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Universal eigenvector statistics in a quantum scattering ensemble
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We calculate eigenvector statistics in an ensemble of non-Hermitian matrices describing open quantum
systemgF. Haakeet al, Z. Phys. B88, 359(1992] in the limit of large matrix size. We show that ensemble-
averaged eigenvector correlations corresponding to eigenvalues in the center of the support of the density of
states in the complex plane are described by an expression recently derived for Ginibre’s ensemble of random
non-Hermitian matrices.
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The statistical properties of eigenvector overlaps maywhereH is defined as above, ardis a fixed,N X N diagonal
have an important bearing on time evolution and determinenatrix with M nonzero diagonal matrix elemenis For en-
the sensitivity to perturbations of systems governed by nonsemble(2) it was shown, in particular, that the spectral two-
Hermitian random operators or matrices. In such systems fpoint  function Rz(zl,zz)=<N‘12a¢ﬁ5(21—)\a) (2,
is thus important to know the statistical properties of {leét —X\p)) (and all higher correlation functionsre, after suit-
and righ} eigenvectors. Despite this fact little is known able rescaling and sufficiently far away from the boundary of
about eigenvector correlations in general ensembles of nonkhe support of the spectrum, identical to those derived for
Hermitian random matrices. In Refisl,2], eigenvector sta- Ginibre’s ensemblgsee Eqs(15.1.31 and(15.1.37 of Ref.
tistics were calculated for Ginibre’'s ensemble of non-[10]]. One thus expects that spectrapoint correlations of
Hermitian random matrices where each matrix element is aensemble(1) are locally similar to those in Ginibre’s en-
independent, identically distributed Gaussian complex ransemble and thus universal. Furthermore, it has been argued
dom variable. The question arises to which extent these rehat under very general circumstances the fluctuations of en-
sults are relevant for other ensembles of non-Hermitian ransembleg1) and(2) are identical9].
dom matrices. Below, we explore to which extent the statistical proper-
In the following we determine eigenvector statistics for anties of eigenectorsin ensembleg1) and (2) are universal
ensemble of non-HermitialN XN matricesJ with matrix  and the remainder of this paper is organized as follows. After

elements defining the eigenvector correlators to be calculated, we
briefly discuss the method used: the self-consistent Born ap-

M _ proximation. We then derive an expression for eigenvector

Jk|=Hk|+i7aZl VRV (1) correlations and compare it to results of previous calcula-

tions for Ginibre’s ensemblEl,2]. Finally, we show results
of numerical simulations, compare them to our analytical

HereH is aN XN Hermitian random matrix with complex, results, and discuss the applicability of our analytical

Gaussian distributed matrix elemertty; with zero mean method.

and variancé|Hyy|?) = 6, N"*. TheV§ are complex Gauss-  ppq eigenvalues of Eq1) are nondegenerate with prob-

ian random variables with zero mean and variatgVy)  ability 1, and in this case the left and right eigenvectfirs)

= 80aoN" L. The eigenvaluesy,, of J are distributed in and|R,),

the complex plane. Ensemb(&), with y<<0, has been used

to model the statistical properties of resonances arising in the JIR)=No (R0,

case of resonance scattering in open quantum sydiBis (3

the position of the resonances is modeled by the realyjart (Lol I=(Lal Mg

of the eigenvalues of Eq1) and the width by the imaginary - ¢5rm two complete, biorthogonal sets, and can be normalized

partA,. The statistics of eigenvectors for such an ensemblgg that

was found to be of considerable importance for describing

the properties of random lasing media; see R&f. (LolRg)=6,p. (4
The ensemble-averaged density of statelz) - . . .

—(N"1s,8(z—\,)) for ensemble(1) has been worked out We indicate Hermitian conjugates of vectors in the usual

using a number of different techniques, namely, the replicavay, so that, for exampldL ) satisfiesd"|L,)=\,|L,).

trick [3], the nonlinear sigma model approd&f, and using We investigate the eigenvector correlatpts?]

the self-consistent Born approximatipn.

Very recently, in Ref[8], all n-point spectral correlation O(z)=<£ E 0,. 5(2_)\a)>, (5)
functions for a variant of ensembi&) were determined. It is N “
given by 1
J=H+iT, @) 0(21’22):<N C;B Oup d(z1—N,) 5(Zz—>\ﬁ)>, (6)
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/ i + i + = FIG. 2. (a) Diagrammatic representation of the variance of the
matrix H in (1). (b) Representation of the second term of J [Eq. (1)].
The random variables V{ are denoted by wavy lines. (c) Shows the
- self-consistent equations determining the vertex$ ¢. There are three
;7 - N i more such equations determining the three remaining vertices oc-
«— + curring in Fig. 1.

FIG. 1. Shows a diagrammatic representation of the self-energgnalogous to those described[@]. Differences are briefly

3. For the diagrammatic rules s¢2| and Fig. 2 below. explained in Fig. 2. Equatiofl0) is solved for(G) in the

limit of »— 0. Expressions for the averaged Green function
whereO,z=(L,|Lg) (Rg|R,). These quantities may be ex- are given in Ref[7].

tracted from From (G,;) one obtains the density of statdéz) in the
. usual fashiorh7,12,13. In order to make connection with the
_ = _ _ results discussed in Refi8], we specialize to the limit of

D(Zl’ZZ)_<N Z}; Oup o217 Na) 822 )\ﬁ)>’ ™ smallm. In this limit one obtains

which may be written asD(z;,2,)=0(z;) 8(z,—2,) d(0,y)=const- m/(4my?) (11
+0(z4,25). An expression for the diagonal pa®dt(z,) for
ensembleg1) was derived if11]. for m/(g+1)<2y=m/(g—1) and zero otherwise, compare

Self-consistent Born approximatiowe calculate eigen- EQ.(108) in Ref.[5]. Here 2y=(y+ 1/y) andz=x+iy with
vector correlators in terms of averages of products of GreeM,Yy real. We will analyze eigenvector correlations in the cen-
functions, using an approximation scheme, namely, an exter z, of the support of the density of stateg=X,+iyo
pansion in powers okl ~1. The method used in Reffl,2],  With Xo=0 andy,=m/(2g) wheredy=d(z,)=g% (7m).
yielding exact results for Ginibre’s ensemble, is not readily Eigenvector correlatorsWe make use of the relation
generalizable. We use the approach developdd it2,13:
since the Green functions are nonanalytic in the logugr
pen complex half-plane, a Hermitian Nex 2N matrix H D(Zl'ZZ):?a?g_ZZF(Zl'ZZ) (12)
=Hy+H, is introduced 7,12 !

. A with
HOZ( —77)' H1:<A* ) ® F(21,2)=(N"1Tr[(z,—3) 1 (23" 1). (13

with »>0, A=z—J and with inverse An expression for this average may be derived as described
in [2]; cf. this reference for a diagrammatic representation of
_ Gu Gu 9 F(z,,2,). The only difference between the case of interest
Gy Gyl here and the one discussed in H&il.is that the vertex must
be replaced by that shown in Fig. 3. The corresponding ex-
The resolvents are obtained by takimg-0. In this limit,  pression forF(z;,z,) is valid in the limit of M,N large,M
Gy=(z—J) ! and G,=(z—J") L. Expanding the Green =mN and for |z;—2z,[*>(wd(z,) N) ™' with z,=(z
functionG as a power series i, its ensemble averad&) +2))/2.
can be written as

(G)=Gy+Gy3(G), (10) PR m
= S+

where Gy= Hgl and, is a self-energy. A graphical repre-

sentation of the self-energyalid for M,N large andM/N FIG. 3. Vertex for calculating averages of products of Green
=m=const.) is given in Fig. 1. The diagrammatic rules arefunctions in the limit of largeM,N with M=mN.
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Using Eq.(12) we obtain arather lengthy expression for
0O(z1,2,). To keep the formulas simple, we specialize fur-
ther to the case whe® andz, are in the vicinity ofzy and
obtain to leading order im and lowest order idz]|

ot T TN L g

(2.2 + 02) g®> 2g* 7% 67"

Corrections breaking rotational invariance are of higher or-
der. A comparison with Eq(8) of Ref. [1] shows that lo-
cally, near the center of the support of the density of states,
the eigenvector correlations for ensemtlgare the same as
those in Ginibre’'s ensemble, apart from an additional factor
of m/g>—m?/(2g*), which measures the strength of the
non-Hermiticity in Eq.(1). According to Eq.{14), eigenvec-
tor correlations are strongest for=1, and vanish in the
limit of y—0 and y—, which correspond to symmetric
and complex symmetrid, respectively.

Given expressior{14), we may estimaté(zy) up to a
constant of order unity, in the way described []. We
obtain, to lowest order im,

m
0(20)2N§, (19

which is consistent with the result derived[ibl]. In Fig. 4
we compare the expressiold4) to the full result for
0O(z;,z,) — as obtained within the self-consistent Born ap-
proximation — and observe very good agreement|fix]

~-Re O(z,,z,+dx)

10" Re 0(z,,2,+5x)

Re 0(z,),z,+0x)

-10°
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FIG. 4. Shows R@®(zy,z,+ 6x) as obtained within the self-

not too Iz_irge. . . . _1 consistent Born approximatioiisolid line) compared with the

_ Equation(14) is valid to lowest qrder inéz|~* and pro- asymptotic expressiofid) (dashed ling(a) as a function ofSx for
vided|z|*> (mwdoN) ~*. The behavior 00(zy,2+ 62) for  m=0.1 and y=0.5, (b) as a function ofm for §x=0.01 andy
smaller values o6z may be understood as follows. Assum- =05, (c) as a function ofy for m=0.1 andsx=0.01.

ing

| 6| approaches zero. Since the crossover from (E4) to
0(2,29+ 62)=(0 ) Ra(29,29+ 62) (16)  constant behavior occurs abz|?=(wd,N) !, one esti-

mates, to lowest order im,

for |6z|=|\,—\g| very small, one may estimate the two
factors on the right-hand side of this equation separately.
First, if two eigenvalues., and A, of J are very close to
each other, one may argue that the corresponding overlap

O(zg,z9t+ 62)

(doN)?

for |6z]?<(wdoN) 1. (18

matrix elementO,; scales asi\,—\g4/~% This is seen Equations(14) and (18) are consistent with the assumption
by considering a X2 matrix J with arbitrary complex that eigenvector correlations in scattering ensenthjeare
matrix eIEmentst. Denoting its right eigenvectors by universalin thatO(z,,z,+ 62) is given, after suitable rescal-
|Ra>=(119a)t the corresponding left eigenvectors, assum4ng and well within the support of the density of states, by
ing \1#\, and subject to conditiof4) of biorthogonality, the corresponding expression derived in Réfl for Gini-
are given by (Li=(—0,1)/(e1—02) and (L, bre’s ensemble: defininfl4] sz=5z\/7dy,N one may ex-

=(—e11)/(e2—e1). Thus,

O1=(L4|Lo)(Ro|Ry) —[@1— 02| "2 =[Ny — N5 2. 0(z,20+62)
(doN)?

17

For )\, very close to\ ; [namely on scales smaller than the

pect, to lowest order im,

m
9

[1—(1+]|6z%)exp —|62|?)].

(19

mean level spacing#dyN) 2] this behavior pertains to This expression interpolates between Edg) and(18).

arbitrary values oN. Second, the spectral two-point function

It must be pointed out that Eq&18) and (19) cannot be

scales asR,(zg,2y+ 62)*|dz|> when |5z|] -0 [8,9]. Thus, valid for very small values ofn=0O(1/N), where ensemble
one concludes thad(z;,z,) must converge to a constant as (1) deviates very little from the classical Gaussian unitary
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100 S— et Numerical results We have verified the validity of Eq.
AN (19 using numerical simulations of ensemh&), for m
AN =0.1, y=0.5 andN=100, 200, 400, 800, and 1600. Figure

5 shows—Re O(zq,29+ 62)/(dyN)? as a function ofsx. We
observe that the numerical results converge to Et$,.149.
Convergence with increasing valuesMfis much faster for

small values of 57| than for large values dfsz|. In Fig. 5,
the scale of thex axis differs from that of Fig. &) and
differences between E@14) and the full result, as obtained
\ within the self-consistent Born approximation, are not visible
E E here.
| ] We have also performed simulations for modified en-
1010—1 100 101 semble(2). The results are very similar to those displayed in
”n Fig. 5 (not shown.
|8x| (ndN) Conclusionsln this paper we have calculated the eigen-
- vector correlatorO(z;,z,) for ensemblg(l) using the self-
FIG. 5. Shows R®(zo,20+ 6x)/(doN)? as a function ofox  consistent Born approximation, and for both ensemkigs
=ox ymdoN; for m=0.1, y=0.5, N=1600 (A), N=800 (V).  and(2) using numerical simulations. Our results imply that
N=400 (©), N=200 ) andN=100 (¢ ). Also shownisthe  gjgenvector correlations in these ensembles are locally given
analytical estimate according to H4) (dashed ling and Eq(19) "5 ynjversal law, after suitable rescaling of the complex
(solid line). energies. One may thus expect that local eigenvector corre-
lations in more general ensemblssich as ensembles of ran-
ensemble of random Hermitian matricel0]. Spectral cor- dom Fokker-Planck operatof42]) may be described by the
relations in this situation have been analyzed in detail inaw derived in[1]. It has been pointed out that such correla-
Refs.[8,15], where it was shown how the crossover fromtions may determine transient features in the dynamics of
non-Hermitian to Hermitian ensembles may be charactersuch system$2]. The results found here may be of direct
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ized. relevance for quantum scattering systd®4.6].
[1] J. T. Chalker and B. Mehlig, Phys. Rev. Ledfl, 3367(1998. Energy Level§Academic Press, New York, 1991
[2] B. Mehlig and J. T. Chalker, J. Math. Phy be published [11] R. A. Janik, W. Noenberg, M. A. Nowak, G. Papp, and I.
[3] F. Haakeet al, Z. Phys. B: Condens. Matt&8, 359 (1992. Zahed, Phys. Rev. B0, 2699(1999.
[4] J. J. M. Verbaarschot, H.-A. Weidenitar, and M. R. Zirn-  [12] J. T. Chalker and Z. J. Wang, Phys. Rev. Lét®, 1797
bauer, Phys. Ref.29, 367 (1985. (1997; Phys. Rev. B61, 196 (2000.
[5] Y. Fyodorov and H.-J. Sommers, e-print cond-mat/9701037; J[13] J. Feinberg and A. Zee, Nucl. Phys.5B4, 579 (1997).
Math. Phys.38, 1918(1997. [14] This rescaling differs from that used for the spectral correla-
[6] H. Schomerust al, Physica A278 469 (2000; K. Frahm tion function in Ref.[8] by a factor of\N because if8] the
et al, Europhys. Lett49, 48 (2000. caseN—c with fixed M was considered.
[7] R. A. Janiket al, Nucl. Phys. B498 313(1997. [15] Y. V. Fyodorov, B. A. Khoruzhenko, and H.-J. Sommers,
[8] Y. Fyodorov and B. Khoruzenko, e-print cond-mat/9903043; Phys. Rev. Lett79, 557 (1997).
Phys. Rev. Lett83, 65 (1999. [16] The relevance of eigenvector correlations in quantum scatter-
[9] Y. V. Fyodorov (private comnunication ing systems is, for instance, discussed in E. Persson, T. Gorin,

[10] M. L. Mehta, Random Matrices and the Statistical Theory of and I. Rotter, Phys. Rev. B4, 3339(1996.

020105-4



