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Fourth-order algorithms for solving the multivariable Langevin equation
and the Kramers equation
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We develop a fourth-order simulation algorithm for solving the stochastic Langevin equation. The method
consists of identifying solvable operators in the Fokker-Planck equation, factorizing the evolution operator for
small time steps to fourth order, and implementing the factorization process numerically. A key contribution of
this paper is to show how certain double commutators in the factorization process can be simulated in practice.
The method is general, applicable to the multivariable case, and systematic, with known procedures for doing
fourth-order factorizations. The fourth-order convergence of the resulting algorithm allowed very large time
steps to be used. In simulating the Brownian dynamics of 121 Yukawa particles in two dimensions, the
converged result of a first-order algorithm can be obtained by using time steps 50 times as large. To further
demonstrate the versatility of our method, we derive two new classes of fourth-order algorithms for solving the
simpler Kramers equation without requiring the derivative of the force. The convergence of many fourth-order
algorithms for solving this equation are compared.
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I. INTRODUCTION

A stochastic differential equation of the form

ẋi5Gi~x!1hi j j j~ t !, ~1!

with Gaussian noise

^j i~ t !j j~ t8!&5d i j d~ t2t8!, ~2!

is used to describe a variety of physical and chemical p
cesses@1#. We will consider the case wherex denotes an
N-dimensional coordinate vector and study the equation
its equivalent Fokker-Planck form

]

]t
P~x,t !5LP~x,t ![F1

2
Di j ] i] j2] iGi~x!GP~x,t !. ~3!

The diffusion matrix is given byDi j 5hikhk j @1#. Even in the
Langevin case, where the diffusion matrixDi j is position
independent, it is difficult to derive numerical algorithms f
solving it beyond second order@2–6#. A direct Taylor expan-
sion @2# approach is laborious, giving no insight into th
overall structure of the algorithm and requires an eight te
expansion to achieve fourth-order accuracy@7#. Heretofore,
no fourth-order Langevin algorithm has been derived a
applied to systems of more than one particle.

The Fokker-Planck equation~3! can be formally inte-
grated to give

P~x,t !5etLP~x,0!5@eeL#NP~x,0!. ~4!

This equation can be solved by factorizing the short-ti
Fokker-Planck evolution operator eeL5ee(T1D) into exactly
solvable parts. While our method has no difficulty in deali
with a general but constant diffusion matrixDi j , to bring out
as clearly as possible the character of our approach, we
1063-651X/2000/63~1!/016703~7!/$15.00 63 0167
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consider the caseDi j 5d i j . The more general case can b
easily restored by the interested reader. ThusL consists of
two operators

T5
1

2
] i] i and D52] iGi~x!, ~5!

with implied summations. This idea of operator factorizati
is not new, and has been used to derive a number of sec
order Langevin algorithms@5,6#. We will briefly review the
basic idea in Sec. II. However, it is only recently that o
learns how to factorize operators of the form ee(T1D) to
fourth-order with positive coefficients@8,9#. All such fourth-
order factorizations require the evaluation of the dou
commutator†D,@T,D#‡, which is rather formidable at firs
sight. We will show in Sec. III, how this commutator can b
implemented judiciously to yield a fourth-order Langevin a
gorithm. To demonstrate the high-order convergence of
algorithm, we use it to simulate the Brownian dynamics
121 Yukawa particles in two dimensions, a system that
been studied extensively by Branka and Heyes@10# using
second-order algorithms.

To further demonstrate the utility of the factorizatio
method for solving stochastic equations, we derive syste
atically a number of fourth-order algorithms for solving th
Kramers equation in Sec. IV. Drozdov and Brey@11# have
used a similar factorization method to solve this equation
one dimension using grid points. Hershkovitz@7# has also
derived a fourth-order algorithm by Taylor expansion.
both cases, it is not obvious how their respective approac
can be generalized to the multivariable case. We give a
tailed comparison of all algorithms using Monte Carlo sim
lation, which can be easily generalized to any dimensi
Finally, we summarize our findings and present some c
clusions in Sec. V.
©2000 The American Physical Society03-1
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II. OPERATOR FACTORIZATION

When the operator eeT acts onP(x,t), it evolves the latter
forward in time according to thediffusionequation

]

]t
P~x,t !5

1

2
] i] i P~x,t !. ~6!

If $xi% is a set of points distributed according toP(x,t), then
the distributione time later can be exactly simulated by u
dating each point according to

xi85xi1Aej i , ~7!

where$j i% is a set of Gaussian distributed random numb
with zero-mean and unit variance.~For the general diffusion
matrix case, the above generalizes toxi85xi1AeDi j j j .)

When the operator eeD acts onP(x,t), it evolves the latter
forward in time according to thecontinuityequation

]

]t
P~x,t !52] i@Gi~x!P~x,t !#, ~8!

whereGi(x)P(x,t)5Ji(x) is the probability current density
with velocity field Gi(x). The continuity equation can als
be exactly simulated by setting

xi85xi~e!, ~9!

wherexi(e) is the exact trajectory determined by

dx

dt
5G~x!, ~10!

with initial condition xi(0)5xi .
Thus, if ee(T1D) can be factorized into products of oper

tors eeT and eeD, then each such factorization will give rise
an algorithm for evolving the system forward for timee. For
example, the second-order factorization,

e1/2eTeeDe1/2eT5exp@e~T1D !1O~e3!•••#, ~11!

leads to a second-order Langevin algorithm@5#

yi5xi1j iAe/2,

xi85yi~e!1j i8Ae/2, ~12!

wherej i andj i8 are independent sets of zero-mean unit va
ance Gaussian random numbers. For a second-order
rithm, it is sufficient to solve for the trajectoryyi(e) cor-
rectly to second order ine, e.g., via a second-order Rung
Kutta algorithm:

yi~e!5yi1eGi S y1
1

2
eG~y! D . ~13!

Alternatively, one has the factorization,

e1/2eDeeTe1/2eD5exp@e~T1D !1O~e3!•••#, ~14!

which yields the second-order algorithm
01670
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yi5xi~e/2!1j iAe,
~15!

xi85yi~e/2!.

Again, it is sufficient to solve the trajectory equationsxi(e/2)
and yi(e/2) correctly to second-order via the Runge-Ku
algorithm. Despite the appearance that this algorithm
quires solving the trajectory equation~10! twice, it can be
shown@6# that by expanding the two trajectories to secon
order and recollecting terms, one arrives at the second-o
Runge-Kutta Langevin algorithm@2–4#. However, the ca-
nonical form of Eq.~15!, with two evaluations of the trajec
tory, usually has a much smaller second-order error coe
cient.

The method of operator factorization thus appears to p
vide a systematical way of generating higher-order al
rithms. Unfortunately, Suzuki@12# proved in 1991 that, be-
yond second order, for any two operators,T and D, it is
impossible to factorize the evolution operator as

exp@e~T1D !#5)
i 51

N

exp@aieT#exp@bieD# ~16!

for any finiteN, without having some coefficientsai andbi
being negative. In the present context, since eaieT is the dif-
fusion kernel, a negativeai would imply that one must simu
late the diffusion process backward in time, which is impo
sible. Thus factorizations of the form~16! cannot be used to
derive higher-order Langevin algorithms.

III. A FOURTH-ORDER LANGEVIN ALGORITHM

The essence of Suzuki’s proof is to note that in order
obtain a fourth-order algorithm, one must eliminate thir
order error terms involving double commutators†T,@D,T#‡
and†D,@T,D#‡. With purely positive coefficientsai andbi ,
one can eliminate either one or the other, but not both. T
to obtain a fourth-order factorization with all positive coe
ficients, one must retain one of the two double commutat
Recently, Chin @9# has derived three such factorizatio
schemes, two of which were also found previously by Suz
@8#.

The form of the operatorsT and D, as given in Eq.~5!,
dictates that one should keep only the commuta
†D,@T,D#‡, which is at most a second-order differential o
erator. Since the velocity~or force! field G is usually given
in terms of a potential functionV(x),

Gi~x!52] iV~x!, ~17!

the double commutator has the form

†D,@T,D#‡5] i] j f i , j1] iv i , ~18!

where

f i , j[Vi , j ,kVk22Vi ,kVj ,k ,
3-2
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v i[
1

2
~2Vi , j ,kVj ,k1Vi , jVj ,k,k2Vi , j ,k,kVj !. ~19!

The indices onV indicate corresponding partial derivative
Since the operatorD requires solving for the particle’s tra
jectory, we must minimize its occurrence. This dictates t
we use a variant of Chin’s schemeB @9# to factorize

exp@e~T1D !#5expF e

2 S 12
1

A3
D TGexpS e

2
D DexpS e

A3
T̃D

3expS e

2
D DexpF e

2 S 12
1

A3
D TG1O~e5!,

~20!

where we have included the double commutator inT̃

T̃5T1
e2

24
~2A323!†D,@T,D#‡. ~21!

To obtain a fourth-order algorithm, we must simulate th
new term

expS e

A3
T̃D 5expF e

A3
T1

e3

24
~22A3!~] i] j f i , j1] iv i !G

~22!

correctly to fourth order. If we simply took allx dependent
terms in this operator as fixed, evaluated at the starting po
this operator would describe a nonuniform Gaussian rand
walk. However, this normal ordering would be correct on
to third order. To implement it to fourth order, we first d
compose it as

expS e

A3
T̃D 5expS e

2A3
TD

3expF e3

24
~22A3!~] i] j f i , j1] iv i !G

3expS e

2A3
TD 1O~e5!. ~23!

If f i , j is positive definite, normal ordering the middle oper
tor above, i.e., interpreting it as a nonuniform Gaussian r
dom walk with f i , j evaluated at the starting point, would b
correct to fourth order~actually to fifth order!. However, if
some eigenvalues off i , j were negative, we would not be ab
to sample the operator as a Gaussian walk. To avoid
possibility, we implement the normal order process
follows:
01670
t
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expS e

A3
T̃D 5expS e

2A3
TD

3N H expF e3

24
~22A3!~] i] j f i , j1] iv i !G J

3expS e

2A3
TD

5N H expF e

2A3
S 1

2
] i] jd i , j D1

e3

24
~22A3!

3~] i] j f i , j1] iv i !G J expS e

2A3
TD , ~24!

whereN denotes the normal ordering of all derivative ope
tors to the left. Since the left~and only the left! operator
exp(e/2A3T) is already normal ordered with respect to t
position-dependent operators in the middle term, the t
normal ordered exponentials can be combined to remove
restriction of a positive definitef i , j . Now, only the full co-
variance matrixC needs to be positive definite, which wi
always be the case fore sufficiently small. The final norma
ordered exponential describes a nonuniform Gaussian
dom walk with meanm i and covariance matrixCi , j :

m i52
e3

24
~22A3!v i , ~25!

Ci , j5
e

2A3
Fd i , j1S 1

A3
2

1

2D e2f i , j G . ~26!

To sample this random distribution we needAC, which we
can approximate correctly to fourth order as

~AC! i , j5A e

2A3
Fd i , j1

1

2S 1

A3
2

1

2D e2f i , j G . ~27!

Thus the entire factorization~20! can be simulated by settin

wi5xi1j iAe

2 S 12
1

A3
D ,

yi5wi~e/2!1j i8A e

2A3
,

zi5yi2
e3

24
~22A3!v i~y!1A e

2A3

3Fd i , j1
1

2S 1

A3
2

1

2D e2f i , j~y!Gj j9 ,

~28!

xi85zi~e/2!1j i-Ae

2 S 12
1

A3
D ,
3-3
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HARALD A. FORBERT AND SIU A. CHIN PHYSICAL REVIEW E63 016703
wherej i to j i- are four sets of independent Gaussian rand
numbers with zero-mean and unit variance.

As a severe test of the fourth-order convergence of
algorithm, we use it to simulate the Brownian dynamics
121 colloidal particles in two dimensions, with dimensio
less surface densityN/A50.5, interacting via a pairwise
strongly repulsive Yukawa potential

V~r !5
V0

r
exp@2l~r 21!#, ~29!

with l58. This system has been described and simula
extensively via second-order algorithms by Branka a
Heyes@10#. We will refer readers to this work for a detaile
description of the system and their algorithms. In Fig. 1
show the convergence of the potential energy at one par
eter setting as a function of the time step size used.~Compare
this figure to that of Fig. 6 of Branka and Heyes@10#.! The
linear and quadratic convergences are clearly evident.
two second-order algorithms used are as described by
~12! and~15!. These are referred to in Ref.@6# as algorithms
LGV2b and LGV2a, respectively.

When our fourth-order Langevin algorithm is imple
mented by using the standard fourth-order Runge-Kutta
gorithm to solve the trajectory equation~10!, we obtained
results as shown by open circles in Fig. 1. The variance
the potential energy increases abruptly at arounde50.0028
and the algorithm becomes unstable at largere ’s. The prob-
lem can be traced to the instability of the Runge-Kutta al
rithm itself in solving for the many-body dynamics.While th
trajectory evolution exp(eD) shouldalwaysdecrease the po
tential energy,

FIG. 1. The convergence of Langevin algorithms for simulat
the Brownian dynamics of 121 interacting colloidal particles in tw
dimensions. The equilibrium potential energy per particle is plot
as a function of the time step sizee used. Open diamonds ar
results using the first-order Langevin algorithm. Solid triangles a
solid squares denote results of the two second order algorit
LGV2a and LGV2b, respectively, as described in the text. Op
circles give results of our fourth-order Langevin algorithm using
standard fourth-order Runge-Kutta algorithm for determining
particle trajectory. The solid circles give results with improved t
jectory determination as discussed in the text.
01670
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dV

dt
5

]V

]x

]x

]t
52u¹Vu2, ~30!

this is no longer respected by the Runge-Kutta algorithm
larger time steps. The failure is due to the fact that Gauss
random walks can deposit particles so close together tha
velocity field is changing too steeply for the Runge-Ku
algorithm to integrate accurately. Each of these particles t
gets placed chaotically somewhere in the periodic box, of
again too near others, thus multiplying the number of p
ticles that will be moved erratically in the next iteration. A
time steps below but neare50.0028, the system can recov
the regular behavior after several to hundreds of iteratio
but only at the cost of increased variances and larger err
Thus the inaccuracy in the trajectory determination cau
the Langevin algorithm to fail prematurely.

To improve on this situation, we monitor the differenc
between the results of the standard fourth-order Runge-K
and the embedded second-order algorithm~13!. We use the
absolute value squared of this difference as a gauge of
fourth-order method, even though it is strictly only an err
estimate for the embedded second-order algorithm. If
value of this difference is larger than some tolerance~0.01 in
our case!, we reject the result of the Runge-Kutta and reco
pute the trajectory more accurately by applying our traj
tory algorithm twice at half the time step size. At small tim
steps, this incurs only a very small overhead. Even at a t
step of 0.004, only 3% of the trajectories have to be
evaluated. With this improvement, our fourth-order Lang
vin algorithm gives results as shown by solid circles in F
1. ~We also applied similar monitoring processes to LGV
and LGV2b by comparing the results of their first- an
second-order Runge-Kutta algorithms.! The step-size depen
dence of the fourth-order algorithm is remarkably flat, a
yielded the converged results of the lower algorithms at s
sizes nearly 50 times as large.

IV. SOLVING THE KRAMERS EQUATION

While we are not aware of other multivariable fourt
order Langevin algorithms, there are two fourth-order alg
rithms in the literature for solving the Kramers equation
one dimension@7,11#. Despite its more complicated appea
ance, the Kramers equation is actually simpler to solve t
the Langevin equation. To illustrate the versatility of o
operator approach, we will derive systematically a numbe
fourth-order algorithms for solving this equation. Followin
Hershkovitz@7#, we write the Kramers equations in the for

q̈i5Fi~q!2gq̇i1z i , ~31!

where the force is derivable from a potential,Fi(q)5
2] iV(q). A key simplification follows from the Hamilton
form of the equation

q̇i5pi ,

ṗi5Fi~q!2gpi1z i , ~32!
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where z i is the zero-mean Gaussian random noise ve
with variance

^z i~ t !z j~ t8!&5
2

b
gd i j d~ t2t8!. ~33!

The advantage here is that the noise only affects the mom
tum, and classically, the momentum commutes with
position-dependent force term. We will study the case of
bistable potential

V~q!5q422q2, ~34!

at parameter valueg51 andb55. For each algorithm con
sidered below, starting withq(0)50 and p(0)50, we
evolve the system to a finite time oft56. For comparison,
we note that the total energy approaches the equilibr
limit of E520.8 at infinite time.

Hershkovitz@7# has formally derived a fourth-order algo
rithm for solving Eq.~32! using Taylor expansion, but he ha
given an explicit implementation only for one dimension.
one dimension, each update of his algorithm requires
determination of the particle trajectory to fourth order, fo
Gaussian random variables, and one evaluation of the de
tive of the force. The results of using his algorithm to evol
the system energy as a function of the time step sizee is
shown as solid squares in Fig. 2. The standard fourth-o
Runge-Kutta algorithm, which requires four evaluations
the force, is used to solve for the particle’s trajectory.

To derive factorization algorithms in any dimension, w
note that the probability density function evolves accord
to

Ṗ~q,p,t !5LP~q,p,t !, ~35!

FIG. 2. The convergence of various fourth-order algorithms
solving the Kramers equation in one dimension. The energy ca
lated is at a finite time oft56 with system parametersb55 and
g51. Solid squares: Hershkovitz’s algorithm. Solid and op
circles: Drozdov and Brey’s algorithm and K4a. Solid and op
diamonds: two variants of algorithm K4b. Solid and open triangl
two variants of algorithm K4c. See text for algorithm descriptio
The fitted lines all have leading terme4 or higher. Error bars are
comparable or smaller than the size of plotting symbols.
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where

L5
g

b
¹p

21g¹p•p2p•¹q2F~q!•¹p[L11L21L31L4 .

~36!

To factorize the evolution operator exp(eL) for small e, we
decomposeL into exactly solvable partsT plus D and apply
known fourth-order factorization schemes@8,9#. Drozdov
and Brey @11# have recently initiated such a study of th
Kramers equation. In this paper, we have done an exhaus
search of all possible choices of solvableT andD such that
†D,@T,D#‡ or †T,@D,T#‡ is also solvable. We use the wor
‘‘solvable’’ here loosely to denote either analytical result
trajectory determination. For example, the effect
exp@e(L21L31L4)# on the distribution functionP(q,p,t) cor-
responds to evolving the particletrajectory forward in time
with a linear friction. Since this can be computed using a
trajectory integration algorithm, we considerL21L31L4 to
be solvable. While there are many solvable choices forT and
D, such as the sum of any twoLi , few resulting double
commutators are simple. The possible choices forT and D
are dramatically reduced if we insist that one of their dou
commutators is also structurally similar to the originalT or
D. There are then only three possibilities.

The first possibility is to take

T5L11L21L3 ,
~37!

D5L4 ,

which is the choice originally made by Drozdov and Br
@11#. The Green’s function corresponding to exp(eT) is
known analytically@11#, and can be sampled via

pi85pie
2ge1m i ,

~38!
qi85qi1pi~12e2ge!/g1n i ,

where corresponding to each pair of (pi ,qi), (m i ,n i) is a
pair of correlated Gaussian random numbers given by

m i5j iA1

b
~12e22ge!,

~39!

n i5
1

g S 12e2ge

11e2geD m i1j i8A 1

bg2 F2ge24S 12e2ge

11e2geD G .
Here,j i andj i8 are again two independent Gaussian rand
numbers with zero-mean and unit variance. Note that a
given step sizee, all the above functions involving e2ge,
etc., only need to be evaluated once at the beginning of
simulation. The operator exp(eD) can be exactly simulated
by

pi85pi1eFi~q!. ~40!

r
u-

:
.
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As we will see, this choice is clever because there is
trajectory equation to solve. The double commutator
quired for a fourth-order factorization is

†D,@T,D#‡5†L4 ,@L3 ,L4#‡52¹quFu2
•¹p ~41!

which is justD but with a force¹quFu2. For each choice ofT
andD, there are three generic schemes@9# for factorizing the
decomposed operator exp@e(T1D)# to fourth order with
purely positive coefficients. For this choice ofT andD, we
found that schemesA and B of Ref. @9# give rather similar
results, so we will only present results for schemesA andC.
SchemeA andC are, respectively,

ee(T1D)5e1/6eDe1/2 eTe2/3eD̃e1/2eTe1/6eD1O~e5!, ~42!

and

ee(T1D)5e1/6eTe3/8eDe1/3eTe1/4eD̃e1/3eTe3/8eDe1/6eT1O~e5!,
~43!

where

D̃5D1
e2

48
†D,@T,D#‡. ~44!

The results of these two algorithms are shown as solid
open circles in Fig. 2. We will refer to these two as alg
rithms, Drozdov and Brey and K4a, respectively. Each al
rithm evaluates the force three times and the derivative of
force once. Drozdov and Brey’s algorithm uses 4 Gauss
random numbers and K4a uses eight. For the extra ef
algorithm K4a has a much flatter convergence cur
Drozdov and Brey solved their one-dimensional problem
a grid. We used Monte Carlo simulation, which can be g
eralized to any dimension.

The second possibility is to take

T5L11L2 , ~45!

D5L31L4 . ~46!

The operator exp(eT) now corresponds to an Ornstein
Uhlenbeck process inpi ,

pi85pie
2ge1j iA1

b
~12e22ge!, ~47!

and exp(eD) evolves the particle trajectory forward in tim
without friction,

pi85pi~e!,
~48!

qi85qi~e!.

In this case, the simpler double commutator is

†T,@D,T#‡5†L2 ,@D,L2#‡52g2D, ~49!

which does notrequire the derivative of the force. For th
choice, we need to switchT↔D in schemeA and slightly
modify it as follows:
01670
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ee(T1D)5e1/6eTe1/2e[12e2g2/72]De2/3eTe1/2e[12e2g2/72]De1/6eT

1O~e5!. ~50!

The effect of the double commutator simply reduces the ti
of the trajectory evolution. This algorithm, which will b
referred to as K4b, requires two trajectory determinations
no derivative of the force and only three Gaussian rand
numbers. The trajectory can be computed using the stan
fourth-order Runge-Kutta algorithm with four force evalu
tions, or the fourth-order Forest-Ruth symplectic algorith
@13# with three force evaluations. The results from these t
cases are plotted as solid and open diamonds, respective
Fig. 2. For this choice ofD, we did not bother with factor-
ization schemesB or C, since either would have require
more than two trajectory determinations.

The third possibility is to take

T5L1 , ~51!

D5L21L31L4 , ~52!

where now exp(eT) is just a Gaussian process inpi ,

pi85pi1z iAe, ~53!

and exp(eD) evolves the particle trajectory forward in tim
with friction. For this case, we have the simplest result,

†T,@D,T#‡50, ~54!

and a simplified fourth-order factorization

ee(T1D)5e1/6eTe1/2eDe2/3eTe1/2eDe1/6eT1O~e5!. ~55!

We shall refer to this as algorithm K4c. This algorithm
similar to K4b, with no force derivative necessary. If w
solve the trajectory equation by the fourth-order Rung
Kutta algorithm, we obtain results as shown by solid t
angles in Fig. 2. Note that in contrast to previous algorithm
this algorithm does not converge monotonically. It ove
shoots and converges from the top.

In the course of our calculations, we find that for ea
algorithm, a more accurately determined particle traject
will yield a flatter convergence curve. If we now furthe
decomposeD5D11D2 in algorithm K4c, with

D15L2 ,
~56!

D25L31L4 ,

the double commutator†D1 ,@D2 ,D1#‡52g2D2 is just a re-
statement of Eq.~49!. We can again factorize,

eeD5e1/6eD1e1/2e[12e2g2/72]D2e2/3eD1e1/2e[12e2g2/72]D2

3e1/6eD11O~e5!. ~57!
3-6
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The friction evolution eeD1 rescales the momentum,

pi85pie
2ge, ~58!

and eeD2 again evolves the trajectory forward for timee.
This way of solving the trajectory with friction doubles th
number of trajectory calculations, but also further flattens
convergence curve. To minimize the number of force eva
ations, we use the Forest-Ruth symplectic algorithm to c
culate the trajectory. The results are shown as open trian
in Fig. 2.

Of the algorithms studied, Drozdov and Brey’s algorith
makes maximum use of analytical knowledge and is v
efficient. The improvement we suggested, algorithm K
with twice the number of Gaussian random numbers, see
to double the range of the convergence. Our new algorith
K4b and K4c, while requiring two trajectory determination
have no need of evaluating the force derivative. All the
algorithms serve to illustrate the power of the factorizat
method. While the diligence of Hershkovitz is rewarded w
just a single fourth-order algorithm, we can survey the fo
of the evolution operator and derive many fourth-order al
rithms.

V. SUMMARY AND CONCLUSIONS

In this paper, we have shown how the method of opera
factorization can be applied to the Langevin equation to
rive a practical fourth-order algorithm. This method of fa
torizing an evolution operator of the form ee(A1B) leads to
unitary algorithms for solving the Schro¨dinger equation in
quantum mechanics,symplectic algorithms for solving
Hamilton’s equations in classical mechanics, andnorm-
on

01670
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y
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preservingalgorithms for solving the Langevin equation
stochastical mechanics. A key step in deriving a fourth-or
Langevin algorithm is our treatment of the double commu
tor term through successive use of normal ordering. The
sulting algorithm ~28! is computationally demanding, bu
one is rewarded by a very flat convergence curve, virtua
eliminating the step-size dependent error. Future use of
algorithm in other applications may lead to further simpli
cations and enhancements of its utility.

We also derived a number of fourth-order algorithms
solving the Kramers equation. The freedom in decompos
the kernel operator and choosing a particular factorizat
scheme illustrates the power of this approach. It is difficult
see these global structures from just doing Taylor exp
sions. One advantage of our simulation approach is that
are not restricted to solving the Kramers equation in o
dimension. We can solve it in any dimension. Our use of
Kramers equation is also only illustrative, one can apply t
method of operator factorization to other stochastic equati
of one’s own interest.

It is observed in solving both equations that the step-s
error is reduced by solving the trajectory more exactly. D
ferent fourth-order algorithms for solving the trajecto
equation can yield different convergence curves. One sho
therefore explore the effect of using fourth-order algorith
other than Runge-Kutta in implementing any of the abo
stochastic algorithms.
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