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Short-time dynamics with initial correlations
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The short-time dynamics of correlated systems is strongly influenced by initial correlations, giving rise to an
additional collision integral in the non-Markovian kinetic equation. Exact cancellation of the two integrals is
found if the initial state is thermal equilibrium, which is an important consistency criterion. Analytical results
are given for the time evolution of the correlation energy, which are confirmed by comparisons with molecular
dynamics simulations.
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Although the Boltzmann kinetic equation is successfu
applied to many problems in transport theory, it has so
serious shortcomings@1#. Among these, the Boltzmann equ
tion cannot be used on short-time scales, where memory
fects are important@2,3#. In such situations, a frequently use
non-Markovian kinetic equation is the so-called Levins
equation@4,5#. One remarkable feature of this equation
that it describes the formation of correlations in good agr
ment with molecular dynamics simulations@6#. Nevertheless,
the Levinson equation is incomplete for two reasons:~i! It
does not include correlated initial states, and~ii ! when the
evolution of the system starts from the equilibrium state,
collision integral does not vanish, but gives rise to spurio
time evolution. The latter point has been addressed by
et al. @7#, who clearly show that from initial correlation
there must appear terms in the kinetic equation which en
that the collision integral vanishes in thermal equilibrium

The aim of this Rapid Communication is to derive t
contributions from initial correlations to the non-Markovia
Levinson equation within perturbation theory. We will r
strict ourselves to the Born approximation, which allows
to present the most straightforward derivation. The inclus
of higher order correlations can be found in Refs.@3,8–10#.
The effect of initial correlations becomes particularly tran
parent from our analytical results, which may also serve a
benchmark for numerical simulations.

The outline of this paper is as follows. First we give t
general scheme of inclusion of initial correlations into t
Kadanoff and Baym equations in terms of the density fl
tuation function. We show that initial correlations enter t
kinetic equation as self-energy corrections and mean-fi
like contributions in terms of the initial two-particle correla
tion function. An analytical expression for the time depe
dent correlation energy of a high temperature plasma
presented and then compared with molecular dynamics s
lations.

To describe density fluctuations we start with the cau
density-density correlation function@11#

L~121828!5G2~121828!2G~118!G~228!, ~1!

where 1 denotes cumulative variables (x1 ,t1 , . . . ). G(1,2)
51/i ^TC(1)C(2)1& andG2(121828) are the one- and two
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particle causal Green’s functions. Their dynamics follo
the Martin-Schwinger hierarchy

F i\
]

]t1
1

S \

i
¹1D 2

2m
2SH~1!GG~1,18!

5d~1218!1E d3V~1,3!L~1,3,18,31!,

~2!F i\
]

]t1
1

S \

i
¹1D 2

2m
GG2~121828!

5d~1218!G~2,28!2d~1228!G~2,18!

1E d3V~1,3!G3~1,2,3,18,28,31!,

where V(1,2) is the interaction amplitude andSH(1)
5*d2V(1,2)G(2,21) is the Hartree self-energy.

Using for G3 the polarization approximation

G3~123182838!5G~118!G~228!G~338!

1G~118!L~232838!1G~228!L~131838!

1G~338!L~121828!, ~3!

leads to a closed equation forL, which is conveniently re-
written as integral equation

L~1,2,18,28!5L0~1,2,18,28!2GH~1,28!G~2,18!

1E d4GH~1,4!G~4,18!

3E d3V~4,3!L~2,3,28,31!, ~4!

where (GH
R)21 denotes the left-hand side of the first equati

~2! and we have taken into account the boundary conditi

~GH
R!21L050. ~5!

In the case that all times in Eq.~4! approacht0, the right-
hand side vanishes exceptL0 which represents, therefore, th
contribution from initial correlations. They propagate in tim
according to the solution of Eq.~5! @9#,
©2001 The American Physical Society02-1
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L0~121828!5E dx1dx2dx18dx28GH
R~1,x1t0!

3GH
R~2,x2t0!L00~x1 ,x2 ,x18 ,x28 ,t0!

3GH
A~18,x18t0!GH

A~28,x28t0!. ~6!

HereL00 is the initial two-particle correlation function.
Inserting Eq.~4! into the first equation of~2! and restrict-

ing to the Born approximation we obtain for the causal fun
tion @GHF

21(1,2)5GH
21(1,2)1V(1,2)G,(1,2)#,

GHF
21~1,3!G~3,2!5d~122!1Sinit~1,2!1E

C
d4$S0~1,4!

1S~1,4!%G~4,2!, ~7!

where the integration is performed along the Keldysh c
tour C with the self-energy in Born approximation

S~1,2!5E d3d5V~1,3!GH~1,2!V~2,5!

3GH~3,511!G~5,31!. ~8!

Two new terms appear due to initial correlations,

S0~1,2!5E d3d5V~1,3!GH~1,2!V~2,5!L0~3,5,31,511!,

~9!

Sinit~1,2!5E d3V~1,3!L0~1,3,2,31!.

The integral form of Eq.~7! is given in Fig. 1 from which
definitions~9! are obvious.

The equation for the retarded Green’s functionGR(1,2)
52 iQ(t12t2)@G.(1,2)1G,(1,2)#, where G,(1,2)
5^C1(2)C(1)& and G.(1,2)5^C(1)C1(2)&, is derived
from Eq. ~7! as

~GHF
212S0

R2SR!GR5d~122!1Sinit
R ~1,2! ~10!

and leads to the Kadanoff-Baym equation

~GHF
212SR!G,2G,~GHF

212SA!

5~S1S0!,GA2GR~S1S0!,1Sinit2Sinit* . ~11!

Using the generalized Kadanoff-Baym ansatz@12#

G,~ t1 ,t2!5 iGR~ t1 ,t2!r~ t2!2 ir~ t1!GA~ t1 ,t2!, ~12!

FIG. 1. Dyson equation including density fluctuation up to s
ond Born approximation. Besides the initial correlation termSinit

discussed in@8,9#, a new type of self energyS0 appears which is
induced by initial correlations. Since the latter one contains in
action by itself, this term is of next order Born approximation.
02010
-

-

we obtain the kinetic equation for the reduced density ma
r(t)5G,(t,t)

]

]t
r~k,t !5I~k,t !1I0~k,t !1I1~k,t !, ~13!

with

I~k,t !5
2

\2 ReE
t0

t

dt1E dqdp

~2p\!6 V2~q!GR~ t,t1 ,k2q!

3GA~ t1 ,t,k!GR~ t,t1 ,p1q!GA~ t1 ,t,p!

3@r~ t1 ,k2q!r~ t1 ,p1q!@12r~ t1 ,p!#

3@12r~ t1 ,k!#2r~ t1 ,k!r~ t1 ,p!

3$12r~ t1 ,p1q!!@12r~ t1 ,k2q!#%, ~14!

I0~k,t !5
2

\
ImE dqdp

~2p\!6 V~q!GR~ t,t0 ,k2q!

3GA~ t,t0 ,k!GR~ t,t0 ,p1q!GA~ t,t0 ,p!

3 K p2k

2
1quL00~p1k,t0!u

p2k

2 L , ~15!

I1~k,t !5
2

\2 ReE
t0

t

dt1E dq

~2p\!3L0~q,t,t1!V2~q!

3GR~ t,t1 ,k2q!GA~ t1 ,t,k!

3@r~ t1 ,k2q!2r~ t1 ,k!#, ~16!

where L00(x1 ,x2 ,x3 ,x4)5^x12x2uL00@(x11x2 /2)2(x3
1x4/2)#ux32x4& and L0(q,t,t8)5*dxe2 iqx^x/2uL0(0)ux/
2&. We like to note that Eq.~13! is valid up to second-orde
gradient expansion in the spatial coordinate. This varia
has to be added simply in all functions and on the left-ha
side of Eq.~13! the standard mean-field drift appears.

The first part @Eq. ~14!# is just the precursor of the
Levinson equation in second Born approximation;V2. The
term ~16! coming fromS0 leads to corrections to the thir
Born approximation, since it is;V2L0. A discussion of
higher-order correlation contribution within theT-matrix ap-
proximation can be found in Refs.@2,10# and of general ini-
tial conditions in Ref.@13#. The second part@Eq. ~15!# fol-
lowing from S gives just the correction to the Levinso
equation, which will guarantee the cancellation of the co
sion integral for an equilibrium initial state. Recently, th
analogous term in the collision integral has been derived
other means@9#.

Multiplying the kinetic equations~13!–~15! with a mo-
mentum functionf(k) and integrating overk, one derives
the balance equations

^ḟ~k!&5E dk

~2p\!3 f~k!I1E dk

~2p\!3 f~k!I0 . ~17!

For the standard collision integral follows

-

r-
2-2
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^f~k!I&5
1

\2 ReE dkdqdp

~2p\!9 E
t0

t

dt1V2~q!GR~ t,t1 ,k2q!

3GA~ t1 ,t,k!GR~ t,t1 ,p1q!GA~ t1 ,t,p!

3r~ t1 ,k2q!r~ t1 ,p1q!@12r~ t1 ,p!#

3@12r~ t1 ,k!#$f~k!1f~p!2f~k2q!

2f~p1q!%, ~18!

from which it is obvious that density and momentum (f
51,k) are conserved, while a change of kinetic energyf
5k2/2m is induced which exactly compensates the tw
particle correlation energy and, therefore, assures total
ergy conservation of a correlated plasma@14#. Initial corre-
lations, Eq.~15!, give rise to additional contributions to th
balance equations@3,9#. We get

^f~k!I0&5
1

4\E dkdqdp

~2p\!9 V~q!

3S K p2k

2
1quL0~p1k!u

p2k

2 L 2c.c. D
3$f~k!1f~p!2f~k2q!2f~p1q!%,

~19!

which keeps the density and momentum also unchanged
only a correlated energy is induced. The self-energy cor
tions from initial correlations which correct the next Bo
approximation,~16!, would lead to

^f~k!I1&5
2

\2 ReE dkdq

~2p\!6E
t0

t

dt1V2~q!

3L0~q,t,t1!r~ t1 ,k!GR~ t,t1 ,k2q!GA~ t1 ,t,k!

3$f~k2q!2f~k!%, ~20!

which shows that the initial correlations induce a flux besid
an energy in order to equilibrate the correlations impo
initially towards the correlations developed during dynam
cal evolution if higher than;V2 correlations are considered

We will consider in the following only second Born ap
proximation;V2 and have therefore to use from Eq.~10!

GR~ t1 ,t2 ,k!'2 iQ~ t12t2!ei (k2/2m\)(t22t1), ~21!

and forL00 the first Born approximation

K k2p

2
uL00~k1p!u

k2p

2
2qL

52
P

De
V0~q!$r0~k!r0~p!@12r0~k2q!#

3@12r0~p1q!#2@12r0~k!#@12r0~p!#

3@r0~k2q!r0~p1q!#%, ~22!

where P denotes the principal value,De5k2/2m1p2/2m
2(k2q)2/2m2(p1q)2/2m andr0 the initial Wigner distri-
bution. Then the explicit collision integral~14! reads
02010
-
n-

nd
c-

s
d
-

I~k,t !5
2

\2E
t0

t

dt1E dqdp

~2p\!6 V2~q!cosF S k2

2m
1

p2

2m

2
~k2q!2

2m
2

~p1q!2

2m D ~ t2t1!

\ G
3$r~ t1 ,k2q!r~ t1 ,p1q!@12r~ t1 ,p!2r~ t1 ,k!#

2r~ t1 ,k!r~ t1 ,p!~12r~ t1 ,p1q!2r@~ t1 ,k2q!#%

~23!

and the new term due to initial correlations~15! is

I0~k,t !52
2

\2E
t0

t

dt1E dqdp

~2p\!6V~q!V0~q!cosF S k2

2m
1

p2

2m

2
~k2q!2

2m
2

~p1q!2

2m D ~ t2t1!

\ G$r0~k2q!

3r0~p1q!@12r0~p!2r0~k!#2r0~k!r0~p!

3@12r0~p1q!2r0~k2q!#%. ~24!

To show the interplay between collisions and correlatio
we have calculated the initial two-particle correlation fun
tion in the ensemble, where the dynamical interactionV(q)
is replaced by some arbitrary functionV0(q). Therefore, the
initial state deviates from thermal equilibrium except wh
V(q)5V0(q) and%(t0)5%0.

The additional collision term,I0, cancels exactly the
Levinson collision term in the case that we have initially t
same interaction as during the dynamical evolution (V0
5V) and if the system starts from the equilibriumr(t)
[r0. Therefore, we have completed our task and derive
correction of the Levinson equation that ensures the can
lation of the collision integral in thermal equilibrium@15#.

On very short-time scales we can neglect the chang
the distribution function. Assuming a Maxwellian initial dis
tribution with temperatureT and neglecting degeneracy, w
can calculate explicitly the collision integrals and obtain an
lytical results. We choose as a model interaction a De
potentialVi(q)54pe2\2/@q21\2k i

2# with fixed parameter
k i5kD and for the initial correlationsk i5k0. We obtain for
the change of kinetic energy on short times from Eqs.~18!
and ~19!

]

]t
Ekin~ t !5E@V~q!2#~ t !2E@V0~q!V~q!#~ t !, ~25!

which can be integrated@6# to yield

Ekin~ t !5Etotal2Einit~ t !2Ecoll~ t !. ~26!

For the classical limit we obtain explicitly the time depe
dent kinetic energy

Ecoll~ t !

nT
52

A3G3/2

4x
]y@yF~y!#y5xt , ~27!

where F(y)512ey2
erfc(y), t5tvp /A2, x5kD /k, and

k254pe2n/T5vp
2T/m. The plasma parameter is given a

usually byG5e2/aeT, whereae5(3/4pn)1/3 is the Wigner-
Seitz radius.
2-3
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In Fig. 2, upper panel, we compare the analytical results
Eq. ~27! with MD simulations@16# using the Debye potentia
Vi as bare interaction. The evolution of kinetic energy
shown for three different ratiosx. The agreement betwee
theory and simulations is quite satisfactory; in particular,
short-time behavior forx52. The stronger initial increase o
kinetic energy observed in the simulations atx51 may be
due to the finite size of the simulation box, which cou
increasingly affect the results for increasing range of the
teraction.

Now we include the initial correlations choosing the eq
librium expression~22!, which leads to

Einit~ t !

nT
52

A3G3/2

2~x0
22x2!

@xF~xt!2x0F~x0t!#, ~28!

FIG. 2. Formation of correlation energy2Ecorr5Etotal2Einit

2Ecoll5Ekin in a plasma with Debye interactionVi . The upper
panel compares analytical results~27! with MD simulations from
@16# for three different ratios ofkD to the inverse Debye lengthx
5kD /k. In the lower panel we compare theoretical predictions
the inclusion of Debye initial correlations characterized byx0

5k0 /k, wherex5kD /k51.
02010
f

e

-

-

wherex05k0 /k characterizing the strength of the initial De
bye correlations~22! with the Debye potentialV0 which con-
tainsk0 instead ofkD . Besides the kinetic energy~28! from
initial correlations, the total energyEtotal ~26! now includes
the initial correlation energy, which can be calculated fro
the long-time limit of Eq.~27!, leading to

Etotal

nT
5

A3G3/2

2~x1x0!
. ~29!

The result~26! is seen in Fig. 2, lower panel. We observ
that if the initial correlation is characterized by a potent
range larger than the Debye screening length,x0,1, the
initial state is overcorrelated, and the correlation ene
starts at a higher absolute value than without initial corre
tions relaxing towards the correct equilibrium value. If, i
stead,x051, no change of correlation energy is observed,
expected. Similar trends have been observed in nume
solutions@9#.

In summary, in this Rapid Communication initial correl
tions are investigated within kinetic theory. Explicit corre
tion terms appear on every level of perturbation theory c
recting the non-Markovian kinetic equation properly in
way that the collision integral vanishes if the evolution sta
from a correlated equilibrium state. Furthermore, the cons
vation laws of a correlated plasma are proven, including
contributions from initial correlations. It is shown that b
sides the appearance of correlation energy a correlated
appears if correlations higher than Born are considered.

Deriving analytical formulas for high temperature pla
mas allowed us to investigate the time dependent forma
of the correlation energy and the decay of initial correlatio
The comparison with molecular dynamics simulations
found to be satisfactory. Including initial correlations th
cases of over- and undercorrelated initial states are
cussed. While starting from equilibrium the correlation e
ergy does not change; for over- and undercorrelated st
the equilibrium value is approached after a time of the or
of the inverse plasma frequency.

The many interesting discussions with Pavel Lipavs´,
Václav Špička, and D. Semkat are gratefully acknowledge
We thank G. Zwicknagel for providing simulation data pri
to publication.
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@1# V. Špička et al., Phys. Lett. A240, 160 ~1998!.
@2# D. Krempet al., Ann. Phys.~N.Y.! 258, 320 ~1997!.
@3# M. Bonitz, Quantum Kinetic Theory~Teubner, Stuttgart,

1998!.
@4# I. B. Levinson, Fiz. Tverd. Tela Leningrad6, 2113 ~1965!

@Sov. Phys. Solid State6, 1665~1965!#.
@5# I. B. Levinson, Zh. E´ksp. Teor. Fiz.57, 660~1969! @Sov. Phys.

JETP30, 362 ~1970!#.
@6# K. Morawetzet al., Phys. Lett. A246, 311 ~1998!.
@7# D. Leeet al., Phys. Rev. A2, 854 ~1970!.
@8# P. Danielewicz, Ann. Phys.~N.Y.! 152, 239 ~1984!.
@9# D. Semkatet al., Phys. Rev. E59, 1557~1999!.

@10# V. G. Morozov and G. Ro¨pke, Ann. Phys.~N.Y.! 278, 127
~1999!.
@11# L. P. Kadanoff and G. Baym,Quantum Statistical Mechanic
~Benjamin, New York, 1962!.
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