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Efficient dynamic importance sampling of rare events in one dimension
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Exploiting stochastic path-integral theory, we obtain simulationsubstantial gains in efficiency for the
computation of reaction rates in one-dimensional, bistable, overdamped stochastic systems. Using a well-
defined measure of efficiency, we compare implementations of “dynamic importance samplglS)
methods to unbiased simulation. The best DIMS algorithms are shown to increase efficiency by factors of
approximately 20 for a kT barrier height and 300 forkT, compared to unbiased simulation. The gains
result from close emulation of natur@inbiased, instantonlike crossing events with artificially decreased
waiting times between events that are corrected for in rate calculations. The artificial crossing events are
generated using the closed-form solution to the most probable crossing event described by the Onsager-
Machlup action. While the best biasing methods require the second derivative of the pdtestiting from
the “Jacobian” term in the action, which is discussed at lepgtlgorithms employing solely the first deriva-
tive do nearly as well. We discuss the importance of one-dimensional models to larger systems, and suggest
extensions to higher-dimensional systems.
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[. INTRODUCTION The present paper is explicitly computational, or “simu-
lational:” the sole objective is to develop efficient simulation
The rapid computation of the transition rate by numericalmethods for one-dimensional systems which are directly or
simulation for an overdamped stochastic particle confined téndirectly applicable to large systems. We concern ourselves
a one-dimensional double-well potenti&ig. 1) is a decep- ©only with the “dynamic importance sampling'(DIMS)
tively simple problem, and of crucial importance to making methods developed by Wodl8] and Zuckerman and Woolf
progress in multidimensional systems. While straightforward 14]: which generate ensembles of fully independent transi-
unbiased simulation ultimately yields the rate to any desiredion trajectories. We hope and believe our results will be of
precision(e.g.,[1]), it requires the simulator to endure many prac.t|call use in other multidimensional 'methods, but such
times the waiting period between the rare transition eventgpphcathns,f’:\re beyond the scope of this work. Rather, the
[Fig. 2@]. Such unbiased simulation, moreover, is utterlyI bottom-line™ questions we attempt to answer are as fol-

: . . : ows: (i) Within the DIMS framework, what are the most
impracticable for larger systems—particularly blomoleculeseﬁcicient methods for rate computat®iii) Using a well-

posgessing thousands of atpms, for which simulating a W.aitdefined measure, how efficient are these methods compared
ing time of 1 ms could require tens or hu.ndreds of Centuriey,  \npiased simulatiohWe will also discuss the maximum
of computer time. The well-known analytic methods for rateefficiency possible using DIMS and related methods in one-

computations in simple systenig] are also insufficient for  yimensionat1D) problems, as well as attempting to extrapo-
high-dimensional, rough energy landscapes because mape 1o larger systems.

barriers and metastable states of unknown geometry inter- Achieving efficiency for a 1D problem using dynamic im-

cede along multiple unknown pathways between the tWa,ortance sampling, as we will show, requires the apprecia-

states of interestsee, e.9.[3,4]). _ tion of a variety of theoretical results—particularly relating
The inadequacy of both analytic methods and straightfor;y giochastic path integrals. The review by Morten&esy
ward simulation for large biochemical systems points di-

rectly to the need for importance sampling and related meth-

ods [5-18. Importance sampling techniques focus 10
computational effort on transition events, typically generat-
ing an ensemble of transition trajectories from which to es-
timate rates and/or paths. Yet despite the early successes and 5

formal appeal of these methods, a quantitatively successful
computational tool for large protein systems witt Hloms

has not been achieved. We believe the apparently trivial bi-
stable one-dimensional system must be completely under-
stoodin a simulation contexbefore substantial progress can 0

U(x) | k,T

-1.0 0.0 1.0

be expected for importance sampling in larger systems. X
FIG. 1. The symmetric bistable potential studied in the text, Eq.
*Email address: dmz@groucho.med.jhmi.edu (5.1), shown for a barrier height &,=7kgT and length parameter
TEmail address: woolf@groucho.med.jhmi.edu I =1, the unit of thex axis.
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FIG. 3. Average simulation step sizeg;{x;_;) from many

unbiased crossing events generated by(Ed). A typical crossing
event is shown in Fig.®). Solid circles are the data averaged from
unbiased crossing events orflyr the potential of Eq(5.1), with a

FIG. 2. Ti | d . ts. A biased traiect barrier heighte,=7kgT. The solid line is the most probable path
L Ime sca PTS an cr_ossmg events. An un |ase_ rajec_orxf Eq. (3.6) based on the Onsager-Machlup action with the stochas-
exhibits two vastly different time scales: for a substantial barrier,

. N . tic correction (Jacobiain term; the dashed lines depict the uncor-
height, the waiting time between events greatly exceeds the time forrected Onsager-Machlup extremal path, Ej7) with C=0; and
asingle crossing eventa) The t(?p plot shows an unbiased t.rajec- the dot-dash lines show the uncorrected Onsager-Machlup path with
tory of an overdamped particle in the double well of Eg11), with

) . - . ] a nonvanishing constant—i.e., EQ.(3.7) with C=
a barf'er height OEr?kBTZ (b) The bottom_plo_t isolates a s_m_gle —2kgTU"(0)/(my)2. The statistical error in the simulation data
crossing event from the trajectory {g) and highlights the rapidity

S ’ . may be gauged by the noise in the data. The dataxjor0.6 are
g?tiﬁgnbeoﬁogltgg (I:srotizr:gng;ﬁligg:gégg ;chg‘i) A unltaffected “artifactually” by the procedure of extracting crossing

events from long trajectories; see the text, however. The data of this
figure only were generated using the parametkts=10"%y~1,
vy 1=1,m=10.98, anckgT=249.462, largely following Ref48],
[14]; all lengths are given in units of the length schle Eq. (5.1).

5 . .
136.3 136.4 136.5 136.6
Time: £ y/ 1000

and Gardiner's booK20] give introductions to stochastic
integrals—of which Ito’s and Strantonovich’s are the most
basic types. Historically, Onsager and Machlup first formu-
lated a stochastic path integral to describe overdamped

Brownian dynamicg21]. Since then, uniqueness and othery,
formal aspects of the Onsager-Machlup formulation hav

The paper is organized as follows. We first review the
sic formalism for overdamped Langevin dynamics and im-
: . Ef)ortance sampling in Sec. Il. Section Ill introduces pertinent
heen discussed by a variety of wquéesg..,[zz_.za). In- ath-integral results based on the Onsager-Machlup action,
deed, formal properties of stochastic functional integrals alsq 4 reviews the so-called “Jacobian” term in some detail, as
play an important role in the present investigation. Thesg, o 45 presenting new numerical data. Section IV discusses
integrals have been used, for example, to address the qUEgethoqg for producing an efficient biased ensemble of tra-

tion of the most likely crossing evefisee Figs. @) and 3 o tories, while Sec. V gives the actual results from the bi-
[29-39. Related functional integral approaches directly ad-5ing technique. Section VI addresses the relevance of our

dress the Smoluchowskoverdamped Fokker-Planclequa- oqits to multidimensional problems. Finally, conclusions
tion for the evolution of the entire probability distribution and a summary of the results are given in Sec. VII.
[22,40,29,41,4p

Path-integral formulations lead naturally to the notion of
an average path, which is critical to the present discussion— Il. OVERDAMPED LANGEVIN DYNAMICS AND
even in one dimension. While the geometric pathway for IMPORTANCE SAMPLING

barrier crossing is trivial in a one-dimensional potential like  This section briefly reviews the fundamental stochastic
that of Fig. 1, the “speed'{average displacemerat every  dynamics equations and the dynamic importance-sampling
pOSition constitutes another dimension of the average path—formansm for rate Computations_ We consider So|e|y sto-
and a critical one to the present discussion. Such 1D averaggastic dynamics governed by the overdamped Langevin
paths(average speeds and distributipmeere considered by equation in the presence of Gaussian white noise. In the no-

Dykman and co-workerigt3] and by Luchinsky and McClin-  tation of[14], such “Brownian dynamics” are described by
tock [44], both theoretically and experimentally. Zuckerman

and Woolf[14] considered average paths in higher dimen- dx/dt=f/my+R(t), (2.7
sions, computationally, while the problem of finding optimal

reaction paths in multidimensional systems has a long hiswhere x is the configurational coordinate,is time, f(x)
tory (e.g.,[45-48,6,3T. =—-VU(X) is the forcem s the particle’s “mass,"y is the
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friction constant, and the noidR is assumed Gaussian with Eq. (2.3). Naturally, trajectories generated from a biased

zero mean and variance given according to simulation are distributed not according@ but according
Sy , to some other functionD(¢). This alternative distribution
(RIOR(L"))=(ZkgT/my) 8(t—t"), (2.2 can be used to compute probabilities and, hence, transition

where kg is Boltzmann’s constant andl the temperature. rates. One fir;t requires the co'nditionall probability
Equation(2.1) is presumed to be simulated according to thePB(t|O;X°) to be in the final sta‘FeE{) attimet haymg started
“Ito-like” (Eulen discretization49,50) at xg at t=0, which can be written in two equivalent ways

for nonvanishingD,

Xj+1:Xj+(fj/m’y)At+AXR, (23) _
~ Q)
where the subscriptsindicate quantities evaluated at time PB(tn|O;XO)2f d§Q(§)hB(Xn)=J D(Z)d§mhs(xn).
jAt=t;, so thatf;=f(x;), andAxg is chosen from a Gauss- 2.8

ian distribution of zero mean and variance
where dgzﬂ?zldxj, and hg(x) is an indicator function
which is unity forx in stateB and zero otherwise. The ap-
The discretization(2.3) is considered to be Ito-like because Proximation here is simply the neglect of the discretization
the force—assumed to be constant over the inteitalis  ©ffor. In a biased simulation, the integral is estimated by
evaluated at the beginning of the interval; a loosely termed

“Stratonovich-like” approach would instead consider, for- R Q)
ma“y [29,24,2@, PB(tn|O’X0)_ M §EZSD D(g) hB(Xn)r

a?=2AtkgT/my. (2.9

(2.9

fj— (002, (2.9 where Sy is a sampling ensemble &fl trajectories chosen

according toD, and where normalization,d{ D({)=1, is

We note that discretizations more sqph|st|cated than th(raequired. Note that the functiob must be known for the
Euler scheme(2.3) are well known—i.e., Runge-Kutta

. . .. simulation to be performed, just as EqR.6) and (2.7) are
schemes of various ordef$1-53. However, in explicit AU, . . ) .
; . . the distributions from which unbiased steps and trajectories
tests orrate calculations onlyor our simple systeniFig. 1), : ; .
. are sampled. Ultimately, rates are estimated by computing
the lowest-order Runge-Kuttdleun method permitted only ; L e /
: - . . the slope of the linear regime in a probability vs time plot, as
a marginally larger time step—without losing accuracy— yic < ccod in Sec. IV
which did not justify the additional computational expense B
(data not shown Larger time steps tend to produsgstem-
atic errors, in addition to the easier-to-diagnose statistical lll. PATH INTEGRALS AND MOST PROBABLE
error, regardless of the algorithib3]. Rate calculations, CROSSING EVENTS
moreover, may be especially sensitive. We also note that
methods of higher-order than the Heun algorithm are not o
interest here, because computing higher-order derivatives

Achieving efficiency for a 1D problem using dynamic im-
ortance sampling requires a variety of theoretical results for

¢ | tv for the | bimolecul ¢ i ochastic path integrals and their “instantons.” These ap-
extremely costly Tor the larger bimolecuiar Systems towarG, o,ches have been used, for example, to address the ques-
which the present research is ultimately oriented. Thus

: . . >tion of the most probable crossing evéaée Figs. ) and
given our focus on rate computations and our interest iny vk can be derived in a straightforward way from the
large systems, there seems little reason to employ anythin 'ntinuum Onsager-Machlup action used in the path-integral
more complicated tha}n thg Euler proced(@e3). . formulation [29,31,33—3% In this section we discuss the
It is useful to consider, in parallel to the dynamical algo'Onsager-Machlup action and its optimization at somewhat
_rithm, the equival_ent probabilistic_ d_esc_ription of the dy_n_am'greater length than is required for the computational aims of
ICS (2'?.’).' In paft'cu'aﬁ _the explu:lt_smgle-step transition g paper. This is because, beyond the theoretical interest in
probability density described above is given by the action, and especially in the so-called “Jacobian” term,
_ _ some older literature deserves a fresh look and detailed dis-
XA —[(Xj+17X)) cussion
—(f; Imy)At]%/262). (2.6) The path-integral story begins with Onsager and Machlup
(OM) [21] and their well-known action for weighting con-
Thus the probability density for a whole trajectory tinuum representations of overdamped Brownian trajectories.
=(Xg,X1,X2,...,Xp) IS given by the product of the single- In that formulation, acontinuoustrajectory—presumably in-
step densities: tended to represent a smoothed stochastic trajectory—is
weighted according to

Tar(Xj11/%) = (27a?) ~ 12

n—-1

QO =TT Taxjsalx))- 2.7
=0 (3.9

probability o exp{ - (kBTTyJ

Importance sampling is effect¢8,14] by performingbi-
asedsimulations which follow a prescription different from where
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L (b scribes a rapid transition, as illustrated in Fig. 2. To appre-
S=3 J dt L(t), (3.2 ciate this, note that by taking either the positive or negative
f square root foxo™ in Eq. (3.6), the velocity of ascent is
and seen to be the same as for descent. Yet this feature was
apparently not appreciated until later; see below. It will,
2 however, prove central to our goal of obtaining efficiency in
: (3.9  simulations. Below, we also address the computational cost

associated with computing a second derivative of the poten-

and wherex=dx/dt and f(x)=—dU/dx. In their original  tial. .
paper [21], Onsager and Machlup applied the Euler- It is worth noting that although the extremal path, for-

. )
X_ —
my

Lom(t;x,X)=

Lagrange equation for functional minimization' ma”y, results wherc <0 in Eq(36) [from m|n|m|Z|ng Eq
(3.2 with Eq. (3.5)], one cannot necessarily take the constant
aL d dLc to be negative or even to vanish. Observe that the left-hand
gtk Y (3.4 side of Eq.(3.6) must be positive. Thus, in regions of rela-
tively large positive curvature—such as near a well
to the case of a single harmonic well. bottom—the second term of the right-hand side could exceed

Subsequent contributions amended the original Onsagethe first in magnitude, requiring>0. While this observa-
Machlup formulation of the action, Eq¢3.2) and (3.3. tion appears to be immaterial to our investigation of the
First, Stratonovich realized in 19622] that if one starts Simple bistable wel(see Fig. 3 one could imagine the posi-
from the product of discrete-step probability densiti2s?) tivity of the constant having physical consequences in a more
and determines the continuum limit in a rigorous fashion, arffomplicated potential with metastable intermediate states.
additional term arises in the integral representation of the Other features of the most probable crossing have also
action (3.2), so that instead of Eq3.3), the effective La- Proved of great interest. Dykman and Krivoglaz made impor-

grangian takes the Onsager-Machlup-Jacol¢@klJ) form,  tant observations in their study of transitions in nonequilib-
namely rium systems using an uncorrected Onsager-Machlup func-

tional integral, in 197930]. In a series of papers begun in
B 1989 and aimed primarily at systems with colored noise,
Loms= EOM“‘WU”(X)- (3.5  Bray, McKane, and co-workerf31,33—36 also provided
some insights pertinent to the case of white nevhoutthe
This result was confirmed by Backt al. [25]. In other  correction term(While the latter group included the Jaco-
words, the original description by Onsager and Machlup wa®ian term formally, it was omitted from their analysis of the
incomplete for simulations performed according to the Ito-low-temperature limi). Both groups derived essentially a
like algorithm (2.3). Note that this new term is proportional special case of Graham’s res(® 6)
to the curvature of the potential and is dominant at a barrier
top, for any nonzero noise amplitud&$0). [xOM]2= m
In the mid-1970s Grahaf#0,29 rederived the term as a ¢ my
Jacobian resulting from changing variables from the fluctua-
tion coordinate to the configuration coordinate—assuming avhereC is again a constant of integration which vanishes for
Stratonovich-like discretizatio(2.5). Thereafter, apparently, the most probable case. It also is equivalent to Graham’s
the term has been viewed as a Jacobian, although the propfesult at inflection points of the potential. Bray, McKane, and
ety of that name in a practicalmulationcontext is question- c0-workers noted the crucial fact mentioned above: for sys-
able since, to the authors’ knowledge, only the Ito discretiteéms with detailed balanc@.e., time-invariant potentials
zation(2.3) is usable precisely, and that results in a constanthe ascent described " is equally rapid as, and symmet-
Jacobian. More appropriate terminology might be the “sto-ric with, the descenfsee Fig. 20)]. This point is also im-
chastic correction term.” plicit in the work of Dykman and Krivoglaz. Furthermore,
Both Stratonovich and Graham indicated, importantly,both groups recognized that paradoxically the external trajec-
that the inclusion of the stochastic-correction/*Jacobian”tory (C=0) never occur$30,35 because an infinite amount
term led to a path-integral representation of the probabilityof time is required to reackor descend froma parabolic
distribution consistent with the overdamped Fokker-PlancKarrier top. This may be seen by computing the barrier cross-

2

+C, (3.7

(Smoluchowski equation. ing time,
Graham also derived the most probable crossing event
associated with the corrected action using the Euler- fo= ftfdtz Xfﬂ 3.9
Lagrange equatiofB.4), namely[29], b t x Xo '
OMI2 f(x) 2_ 2kgT U (x)+C 3.6 Such apparently formal observations belie the fact that
[xT7= my| (my)? x)+C, (38 optimal paths have proven useful in a variety of recent stud-

ies. Dykman et al. determined weightedistributions of
whereC is a constant of integration. This result is called anpaths(including the optimalleading to large, nontransition-
“instanton” by field theorists(e.g., [54]) because it de- ing fluctuations in a time-oscillatory potentigd5]. Olender
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and Elbe{37] discussed the Onsager-Machlup extremal barable path, together with a threshold at which the biasing is
rier crossing, and employed a discrete version in developingriggered.

an algorithm for steepest-descent path-finding between

known initial and final states. Biest al. [38] discussed ex- A. Motivation

tremal crossings in the context of rate calculations for fluc- Computing reaction rates bv simulation requires the gen-
tuating barriers. Elber and Shalloway suggested a temperae_ration gf angensemble of appr)gpriately Weigrg[ed trajectgries
ture dependence for the integration constant of [B8q/) to

: 2 e (or a correspondingly long trajectgryexhibiting many
overcome th? dlvergent-crossmg tlme_d|ff|cu|ty, a_nd Successf)arrier-crossing events. While many sampling methods are
fully distinguished optimal paths for different regimes of a

) n capable of generating a suitable ensemble of trajectories in a
effective temperature parame{@9]. _ _ long period of time, it is no easy task to rapidly generate a
Both in order to confirm the analytic results reviewed |y importantensemble—containing highly probable cross-
above and to gather data that could usefully inform our efjng”events—even for an apparently trivial potential like a
forts to gain efficiency in rate computations, we studied nUsymmetric, one-dimensional double well. The reason is not
merically generated crossing events. We performed veryard to see. In an unbiased simulatithd), each step is
long unbiased simulations of a particle moving according to:hosen from a Gaussian distribution centered at the deter-
Eqg. (2.3 in a one-dimensional bistable welFig. 1) and  mjnjstic step in the direction of the force. Ferossing events
“snipped out” a large number of crossing events like the\hich climb over a barrier, a trajectory necessarily takes
one shown in Fig. @). Binning the observed step sizes of steps in a directiompposingthe force. As the center of the
only the crossing events according to theposition, Fig. 3 Gaussian distribution is always downhill from the present
shows that the average step SiZRs—X;_1)crossClosely fol-  gtep, the typical step in thescentof a crossing event is in
low the prediction(3.6) which includes the stochastic correc- the “tail” of the Gaussian distributiorimore or less so de-
tion term. The two theoretical predictions lacking the correCpending on the parameters entering into the width As the
tion term—namely Eq(3.7) with two values forC—appear  fyj| probability for a crossing event is then a product of steps
far less adequate by contrast. We note that the binned distrin the tail of the distribution, it seems clear that only small
butions appear to be highly Gaussian so that the average afglctuations about the most probable crossing event will oc-
most probable values essentially coincide. cur. Large fluctuations away from the most probable path
A comment on the data fdx[=0.6 in Fig. 3 is in order. |l be exponentially damped out, as they require steps yet
The substantial turn up of the data for-0.6 is certainly an  fyrther out in the tail of the distribution.
artifact of isolating crossing events: by definition, the final  Qur interest in the most probable path for a crossing
step or steps are right moving. Thus, if one defines crossingyent, then, is hardly surprising: to generate an “important”
events to end when the value 0.7 is exceeded, rather than Oi§|beit biasetlensemble of trajectories, one must hew to the
as in the figure, the tum up occurs for correspondinglymost probable path. This we shall do explicitly below, using
smallerx values. Interestingly, while the same argument apthe results quoted in Sec. III.
plies to the left side of the figure, the data are not similarly Byt once one knows the most probable path for a single
affected. Indeed, the asymmetry between the left and righ¢rossing event, the DIMS method still requires the genera-
edges of the plot is striking. While, at present, we can offefjon of such events at appropriate intervals. That is, there is
no convincing explanation, it is worth noting that the an ideal distribution of waiting times between events in a
“OM ~+Jacobian” description becomes less than credible agjased simulatioficf. Fig. 2a) for the unbiased ca$eTo see
x increases beyond the right inflection point of the potentialthe reason why a distribution of wait timéfirst passage
x=0.58. That description, Eq3.6) with C=0, suggests timeg is required, consider Fig. 4, which demonstrates the
counterintuitively that a particle which just completed a tran-rate calculation for biaseand unbiased simulation. One first
sition should fall more slowly than the drift velocitgffec-  calculates the probability to arrive in the final stétee right
tively given by “OM—No Jacobian” forx>0 in Fig. 3. Yet  well in Fig. 1), having started in the initial statéhe left
it is not clear to the present authors precisely why the appliwell), as a function of time. One then determines the slope of
cability of the corrected OM theory should be limited to the the linear regime. While an unbiased simulation of sufficient
region between the inflection points; intuitively, of course,|ength will automatically generate data with roughly the
the inflection points roughly mark the boundaries betweersame precision for all times shown along the horizontal axis
the stable states and the barrier-top transition rate. in Fig. 4, a biased DIMS simulation must be designed to do
so. As discussed ifl4], one essentially has to evaluate a
separate integral for each time point, so part of the goal is to

IV. A HIGHLY EFFICIENT BIAS METHOD FOR DIMS spread the information gathered evenly over the necessary
CALCULATIONS times. This is the motivation behind the “thresholding” de-
tailed below.

The primary goal of the present work is to improve and
quantify the level of efficiency in one-dimensional rate cal-
culations. To that end we now introduce and evaluate a bi-
asing method, which is a variation on those discussed in our Specifically, trajectories are generated according to the
earlier work[8,14]. The method combines two essential in- following algorithm. Each trajectory is started from the mini-
gredients: biased crossing events that emulate the most protmum of the left wellx= —1, of the potential5.1) shown in

B. The algorithm: most probable crossings above a threshold
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Xj+1= X+ Xc(X)At+ Axg, 4.9

with X. given by either the Jacobian-augmented re&i)

or that without(3.7), and with Axg chosen from the same
Gaussian distribution as in the unbiased case. In other words,
instead of using the deterministic stépAt/my as in Eq.
(2.3), we use the most probable stepa crossing evento
emulate unbiased crossing events. The use of a threshold
away from the well minimum ensures a sufficiently broad
distribution of waiting times between the artificial crossing
events, which in turn permits the acquisition of data for the
range of times necessary to compute the rate as in Fig. 4. We
note, however, that it is no more difficult to run a single long
trajectory and compute correlation functions to determine
rates(e.g.,[1]).

If a Heun schemg51-53 were used for the unbiased
dynamics, the biased dynamics just givehl) could be
readily modified in the same way the Euler scheme itself
(2.3) is modified in the Heun approach. Given that the un-
derlying continuum action should be the same for the two
integration methods, a Heun modification of Eg.1)—or
even the unmodified version—should give similar results to
those found here with the Euler method.

C. Curvature-adjusted sampling width

Yet another refinement for the one-dimensional biasing
techniques is possible, motivated by the time-dependent
width of the Gaussian noise;, which is required for the
provably optimal computation of the probabilitiensityat a
single point on a curvature-free potential surf§66]. Note
that the biasing methods just described always used a con-
stant width,o= o given in Eq.(2.4). In a spirit similar to
Wagner's approach described[i0], one can ask the ques-

tion: “What is the optimal sampling scheme to travel be-

calculations. The probability to arrive in the right well of the po- . 4 . : )
tential Eq. (5.1) with E,=9kgT, depicted in Fig. 1, is plotted tween two fixed points, with one intermediate step, on a

against time, based on trajectories initiated at the bottom of the leféurface with arbitrary curvature?” Answering this question
well (x=—1) at timet=0. Both unbiasedtop) and DIMS (bot- IS not difficult and suggests that the local curvature influ-
tom) results are shown, with the latter using E¢s.1) and (3.6).  ences the optimal width.
The ratek is computed as a fit to the slope of the linear regime. The  Following Wagner(see[50]), one needs to observe first
DIMS computation(bottom) shows a dramatic improvement in ef- that the optimakampling densitat timet= At is exactly the
ficiency, which is quantified in Fig. 5. distribution ofunbiasedtwo-step paths which begin & at
t=0 and end ak, at t=2At. This constitutes the perfect
Fig. 1, and run for a fixed total amount of time exceeding thesamplingdistribution because it is precisely th#ny) subset
transient timet,. Predefining a threshold value; 1<x, of unbiased trajectories which end at the predefined value of
<0, of the coordinatex, we perform unbiased simulation interest, and which are distributed naturally. Using the
while x<x;, according to Eq(2.3). If and when the threshold single-step Gaussian distributio(.6), the two-step distri-
value is exceededx(>xy), we select steps according to bution is

! (X2=x1) = (f1/my) *+[(Xs=%o) = (fo/my)]?
TAt(X2|X1)TAt(X1|XO):zwa_zeXp[—[ 27X~ y]zog 17 %)~ (fo/my)] ],

whereo still represents the unbiased value dndgain gives the force & . By rearranging the terms, completing the square,
and approximating;=f,— (x; —Xg) U”(Xo), one finds

4.2

Xo+ Xz 1-a 2
2 \1-a+a®2

2lo/2(1—a+a?2)]? |

X1

Tat(Xa|x1) Tar(Xq|xg)=cXexp| — 4.3
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wherec is a constant independent »f in this approxima- Efficiency is computed by estimating the relative simula-
tion, and the dimensionless curvaturenissU"(xy) At/my. tion lengths needed to obtain a desired degree of precision,
The result(4.3) for the optimal distribution ofk, values given by the variance of the rate estimates,
illustrates several interesting points. First, the distribution is
independent of the force to first orderdan Second, while the
correction to the expected mean of the distribution, UE:H; (ki=(k))?, (5.2
(Xo+X5)/2, is second order im, that for the widtho is first
order—noting that the factof2 is expected from the work of where n=20 is the number of simulations performed for
Wagner and actually approaches unity for a large number aéach data pointy; is the rate computed for thigh simula-
time steps[50]. The optimal sampling width in factle-  tion, and(k) is the mean of the rate estimates. The hori-
creasesat the barrier top, where<0, in the smallAt limit  zontal arrow spanning the DIMS and unbiased results for
(a> a/2). Thus, the distributiori4.3) motivates a further bias E,=9KkgT at a precision ofr,= 10 4, for example, exceeds

n

for sampling, namely use of the width two decades—indicating that the DIMS computations are
more than 100 times faster.
L ol J1—a+ a?/2 (4.4) The effectiveness of the DIMS formulati@xcludingthe

Jacobian—i.e., based on Eqg4.1) and (3.7 with

for sampling from Gaussian distributions near the point C=0-—deserves further comment. While the Jacobian-

wherea is to be computed using”(x). We investigate this augmented DIMS simulation is slightly superior fdf,
refinement in the next section. =9kgT, the insensitivity to including the correction term is

surprising given the sharp contrast demonstrated in Fig. 3.

The lesson appears to be that, at least for the parameters
V. RESULTS: COMPARISON OF EFFICIENCY studied, the motion in the immediate neighborhood of the
fbarrier top (where the correction term, proportional to the
curvature, has the greatest effed less important to the
anatomy of a crossing event than tfrapid climb and de-
scent. In the long term, the success of the uncorrected ap-
proach could facilitate the extension of DIMS to multidimen-
sional systems, since that approach does not require the
computation of second derivatives of the potential. Future
whereEy, is the barrier height anbis the length scale of the work may show this to save a substantial amount of com-
problem. The central result is that one must account for th@uter time.
most probable crossing to gain maximum speed-up in rate We note that our efficiency estimates have excluded the
computation as compared with unbiased simulation. Not sur<overhead” cost of implementing the DIMS method. This
prisingly, the efficiency increases with barrier height. Yetcost depends on the optimization of one’s code, and as it
even for the relatively low barrier height &,=5kgT, we  happens, our code is suboptimal fombiased simulation, so
achieve roughly a 20-times efficiency improvement—i.e. that there is no overhead at all. There are, however, inherent
DIMS rate calculations are approximately 20 times as fasbverhead costs in DIMS that cannot be optimized away.
for a given level of precision. That factor increases to 300 folwhile the dynamics employing the Jacobian-augmented
a %kgT barrier. While such gains will not be readily extend- most probable pat3.6) requires the computation of a sec-
ible to multidimensional systems, it is important to under-ond derivative at every step, our results show that the simpler
stand and demonstrate the ingredients necessary for optimrm (3.7) is nearly as good and requires only the force.
performance. Calculating the force, it should be remembered, is not an

Figure 5 shows our results for the potentiall) for two  overhead cost because this must be done in unbiased simu-

different barrier heightsg,/kgT=5 and 9. The biasing lation (2.3) anyway. The only notable cost inherent in the
methods accounting for the most probable crossing are sig2IMS method, then, is computing the error associated with
nificantly superior for the larger barrier. The “DIMS- biased computation—in order to correct for it as discussed in
Wagner” algorithm—which takes no account of the mostRefs.[8] and[14]. This correction entails computing the ra-
probable path—refers to the technique described in Retfio of two Gaussian termgr, equivalently, the difference of
[14]. It performs only modestly well for the kT barrier, two logarithmg at every step. Compared with the fixed cost
and its efficiency is very sensitive to the fixed simulationof unbiased simulation—computing the force and generating
length. All the other DIMS procedures employed the algo-a high quality pseudorandom number at every step—and its
rithm of Sec. IV, Eq.(4.1), above a threshold,=—0.7, inherent inefficiency with long waiting times, the DIMS
with trajectories initiated at= — 1. The presence or absence costs are far overshadowed by the efficiency gains which
of the “Jacobian” (stochastic correction tepmreflects here exceed one and two orders of magnitude.
whether Eq.(3.6) or (3.7) was used to complete E4.1), For completeness, we give a number of further detalils,
and “CURV” indicates that the curvature-modified width which apply to both the unbiased and DIMS results. A simu-
(4.4) was used in place of the unbiased wid#W). Ratesk, lation consisted ofN trajectories(see Fig. % initiated atx
were calculated using the method noted in Sec. IVA and=—1 at timet=0. The time steps werAt=0.003y ! for
Fig. 4. Ep,=5kgT (having sety=1) and At=0.001y ! for E,

We demonstrate the capability of the DIMS algorithms o
Sec. IV by quantifying their efficiency for rate computations
in the simple bistable potential shown in Fig. 1,

UX)=E,[(x/1)2—1]?, (5.1
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10 =9%gT. These were determined to be close to the maximum
values for which the rate estimates did not changeAas
increased in unbiased simulation. As discussed above, the

> rate is computed as the slope of the linear regime in a plot of
?10‘3 the arrival probability(to be in the right wellx>0) as a
e function of time; see Fig. 4. The slopésatesk;) were com-
o puted from a least-squares fit to 10 data points,tthalues
2 » of which were held fixed for a given barrier height. The
3 10 O—OUnbiased particle massn and the thermal enerdig T were both set to
= O—C DIMS-Wagner . . . .
o /~—ADIMS - No Jacobian 1. Note that Fig. 3 uses the parameters given in the caption.
V—V DIMS + Jacobian
%*—* DIMS + Jacobian + CURV

10° . ) . ) ) A. What is the optimal efficiency?

& 10° 10° 10° 10° 10 “The system is so simple. How does one know whether a

10 g 300-time improvement in efficiency is impressive?” So a
skeptic might wonder, and the attempt to answer seems a

9 ksT worthwhile exercise.
{; ” The basic point is that computing a rate by simulation
© 10 involves the simultaneous calculation of a series of difficult
c integrals of the form(2.8) discussed in Sec. Il. Each data
-g point in Fig. 4 is an estimate for such an integral.
'S 10°° 00 Unbiased ' We can try to estimate the minimum num.ber.of trajecto-
o O—0 DIMS-Wagner ries needed for the rate computation by multiplying together
o S Bine 1 o Jacoblan estimates for the following(i) the number of trajectories
#——% DIMS + Jacobian + CURV needed to estimate the probabiliensityto be at a single
107 . . . . . locationx in stateB at a given timeP(t;;xe B|0;A); (i)
10° 10 10° 10° 10 the number of discrete locationsin stateB required to es-
0.0010 . . . . . timate the probability for the whole state; afidl) the num-
ber of independent time points needed to estimate a slope in
< the linear regime. Regarding), only in the case of a con-
= stant force carP(t; ;x e B|0;A) be computed exactlyp0]—
9 equivalently, with a single trajectory. One might expect that
g at least ten trajectories would be required for any real sur-
.= 0.0009 face, setting(i). In a similar manner for(ii), at least ten
u"j points should be required to characterize a statieich, in
o principle, is known only numerically The number of inde-
® [ o — o Unbiased - 1 pendent time points is a slightly more complex issue since
o A—2 DIMS - No Jacobian some(through not all trajectories from a given time point
. ‘ . . . may also be used to estimate another. Conservatively, then,
0.0008 10° 10° 10° 10° 107 we use the estimate three f@ii ). Our estimate for the mini-

mum number of trajectories required to calculate a rate is
thus 300. We believe our DIMS results of Fig. 5 compare
favorably with this heuristic—and conservative—theoretical
{ninimum.

Number of Trajectories

FIG. 5. Efficiency in rate computations using the DIMS ap-
proach. The standard deviatian, of a set of 20 rate estimates
computed by either unbiased or DIMS simulation is plotted agains

the length of each simulatioftop two plots. The spans of the
horizontal arrows measure the efficiency by indicating the differ- VI. POSSIBLE EXTENSIONS TO MULTIDIMENSIONAL

ences in simulation length required to obtain a given varidnee PROBLEMS

precision. For example, when the barrier heightig=9kgT, the
best DIMS approaches are roughly 300 times faster in obtaining
precision given byo,=10"%. The “DIMS-Wagner” algorithm is
from our earlier worl{14], while the other DIMS simulations use

While the results presented here for a one-dimensional
%otential seem a far cry from a high-dimensional biomolecu-
lar system, we believe they teach important lessons for the

the algorithm of Eq(4.1) and the surrounding text. For the latter, large system. T.h? simplest point Is. that a plased traJ?Cto.ry
the most probable step is chosen according to either the Jacobiamu,s,t CIOS(?Iy mimic the na,tural ,bamer'cross_"ng dynamics if
augmented formulatiof8.6) or that without(3.7), as indicated. The efficiency in rate computations is to be obtained. Indeed, we
label “CURV" indicates that the Gaussian sampling width was N@ve found that a poor bias can be worse than no bias at all.
modified according to Eq4.4). The bottom plot shows rate esti- !t iS not enough to know—as one does automatically in one
matesk for the %gT barrier height. Both DIMSEGgs. (4.1) and dimension—even the optimal geometric channel for a tran-
(3.6)] and unbiased estimates converge toward a common resufiition: the size of the steps along that geometric path are
with increasing simulation length. The error bars indicate the stancritical, as we have shown.
dard error of the mean, and underestimate the 95% confidence in- Although the problem of finding channels is extremely
terval.
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challenging in itself, let us ask “How can one compute thebe less than a nanosecond for a large, explicitly solvated
rate for a large system assuming the channels are known?jrotein. Recent work on large time std6®,57,58,1%holds

A natural choice would be to start with an initial trajectory promise, however, for attacking the time-scale problem.
within each channel, and then attempt either to optimize it

[56,46—-48,6,37,57,3%r to generate an ensemble of trajec- VIl. SUMMARY AND CONCLUSIONS

tories from it[7,15]. Given the importance of closely follow-

ing the optimal course, it seems natural to use an optimizaf—Or
tion or sampling scheme which builds in the knowledge of
the most probable patt8.7) and its multidimensional ana-

log. The risks, otherwise, could be great: since a high o . .

dimensional path will be very rough, it is easy to imagine acéynamli: ;.mportance sadmpllrllngl\;IS)t forrfnulatlon'[8,]t.4]|. 300
multistep segment of a trajectory becoming trapped in a re]; ortr;]pugi |_an§ were sz tfl:p y atactor OI ;_ppromma € yt
gion of the potential surface with far too few or too many or the KT barrier, and the primary resul{Big. 5 sugges

steps to be even close to optimal. One idea for overcomin € sp.e.ed-gp wiII.incr_ease sig_nificantly for larger barrigrs.
this difficulty would be to use a scheme capable of removin§he critical ingredient in our efficiency was close emulation

We have demonstrated substantial increases in efficiency
simulation-based calculations of transition rates in

bistable potentials with modest barrier height&g® and

9kgT, using biasing methods which are extensions of the

and inserting time steps, in order to search for an appropria f probable_ crossing events suggested by the Onsager-

distribution of steps along a predefined geometric path. W achlup_ action, Eqs§3.2) a_nd (3.3.

intend to pursue further investigations along these lines. The S'”.‘p'e one—dlme_nsmnal P“’b'e'.’“ has been _addrgssed
Returning to the issue of finding multidimensional chan-from a variety of theoretical and numerical perspectives in an

nels in the first place, we note that the DIMS method iSeffort to pave the way for more difficult problems. In Sec. llI

ideally suited to attack this problem since it generates anve examined the stochastic correction—or "Jacobian”—

ensemble of completelyndependentrajectories. Indeed, we term (3.9) in the Onsager-Machlup action from theoretical

have already developed an algorithm which has proved caq.nd nu_me_rica_l perspec_ti_ves._There, we also d_i;c_ussed th_e de-
pable of efficiently finding distinct, important channels in aswed distribution of waiting times k_)gtween artificial crossing
multidimensional systerf69]. We have named the idea the events, as.well as the effe@nd utility) of.the curvature of i
“soft-ratcheting algorithm,” and we note that its efficiency the potent|al.'After presentmg the epr[C|t results for eff"

is thus far limited to finding channels, rather than determin-~'€NCY levels in rate computations, we d.'SC.USSEd the optimal
ing rates. The essence of the technique is simple: generate gn’lmency one could hope to attain in principle.

: R - In commenting on the extension of the DIMS method to
unbiased step and accept it withpaobability (hence the . : ) .
“softness”), depending on how far the trajectory has pro- large, high-dimensional systems in Sec. VI, we noted that the

gressed toward the target state. To complete the calculatidtf oblem may be conceptually broken up into two parts: find-

in the DIMS formulation, one then estimates the overall ac-"9 f[he geometric channels and then sam_pli_ng traject_ories
ceptance probability—which is an inexpensive calculation inW'thln those channels. The DIMS method is ideally suited

a large system. Note that the soft-ratcheting algorithm refc;.r .tthelflrs.tthstep,ﬁch?nnell f't?]d'tng’ and.tweodesr(]:nbed_ a?hetx-
quires no second derivatives of the potential. plict aigonithm €fiective in that capacily. ©Jur hope 1S tha

Finally, a time-scale problem could prove serious, eve:{he results of the present paper will be useful in constructing

though we do not expect it to be nearly the handicap it is fo echniques for the second stage, single-channel trajectory
molecular dynamics. In particular, a fundamental Iimitationsamp“ng'
of applying the DIMS methodor a related approadb—15)

to multidimensional problems is the barrier-crossing tigpe

In practical termst, shows up as the transient time prior to  Many people generously offered comments on early ver-
the linear regime in a plot used for rate evaluatiéig. 4). sions of the manuscript: Ron Elber, Alan Grossfield, Chris-
Probability cannot accrue, after all, until crossing eventstopher Jarzynksi, Rohit Pappu, Horia Petrache, Jonathan Sa-
have occurred. In a large systetp s the limiting time scale chs, David Shalloway, and Katharina Vollmayr-Lee. The
for applying a method like DIMS to computing rates. Since aauthors also thank David Chandler for informative discus-
reasonable number, s&y of crossing events will be needed sions, and Phillip Geissler for pointing out REE9]. Shlomo

to estimate the rate, one would have to simulate for a timéRaz kindly provided additional computing facilities for this
exceeding\t,. The authors are unaware of any estimates ofwvork. We gratefully acknowledge funding provided by the
t, for biomolecular systems, but we note that—for the DIMSNIH (under Grant No. GM54782the AHA (grant-in-aid,
method to potentially yield a rate estimaté;would have to  the Bard Foundation, and the Department of Physiology.
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