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Short-time dynamics with initial correlations
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The short-time dynamics of correlated systems is strongly influenced by initial correlations, giving rise to an
additional collision integral in the non-Markovian kinetic equation. Exact cancellation of the two integrals is
found if the initial state is thermal equilibrium, which is an important consistency criterion. Analytical results
are given for the time evolution of the correlation energy, which are confirmed by comparisons with molecular
dynamics simulations.
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Although the Boltzmann kinetic equation is successfullyparticle causal Green’s functions. Their dynamics follows
applied to many problems in transport theory, it has soméhe Martin-Schwinger hierarchy
serious shortcomindd]. Among these, the Boltzmann equa- 5 2
tion cannot be used on short-time scales, where memory ef- -_Vl)
J I
ih—+——-3%4(1) |G(1,1)

fects are importarfi2,3]. In such situations, a frequently used
non-Markovian kinetic equation is the so-called Levinson aty 2m
equation[4,5]. One remarkable feature of this equation is
that it describes the formation of correlations in good agree- _ 5(1_1/)+f d3Vv(1,3L(1,3,1',3%)
ment with molecular dynamics simulatiof&j. Nevertheless, ’ T
the Levinson equation is incomplete for two reasafisit 5 2 (3]
does not include correlated initial states, diigl when the -V,
evolution of the system starts from the equilibrium state, the 0 I 't

L : i . . ih —+——|G,(121'2")
collision integral does not vanish, but gives rise to spurious aty 2m
time evolution. The latter point has been addressed by Lee , , , ,
et al. [7], who clearly show that from initial correlations =6(1-1")G(2,2) - 6(1-2")G(2,1')
there must appear terms in the kinetic equation which ensure
that the collision integral vanishes in thermal equilibrium. +f d3Vv(1,3G4(1,2,3,1,2',3"),

The aim of this Rapid Communication is to derive the
contributions from initial correlations to the non-Markovian where V(1,2) is the interaction amplitude and (1)
Levinson equation within perturbation theory. We will re- = [d2V(1,2)G(2,2") is the Hartree self-energy.
strict ourselves to the Born approximation, which allows us Using for G5 the polarization approximation
to present the most straightforward derivation. The inclusion Sy , , ,
of higher order correlations can be found in Ré&8-10. G4(1231273") =G(11')G(22)G(33))

The effect of initial correlations becomes particularly trans- +G(11')L(2323')+G(22')L(131'3)
parent from our analytical results, which may also serve as a , .,
benchmark for numerical simulations. +G(33')L(121'2), 3

The outline of this paper is as follows. First we give the o s 1o a closed equation far which is conveniently re-
general scheme of inclusion of initial correlations into the,\ itten as integral equation

Kadanoff and Baym equations in terms of the density fluc-
tuation function. We show that initial correlations enter the L(1,2,1,2")=1L4(1,2,1',2") - GKx(1,2)G(2,1)
kinetic equation as self-energy corrections and mean-field-
like contributions in terms of the initial two-particle correla- +f d4G,(1,49G(4,1)
tion function. An analytical expression for the time depen-
dent correlation energy of a high temperature plasma is
presented and then compared with molecular dynamics simu- X f d3V(4,3)L(2,3,2,3%), (4)
lations.
To describe density fluctuations we start with the causaihere G) ~* denotes the left-hand side of the first equation
density-density correlation functidi 1] (2) and we have taken into account the boundary condition

(GR) " 'Lo=0. (5)
L(1212")=G,(121'2")—G(11')G(22), (1) ) ) _
In the case that all times in E§4) approacht,, the right-
hand side vanishes excdpf which represents, therefore, the
where 1 denotes cumulative variableg (, ...). G(1,2)  contribution from initial correlations. They propagate in time
=1i(T¥(1)¥(2)") andG,(121'2") are the one- and two- according to the solution of Eg5) [9],
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P <o " we obtain the kinetic equation for the reduced density matrix
' L p(t) =G~ (t,1)

—_— = - L LR— T +
Sui z %

FIG. 1. Dyson equation including density fluctuation up to sec-
ond Born approximation. Besides the initial correlation teSpx  \ith
discussed ir18,9], a new type of self energ}, appears which is
induced by initial correlations. Since the latter one contains inter-
action by itself, this term is of next order Born approximation. I(k,t)= 72 Ref dtlf 2nh V2(q)GR(t t,k—q)

atp(k t)=Z(K,t) + Zo(K,t) + Zy(K, 1), (13)

><GA(tl,t,k)GR(t,tl,p+q)GA(t1,t,p)

L0(121’2’):f dx,dx,dx;dx,GR(1x1t0)
X[p(ty, k=) p(ty,p+a)[1—p(ty,p)]

X Gli(2Xato) Lod( X1, X2 X1 X, to)
XGH(1',X1te)GA(2" X5to). (6) X[1=p(ty,K)]=p(ty,K)p(t1,p)

: i . : . X{1=p(ty,p+a)[1-p(ty,k=a) 1}, (14)
Here L is the initial two-particle correlation function.

Inserting Eq.(4) into the first equation of2) and restrict- 2 dqdp
ing to the Born approximation we obtain for the causal func- Zo(k,t)= glmf (2 ﬁ)GV(q) R(t,to,.k—q)
tion [GL2(1,2)=G,,*(1,2)+V(1,2)G~(1,2)],

X GA(t,t9,K)GR(t,tg,p+q)GA(t,tg,p)

GLA(LIG(3.2 = 5(1-2)+ S(1.2+ [ da{3o(14 bk bk
+2(1,4)}G(4,2), (7)

2 t d
where the integration is performed along the Keldysh con- Zi(k,t)= FReJ' dtlf 2—:3£0(q,t,tl)vz(q)
tour C with the self-energy in Born approximation to (27h)

X GR(t,t;,k—q)GA(ty,t,k)

2(1,2)=f d3d5V(1,3)Gy(1,2V(2,5 X[ p(tyk—q)— p(tyK)], (16)

4+ +
XGu(3571)G(5.31). ® where  Loo(X1,X2,X3,X4) = (X1 = Xp|Lod (X1 X2/2) — (X3

Two new terms appear due to initial correlations, +X4/2)][ %3~ X4) and Lo(q,t,t") = fdxe™ " P(x/2Lo(0)|x/
2). We like to note that Eq(13) is valid up to second-order
gradient expansion in the spatial coordinate. This variable
20(1,2):f d3d5V(1,3Gy(1,2V(2,5L(3,5,3",5" ), has to be added simply in all functions and on the left-hand
©) side of Eq.(13) the standard mean-field drift appears.
The first part[Eq. (14)] is just the precursor of the
Sinit(l,Z)zf d3V(1,3)Ly(1,3,2,3). Levinson equation in second Born approximatioW?. The
term (16) coming from,, leads to corrections to the third
The integral form of Eq(7) is given in Fig. 1 from which BOrn approximation, since it is-V2Lo. A discussion of
definitions(9) are obvious. higher-order correlation contribution within tiematrix ap-
The equation for the retarded Green’s functiéf(1,2)  Proximation can be found in Reff2,10] and of general ini-
= —i0(t;—t,)[G™(1,2)+ G=(1,2)], where G<(1,2) tial .COHdItIOHS |n_Ref.[_13]. The second_ paftEq. (15)] f(_)|-
= (T (2)¥(1)) and G~ (1,2)=(T(1)¥*(2)), is derived Iowmg from S gives just the correction to_the Levmson_
from Eq.(7) as equation, which will guarantee the cancellation of the colli-
sion integral for an equilibrium initial state. Recently, the
(Gi-3R-SR)GR=5(1-2)+8%(1,2 (100 analogous term in the collision integral has been derived by
other meang9].

and leads to the Kadanoff-Baym equation Multiplying the kinetic equationg13)—(15) with a mo-
mentum function¢ (k) and integrating ovek, one derives
(GLE—3R G~ -G~ (G,t—3M) the balance equations
=(2+30)“GA=GRE+2 )"+ Snt—Shit- 11
($00= [ aadT+ [ s 6007,. (7
Using the generalized Kadanoff-Baym ansfit2] (2m (2mh)®

G=(ty,t,)=iGR(t1,t,)p(t) —ip(t])GA(ty,t,), (120  For the standard collision integral follows
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07— 1 dkdqgdp(t ) 5 . ) 2 (t dgdp k> p?

(( )D_FREJW todt1V ()G7(t,ty,k—0q) I ,t)—h—zﬁodtlj WV (q)cog| 5 -+ 5
xGA(tlitvk)GR(titl1p+q)GA(tlitvp) _ (k_q)2 B (p+q)2 (t_tl):|
Xp(ty,k=q)p(ty,p+a)[1—p(ty,p)] 2m 2m h
X[1=p(ty, K {d(K)+ &(p) — p(k—q) X{p(ty,k=a)p(ty,p+a)[1—p(ty,p) —p(t1,K)]
—¢(p+a)}, (18) —p(ty,K)p(ty,p)(1—p(ty,p+a)—p[(ty,k—a)]}

from which it is obvious that density and momentum ( (23

=1k) are conserved, while a change of kinetic enethy
=k?/2m is induced which exactly compensates the two-
particle correlation energy and, therefore, assures total en- 2 [t dqgdp 2 p?
ergy conservation of a correlated plasfid]. Initial corre- Tokt)==72 todtl 2y (DVolCos | 5t om
lations, Eq.(15), give rise to additional contributions to the

and the new term due to initial correlatio(fd) is

balance equation,9]. We get (k=) (p+a)?)| (t—ty)
O = 1 dkdqdpV
(00T =27 ] 2mnye V@ X po( P+ L1~ pol(P) ~ o)1~ po(K)polP)
p—k p—k X[1=po(p+0a)—po(k—a)]}. (24)
X| ({ —=—+q|Lo(p+k)|——) —c.c. _ o _
2 2 To show the interplay between collisions and correlations,
X{p(k)+ ¢(p)— p(k—a)— d(p+a)}, we have calculated the initial two-particle correlation func-

tion in the ensemble, where the dynamical interactitfiy)
(19 is replaced by some arbitrary functidfy(q). Therefore, the

, . initial state deviates from thermal equilibrium except when
which keeps the density and momentum also unchanged ar\yi(q) —V,(q) ande(tg)=0o.

only a correlated energy is induced. The self-energy correc- The additional collision termZ,, cancels exactly the
tions from initial correlations which correct the next Born | evinson collision term in the case that we have initially the

approximation,(16), would lead to same interaction as during the dynamical evolution, (
> dkd . =V) and if the system starts from the equilibriup(t)
(P(K)T,) = PRef —thf dt,V3(q) =po- Therefore, we have completed our task and derived a
(27h)° )y, correction of the Levinson equation that ensures the cancel-

R A lation of the collision integral in thermal equilibriufi5].

X Lo(q,t,11)p(t1,K)G(1 11, k—q) G (11, 1,k) On very short-time scales we can neglect the change in

N the distribution function. Assuming a Maxwellian initial dis-

*{pk=a) =}, (20 tribution with temperaturd and neglecting degeneracy, we
which shows that the initial correlations induce a flux besidesan calculate explicitly the collision integrals and obtain ana-
an energy in order to equilibrate the correlations imposedytical results. We choose as a model interaction a Debye
initially towards the correlations developed during dynami-PotentialV;(q) =4me’4?/[q*+4%«7] with fixed parameter
cal evolution if higher than-V?2 correlations are considered. i=«p and for the initial correlation; = «,. We obtain for

We will consider in the following only second Born ap- the change of kinetic energy on short times from EQS)

proximation~V? and have therefore to use from HG0) and(19)

GR(tytp k)=~ 101~ )M, (21) %Ekm<t>=e[V(q>2](t>—5[vo<q>V(q)]<t>, (25

and forL g the first Born approximation ) ) )
which can be integrateld] to yield

k_Tp| Loo(k+Pp) |k;_p - Q> Ekin(t) = Etotar— Einit(t) — Ecan(t). (26)
P For thg cl_assical limit we obtain explicitly the time depen-
== 32 Vo(@{po(k)po(P)[ L po(k—1)] dent kinetic energy
Ecor(t) V3%
X[1=po(Pp+a)]—[1=po(K)][1=po(p)] T T ax HYFY)ly=x- (27)
X[po(k=a)po(p+a) ]}, (22

where F(y)= 1—ey2erfc(y), T=twp/\/§, X=kplk, and
where P _denotes the principal value\e=k?*2m+p%2m  «’=4me’n/T=w;T/m. The plasma parameter is given as
—(k—q)?/2m—(p+q)%/2m andp, the initial Wigner distri-  usually byI'=e?/a,T, wherea,= (3/4wn)*? is the Wigner-
bution. Then the explicit collision integrél4) reads Seitz radius.
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FIG. 2. Formation of correlation energy E.on= Eiota— Einit
—&oi=&xin IN @ plasma with Debye interactioW;. The upper
panel compares analytical resu(®7) with MD simulations from
[16] for three different ratios okp to the inverse Debye length
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wherex,= kq/ k characterizing the strength of the initial De-
bye correlationg22) with the Debye potentia¥, which con-
tains kg instead ofkp . Besides the kinetic enerd28) from
initial correlations, the total energ¥;q, (26) now includes
the initial correlation energy, which can be calculated from
the long-time limit of Eq.(27), leading to

Etotal_ \/§F3/2
NT  2(X+Xg) "

(29

The result(26) is seen in Fig. 2, lower panel. We observe
that if the initial correlation is characterized by a potential
range larger than the Debye screening lengix 1, the
initial state is overcorrelated, and the correlation energy
starts at a higher absolute value than without initial correla-
tions relaxing towards the correct equilibrium value. If, in-
steadXxy=1, no change of correlation energy is observed, as
expected. Similar trends have been observed in numerical
solutions[9].

In summary, in this Rapid Communication initial correla-
tions are investigated within kinetic theory. Explicit correc-
tion terms appear on every level of perturbation theory cor-
recting the non-Markovian kinetic equation properly in a
way that the collision integral vanishes if the evolution starts

=«p/«. In the lower panel we compare theoretical predictions forfrom a correlated equilibrium state. Furthermore, the conser-

the inclusion of Debye initial correlations characterized Xy
=Kol k, wherex=«p/xk=1.

vation laws of a correlated plasma are proven, including the
contributions from initial correlations. It is shown that be-
sides the appearance of correlation energy a correlated flux

In Fig. 2, upper panel, we compare the analytical results ofppears if correlations higher than Born are considered.

Eq. (27) with MD simulations|[ 16] using the Debye potential

Deriving analytical formulas for high temperature plas-

V; as bare interaction. The evolution of kinetic energy ismas allowed us to investigate the time dependent formation
shown for three different ratios. The agreement between of the correlation energy and the decay of initial correlations.
theory and simulations is quite satisfactory; in particular, theThe comparison with molecular dynamics simulations is
short-time behavior for=2. The stronger initial increase of found to be satisfactory. Including initial correlations the

kinetic energy observed in the simulationsxat 1 may be

cases of over- and undercorrelated initial states are dis-

due to the finite size of the simulation box, which could cussed. While starting from equilibrium the correlation en-
increasingly affect the results for increasing range of the inergy does not change; for over- and undercorrelated states

teraction.

the equilibrium value is approached after a time of the order

Now we include the initial correlations choosing the equi- Of the inverse plasma frequency.

librium expression(22), which leads to

Einit(t) V33”2
nt-|(— =- 2(Xé—x2) [XF(XT) =X F(Xo7) ],

(28)
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