearly vertical at =0.06, which
consider all the associated indicators of structural ordering, . . .
. : . corresponds to the freezing densﬁyf:0.943 of a fluid of
In Fig. 2 we show the loci of the points of the plamep for hard spheres of radi As p increases, the freezing line
which S(ky), S(kio), and S(k,) are equal to 2.85. The P US. AS p ’ 9

freezing line predicted by the HV rule coincides with the line 2€NdS and exhibits a negative derivative. The phenomenon

which bounds the region where at least one of the peaks gn be associated with the very onset of the soft core pen-

S(K) is greater than 2.85. This line shows a reentrant beh‘,;we_ztration which, for the reasons discussed above, has a disor-

ior (at intermediate densitiesvhich can be related to the dering effect on the system. Consequently, the system under-

peculiar penetrability of the softened-core. In fact, the fracJ0Cs mel_tlng with volume contraction, as confirmed .by t.he
fact that, in correspondence of the portion of the freezing line

having negative derivativéj) the isothermal compressibility

0.6 fo15 R, ' ' o ] exhibits an anomalous behavior suddenly increasing with the
0.5 Foal \ & 0.03 / ,f ] density(see the inset in Fig.)2and(ii) the first peak oS5(k),
Sl o\ <?\036J Xo & ] which corresponds to the effective length saaleundergoes
(008 ' ﬁ ] a strongly localized decreagsee Fig. 3 These features also
0"& B R R T s .0113.—*3’\*3‘{l ] occur along the extension of the freezing line towards lower
T P Eﬂ e e, 1 temperatures, suggesting, in this case, the transition to a less
03 Tral @ A ﬂn‘ ] ordered solid phase. The extrapolation of this line meets the
e ’§~,\ = . T=0 axis atp*=0.09, which corresponds to the closest
0.2 [« = AA' ] packing of hard spheres of radius (occurring atpr3
2 a8 & 1 = \/f). The above results lead us to conclude that the region
N N shadowed in the inset of Fig. 2 corresponds tceapanded
0.1 0.2 0.3 04p*05 0.6 0.7 0.8 solid phase of the System_

We now investigate the phase behavior of a system of

FIG. 2. Purely repulsive potential. The dashed lines are the lociParticles interacting through the full potentiéle,(r) plus
of points of theT,p plane whereS(k;) (closed triangles S(k) Vaur(r). Calculations are performed making use of the
(squarey and S(ko) (open trianglesare equal to 2.85. The inset HMSA TSC equatior{a suitable combination of the hyper-
shows a magnification of the loW-low p region; the isothermal netted chainfHNC) equation and of the soft-mean spherical
compressibilityyy (thick solid lin is calculated along the isotherm approximation (SMSA) equation, proposed in Refl8]],
T*=0.103 (x, is the ideal gas compressibiljty which is better suited than the RY equation for interparticle
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FIG. 4. Phase diagram in th& (p) plane. Coexistence lines:
gas-liquid (solid line with open circles liquid-liquid (solid line

FIG. 3. Purely repulsive potential. Three-dimensional plot ofwith closed circles The closed diamonds represent the critical
S(k;) as a function ofT* andp*. points. The dashed lines are the loci of points whg(ie;) (closed
triangles, S(k,o) (squares andS(k,) (open trianglesare equal to
2.85. The solid line with no symbols is the freezing line estimated

. . includi . d red through the entropic criterion. Insel, T phase diagram showing
Interactions Including an attractive component and reduces tf?1e freezing line estimated withidV rule (dashed ling the liquid-

this for purely repulsive potentials. The phase diagram of th%as coexistence linesolid line ending inC1) and the liquid-liquid

system is shown in Fig. 4. Two coexistence curves 0CCUEgexistence linésolid line ending inC2); the open diamonds rep-
[19], each terminating at a critical point, denot€d and  resent the triple points; pressure is given in unitshf®.

C2. The critical densities and temperatures are respectively
pc1=0.06, T¢,=1.3, and pg,=0.77, T¢,=0.55. These
values were estimated using the rectilinear diameter rule andensities the system might undergo a glass transition. In this
the scaling relationship for the width of the coexistencecase, our results would be consistent with the existence of
curve with the nonclassical exponeit=0.325[20]. Below LD and HD amorphous phasg3].
Tc, the system separates into a gas and a liquid phase. The The addition of the attractive well causes a shift towards
liquid phase is not unique since, belolt, (Tco<Tc1), higher temperatures of the loci of the points where
separates into distinct low-densiy.D) and high-density S(k;), S(kio), andS(k,) are equal to 2.85, while their lo-
(HD) phases. We stress that this phenomenon is cruciallgation in density remains essentially unaltered. Only a small
related to the softened-core form of the potential. Due to theportion of the lineS(k,;) =2.85 is visible since it lays almost
presence of the penetrable repulsive shoulder particles can le@tirely in a region, corresponding approximately to the gas-
in one of two “states”: this is the essential feature which liquid spinodal decomposition, where the theory is unstable.
opens the possibility of liquid-liquid-immiscibility in a pure At intermediate densities the freezing line predicted by the
substance. HV rule shows a very evident reentrant behavior. As shown
Since the critical poin€2 is well below the freezing line, in the inset in Fig. 4, the freezing temperature increases ini-
the liquid-liquid transition occurs between metastable phasesally with pressure, then decreases in the pressure range
in the supercooled region of the system. This feature recallg.5<P*<3.5 (P*=Po%€), and eventually increases
the scenario proposed for watgB], but in that case the again. We further note that the freezing line meets the liquid-
liquid-liquid coexistence line is expected to start from thegas coexistence line in a gas-liquid-soll@dLS) triple point
C2 point running at higher pressuresaslecreasef21]. In - (pg 4~0.29, T§, s~0.97). For comparison we also show,
the system investigated, the contrary is observed, this lingh Fig. 4, the freezing line estimated through the entropic
running at lower pressures dsdecreasessee inset of Fig. criterion. This is in reasonable agreement with HV rule
4). This makes a new feature possible: the simultaneous cahough there is a discrepancy in the intermediate region: the
existence of three fluid phases. In fact, the gas-liquid and thesentrant behavior predicted by the entropic criterion is, in
liquid-liquid coexistence lines meet in a gas-liquid-liquid fact, scarcely evident and can be appreciated only numeri-
triple (GLL) point which lays in the supercooled phase cally [22]. Though our estimate of the freezing line is based
(p&L .~0.57, T, ,~0.53). In order to check that the meta- solely on one-phase criteria, its shape, with branches having
stable states close to the critical pod2 have a finite life-  distinctly different slopes, is consistent with the possibility
time, we performed MC runs consisting of not less than 5that structural changes occur in the solid state of the system.
x10® steps, finding no evidence of structural orderingConsequently, transitions may be possible between solid
(which suggests that poi@2 lays above the melting line of phases of the system investigated.
the system The MC and theoretical radial distribution func-  The results presented in this article show that a pure
tions are in overall good agreement with each ofl2®]. In model system, interacting through an isotropic potential with
principle, one cannot exclude that at such temperatures artd/o characteristic radii in the repulsive core, may have a rich
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phase behavior with features typical of substances charactethe interaction may be fixed through appropriate tuning of
ized by much more complex anisotropic interactions. On theparticle and solvent properties.

other hand, the above potential could be appropriate for a \ye wish to thank P. Ballone, C. Caccamo, S. Dugdale,
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dense core radius is close to that of the repulsive shoulderwould like to thank MURST PRIN 2000 for financial sup-
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