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A recently introduced stochastic model for fluid dynamics with continuous velocities and efficient multipar-
ticle collisions is investigated, and it is shown how full Galilean-invariance can be achieved for arbitrary Mach
numbers. Analytic expressions for the viscosity and diffusion constant are also derived and compared with
simulation results. Long-time tails in the velocity and stress autocorrelation functions are measured.
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Hydrodynamic simulations of complex liquids such asmental questions regarding this approach still need to be an-
amphiphilic mixtures and polymeric liquids remain a major swered before it can be applied with confidence. In this
challenge. For these fluids, mesoscopic simulation methodsapid Communication we address these questions and
are often more efficient and stable than conventional compupresent the results of a detailed analytic and numerical study
tational fluid dynamics algorithms; in addition, they have Of this model. In particular, the validity of the assumption of
shown great promise for simulating flow in complicated ge-molecular chaos made in R¢#] is critically analyzed, and
ometries. For these reasons, there has been a consideraflds shown that the original algorithm is not Galilean-
effort to develop lattice gas automathGA) [1], lattice- invariant at low temperatures. We then show how the algo-
Boltzmann(LB) methodg 2], and particle-based mesoscopic rithm needs to be modified in order to guarantee Galilean-
simulation techniques such as dissipative particle dynamickvariance atarbitrary Mach and Schmidt numbers and
(DPD) [3]. determine the dependence of the transport coefficients on the

In the LGA method, the fluid is modeled as a collection of mean free path and rotation angle. New analytical expres-
particles which move along the links of a regular lattice andgsions for the transport coefficients at small and large mean
interact according to well-defined collision rules. If thesefree path are also derived and compared with simulations
collision rules preserve mass and momentum conservatiofesults.
the correct hydrodynamic behavior can be obtained at mac- Consider a set oN point-particles with(continuous co-
roscopic length scales. In the LB method, the time developordinatesr;(t) and velocities;(t) in two dimensions. In the
ment of particle distribution functions with a set of fixed streaming step all particles are propagated simultaneously a
lattice velocities on a regular lattice is described by a disdistancev;s, where s is the value of the discretized time
cretized LB equation. Both of these lattice methods are verptep. For the collision step, particles are sorted into cells, and
efficient due to the simplified collision dynamics and strongthey interact only with members of their own cell. The sim-
reduction of velocity space. However, this reduction is alsoPlest cell construction is a square grid with mesh size
their major drawback: they are not Galilean-invariant, aHowever, as will be shown, a shortcoming of imposing this
problem which restricts their use to conditions in which thelattice structure is that it can lead to a breakdown of
flow velocity is small compared to the maximum lattice ve- Galilean-invariance, as well as other anomalies. The macro-
locity. In addition, the LB approach is subject to a number ofScopic velocityu(§,t) is defined as the mean velocity of the
numerical instabilities. While off-lattice methods such asparticles in the cell with coordinat& The local temperature,
DPD do not suffer from these drawbacks, they are oftenl, is given by the mean square deviation of the velocities
complex and difficult to analyze analytically. from the macroscopic velocity.

Recently, a promising particle-based method for simulat- The collision step consists of a random rotation of the
ing fluid flow (which we will call stochastic rotation dynam- relative velocities,v;—u, of each particle in a cell by an
ics) was introduced by Malevanets and Kagr). The fluid — angle = «. All particles in the same box are subject to the
is modeled by particles whose positions and velocities aréame rotation, but the rotation angles of different cells are
continuous variables. The system is coarse-grained into thgfatistically independant. The local momentum and kinetic
cells of a regular lattice and there is no restriction on theenergy is invariant under this operation. The dynamics is
number of particles in a cell. The evolution of the systemsummarized by
consists of two steps: streaming and collision. In the

streaming step, the coordinate of each particle is incremented ri(t+o)=ri(t)+vi(t), 1)
by its displacement during the time step. Collisions are mod-
eled by a stochastic rotation of the relative velocities of every Vi(t+ 8)=u+ w-{v;(t) —u}, (2)

particle in each cell. The dynamics is explicitly constructed

to conserve mass, momentum, and energy, and the collisionhere @ denotes a stochastic rotation matrix which rotates
process is the simplest consistent with these conservatidoy an angle of either- & or —a with probability 1/2.

laws. It has been shown that there is ldftheorem for the A series of simulations were performed on systems with
dynamics and that this procedure yields the correct hydrodyperiodic boundary conditions arld® cells with L ranging
namic equations for an ideal gb%]. However, many funda- from 16 to 64. The average number of particles per ¢éll,
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' different cells. After a collision, particles immediately leave
to other cells, and decorrelate quickly. This behavior is con-
firmed by our simulations. For example, the ratio of the dif-
fusion constant®=D, /D, was measured in a homogeneous
flow field as a function ofA =\/a. While there are signifi-
cant deviations froniR=1 for smallA, for A>1/2, R devi-
ates from one by less than 0.3%.
o For small A, large numbers of particles in a given cell

0 50 100 150 remain correlated over several time steps. These correlations

Time are changed by the presence of flow, and Galilean-invariance

is broken. One way of removing this dependence on the mac-

vectorsk at small mean free pathh, =0.11, with(dashed linegsand roscopic veloci_ty Is o perform a ran_dom shift of th_e grid
without (solid lineg the random shift of the grid. The upper solid before performing the stochastic roftatlon. If the magnitude of
and dashed lines are results for 27(0,1)/L. The lower solid and € random components of the shift are on the order of the

dashed lines correspond tk=2m(1,1)/L. Parameters: T cell size a, the collision environment of each particle no
=0.01275,¢=90°, M =35, andL = 16. longer depends on the macroscopic velocity, and it can be
shown [6] that there is an exact restoration of Galilean-
was between 5 and 70. The simulations were started with mvariance. This makes it possible to perform simulations at
random distribution of particles with random initial veloci- arbitrary Mach number even at low temperature.
ties with components in the intervatv,,x. The velocity In our implementation of this procedure all particles are
distribution quickly relaxes to a Maxwell-Boltzmann distri- ghifted by thesamerandom vector with components in the
bution with an essentially temperature independent relaxiieryal [ —a/2,a/2] before the collision step. Particles are
ation time 7M. 7 was found to depend strongly on the y,on shifted back by the same amount after the collision.
value °f_§he rotation ang_la,_ a_nd to diverge appr_o?qmately This shifting procedure, in conjunction with the stochastic
as7—a~for a—0; in this limit, there are no collisions and . jigjon, |eads to an additional contribution to the viscosity
thelrnmaldequmbrlum can never . agh|eved. . . which removes the anomalies in ksdependance. Figure 1
order to detgrmme the klne_rr_1at|c shgar V|sSosvtythe (dashed linesshows the exponential decay of the vorticity
temporal correlations of the vorticityy, = k.uy —kyUx, Wereé  correlations for different wave numbers if the shifting proce-
measured, where, is the Fourier transform of thecompo-  dure is applied. In contrast to the results obtained without the
nent of the macroscopic velocity. According to fluc- shift, the short time viscosity is now essentially independant
tuating hydrodynamics, vorticity correlations decay asgf the wave vectok.
(wi(t)w_(0))~exr —»(k)k’t]. We found that the value of |y the streaming step, momentum is transfered directly
v determined in this way is at least a factor of 2 larger tharyom one cell to another when particles cross cell boundaries.
that given by Eq(47) of Ref.[4] for «=90°. In addition, we  1pig |eads to a kinetic contribution to the viscosity,,

fourgd an anomlflly |rwb(k) if one Eqmgglr_‘grl'_t of E[Eet";’ﬁve calculated previoushf4]. However, as mentioned above,
vector is zero. It can be seen in Fig.(solid lines that the there is also a rotational contribution,,;. The total kine-

;/(I)i(;qcisrlr%sa;n\:\flll\g t\rllzzt?‘“o(r:ﬂz(ql-r(lji,/OL)/II_mISO;aiEZrZXLrE?Eg- matic viscosity therefore consists of the sum of three contri-
enous flow parallel to the Wave’ vecfbdgz(k 0) leads to a butions, »=vyint Vrot + Vmix, Where vpiy IS a cross term
similar drastic change in the value ofko) Xnother mani resulting from both streaming and rotation. These additional
O . - . . . . .
festation of this breakdown of Galilean-invariance was ob-ContrIbUtlons are zero in the original method, because the
rotations do not transfer momentum between different cells.

served when measuring the diffusion constadis D, of e . , : .
particles in thex andy directions in the presence of a ho- When the shifting procedure is applied, the rotational contri-

mogenous flow field. It was found thB /D is not always ~ Pution is nonzero; for <1, vy, is the dominant contribu-
equal to 1. tion to the viscosity.

These artifacts led us to a critical review of the basic In this limit, an approximate expression for- v can
assumptions in the analysis d], in particular that ofmo- be obtained from elementary kinetic theory: Consitier
lecular chaos Molecular chaos means that particles involvedparticles in a single cell which is divided into two subcells by
in a collision have no memory of earlier encounters whera line parallel to thex direction. In each of the subcells,
colliding. This is clearly not the case if the particles travel amacroscopic velocities; andu, can be defined as the aver-
distance between collisions which is small compared to thege velocity of the subcell particles. In the rotation step,
cell sizea. In this case, essentially the same particles “col-momentum is transfered between the two subcells. This mo-
lide” repeatedly before other particles enter the cell or somamentum transfer can be easily calculated using 3. It
of the participating particles leave the cell. Introducing thedepends on the rotation angle and the velocity difference
mean free pathy = 5T [5], which is the average distance u;—u,. Using the definition of the shear viscosity as the
particles stream between rotations, the assumption of mgsroportionality constant between the momentum transfer and
lecular chaos should be valid whas>a, because most col- the velocity gradient and averaging over the position of the
lisions then involve particles which have just arrived from dividing line, one finds

FIG. 1. Vorticity correlationd/V vs time for two different wave
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FIG. 3. Various contributions to the viscosity vs time. The ki-

FIG. 2. The normalized kinematic viscosity, measured at netic part,vy,, is represented by the lower solid line, and the total
short times as a function of the rotation angleThe bullets show  viscosity, v, by the upper solid line. Both show the same logarith-
véla? at small mean free pathy =0.028. The dashed line is ex- mic behavior. The functiora+b In(t) is shown for comparison
pression(3). The filled triangles arev/(8T) at large mean free (dashed lings The deviation at timé~200 is due to the recurrence
path, A=4. For comparison, the dotted line shows Ef. L =32 of sound waves because of the smalx@¥ system size. The ro-
andM = 35. tational part,v,o;, shown by the top dashed line, is essentially

constant at long timesx=60°, A=0.2, andM =5.
2
Vr0t=a—[1—COS(a)]. (3)  With the one derived by more complicated mean$4h A
125 series of simulations both with and without the shifting pro-

) ) i i ) cedure were performed to measig, and to calculate the
Simulation re_sults for the V|sc_03|ty foxr=0.028 are in good viscosity using Eq(4). We found that the cross term in the
agreement with Eq:3) for rotation an_gles that are neither too viscosity, vmix, Which measures the correlations between
small nor too large, as shown in Fig.(@ashed line and)s p;(;/t and p)lflyn is always negative. For large mean free path,
The angular dependence is qualitatively different at largeys-1, 5, . cancels the rotational contribution to the viscos-
mean free path, Fig. @lotted line andv). The claimin Ref. jty 4 . “and at smallA, it cancels the kinetic party,.

[4] that the viscosity has a minimum at=90° is only true  Viscosities measured at short times using the Green-Kubo
for large A. For smallerA the minimum is shifted to smaller expression{4) agree to within 3% with the values determined
angles. Equatiort3) cannot correctly describe the total vis- from measurements of the vorticity correlations.
cosity at very small and very large angles because the kinetic At large times there is a renormalization of the viscosity
part of the viscosity becomes large there eveN iis small.  due to long-time tails in stress correlatiof®, and in two

A Green-Kubo relation can also be used to determine théimensions, the viscosity is predicted to diverge logarithmi-
viscosity. For discretized time, the long wavelength limit of cally with time. We were able to directly measure this loga-

the viscosity can be expressed[@$ rithmic behavior using Eq(4) (see Fig. 3. We found that
only the kinetic part of the stress tensor contributed to the 1/
) (szy(o)> " tail in the stress correlation function; no tails could be de-
v(O=NT T+|Zl (Puy(I 6)P4y(0)) |, (4  tected in either the rotational or the mixed contributions. The

results are in good agreement with the predictions of mode-
coupling theory[8]. The amplitude of the long time tail of
the velocity autocorrelation function was measured and also
found to agree with theory. A more detailed discussion of
these results will be presented elsewHerke

Consider now the limit of large mean free path, where the

wheret=n¢ andP,,(t) is the transverse part of the micro-
scopic stress tensor at timeP,, is defined as the zero wave
vector limit of 4,J,,(k,,t)/(iky), whereJ,, is the transverse
momentum currerit7]. Using Egs(1) and(2), and including
the random shift of the grid, one find&, = Pi\"+ Po', with

Xy rotational contribution is negligible, i.ey~wvy;,. In this
_ 1 N limit, A&/6 in Eq. (5) can be approximated by the particle
P!j'y”(t): 5 E vjy(DAEj . (5)  velocityv;, and the stapdard expression for the kinetic stress
=1 tensor,P,,=2v; xj.y, iS recovered. Equatiof#) can now

be evaluated analytically by iterating E@). If fluctuations
in the number of particles in a cell are ignored, molecular
chaos is assumed, and it is assumed that any two particles are

in the same cell at most once, one finds
with Agj,x: gj,x(t"_ 0)— gj,x(t)a Asgj,x: §j,x(t+ 9)— gjs,x(t Ts
+6), andAv; =v; ,(t+ ) —v; y(1). &§(1)=(§x.&,y) de- Viin=——
notes the coordinates of the cell which contains parjicé 2

N
1
PID=5 2 A&Avy, (6)

timet. £ are the temporary cell coordinates in the new ran- ;

Iy . . 1 sirf(2a)[ 1+ tarf(a/2)/M
domly shifted reference system. Without the shift procedure, X + (2a)l sz(a )IM] 5.
PI%'=0, and rotations do not contribute to the viscosity at M—1 " 4[1-coda)/M—cos(a)(1-1M)]
zero wave vector. In this case the expressionifaagrees W
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The result fora=90° agrees with Eq47) of [4] up to terms  For A<1, however, very large Schmidt-numbers can be ob-
of order e M, which arise from fluctuations in the number of tained sinceSc~A ~2. Sccan be increased further by going
particles in a cell. As mentioned above, our simulation datado larger rotation angles whei@ becomes very small.
for A=4 do not agree with this result. The reason for thatis In this paper it was shown how a random shift of the cell
that there are temporal correlations extending over more thacoordinates during the collision step can be used to ensure
one time step even at large. In particular, the approxima- full Galilean-invariance of the stochastic rotation dynamics
tion P, ~Zv;w;, used in the calculation of modelintroduced i4], even atlow temperatures. Different
(Pyy(1 8)Pyy(0)) is not accurate for small analytical expressions for the viscosity were derived which
Note that the limita =90°, andM — o, which appears to were shown to be in good agreement with simulation results,
be a good way to achieve high Reynolds numbers, is pathgnd the long-time tails of the velocity and stress autocorre-
logical; in this case, kinetic stress correlations oscillate inlation functions were measured and compared to mode-
sign and do not decay to zero. coupling theory. A simple analytic expression for the diffu-
Finally, the diffusion constand can be calculated using sion constant was also derived, and it was shown that by

the analogy to a random walk with step sizeOne finds that  varying the mean free path and the rotation angle it is pos-
sible to simulate fluids with a wide range of Schmidt num-

D=Ts bers.

1 b )
2 1) ®
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