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Simple electronic circuit model for doubly stochastic resonance
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We have recently reported the phenomenon of doubly stochastic resonance@Phys. Rev. Lett.85, 227
~2000!#, a synthesis of noise-induced transition and stochastic resonance. The essential feature of this phenom-
enon is that multiplicative noise induces a bimodality and additive noise causes stochastic resonance behavior
in the induced structure. In the present paper we outline possible applications of this effect and design a simple
lattice of electronic circuits for the experimental realization of doubly stochastic resonance.
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Investigations of phenomena such as noise-induced p
transitions @1–5#, stochastic transport in ratchets@6#, or
noise-induced pattern formation@7# have shown that the en
ergy of noise, which was usually considered as a nuisanc
any communication, can be potentially useful to induce or
in nonlinear nonequilibrium systems. One of the most imp
tant examples is stochastic resonance~SR! @8,9#, which has
been found in different engineering@10# and natural system
@11#. In the conventional situation this effect consists of t
following: additive noise can optimize the signal process
in a bistable system, i.e., it increases the signal-to-noise r
in the output if a periodic signal acts upon a system.
addition to this conventional situation, SR has been a
found in monostable systems@12#, systems with excitable
dynamics@13#, noisy nondynamical systems@14#, systems
without an external force@15# ~note also coherence reso
nance@16#!, systems without any kind of threshold@17#, and
systems with transient noise-induced structure@18#.

However, the energy of noise can be used much m
efficiently: The main point is to use noise not only for
synchronization of output hops across a potential barrier w
an external signal, but also for the construction of this b
rier. This happens in the effect of doubly stochastic re
nance~DSR! @19#. In DSR the influence of noise is twofold
additive noise induces resonancelike behavior in the st
ture, which has been, in turn, induced by multiplicati
noise. DSR occurs in a spatially distributed system
coupled overdamped oscillators and can be considered
synthesis of two basic phenomena: SR and a noise-indu
phase transition@20#.

An important question is, How can we observe DSR
experimental systems? We have mentioned in Ref.@19# sev-
eral appropriate real systems: analog circuits@21#, liquid
crystals @22#, photosensitive chemical reactions@23#,
Rayleigh-Bénard convection@24#, or liquid helium @25#. In
the present Rapid Communication we design an electro
circuit for the observation of DSR. The most direct way
the realization through analog circuits, but there are com
cations due to the complex construction of every unit; hen
it is worth looking for a simpler electronic circuit model th
exhibits the DSR property. With this aim we consider
electrical circuit which consists ofN coupled elements (i , j ).
A circuit of one element is shown in Fig. 1. Three ingred
ents in this circuit are important: the input current, a tim
varying resistor~TVR!, and a nonlinear resistor. Every el
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ment is coupled with its neighbors by the resistorRc ~i.e., by
diffusive coupling!. The capacitor is shown byC. The non-
linear resistorRN can be realized with a set of ordinary d
odes@26,27#, whose characteristic function is a piecewis
linear function

i N5 f 1~V!5H GbV1~Ga2Gb!Bp if V<2Bp

GaV if uVu,Bp

GbV2~Ga2Gb!Bp if V>Bp ,

~1!

wherei N is the current through the nonlinear resistor (RN), V
is the voltage across the capacitor (C), and parametersGa ,
Gb , andBp determine the slopes and the breakpoint of
piecewise-linear characteristic curve. Another way to rea
the nonlinear resistor is via a third-order polynomial fun
tion,

i N5 f 2~V!5g1V1g2V3.

The next important ingredient is a time-varying resis
~TVR! @28,27#. The conductanceG(t) of TVRs varies with
time. Presently, we consider the case that the function wh
represents the variation of the TVR is Gaussiand-correlated
in space and time noise, i.e.,G(t)5j(t), where

^j i~ t !j j~ t8!&5sm
2 d i , jd~ t2t8!.

An external action on the circuit is performed by the cu
rent inputI (t), which is a periodic signal~with amplitudeA,
frequencyv, and initial phasew), additively influenced by
independent Gaussian noisez(t),

FIG. 1. Electronic circuit of the element (i , j ).
©2001 The American Physical Society03-1
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I ~ t !5z~ t !1A cos~vt1w!,

where

^z i~ t !z j~ t8!&5sa
2d i , jd~ t2t8!.

The electronic circuit with respect to the element (i , j )
can be described by a set of Kirchoff’s equations,

C
dVi , j

dt
5I ~ t !2G~ t !Vi , j2 f 1,2~Vi , j !

1
1

Rc
~Vi 11,j1Vi 21,j1Vi , j 111Vi , j 2124Vi , j !.

~2!

Hence, the following set of Langevin equations describes
considered system,

dVi , j

dt
52 f 1,2~Vi , j !1Vi , jj i , j~ t !1

D

4
~Vi 11,j1Vi 21,j1Vi , j 11

1Vi , j 2124Vi , j !1z i , j~ t !1A cos~vt1w!, ~3!

whereC is set to unity by normalization of time andD de-
notes a strength of coupling equal to 4/CRc . In the case
when f 2 represents the TVR, the model is the tim
dependent Ginzburg-Landau equation, which is a stand
model to describe phase transitions and critical phenom
in both equilibrium and nonequilibrium situations@3#. It is
important that we consider only the situation when the
tential of one element is monostable (Ga50.5, Gb510, and
Bp51 for f 1 ; g1.0 andg251 for f 2), avoiding the possi-
bility to observe SR without multiplicative noise~The effect
of SR in the system, which consists of bistable elements
well-known and beyond the scope of this paper!.

We are interested in the behavior of the mean fieldm(t)
5(1/N)( i 51

N ( j 51
N Vi , j (t) and consider it as an output and th

periodic signal as an input of the whole system. SR beha
can be expected if the system is bistable for the chosen s
parameters. Regions of bistability can be determined
means of a standard mean-field theory~MFT! procedure@3#.
The mean-field approximation consists of replacing
nearest-neighbor interaction by a global term in the Fokk
Planck equation corresponding to Eq.~3!. In this way, we
obtain the following steady-state probability distributionwst:

wst~x,m!5
C~m!

Asm
2 g2~x!1sa

2

3expS 2E
0

x f 1,2~y!2D~y2m!

sm
2 g2~y!1sa

2
dyD , ~4!

where C(m) is a normalization constant andm is a mean
field, defined by the equation

m5E
2`

`

xwst~x,m!dx. ~5!
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A self-consistent solution of Eq.~5! determines the mean
field and the transition lines between ordered bistablem
Þ0) and disordered monostable (m50) phases. Transition
boundaries for functionsf 1 and f 2 are shown in Fig. 2. Note
that bistability is impossible without multiplicative noise an
without coupling between elements. Since the SR effect,
scribed below, appears due to the variation of additive no
it is also important that a change of the additive noise int
sity shifts transition boundaries.

Next we estimate the signal-to-ratio~SNR! analytically.
Following the short-time evolution approximation, first intro
duced in@29# and further developed in@30,19#, the dynamics
of the mean field is governed by an ‘‘effective’’ potenti
Ueff(x), which has the form

Ueff~V!5U0~V!1Unoise5E f ~V!dx2
sm

2 V2

4
, ~6!

whereU0(V) is a monostable potential andUnoise represents
the influence of the multiplicative noise. Note that this a
proach is valid only if a suppression of fluctuations, pe
formed by the coupling, is sufficient. It means that the co
pling strength should tend to infinity, or actually be larg
enough. DSR is expected for the regions where this effec
potential has a bistable form. To obtain an analytical estim
tion of SNR for one element we use a standard linear
sponse theory@9,31#, yielding

SNR15
4pA2

sz
4

r k , ~7!

wherer k is the corresponding Kramers rate@32#

r k5
A~ uUeff9 ~V!uV5Vmin

uUeff9 ~V!uV5Vmax
!

2p
expS 2

2DUeff

sz
2 D .

~8!

Further, we rescale this value by the numberN of ele-
ments in the circuit@33# and take into account the processin

FIG. 2. Transition lines for the equation with functionf 1 : sa
2

50.3 ~label 1!, 0.5 ~label 2!, and 1~label 3!. Also the case withf 2

~the potential of every element is monostable:g1.0,g251); g1

51,sa
250.8 ~label 4!, 0.9 ~label 5!, and 1~label 6!.
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gain G and the bandwidthD in the power spectral densit
@31#. TheSNRN of the mean field of the whole system ofN
elements is then

SNRN5SNR1

NG

D
11. ~9!

For the parameters, used below for numerical simulati
(sm

2 53, A50.1, N5324, G50.7, andD50.012), we ob-
tain the analytic estimation of the SNR, shown in Fig. 3~a!
by the solid line. Except for the application for electron
circuits, this calculation also shows that DSR can be
served not only in the specific model described in Ref.@19#.

In order to verify the results obtained by our rough an
lytical approximation, we have performed simulations
model ~3! using numerical methods described in Ref.@34#.
We have taken a set of parameters within the region of
coexisting ordered states with nonzero mean field. As a t
system, we take a two-dimensional lattice of 18318 ele-
ments, which was simulated numerically with a time st
Dt52.531024. The amplitude of the external signal was s
to 0.1, i.e., sufficiently small to avoid hops between tw
states in the absence of additive noise. To describe the

FIG. 3. ~a! Numerical SNR~circles! vs analytical estimation
~solid line! for the equation withf 1 and D53,sm

2 53. Numerical
results are shown by closed circles for the mean field and o
circles for its two-state approximation. The stochastic resona
effect is supported by noise. If we decrease the intensity of mu
plicative noise, we do not observe it; e.g., for~b! D53,sm

2 50.5.
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effect quantitatively, we have calculated the SNR by extra
ing the relevant phase-averaged power spectral densityS(v)
and taking the ratio between its signal part with respect to
noise background@9#. The dependence of the SNR on th
intensity of the additive noise is shown in Fig. 3~a! for the
mean field~closed circles! and the mean field in a two-stat
approximation~open circles!. In this two-state approxima
tion, we have replaced the value of the mean field in tim
series by its sign before calculating the power spectral d
sity, using the method of symbolic dynamics@35#, standardly
used to investigate SR@9#. Both curves demonstrate wel
known bell-shaped dependence that is typical for SR. In c
trast to two-state approximation, for the mean field, SN
tends to infinity for small values of multiplicative noise in
tensity ~see closed circles forsa

2,0.1). It can be explained
by intrawell dynamics in the same way as in the conve
tional SR @9#. Numerical simulations agree very well wit
our theoretical estimation despite the very rough approxim
tion via ‘‘effective’’ potential ~we will study the question,
what is the parameters regions of its validity, in a futu
publication!.

Note that this SR effect is created by multiplicative nois
since a bimodality is induced by the combined actions of
multiplicative noise and the coupling. If we decrease on
the intensity of multiplicative noise, other parameters fixe
the SR effect is not observed, as is shown in Fig. 3~b!. The
reason is that in this case our system is not bistable~see Fig.
2!. For f 2 the behavior is similar: DSR is observed forg1

51,g251,D55, sm
2 55, but not forsm

2 53,D55. For the
experimental setup a minimal number of elements, which
neccessary for DSR observation, can be important. Red
tion of the element number in this system leads to the f
that a system can spontaneously~even in the absence of forc
ing! perform a hop between two states. These jumps hide
DSR effect, since they destroy a coherence between in
and output. For the system size 18318, considered here
such jumps are rather seldom@36# and do not hinder DSR
Our calculations have shown that a size 10310 is still satis-
factory, whereas further decrease of the element number
destroy the effect.

In conclusion, we have proposed a rather simple el
tronic circuit implementation of the DSR effect in order
encourage observers to perform this or a similar experim
It is important to add that in spite of the fact that the DS
can be interpreted as some modification of SR, there
several important distinctions between DSR and conv
tional SR. First, a potential barrier is supported by multip
cative noise; it means that DSR is very efficient from t
energetic viewpoint. Another consequence is that this
effect can be controlled by a variation of multiplicative noi
intensity. Second, in contrast to SR, the amplitude of hop
changed if we change the intensity of additive noise~similar
to Fig. 3 from @19#!. This is explained by the fact that a
increase of additive noise influences the transition lines~see
Fig. 2! and decreases the mean field, which corresponds
stable position in the absence of the external force.

A.Z. acknowledges financial support from MPG~Ger-
many! and from ESA~MPA AO-99-030!, and J.K. support
from SFB 555~Germany!.
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