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Universal eigenvector statistics in a quantum scattering ensemble
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We calculate eigenvector statistics in an ensemble of non-Hermitian matrices describing open quantum
systems@F. Haakeet al., Z. Phys. B88, 359~1992!# in the limit of large matrix size. We show that ensemble-
averaged eigenvector correlations corresponding to eigenvalues in the center of the support of the density of
states in the complex plane are described by an expression recently derived for Ginibre’s ensemble of random
non-Hermitian matrices.
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The statistical properties of eigenvector overlaps m
have an important bearing on time evolution and determ
the sensitivity to perturbations of systems governed by n
Hermitian random operators or matrices. In such system
is thus important to know the statistical properties of the~left
and right! eigenvectors. Despite this fact little is know
about eigenvector correlations in general ensembles of n
Hermitian random matrices. In Refs.@1,2#, eigenvector sta-
tistics were calculated for Ginibre’s ensemble of no
Hermitian random matrices where each matrix element is
independent, identically distributed Gaussian complex r
dom variable. The question arises to which extent these
sults are relevant for other ensembles of non-Hermitian r
dom matrices.

In the following we determine eigenvector statistics for
ensemble of non-HermitianN3N matricesJ with matrix
elements

Jkl5Hkl1 ig (
a51

M

Vk
aV̄l

a . ~1!

HereH is a N3N Hermitian random matrix with complex
Gaussian distributed matrix elementsHkl with zero mean
and variancê uHklu2&5dkl N

21. TheVk
a are complex Gauss

ian random variables with zero mean and variance^Vk
aV̄l

b&
5dkldabN

21. The eigenvalues,la , of J are distributed in
the complex plane. Ensemble~1!, with g,0, has been used
to model the statistical properties of resonances arising in
case of resonance scattering in open quantum systems@4,5#;
the position of the resonances is modeled by the real parla8
of the eigenvalues of Eq.~1! and the width by the imaginary
part la9 . The statistics of eigenvectors for such an ensem
was found to be of considerable importance for describ
the properties of random lasing media; see Ref.@6#.

The ensemble-averaged density of statesd(z)
5^N21(ad(z2la)& for ensemble~1! has been worked ou
using a number of different techniques, namely, the rep
trick @3#, the nonlinear sigma model approach@5#, and using
the self-consistent Born approximation@7#.

Very recently, in Ref.@8#, all n-point spectral correlation
functions for a variant of ensemble~1! were determined. It is
given by

J5H1 iG, ~2!
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whereH is defined as above, andG is a fixed,N3N diagonal
matrix with M nonzero diagonal matrix elementsg. For en-
semble~2! it was shown, in particular, that the spectral tw
point function R2(z1 ,z2)5^N21(aÞbd(z12la)d(z2
2lb)& ~and all higher correlation functions! are, after suit-
able rescaling and sufficiently far away from the boundary
the support of the spectrum, identical to those derived
Ginibre’s ensemble@see Eqs.~15.1.31! and~15.1.37! of Ref.
@10##. One thus expects that spectraln-point correlations of
ensemble~1! are locally similar to those in Ginibre’s en
semble and thus universal. Furthermore, it has been arg
that under very general circumstances the fluctuations of
sembles~1! and ~2! are identical@9#.

Below, we explore to which extent the statistical prope
ties of eigenvectors in ensembles~1! and ~2! are universal
and the remainder of this paper is organized as follows. A
defining the eigenvector correlators to be calculated,
briefly discuss the method used: the self-consistent Born
proximation. We then derive an expression for eigenvec
correlations and compare it to results of previous calcu
tions for Ginibre’s ensemble@1,2#. Finally, we show results
of numerical simulations, compare them to our analyti
results, and discuss the applicability of our analytic
method.

The eigenvalues of Eq.~1! are nondegenerate with prob
ability 1, and in this case the left and right eigenvectors,uLa&
and uRa&,

J uRa&5la uRa&,
~3!

^Lau J5^Lau la

form two complete, biorthogonal sets, and can be normali
so that

^LauRb&5dab . ~4!

We indicate Hermitian conjugates of vectors in the us
way, so that, for example,uLa& satisfiesJ† uLa&5l̄a uLa&.
We investigate the eigenvector correlators@1,2#

O~z!5K 1

N (
a

Oaa d~z2la!L , ~5!

O~z1 ,z2!5K 1

N (
aÞb

Oab d~z12la! d~z22lb!L , ~6!
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whereOab5^LauLb& ^RbuRa&. These quantities may be ex
tracted from

D~z1 ,z2!5K 1

N (
a,b

Oab d~z12la! d~z22lb!L , ~7!

which may be written asD(z1 ,z2)5O(z1) d(z12z2)
1O(z1 ,z2). An expression for the diagonal partO(z1) for
ensemble~1! was derived in@11#.

Self-consistent Born approximation.We calculate eigen-
vector correlators in terms of averages of products of Gr
functions, using an approximation scheme, namely, an
pansion in powers ofN21. The method used in Refs.@1,2#,
yielding exact results for Ginibre’s ensemble, is not read
generalizable. We use the approach developed in@7,12,13#:
since the Green functions are nonanalytic in the lower~up-
per! complex half-plane, a Hermitian 2N32N matrix H
5H01H1 is introduced@7,12#

H05S h

2h D , H15S A

A† D , ~8!

with h.0, A5z2J and with inverse

G5S G11 G12

G21 G22
D . ~9!

The resolvents are obtained by takingh→0. In this limit,
G215(z2J)21 and G125( z̄2J†)21. Expanding the Green
functionG as a power series inH1, its ensemble average^G&
can be written as

^G&5G01G0S^G&, ~10!

whereG05H0
21 and S is a self-energy. A graphical repre

sentation of the self-energy~valid for M ,N large andM /N
[m5const.) is given in Fig. 1. The diagrammatic rules a

FIG. 1. Shows a diagrammatic representation of the self-ene
S. For the diagrammatic rules see@2# and Fig. 2 below.
02010
n
x-

y

analogous to those described in@2#. Differences are briefly
explained in Fig. 2. Equation~10! is solved for^G& in the
limit of h→0. Expressions for the averaged Green funct
are given in Ref.@7#.

From ^G21& one obtains the density of statesd(z) in the
usual fashion@7,12,13#. In order to make connection with th
results discussed in Ref.@8#, we specialize to the limit of
small m. In this limit one obtains

d~0,y!.const1m/~4py2! ~11!

for m/(g11)<2y<m/(g21) and zero otherwise, compar
Eq. ~108! in Ref. @5#. Here 2g5(g11/g) andz5x1 iy with
x,y real. We will analyze eigenvector correlations in the ce
ter z0 of the support of the density of states,z05x01 iy0
with x050 andy05m/(2g) whered0[d(z0).g2/(pm).

Eigenvector correlators. We make use of the relation

D~z1 ,z2!5
1

p2

]

] z̄1

]

]z2
F~z1 ,z2! ~12!

with

F~z1 ,z2!5^N21 Tr @~z12J!21 ~ z̄22J†!21#&. ~13!

An expression for this average may be derived as descr
in @2#; cf. this reference for a diagrammatic representation
F(z1 ,z2). The only difference between the case of inter
here and the one discussed in Ref.@2# is that the vertex mus
be replaced by that shown in Fig. 3. The corresponding
pression forF(z1 ,z2) is valid in the limit of M ,N large,M
5mN and for uz12z2u2.(pd(z1) N)21 with z15(z1
1z2)/2.

y

FIG. 3. Vertex for calculating averages of products of Gre
functions in the limit of largeM ,N with M5mN.
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Using Eq.~12! we obtain a~rather lengthy! expression for
O(z1 ,z2). To keep the formulas simple, we specialize fu
ther to the case wherez1 andz2 are in the vicinity ofz0 and
obtain to leading order inm and lowest order inudzu

O~z0 ,z01dz!.2S m

g2
2

m2

2g4D 1

p2

1

udzu4
. ~14!

Corrections breaking rotational invariance are of higher
der. A comparison with Eq.~8! of Ref. @1# shows that lo-
cally, near the center of the support of the density of sta
the eigenvector correlations for ensemble~1! are the same a
those in Ginibre’s ensemble, apart from an additional fac
of m/g22m2/(2g4), which measures the strength of th
non-Hermiticity in Eq.~1!. According to Eq.~14!, eigenvec-
tor correlations are strongest forg.1, and vanish in the
limit of g→0 and g→`, which correspond to symmetri
and complex symmetricJ, respectively.

Given expression~14!, we may estimateO(z0) up to a
constant of order unity, in the way described in@2#. We
obtain, to lowest order inm,

O~z0!.N
m

g2
, ~15!

which is consistent with the result derived in@11#. In Fig. 4
we compare the expression~14! to the full result for
O(z1 ,z2) — as obtained within the self-consistent Born a
proximation — and observe very good agreement forudzu
not too large.

Equation~14! is valid to lowest order inudzu21 and pro-
vided udzu2.(pd0N)21. The behavior ofO(z0 ,z01dz) for
smaller values ofdz may be understood as follows. Assum
ing

O~z0 ,z01dz!.^Oab& R2~z0 ,z01dz! ~16!

for udzu.ula2lbu very small, one may estimate the tw
factors on the right-hand side of this equation separat
First, if two eigenvaluesla and lb of J are very close to
each other, one may argue that the corresponding ove
matrix elementOab scales asula2lbu22. This is seen
by considering a 232 matrix J with arbitrary complex
matrix elementsJkl . Denoting its right eigenvectors b
uRa&5(1,%̄a)†, the corresponding left eigenvectors, assu
ing l1Þl2 and subject to condition~4! of biorthogonality,
are given by ^L1u5(2%2,1)/(%12%2) and ^L2u
5(2%1,1)/(%22%1). Thus,

O12[^L1uL2&^R2uR1&}2u%12%2u22}2ul12l2u22.
~17!

For la very close tolb @namely on scales smaller than th
mean level spacing (pd0N)21/2# this behavior pertains to
arbitrary values ofN. Second, the spectral two-point functio
scales asR2(z0 ,z01dz)}udzu2 when udzu→0 @8,9#. Thus,
one concludes thatO(z1 ,z2) must converge to a constant a
02010
-

s,

r

-

y.

ap

-

udzu approaches zero. Since the crossover from Eq.~14! to
constant behavior occurs atudzu2.(pd0N)21, one esti-
mates, to lowest order inm,

O~z0 ,z01dz!

~d0N!2
.

m

g2 for udzu2!~pd0N!21. ~18!

Equations~14! and ~18! are consistent with the assumptio
that eigenvector correlations in scattering ensemble~1! are
universalin thatO(z0 ,z01dz) is given, after suitable rescal
ing and well within the support of the density of states,
the corresponding expression derived in Ref.@1# for Gini-
bre’s ensemble: defining@14# d z̃[dzApd0N one may ex-
pect, to lowest order inm,

O~z0 ,z01dz!

~d0N!2
.2

m

g2

1

ud z̃u4
@12~11ud z̃u2!exp~2ud z̃u2!#.

~19!

This expression interpolates between Eqs.~14! and ~18!.
It must be pointed out that Eqs.~18! and ~19! cannot be

valid for very small values ofm5O(1/N), where ensemble
~1! deviates very little from the classical Gaussian unita

FIG. 4. Shows ReO(z0 ,z01dx) as obtained within the self-
consistent Born approximation~solid line! compared with the
asymptotic expression~14! ~dashed line! ~a! as a function ofdx for
m50.1 andg50.5, ~b! as a function ofm for dx50.01 andg
50.5, ~c! as a function ofg for m50.1 anddx50.01.
5-3
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ensemble of random Hermitian matrices@10#. Spectral cor-
relations in this situation have been analyzed in detail
Refs. @8,15#, where it was shown how the crossover fro
non-Hermitian to Hermitian ensembles may be charac
ized.

FIG. 5. Shows ReO(z0 ,z01dx)/(d0N)2 as a function ofd x̃
5dx Apd0N; for m50.1, g50.5, N51600 (n), N5800 (,),
N5400 (s), N5200 (h) andN5100 (L). Also shown is the
analytical estimate according to Eq.~14! ~dashed line!, and Eq.~19!
~solid line!.
;

3

of

02010
n

r-

Numerical results. We have verified the validity of Eq
~19! using numerical simulations of ensemble~1!, for m
50.1, g50.5 andN5100, 200, 400, 800, and 1600. Figu

5 shows2ReO(z0 ,z01dz)/(d0N)2 as a function ofd x̃. We
observe that the numerical results converge to Eqs.~19,14!.
Convergence with increasing values ofN is much faster for
small values ofud z̃u than for large values ofud z̃u. In Fig. 5,
the scale of thex axis differs from that of Fig. 4~a! and
differences between Eq.~14! and the full result, as obtaine
within the self-consistent Born approximation, are not visib
here.

We have also performed simulations for modified e
semble~2!. The results are very similar to those displayed
Fig. 5 ~not shown!.

Conclusions.In this paper we have calculated the eige
vector correlatorO(z1 ,z2) for ensemble~1! using the self-
consistent Born approximation, and for both ensembles~1!
and ~2! using numerical simulations. Our results imply th
eigenvector correlations in these ensembles are locally g
by a universal law, after suitable rescaling of the comp
energies. One may thus expect that local eigenvector co
lations in more general ensembles~such as ensembles of ran
dom Fokker-Planck operators@12#! may be described by the
law derived in@1#. It has been pointed out that such corre
tions may determine transient features in the dynamics
such systems@2#. The results found here may be of dire
relevance for quantum scattering systems@6,16#.
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