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Fourth-order algorithms for solving the multivariable Langevin equation
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We develop a fourth-order simulation algorithm for solving the stochastic Langevin equation. The method
consists of identifying solvable operators in the Fokker-Planck equation, factorizing the evolution operator for
small time steps to fourth order, and implementing the factorization process numerically. A key contribution of
this paper is to show how certain double commutators in the factorization process can be simulated in practice.
The method is general, applicable to the multivariable case, and systematic, with known procedures for doing
fourth-order factorizations. The fourth-order convergence of the resulting algorithm allowed very large time
steps to be used. In simulating the Brownian dynamics of 121 Yukawa particles in two dimensions, the
converged result of a first-order algorithm can be obtained by using time steps 50 times as large. To further
demonstrate the versatility of our method, we derive two new classes of fourth-order algorithms for solving the
simpler Kramers equation without requiring the derivative of the force. The convergence of many fourth-order
algorithms for solving this equation are compared.
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[. INTRODUCTION consider the cas®;;= ;. The more general case can be
easily restored by the interested reader. Thusonsists of
A stochastic differential equation of the form two operators
xi=Gi(x)+h; &(1), 1
1
with Gaussian noise T=5dd and D=-0,G(x), ®)

(&G(DE(L))=g;(t—t"), 2
with implied summations. This idea of operator factorization
is used to describe a variety of physical and chemical pross not new, and has been used to derive a number of second-
cesseq1]. We will consider the case wheve denotes an o der | angevin algorithmgs,6]. We will briefly review the
N-dimensional coordinate vector and study the equation ifhasic idea in Sec. Il. However, it is only recently that one
its equivalent Fokker-Planck form learns how to factorize operators of the forrff’é® to
fourth-order with positive coefficien{8,9]. All such fourth-
ip(x’t):Lp(X’t)E lDi'aia'_&iGi(X) P(x,t). (3) order factorizations require the evaluation of the double
ot 271 commutator{D,[ T,D]], which is rather formidable at first
sight. We will show in Sec. Ill, how this commutator can be
The diffusion matrix is given byD;; = hichy; [1]. Evenin the  implemented judiciously to yield a fourth-order Langevin al-
Langevin case, where the diffusion matillx; is position  gorithm. To demonstrate the high-order convergence of this
independent, it is difficult to derive numerical algorithms for a|g0rithm’ we use it to simulate the Brownian dynamics of
solving it beyond second ordg2—6]. A direct Taylor expan- 121 Yukawa particles in two dimensions, a system that has

sion [2] approach is laborious, giving no insight into the peen studied extensively by Branka and He#8] using
overall structure of the algorithm and requires an eight ternsecond-order algorithms.

expansion to achieve fourth-order accurdzy. Heretofore, To further demonstrate the utility of the factorization
no fourth-order Langevin algorithm has been derived andnethod for solving stochastic equations, we derive system-
applied to systems of more than one particle. atically a number of fourth-order algorithms for solving the
The Fokker-Planck equatiof8) can be formally inte- Kramers equation in Sec. IV. Drozdov and Brgyl] have
grated to give used a similar factorization method to solve this equation in
one dimension using grid points. Hershkoviz has also
P(x,t)=€"P(x,0=[e"]"P(x,0). (4)  derived a fourth-order algorithm by Taylor expansion. In

both cases, it is not obvious how their respective approaches
This equation can be solved by factorizing the short-timecan be generalized to the multivariable case. We give a de-
Fokker-Planck evolution operatof'e=e“"*P) into exactly  tailed comparison of all algorithms using Monte Carlo simu-
solvable parts. While our method has no difficulty in dealinglation, which can be easily generalized to any dimension.
with a general but constant diffusion mati; , to bring out  Finally, we summarize our findings and present some con-
as clearly as possible the character of our approach, we wittlusions in Sec. V.
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IIl. OPERATOR FACTORIZATION

When the operator<€ acts onP(x,t), it evolves the latter
forward in time according to thdiffusionequation

9 B 1
SPOGD=Z 30X, 6)

If {x;} is a set of points distributed accordingRgx,t), then
the distributione time later can be exactly simulated by up-
dating each point according to

Xi’:Xi+ \/Ef, , (7)
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yi=x(€l2)+ & e,
(15)
X =Yi(€l2).

Again, it is sufficient to solve the trajectory equatioqée/2)

and y;(e/2) correctly to second-order via the Runge-Kutta
algorithm. Despite the appearance that this algorithm re-
quires solving the trajectory equatidmO) twice, it can be
shown[6] that by expanding the two trajectories to second-
order and recollecting terms, one arrives at the second-order
Runge-Kutta Langevin algorithrfi—4]. However, the ca-
nonical form of Eq.(15), with two evaluations of the trajec-

where{&) is a set of Gaussian distributed random numberdOry, usually has a much smaller second-order error coeffi-

with zero-mean and unit varianc@:or the general diffusion

matrix case, the above generalizesfe=x;+ \eDj;¢;.)
When the operator<B acts onP(x,t), it evolves the latter

forward in time according to theontinuity equation

%P(X,IF—&i[Gi(X)P(X,t)], 8

whereG;(x) P(x,t) =J;(X) is the probability current density
with velocity field G;(x). The continuity equation can also
be exactly simulated by setting

Xj =Xi(e), 9
wherex;(e€) is the exact trajectory determined by

dx_ G 10

a - (X) 1 ( )

with initial condition x;(0)=X; .

Thus, if €T"P) can be factorized into products of opera-
tors € and &P, then each such factorization will give rise to
an algorithm for evolving the system forward for tiraeFor
example, the second-order factorization,

et2TePel 2 T—ex (T+D)+0O(e)---], (11
leads to a second-order Langevin algoritfh
yi=xXi+&el2,
X/ =Yi(€)+ & el2, (12

cient.

The method of operator factorization thus appears to pro-
vide a systematical way of generating higher-order algo-
rithms. Unfortunately, SuzuKil2] proved in 1991 that, be-
yond second order, for any two operatoisand D, it is
impossible to factorize the evolution operator as

N

exfe(T+D)]=]] exdajeTlexgb,eD]  (16)
i=1

for any finite N, without having some coefficientg andb;
being negative. In the present context, sinté"es the dif-
fusion kernel, a negativa, would imply that one must simu-
late the diffusion process backward in time, which is impos-
sible. Thus factorizations of the for(i6) cannot be used to
derive higher-order Langevin algorithms.

lll. A FOURTH-ORDER LANGEVIN ALGORITHM

The essence of Suzuki's proof is to note that in order to
obtain a fourth-order algorithm, one must eliminate third-
order error terms involving double commutat¢ris[D,T]]
and[D,[T,D]]. With purely positive coefficienta; andb;,
one can eliminate either one or the other, but not both. Thus
to obtain a fourth-order factorization with all positive coef-
ficients, one must retain one of the two double commutators.
Recently, Chin[9] has derived three such factorization
schemes, two of which were also found previously by Suzuki
[8].

The form of the operator$ andD, as given in Eq(5),
dictates that one should keep only the commutator

where¢; and¢/ are independent sets of zero-mean unit vari-LD.[T,D]], which is at most a second-order differential op-
ance Gaussian random numbers. For a second-order alggtator. Since the velocitjor force field G is usually given

rithm, it is sufficient to solve for the trajectory;(e) cor-
rectly to second order im, e.g., via a second-order Runge-
Kutta algorithm:

1
yi(e)=yi+ eGi| y+ EGG(V))- (13
Alternatively, one has the factorization,
e'?PeTel>P=ex e(T+D)+0(e)---], (19

which yields the second-order algorithm

in terms of a potential functioW(x),

Gi(X): _aiV(X), (17)
the double commutator has the form
[D,[T,D]]=(9i(9jfi’j+r9ivi, (18)

where

fi,jEVi,j,ka_ZVi,ij,k1
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1
UiEE(ZviY]_YKV].‘k—}—Viijj‘k‘k_Vi,j,k,kV]-)- (19) ex% —T | =

3

The indices orV indicate corresponding partial derivatives. X/\/{ exp{e—(z— 3)(3,0:f; i+ div))

Since the operatob requires solving for the particle’s tra- 24 R

jectory, we must minimize its occurrence. This dictates that

we use a variant of Chin’s schenie[9] to factorize > exp(i\/_T)
2y3

|

exr[e(TJrD)]:ex;{g(l—% T exp(%D)exp(iTF =N[exr{i<la.a.§” +6_3(2_ 3)
3 V3 23\2 724
xeXpGD)eXF{g(l_% T|roe X(03f o) ]QX%LT L
3 i%jli,j iUi 2\/5

20 where N denotes the normal ordering of all derivative opera-

tors to the left. Since the leftand only the left operator
exp(e/2y/3T) is already normal ordered with respect to the
position-dependent operators in the middle term, the two
&2 normal ordered exponentials can be combined to remove the
T=T+ (23— 3)[D,[T,D]]. (21 restriction of a positive definité; ;. Now, only the full co-
24 variance matrixC needs to be positive definite, which will
always be the case far sufficiently small. The final normal

To obtain a fourth-order algorithm, we must simulate thisordered exponential describes a nonuniform Gaussian ran-

where we have included the double commutatof in

new term dom walk with mearu; and covariance matrig; ; :
&3
€~ € e Mi:_ﬂ(z_\/g)vi, (25
x| FT] = FT+ 52~ V3) (Gt + dv) 1
(22 €
Ci’j__z\/§ 5i,j+ ﬁ_i €2fi’j . (26)

correctly to fourth order. If we simply took al dependent ] o )
terms in this operator as fixed, evaluated at the starting point,© Sample this random distribution we ne¢@, which we

this operator would describe a nonuniform Gaussian randorfi@" @pproximate correctly to fourth order as

walk. However, this normal ordering would be correct only 11 1
€
(\/C)I,] \/ >3 5I,]+ 2( 3 2)6 fl,]

to third order. To implement it to fourth order, we first de-
Thus the entire factorizatiof20) can be simulated by setting

compose it as
€ 1
Wi =X+ §; > 1-—],

V3

€
Yi=W;(e/2)+ ¢ \/m,

€

2

. (27

3
€
Xexp{ﬂ(Z— \/§)(§i(9]fi'j+0')ivi)

€
xXexp ——=T
p(Z@

If f;; is positive definite, normal ordering the middle opera-
tor above, i.e., interpreting it as a nonuniform Gaussian ran-

+0(e°). (23

3
2=y~ 52— Bui(y) +

1

dom walk withf; ; evaluated at the starting point, would be
correct to fourth ordefactually to fifth ordey. However, if
some eigenvalues d6f ; were negative, we would not be able
to sample the operator as a Gaussian walk. To avoid this
possibility, we implement the normal order process as
follows:
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0.446

dV_ oV 29

T 2
gt axa VP (30

0.444

this is no longer respected by the Runge-Kutta algorithm at
larger time steps. The failure is due to the fact that Gaussian
random walks can deposit particles so close together that the
velocity field is changing too steeply for the Runge-Kutta
algorithm to integrate accurately. Each of these particles then
gets placed chaotically somewhere in the periodic box, often
again too near others, thus multiplying the number of par-
ticles that will be moved erratically in the next iteration. At
time steps below but near=0.0028, the system can recover
0 0001 0002 0003 0004 0005 0006 0007 the regular behavior after several to hundreds of iterations,
£ but only at the cost of increased variances and larger errors.

) . . _ Thus the inaccuracy in the trajectory determination causes
FIG. 1. The convergence of Langevin algorithms for S|mulat|ngthe Langevin algorithm to fail prematurely.

the Brownian dynamics of 121 interacting colloidal particles intwo 1 improve on this situation, we monitor the difference

dimensions. The equilibrium potential energy per particle is p'Ottedbetween the results of the standard fourth-order Runge-Kutta
as a function of the time step size used. Open diamonds are nd the embedded second-order algoriti®). We use the
results using the first-order Langevin algorithm. Solid triangles anda L 9 ’

absolute value squared of this difference as a gauge of the

solid squares denote results of the two second order algorithmfs th-ord thod th hit is strictl |
LGV2a and LGV2b, respectively, as described in the text. Openou.r ~or fer mﬁ 0 'bevdedn d oug IdIS ZHC yl On_yhan ‘Iafrrohr
circles give results of our fourth-order Langevin algorithm using theestlmate or the embedded second-order algorithm. I the

standard fourth-order Runge-Kutta algorithm for determining theValue of this difference is larger than some toleraf@61 in

particle trajectory. The solid circles give results with improved tra-OUr casé we reject the result of the Runge-Kutta and recom-
jectory determination as discussed in the text. pute the trajectory more aCCU"QteW by applylng our trajec-
tory algorithm twice at half the time step size. At small time

whereg; to £” are four sets of independent Gaussian randon?t€PS: this incurs only a very small overhead. Even at a time
numbers with zero-mean and unit variance. step of 0.004, only 3% of the trajectories have to be re-
As a severe test of the fourth-order convergence of thi§valuated. With this improvement, our fourth-order Lange-
algorithm, we use it to simulate the Brownian dynamics ofIn algorithm gives results as shown by solid circles in Fig.
121 colloidal particles in two dimensions, with dimension- *- (We also applied similar monitoring processes to LGV2a

less surface densiti\/A=0.5, interacting via a pairwise and LGV2b by comparing the results of their first- and
strongly repulsive Yukawa potential second-order Runge-Kutta algorithinhe step-size depen-

dence of the fourth-order algorithm is remarkably flat, and
v yielded the converged results of the lower algorithms at step
V(r)= —Oexp[—A(r -1)], (29 sizes nearly 50 times as large.
r

0442

0.440

0.438

0.436

ul

with A=8. This system has been described and simulated IV. SOLVING THE KRAMERS EQUATION

extensively via second-order algorithms by Branka and while we are not aware of other multivariable fourth-
Heyes[10]. We will refer readers to this work for a detailed order Langevin algorithms, there are two fourth-order algo-
description of the system and their algorithms. In Fig. 1 werithms in the literature for solving the Kramers equation in
show the convergence of the potential energy at one parangne dimensiorj7,11]. Despite its more complicated appear-
eter setting as a function of the time step size ud8dmpare  ance, the Kramers equation is actually simpler to solve than
this figure to that of Fig. 6 of Branka and Heyl9)].) The  the Langevin equation. To illustrate the versatility of our
linear and quadratic convergences are clearly evident. Thgperator approach, we will derive systematically a number of
two second-order algorithms used are as described by Edgurth-order algorithms for solving this equation. Following

(12) and(15). These are referred to in R¢6] as algorithms  Hershkovitz[ 7], we write the Kramers equations in the form
LGV2b and LGV2a, respectively.

When our fourth-order Langevin algorithm is imple- B — ey L P
mented by using the standard fourth-order Runge-Kutta al- a=Fl@-ya+d, 31
gorithm to solve the trajectory equatidti0), we obtained
results as shown by open circles in Fig. 1. The variance
the potential energy increases abruptly at aroasd.0028
and the algorithm becomes unstable at largsr The prob-
lem can be traced to the instability of the Runge-Kutta algo- .

¥vhere the force is derivable from a potentid;(q)=
oL a;V(q). A key simplification follows from the Hamilton
form of the equation

rithm itself in solving for the many-body dynamics.While the qi=Pi,
trajectory evolution ex@D) shouldalwaysdecrease the po- _
tential energy, pi=Fi(@)—ypi+{i, (32
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-0.7710 where
-0.7715
Y
—0.7720 } L:EV'23+ ‘)/Vp p—qu— F(q) . VpEL1+ L2+ L3+ L4.

-0.7725 (36)

W -0.7730 To factorize the evolution operator expj for small €, we

decomposé. into exactly solvable part¥ plus D and apply
known fourth-order factorization schem¢8,9]. Drozdov
and Brey[11] have recently initiated such a study of the
Kramers equation. In this paper, we have done an exhaustive
search of all possible choices of solvafilendD such that
[D,[T,D]] or[T,[D,T]] is also solvable. We use the word
“solvable” here loosely to denote either analytical result or
trajectory determination. For example, the effect of
FIG. 2. The convergence of various fourth-order algorithms forexf €(L,+L3+L4)] on the distribution functiof®(q,p,t) cor-
solving the Kramers equation in one dimension. The energy calcuresponds to evolving the particteajectory forward in time
lated is at a finite time of=6 with system parametef8=5 and  with a linear friction. Since this can be computed using any
y=1. Solid squares: Hershkovitz's algorithm. Solid and opentrajectory integration algorithm, we consides+L;+L, to
circles: Drozdov and Brey’s algorithm and K4a. Solid and openbe solvable. While there are many solvable choiceg fand
diamonds: two variants of algorithm K4b. Solid and open triangles:D, such as the sum of any two,, few resulting double
two variants of algorithm K4c. See text for algorithm descriptions. commutators are simple. The possible choicesTfand D
The fitted lines all have leading ’[_erm1 or higher. Error bars are  gpe dramatically reduced if we insist that one of their double
comparable or smaller than the size of plotting symbols. commutators is also structurally similar to the origiffabr

) ) ) D. There are then only three possibilities.
where {; is the zero-mean Gaussian random noise vector The first possibility is to take

with variance

—0.7735

-0.7740

-0.7745

-0.7750
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T: L1+ L2+ L3,

2
<§i(t)§j(t’)>=Evéijﬁ(t—t’)- (33 (37)
D: L4,
The advantage here is that the noise only affects the momen- . , . . -
tum, and classically, the momentum commutes with thi:VhICh is the choice originally made by Drozdov and Brey

position-dependent force term. We will study the case of th 11). The Gr_eens function corresponding to e is
bistable potential nown analytically{11], and can be sampled via

V(9)=q*—29>, (34) P =pie "+ ui,
(38)
at parameter valug=1 andB=5. For each algorithm con- g =qi+pi(l—e ")/ y+uv;,
sidered below, starting witlg(0)=0 and p(0)=0, we
evolve the SyStem to a finite time 0=6. For Comparison, where Corresponding to each pair qji (qi), (/-Li ,Vi) is a

we note that the total energy approaches the equilibriunpair of correlated Gaussian random numbers given by
limit of E=—0.8 at infinite time.

Hershkovitz[ 7] has formally derived a fourth-order algo- 1
rithm for solving Eq.(32) using Taylor expansion, but he has wi=&\] = (1—e 279,
given an explicit implementation only for one dimension. In B
one dimension, each update of his algorithm requires one (39
determination of the particle trajectory to fourth order, four 1/1-e ¢ 1 l1-e7¢
Gaussian random variables, and one evaluation of the deriva- Vi:; m it & \/W 2ve—4 1te 7¢ }

tive of the force. The results of using his algorithm to evolve
the system energy as a function of the time step siZe , _ i i
shown as solid squares in Fig. 2. The standard fourth-ordd€re, & andé; are again two independent Gaussian random
Runge-Kutta algorithm, which requires four evaluations offumbers with zero-mean and unit variance. Note that at a
the force, is used to solve for the particle’s trajectory. given step sizee, all the above functions involving €<,

To derive factorization algorithms in any dimension, we €tc., only need to be evaluated once at the beginning of the
note that the probability density function evolves accordingf)'mmatlon- The operator exgd) can be exactly simulated
to y

P(q,p,t)=LP(q,p,1), (35) p/ =pi+eFi(q). (40)
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As we will see, this choice is clever because there is nOee(T+D):e1/65Te1/26[1—5272/72]D92/35Te1/26[1—5272/72]De1/65T
trajectory equation to solve. The double commutator re-
quired for a fourth-order factorization is +0(e°). (50)
[D.[T.D]]=[L4.[L3,L4]l= _Vq|':|2' Vo (41) The effect of the double commutator simply reduces the time
of the trajectory evolution. This algorithm, which will be
referred to as K4b, requires two trajectory determinations but
no derivative of the force and only three Gaussian random
numbers. The trajectory can be computed using the standard
fourth-order Runge-Kutta algorithm with four force evalua-
tions, or the fourth-order Forest-Ruth symplectic algorithm
[13] with three force evaluations. The results from these two
cases are plotted as solid and open diamonds, respectively, in
g<(T+D) — gl/6eD g1/2 eTe2/355e1/25Te1/6eD+O(€5), (42) _Fig._ 2. For this choice oD_, we o!id not bother with factpr-
ization scheme® or C, since either would have required

which is justD but with a forceV 4| F|?. For each choice 6f

andD, there are three generic scherf@kfor factorizing the
decomposed operator éx¥pr+D)] to fourth order with
purely positive coefficients. For this choice &fand D, we

found that schemeA and B of Ref. [9] give rather similar
results, so we will only present results for schemeandC.

SchemeA andC are, respectively,

and more than two trajectory determinations.
~ The third possibility is to take
ee(T+ D)_ el/GETe3/85De1/3eTe1/4eDel/3eTe3/86De1/65T+ O( 65),
(43 T=L,, (51)
here
W D:L2+L3+L4, (52)
2
~ €
D=D+ 4_8[D'[T'D]]- (44 where now exp{T) is just a Gaussian process fin,
The results of these two algorithms are shown as solid and p/=pi+ Ve, (53)

open circles in Fig. 2. We will refer to these two as algo-
r!thms, Drozdov and Brey and KAa, respectwely: Eaph algoI':md expéD) evolves the particle trajectory forward in time
rithm evaluates the force three times a_nd the derivative of Fhﬁ/ith friction. For this case, we have the simplest result,

force once. Drozdov and Brey’s algorithm uses 4 Gaussian
random numbers and K4a uses eight. For the extra effort,
algorithm K4a has a much flatter convergence curve.
Drozdov and Brey solved their one-dimensional problem on o o
a grid. We used Monte Carlo simulation, which can be gen@nd a simplified fourth-order factorization

eralized to any dimension.

[T.[D,T]]=0, (54)

The second possibility is to take e<(T+ D) — gl/beTgl/2eD 2 3eTl/2eDl/BeT L O (€).  (55)
T=Li+Lo, (45 we shall refer to this as algorithm K4c. This algorithm is
similar to K4b, with no force derivative necessary. If we

solve the trajectory equation by the fourth-order Runge-
Kutta algorithm, we obtain results as shown by solid tri-
angles in Fig. 2. Note that in contrast to previous algorithms,
this algorithm does not converge monotonically. It over-

1 shoots and converges from the top.
pi =pie "+ § E(l—e‘ZVE), (47 In the course of our calculations, we find that for each

algorithm, a more accurately determined particle trajectory
and expéD) evolves the particle trajectory forward in time will yield a flatter convergence curve. If we now further

The operator ex@) now corresponds to an Ornstein-
Uhlenbeck process ip;,

without friction decomposd® =D, + D, in algorithm K4c, with
pi =pi(e), D;=L,,
/ (48) (56)
qi:qi(e)' D2:L3+L4,

In this case, the simpler double commutator is pn
the double commutatdD,,[D,,D;]]=— v°D, is just a re-

[T,[D,T]1=[L,.[D,L,]]=— ¥?D, (49 statement of Eq(49). We can again factorize,
which does notrequire the derivative of the force. For this <D — l/6€D1 g1/2e[1~ e2y?/72]Dp 213D o112 1~ €2y2172]D
choice, we need to switcli< D in schemeA and slightly
modify it as follows: x el/6P14 O(€d). (57)
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The friction evolution &°1 rescales the momentum, preservingalgorithms for solving the Langevin equation in
, - stochastical mechanics. A key step in deriving a fourth-order
pi =pie 7, (58) Langevin algorithm is our treatment of the double commuta-

tor term through successive use of normal ordering. The re-

. . . : L sulting algorithm (28) is computationally demanding, but
This way of solving the trajectory with friction doubles the |- is rewarded by a very flat convergence curve, virtually

number of trajectory calcu_laltiolns, but also further flattens theeliminating the step-size dependent error. Future use of this
convergence curve. To minimize the number of force evalu'algorithm in other applications may lead to further simplifi-

ations, we use the Forest-Ruth symplectic algorithm to cale4tions and enhancements of its utility.

culate the trajectory. The results are shown as open triangles We also derived a number of fourth-order algorithms for

in Fig. 2. . ) , , solving the Kramers equation. The freedom in decomposing
Of the algorithms studied, Drozdov and Brey's algorithm e kemel operator and choosing a particular factorization

makes maximum use of analytical knowledge and is very.peme jllustrates the power of this approach. It is difficult to
efficient. The improvement we suggested, algorithm Kdaggq these global structures from just doing Taylor expan-
with twice the number of Gaussian random numbers, S€EMEJHns. One advantage of our simulation approach is that we
to double the range of the convergence. Our new algorithmg e ot restricted to solving the Kramers equation in one
K4b and Kac, while requiring two trajectory determinations, gmensjon. We can solve it in any dimension. Our use of the

have no need of evaluating the force derivative. All thes§ amers equation is also only illustrative, one can apply this

algorithms serve to illustrate the power of the factorizationyehaq of operator factorization to other stochastic equations
method. While the diligence of Hershkovitz is rewarded with ¢ 1 oo own interest.

just a single fourth-order algorithm, we can survey the form  is gpserved in solving both equations that the step-size
of the evolution operator and derive many fourth-order algo—or is reduced by solving the trajectory more exactly. Dif-

rithms. ferent fourth-order algorithms for solving the trajectory
equation can yield different convergence curves. One should
V. SUMMARY AND CONCLUSIONS therefore explore the effect of using fourth-order algorithms

In this paper, we have shown how the method of operatoPther thgn Runge-Kutta in implementing any of the above
factorization can be applied to the Langevin equation to geStochastic algorithms.
rive a practical fourth-order algorithm. This method of fac-
torizing an evolution operator of the fornf(®*® |eads to
unitary algorithms for solving the Schdinger equation in This research was funded, in part, by the U. S. National

guantum mechanicssymplectic algorithms for solving Science Foundation Grant Nos. PHY-9512428, PHY-
Hamilton’s equations in classical mechanics, amofm- 9870054, and DMR-9509743.

and éP2 again evolves the trajectory forward for time
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