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Efficient dynamic importance sampling of rare events in one dimension
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Exploiting stochastic path-integral theory, we obtainby simulationsubstantial gains in efficiency for the
computation of reaction rates in one-dimensional, bistable, overdamped stochastic systems. Using a well-
defined measure of efficiency, we compare implementations of ‘‘dynamic importance sampling’’~DIMS!
methods to unbiased simulation. The best DIMS algorithms are shown to increase efficiency by factors of
approximately 20 for a 5kBT barrier height and 300 for 9kBT, compared to unbiased simulation. The gains
result from close emulation of natural~unbiased!, instantonlike crossing events with artificially decreased
waiting times between events that are corrected for in rate calculations. The artificial crossing events are
generated using the closed-form solution to the most probable crossing event described by the Onsager-
Machlup action. While the best biasing methods require the second derivative of the potential~resulting from
the ‘‘Jacobian’’ term in the action, which is discussed at length!, algorithms employing solely the first deriva-
tive do nearly as well. We discuss the importance of one-dimensional models to larger systems, and suggest
extensions to higher-dimensional systems.

DOI: 10.1103/PhysRevE.63.016702 PACS number~s!: 82.20.Wt, 05.10.Gg, 05.10.Ln, 02.70.Rr
ca

ng
ar
re
y
n
rly
le
a

rie
te

a
te

tw

fo
di
et
us
at
es
s
s

b
de
n

u-
n
or

ves

f
si-
of
ch
the
l-

st

ared

ne-
o-

-
cia-
g

q.
r

I. INTRODUCTION

The rapid computation of the transition rate by numeri
simulation for an overdamped stochastic particle confined
a one-dimensional double-well potential~Fig. 1! is a decep-
tively simple problem, and of crucial importance to maki
progress in multidimensional systems. While straightforw
unbiased simulation ultimately yields the rate to any desi
precision~e.g.,@1#!, it requires the simulator to endure man
times the waiting period between the rare transition eve
@Fig. 2~a!#. Such unbiased simulation, moreover, is utte
impracticable for larger systems—particularly biomolecu
possessing thousands of atoms, for which simulating a w
ing time of 1 ms could require tens or hundreds of centu
of computer time. The well-known analytic methods for ra
computations in simple systems@2# are also insufficient for
high-dimensional, rough energy landscapes because m
barriers and metastable states of unknown geometry in
cede along multiple unknown pathways between the
states of interest~see, e.g.,@3,4#!.

The inadequacy of both analytic methods and straight
ward simulation for large biochemical systems points
rectly to the need for importance sampling and related m
ods @5–18#. Importance sampling techniques foc
computational effort on transition events, typically gener
ing an ensemble of transition trajectories from which to
timate rates and/or paths. Yet despite the early successe
formal appeal of these methods, a quantitatively succes
computational tool for large protein systems with 104 atoms
has not been achieved. We believe the apparently trivial
stable one-dimensional system must be completely un
stoodin a simulation contextbefore substantial progress ca
be expected for importance sampling in larger systems.

*Email address: dmz@groucho.med.jhmi.edu
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The present paper is explicitly computational, or ‘‘sim
lational:’’ the sole objective is to develop efficient simulatio
methods for one-dimensional systems which are directly
indirectly applicable to large systems. We concern oursel
only with the ‘‘dynamic importance sampling’’~DIMS!
methods developed by Woolf@8# and Zuckerman and Wool
@14#, which generate ensembles of fully independent tran
tion trajectories. We hope and believe our results will be
practical use in other multidimensional methods, but su
applications are beyond the scope of this work. Rather,
‘‘bottom-line’’ questions we attempt to answer are as fo
lows: ~i! Within the DIMS framework, what are the mo
efficient methods for rate computation? ~ii ! Using a well-
defined measure, how efficient are these methods comp
to unbiased simulation? We will also discuss the maximum
efficiency possible using DIMS and related methods in o
dimensional~1D! problems, as well as attempting to extrap
late to larger systems.

Achieving efficiency for a 1D problem using dynamic im
portance sampling, as we will show, requires the appre
tion of a variety of theoretical results—particularly relatin
to stochastic path integrals. The review by Mortensen@19#

FIG. 1. The symmetric bistable potential studied in the text, E
~5.1!, shown for a barrier height ofEb57kBT and length paramete
l 51, the unit of thex axis.
©2000 The American Physical Society02-1
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and Gardiner’s book@20# give introductions to stochasti
integrals—of which Ito’s and Strantonovich’s are the mo
basic types. Historically, Onsager and Machlup first form
lated a stochastic path integral to describe overdam
Brownian dynamics@21#. Since then, uniqueness and oth
formal aspects of the Onsager-Machlup formulation ha
been discussed by a variety of workers~e.g., @22–28#!. In-
deed, formal properties of stochastic functional integrals a
play an important role in the present investigation. The
integrals have been used, for example, to address the q
tion of the most likely crossing event@see Figs. 2~b! and 3#
@29–39#. Related functional integral approaches directly a
dress the Smoluchowski~overdamped Fokker-Planck! equa-
tion for the evolution of the entire probability distributio
@22,40,29,41,42#.

Path-integral formulations lead naturally to the notion
an average path, which is critical to the present discussio
even in one dimension. While the geometric pathway
barrier crossing is trivial in a one-dimensional potential li
that of Fig. 1, the ‘‘speed’’~average displacement! at every
position constitutes another dimension of the average pa
and a critical one to the present discussion. Such 1D ave
paths~average speeds and distributions! were considered by
Dykman and co-workers@43# and by Luchinsky and McClin-
tock @44#, both theoretically and experimentally. Zuckerm
and Woolf @14# considered average paths in higher dime
sions, computationally, while the problem of finding optim
reaction paths in multidimensional systems has a long
tory ~e.g.,@45–48,6,37#.

FIG. 2. Time scales and crossing events. An unbiased trajec
exhibits two vastly different time scales: for a substantial bar
height, the waiting time between events greatly exceeds the tim
a single crossing event.~a! The top plot shows an unbiased traje
tory of an overdamped particle in the double well of Eq.~5.1!, with
a barrier height ofEb57kBT. ~b! The bottom plot isolates a singl
crossing event from the trajectory in~a! and highlights the rapidity
~steepness! of the crossing, including the ascent. Note that the u
of x in both plots is the length scalel; see Eq.~5.1!.
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The paper is organized as follows. We first review t
basic formalism for overdamped Langevin dynamics and
portance sampling in Sec. II. Section III introduces pertin
path-integral results based on the Onsager-Machlup ac
and reviews the so-called ‘‘Jacobian’’ term in some detail,
well as presenting new numerical data. Section IV discus
a method for producing an efficient biased ensemble of
jectories, while Sec. V gives the actual results from the
asing technique. Section VI addresses the relevance of
results to multidimensional problems. Finally, conclusio
and a summary of the results are given in Sec. VII.

II. OVERDAMPED LANGEVIN DYNAMICS AND
IMPORTANCE SAMPLING

This section briefly reviews the fundamental stochas
dynamics equations and the dynamic importance-samp
formalism for rate computations. We consider solely s
chastic dynamics governed by the overdamped Lange
equation in the presence of Gaussian white noise. In the
tation of @14#, such ‘‘Brownian dynamics’’ are described b

dx/dt5 f /mg1R~ t !, ~2.1!

where x is the configurational coordinate,t is time, f (x)
52¹U(x) is the force,m is the particle’s ‘‘mass,’’g is the

ry
r
or

it

FIG. 3. Average simulation step sizes (xj2xj 21) from many
unbiased crossing events generated by Eq.~2.3!. A typical crossing
event is shown in Fig. 2~b!. Solid circles are the data averaged fro
unbiased crossing events onlyfor the potential of Eq.~5.1!, with a
barrier heightEb57kBT. The solid line is the most probable pat
of Eq. ~3.6! based on the Onsager-Machlup action with the stoch
tic correction~Jacobian! term; the dashed lines depict the unco
rected Onsager-Machlup extremal path, Eq.~3.7! with C50; and,
the dot-dash lines show the uncorrected Onsager-Machlup path
a nonvanishing constant—i.e., Eq. ~3.7! with C5
22kBTU9(0)/(mg)2. The statistical error in the simulation dat
may be gauged by the noise in the data. The data foruxu.0.6 are
affected ‘‘artifactually’’ by the procedure of extracting crossin
events from long trajectories; see the text, however. The data of
figure only were generated using the parametersDt51024g21,
g21[1, m510.98, andkBT5249.462, largely following Refs.@8#,
@14#; all lengths are given in units of the length scalel of Eq. ~5.1!.
2-2
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friction constant, and the noiseR is assumed Gaussian wit
zero mean and variance given according to

^R~ t !R~ t8!&5~2kBT/mg!d~ t2t8!, ~2.2!

where kB is Boltzmann’s constant andT the temperature
Equation~2.1! is presumed to be simulated according to t
‘‘Ito-like’’ ~Euler! discretization@49,50#

xj 115xj1~ f j /mg!Dt1DxR , ~2.3!

where the subscriptsj indicate quantities evaluated at tim
j Dt[t j , so thatf j5 f (xj ), andDxR is chosen from a Gauss
ian distribution of zero mean and variance

s252DtkBT/mg. ~2.4!

The discretization~2.3! is considered to be Ito-like becaus
the force—assumed to be constant over the intervalDt—is
evaluated at the beginning of the interval; a loosely term
‘‘Stratonovich-like’’ approach would instead consider, fo
mally @29,24,20#,

f j→~ f j1 f j 11!/2. ~2.5!

We note that discretizations more sophisticated than
Euler scheme~2.3! are well known—i.e., Runge-Kutta
schemes of various orders@51–53#. However, in explicit
tests onrate calculations onlyfor our simple system~Fig. 1!,
the lowest-order Runge-Kutta~Heun! method permitted only
a marginally larger time step—without losing accuracy
which did not justify the additional computational expen
~data not shown!. Larger time steps tend to producesystem-
atic errors, in addition to the easier-to-diagnose statist
error, regardless of the algorithm@53#. Rate calculations
moreover, may be especially sensitive. We also note
methods of higher-order than the Heun algorithm are no
interest here, because computing higher-order derivative
extremely costly for the larger bimolecular systems tow
which the present research is ultimately oriented. Th
given our focus on rate computations and our interes
large systems, there seems little reason to employ anyt
more complicated than the Euler procedure~2.3!.

It is useful to consider, in parallel to the dynamical alg
rithm, the equivalent probabilistic description of the dyna
ics ~2.3!. In particular, the explicit single-step transitio
probability density described above is given by

TDt~xj 11uxj !5~2ps2!21/2exp$2@~xj 112xj !

2~ f j /mg!Dt#2/2s2%. ~2.6!

Thus the probability density for a whole trajectoryz
5(x0 ,x1 ,x2 ,...,xn) is given by the product of the single
step densities:

Q̃~z!5 )
j 50

n21

TDt~xj 11uxj !. ~2.7!

Importance sampling is effected@8,14# by performingbi-
asedsimulations which follow a prescription different from
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Eq. ~2.3!. Naturally, trajectories generated from a bias
simulation are distributed not according toQ̃, but according
to some other function,D(z). This alternative distribution
can be used to compute probabilities and, hence, trans
rates. One first requires the conditional probabil
PB(tu0;x0) to be in the final state (B) at timet having started
at x0 at t50, which can be written in two equivalent way
for nonvanishingD,

PB~ tnu0;x0!.E dz Q̃~z!hB~xn!5E D~z!dz
Q̃~z!

D~z!
hB~xn!,

~2.8!

where dz5) j 51
n dxj , and hB(x) is an indicator function

which is unity for x in stateB and zero otherwise. The ap
proximation here is simply the neglect of the discretizati
error. In a biased simulation, the integral is estimated by

PB~ tnu0;x0!.
1

M (
zPSD

Q̃~z!

D~z!
hB~xn!, ~2.9!

whereSD is a sampling ensemble ofM trajectories chosen
according toD, and where normalization,*dz D(z)51, is
required. Note that the functionD must be known for the
simulation to be performed, just as Eqs.~2.6! and ~2.7! are
the distributions from which unbiased steps and trajecto
are sampled. Ultimately, rates are estimated by compu
the slope of the linear regime in a probability vs time plot,
discussed in Sec. IV.

III. PATH INTEGRALS AND MOST PROBABLE
CROSSING EVENTS

Achieving efficiency for a 1D problem using dynamic im
portance sampling requires a variety of theoretical results
stochastic path integrals and their ‘‘instantons.’’ These
proaches have been used, for example, to address the
tion of the most probable crossing event@see Figs. 2~b! and
3#, which can be derived in a straightforward way from t
continuum Onsager-Machlup action used in the path-inte
formulation @29,31,33–39#. In this section we discuss th
Onsager-Machlup action and its optimization at somew
greater length than is required for the computational aims
this paper. This is because, beyond the theoretical intere
the action, and especially in the so-called ‘‘Jacobian’’ ter
some older literature deserves a fresh look and detailed
cussion.

The path-integral story begins with Onsager and Mach
~OM! @21# and their well-known action for weighting con
tinuum representations of overdamped Brownian trajector
In that formulation, acontinuoustrajectory—presumably in-
tended to represent a smoothed stochastic trajectory
weighted according to

probability } expF2
S

~kBT/mg!G ~3.1!

where
2-3



r-

ge

a
th

a
to
l

rie

a
ua
g
,
op

et
an
to

tly
n’
ilit
c

e
le

an

re-
ive

was
ill,
in
ost

ten-

r-

ant
and
-

ell
eed

he
-
ore
.
lso

or-
ib-
nc-
n
se,

-
e
a

for
m’s
nd
ys-

t-

,
jec-
t

ss-

hat
ud-

-

DANIEL M. ZUCKERMAN AND THOMAS B. WOOLF PHYSICAL REVIEW E 63 016702
S5 1
4 E

t i

t f
dt L~ t !, ~3.2!

and

LOM~ t;x,ẋ!5F ẋ2
f ~x!

mg G2

, ~3.3!

and whereẋ5dx/dt and f (x)52dU/dx. In their original
paper @21#, Onsager and Machlup applied the Eule
Lagrange equation for functional minimization,

]L
]x

2
d

dt

]L
] ẋ

50. ~3.4!

to the case of a single harmonic well.
Subsequent contributions amended the original Onsa

Machlup formulation of the action, Eqs.~3.2! and ~3.3!.
First, Stratonovich realized in 1962@22# that if one starts
from the product of discrete-step probability densities~2.7!
and determines the continuum limit in a rigorous fashion,
additional term arises in the integral representation of
action ~3.2!, so that instead of Eq.~3.3!, the effective La-
grangian takes the Onsager-Machlup-Jacobian~OMJ! form,
namely

LOMJ5LOM1
2kBT

~mg!2 U9~x!. ~3.5!

This result was confirmed by Bachet al. @25#. In other
words, the original description by Onsager and Machlup w
incomplete for simulations performed according to the I
like algorithm ~2.3!. Note that this new term is proportiona
to the curvature of the potential and is dominant at a bar
top, for any nonzero noise amplitude (T.0).

In the mid-1970s Graham@40,29# rederived the term as
Jacobian resulting from changing variables from the fluct
tion coordinate to the configuration coordinate—assumin
Stratonovich-like discretization~2.5!. Thereafter, apparently
the term has been viewed as a Jacobian, although the pr
ety of that name in a practicalsimulationcontext is question-
able since, to the authors’ knowledge, only the Ito discr
zation~2.3! is usable precisely, and that results in a const
Jacobian. More appropriate terminology might be the ‘‘s
chastic correction term.’’

Both Stratonovich and Graham indicated, importan
that the inclusion of the stochastic-correction/‘‘Jacobia
term led to a path-integral representation of the probab
distribution consistent with the overdamped Fokker-Plan
~Smoluchowski! equation.

Graham also derived the most probable crossing ev
associated with the corrected action using the Eu
Lagrange equation~3.4!, namely@29#,

@ ẋc
OMJ#25F f ~x!

mg G2

2
2kBT

~mg!2 U9~x!1C, ~3.6!

whereC is a constant of integration. This result is called
‘‘instanton’’ by field theorists~e.g., @54#! because it de-
01670
r-

n
e

s
-

r

-
a

ri-

i-
t

-

,
’
y
k

nt
r-

scribes a rapid transition, as illustrated in Fig. 2. To app
ciate this, note that by taking either the positive or negat
square root forẋc

OMJ in Eq. ~3.6!, the velocity of ascent is
seen to be the same as for descent. Yet this feature
apparently not appreciated until later; see below. It w
however, prove central to our goal of obtaining efficiency
simulations. Below, we also address the computational c
associated with computing a second derivative of the po
tial.

It is worth noting that although the extremal path, fo
mally, results whenC,0 in Eq. ~3.6! @from minimizing Eq.
~3.2! with Eq. ~3.5!#, one cannot necessarily take the const
to be negative or even to vanish. Observe that the left-h
side of Eq.~3.6! must be positive. Thus, in regions of rela
tively large positive curvature—such as near a w
bottom—the second term of the right-hand side could exc
the first in magnitude, requiringC.0. While this observa-
tion appears to be immaterial to our investigation of t
simple bistable well~see Fig. 3!, one could imagine the posi
tivity of the constant having physical consequences in a m
complicated potential with metastable intermediate states

Other features of the most probable crossing have a
proved of great interest. Dykman and Krivoglaz made imp
tant observations in their study of transitions in nonequil
rium systems using an uncorrected Onsager-Machlup fu
tional integral, in 1979@30#. In a series of papers begun i
1989 and aimed primarily at systems with colored noi
Bray, McKane, and co-workers@31,33–36# also provided
some insights pertinent to the case of white noisewithout the
correction term.~While the latter group included the Jaco
bian term formally, it was omitted from their analysis of th
low-temperature limit.! Both groups derived essentially
special case of Graham’s result~3.6!

@ ẋc
OM#25F f ~x!

mg G2

1C, ~3.7!

whereC is again a constant of integration which vanishes
the most probable case. It also is equivalent to Graha
result at inflection points of the potential. Bray, McKane, a
co-workers noted the crucial fact mentioned above: for s
tems with detailed balance~i.e., time-invariant potentials!,
the ascent described byẋc

OM is equally rapid as, and symme
ric with, the descent@see Fig. 2~b!#. This point is also im-
plicit in the work of Dykman and Krivoglaz. Furthermore
both groups recognized that paradoxically the external tra
tory (C50) never occurs@30,35# because an infinite amoun
of time is required to reach~or descend from! a parabolic
barrier top. This may be seen by computing the barrier cro
ing time,

tb5E
t i

t f
dt5E

xi

xf dx

ẋc
. ~3.8!

Such apparently formal observations belie the fact t
optimal paths have proven useful in a variety of recent st
ies. Dykman et al. determined weighteddistributions of
paths~including the optimal! leading to large, nontransition
ing fluctuations in a time-oscillatory potential@55#. Olender
2-4
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and Elber@37# discussed the Onsager-Machlup extremal b
rier crossing, and employed a discrete version in develop
an algorithm for steepest-descent path-finding betw
known initial and final states. Bieret al. @38# discussed ex-
tremal crossings in the context of rate calculations for fl
tuating barriers. Elber and Shalloway suggested a temp
ture dependence for the integration constant of Eq.~3.7! to
overcome the divergent-crossing time difficulty, and succe
fully distinguished optimal paths for different regimes of
effective temperature parameter@39#.

Both in order to confirm the analytic results review
above and to gather data that could usefully inform our
forts to gain efficiency in rate computations, we studied n
merically generated crossing events. We performed v
long unbiased simulations of a particle moving according
Eq. ~2.3! in a one-dimensional bistable well~Fig. 1! and
‘‘snipped out’’ a large number of crossing events like t
one shown in Fig. 2~b!. Binning the observed step sizes
only the crossing events according to thex position, Fig. 3
shows that the average step sizes^xj2xj 21&crossclosely fol-
low the prediction~3.6! which includes the stochastic corre
tion term. The two theoretical predictions lacking the corre
tion term—namely Eq.~3.7! with two values forC—appear
far less adequate by contrast. We note that the binned d
butions appear to be highly Gaussian so that the average
most probable values essentially coincide.

A comment on the data foruxu*0.6 in Fig. 3 is in order.
The substantial turn up of the data forx.0.6 is certainly an
artifact of isolating crossing events: by definition, the fin
step or steps are right moving. Thus, if one defines cros
events to end when the value 0.7 is exceeded, rather tha
as in the figure, the turn up occurs for correspondin
smallerx values. Interestingly, while the same argument
plies to the left side of the figure, the data are not simila
affected. Indeed, the asymmetry between the left and r
edges of the plot is striking. While, at present, we can of
no convincing explanation, it is worth noting that th
‘‘OM 1Jacobian’’ description becomes less than credible
x increases beyond the right inflection point of the potent
x.0.58. That description, Eq.~3.6! with C50, suggests
counterintuitively that a particle which just completed a tra
sition should fall more slowly than the drift velocity~effec-
tively given by ‘‘OM–No Jacobian’’ forx.0 in Fig. 3!. Yet
it is not clear to the present authors precisely why the ap
cability of the corrected OM theory should be limited to t
region between the inflection points; intuitively, of cours
the inflection points roughly mark the boundaries betwe
the stable states and the barrier-top transition rate.

IV. A HIGHLY EFFICIENT BIAS METHOD FOR DIMS
CALCULATIONS

The primary goal of the present work is to improve a
quantify the level of efficiency in one-dimensional rate c
culations. To that end we now introduce and evaluate a
asing method, which is a variation on those discussed in
earlier work@8,14#. The method combines two essential i
gredients: biased crossing events that emulate the most p
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able path, together with a threshold at which the biasing
triggered.

A. Motivation

Computing reaction rates by simulation requires the g
eration of an ensemble of appropriately weighted trajecto
~or a correspondingly long trajectory! exhibiting many
barrier-crossing events. While many sampling methods
capable of generating a suitable ensemble of trajectories
long period of time, it is no easy task to rapidly generate
truly importantensemble—containing highly probable cros
ing events—even for an apparently trivial potential like
symmetric, one-dimensional double well. The reason is
hard to see. In an unbiased simulation~2.3!, each step is
chosen from a Gaussian distribution centered at the de
ministic step in the direction of the force. Forcrossing events
which climb over a barrier, a trajectory necessarily tak
steps in a directionopposingthe force. As the center of the
Gaussian distribution is always downhill from the prese
step, the typical step in theascentof a crossing event is in
the ‘‘tail’’ of the Gaussian distribution~more or less so de
pending on the parameters entering into the width,s!. As the
full probability for a crossing event is then a product of ste
in the tail of the distribution, it seems clear that only sm
fluctuations about the most probable crossing event will
cur. Large fluctuations away from the most probable p
will be exponentially damped out, as they require steps
further out in the tail of the distribution.

Our interest in the most probable path for a cross
event, then, is hardly surprising: to generate an ‘‘importan
~albeit biased! ensemble of trajectories, one must hew to t
most probable path. This we shall do explicitly below, usi
the results quoted in Sec. III.

But once one knows the most probable path for a sin
crossing event, the DIMS method still requires the gene
tion of such events at appropriate intervals. That is, ther
an ideal distribution of waiting times between events in
biased simulation@cf. Fig. 2~a! for the unbiased case#. To see
the reason why a distribution of wait times~first passage
times! is required, consider Fig. 4, which demonstrates
rate calculation for biasedandunbiased simulation. One firs
calculates the probability to arrive in the final state~the right
well in Fig. 1!, having started in the initial state~the left
well!, as a function of time. One then determines the slope
the linear regime. While an unbiased simulation of sufficie
length will automatically generate data with roughly th
same precision for all times shown along the horizontal a
in Fig. 4, a biased DIMS simulation must be designed to
so. As discussed in@14#, one essentially has to evaluate
separate integral for each time point, so part of the goal i
spread the information gathered evenly over the neces
times. This is the motivation behind the ‘‘thresholding’’ de
tailed below.

B. The algorithm: most probable crossings above a threshold

Specifically, trajectories are generated according to
following algorithm. Each trajectory is started from the min
mum of the left well,x521, of the potential~5.1! shown in
2-5
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Fig. 1, and run for a fixed total amount of time exceeding
transient time,tb . Predefining a threshold value,21,xh
,0, of the coordinatex, we perform unbiased simulatio
while x,xh according to Eq.~2.3!. If and when the threshold
value is exceeded (x.xh), we select steps according to

FIG. 4. Evolution of the end-state arrival probability for ra
calculations. The probability to arrive in the right well of the p
tential Eq. ~5.1! with Eb59kBT, depicted in Fig. 1, is plotted
against time, based on trajectories initiated at the bottom of the
well (x521) at time t50. Both unbiased~top! and DIMS ~bot-
tom! results are shown, with the latter using Eqs.~4.1! and ~3.6!.
The ratek is computed as a fit to the slope of the linear regime. T
DIMS computation~bottom! shows a dramatic improvement in e
ficiency, which is quantified in Fig. 5.
01670
e

xi 115xi1 ẋc~xi !Dt1DxR , ~4.1!

with ẋc given by either the Jacobian-augmented result~3.6!
or that without~3.7!, and with DxR chosen from the same
Gaussian distribution as in the unbiased case. In other wo
instead of using the deterministic stepf iDt/mg as in Eq.
~2.3!, we use the most probable stepin a crossing eventto
emulate unbiased crossing events. The use of a thres
away from the well minimum ensures a sufficiently bro
distribution of waiting times between the artificial crossin
events, which in turn permits the acquisition of data for t
range of times necessary to compute the rate as in Fig. 4.
note, however, that it is no more difficult to run a single lo
trajectory and compute correlation functions to determ
rates~e.g.,@1#!.

If a Heun scheme@51–53# were used for the unbiase
dynamics, the biased dynamics just given~4.1! could be
readily modified in the same way the Euler scheme its
~2.3! is modified in the Heun approach. Given that the u
derlying continuum action should be the same for the t
integration methods, a Heun modification of Eq.~4.1!—or
even the unmodified version—should give similar results
those found here with the Euler method.

C. Curvature-adjusted sampling width

Yet another refinement for the one-dimensional bias
techniques is possible, motivated by the time-depend
width of the Gaussian noises j , which is required for the
provably optimal computation of the probabilitydensityat a
single point on a curvature-free potential surface@50#. Note
that the biasing methods just described always used a
stant width,s j5s given in Eq.~2.4!. In a spirit similar to
Wagner’s approach described in@50#, one can ask the ques
tion: ‘‘What is the optimal sampling scheme to travel b
tween two fixed points, with one intermediate step, on
surface with arbitrary curvature?’’ Answering this questi
is not difficult and suggests that the local curvature infl
ences the optimal width.

Following Wagner~see@50#!, one needs to observe firs
that the optimalsampling densityat timet5Dt is exactly the
distribution ofunbiasedtwo-step paths which begin atx0 at
t50 and end atx2 at t52Dt. This constitutes the perfec
samplingdistribution because it is precisely that~tiny! subset
of unbiased trajectories which end at the predefined valu
interest, and which are distributed naturally. Using t
single-step Gaussian distributions~2.6!, the two-step distri-
bution is

ft

e

re,
TDt~x2ux1!TDt~x1ux0!5
1

2ps2 expH 2
@~x22x1!2~ f 1 /mg!#21@~x12x0!2~ f 0 /mg!#2

2s2 J , ~4.2!

wheres still represents the unbiased value andf i again gives the force atxi . By rearranging the terms, completing the squa
and approximatingf i. f 02(xi2x0)U9(x0), one finds

TDt~x2ux1!TDt~x1ux0!.c3expH 2

Fx12
x01x2

2 S 12a

12a1a2/2D G
2

2@s/A2~12a1a2/2!#2
J , ~4.3!
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wherec is a constant independent ofx1 in this approxima-
tion, and the dimensionless curvature isa[U9(x0)Dt/mg.

The result~4.3! for the optimal distribution ofx1 values
illustrates several interesting points. First, the distribution
independent of the force to first order ina. Second, while the
correction to the expected mean of the distributio
(x01x2)/2, is second order ina, that for the widths is first
order—noting that the factor& is expected from the work o
Wagner and actually approaches unity for a large numbe
time steps@50#. The optimal sampling width in factde-
creasesat the barrier top, wherea,0, in the smallDt limit
(a@a2). Thus, the distribution~4.3! motivates a further bias
for sampling, namely use of the width

ssamp5s/A12a1a2/2 ~4.4!

for sampling from Gaussian distributions near the pointx,
wherea is to be computed usingU9(x). We investigate this
refinement in the next section.

V. RESULTS: COMPARISON OF EFFICIENCY

We demonstrate the capability of the DIMS algorithms
Sec. IV by quantifying their efficiency for rate computatio
in the simple bistable potential shown in Fig. 1,

U~x!5Eb@~x/ l !221#2, ~5.1!

whereEb is the barrier height andl is the length scale of the
problem. The central result is that one must account for
most probable crossing to gain maximum speed-up in
computation as compared with unbiased simulation. Not s
prisingly, the efficiency increases with barrier height. Y
even for the relatively low barrier height ofEb55kBT, we
achieve roughly a 20-times efficiency improvement—i.
DIMS rate calculations are approximately 20 times as f
for a given level of precision. That factor increases to 300
a 9kBT barrier. While such gains will not be readily exten
ible to multidimensional systems, it is important to unde
stand and demonstrate the ingredients necessary for op
performance.

Figure 5 shows our results for the potential~5.1! for two
different barrier heights,Eb /kBT55 and 9. The biasing
methods accounting for the most probable crossing are
nificantly superior for the larger barrier. The ‘‘DIMS
Wagner’’ algorithm—which takes no account of the mo
probable path—refers to the technique described in R
@14#. It performs only modestly well for the 9kBT barrier,
and its efficiency is very sensitive to the fixed simulati
length. All the other DIMS procedures employed the alg
rithm of Sec. IV, Eq.~4.1!, above a thresholdxh520.7,
with trajectories initiated atx521. The presence or absenc
of the ‘‘Jacobian’’ ~stochastic correction term! reflects
whether Eq.~3.6! or ~3.7! was used to complete Eq.~4.1!,
and ‘‘CURV’’ indicates that the curvature-modified widt
~4.4! was used in place of the unbiased width~2.4!. Rates,k,
were calculated using the method noted in Sec. IV A a
Fig. 4.
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Efficiency is computed by estimating the relative simu
tion lengths needed to obtain a desired degree of precis
given by the variance of the rate estimates,

sk
25

1

n (
i 51

n

~ki2^k&!2, ~5.2!

where n520 is the number of simulations performed f
each data point,ki is the rate computed for thei th simula-
tion, and^k& is the mean of then rate estimates. The hori
zontal arrow spanning the DIMS and unbiased results
Eb59kBT at a precision ofsk51024, for example, exceeds
two decades—indicating that the DIMS computations
more than 100 times faster.

The effectiveness of the DIMS formulationexcludingthe
Jacobian—i.e., based on Eqs.~4.1! and ~3.7! with
C50—deserves further comment. While the Jacobia
augmented DIMS simulation is slightly superior forEb
59kBT, the insensitivity to including the correction term
surprising given the sharp contrast demonstrated in Fig
The lesson appears to be that, at least for the parame
studied, the motion in the immediate neighborhood of
barrier top ~where the correction term, proportional to th
curvature, has the greatest effect! is less important to the
anatomy of a crossing event than the~rapid! climb and de-
scent. In the long term, the success of the uncorrected
proach could facilitate the extension of DIMS to multidime
sional systems, since that approach does not require
computation of second derivatives of the potential. Fut
work may show this to save a substantial amount of co
puter time.

We note that our efficiency estimates have excluded
‘‘overhead’’ cost of implementing the DIMS method. Th
cost depends on the optimization of one’s code, and a
happens, our code is suboptimal forunbiased simulation, so
that there is no overhead at all. There are, however, inhe
overhead costs in DIMS that cannot be optimized aw
While the dynamics employing the Jacobian-augmen
most probable path~3.6! requires the computation of a se
ond derivative at every step, our results show that the sim
form ~3.7! is nearly as good and requires only the forc
Calculating the force, it should be remembered, is not
overhead cost because this must be done in unbiased s
lation ~2.3! anyway. The only notable cost inherent in th
DIMS method, then, is computing the error associated w
biased computation—in order to correct for it as discusse
Refs.@8# and @14#. This correction entails computing the ra
tio of two Gaussian terms~or, equivalently, the difference o
two logarithms! at every step. Compared with the fixed co
of unbiased simulation—computing the force and genera
a high quality pseudorandom number at every step—and
inherent inefficiency with long waiting times, the DIMS
costs are far overshadowed by the efficiency gains wh
here exceed one and two orders of magnitude.

For completeness, we give a number of further deta
which apply to both the unbiased and DIMS results. A sim
lation consisted ofN trajectories~see Fig. 5! initiated atx
521 at time t50. The time steps wereDt50.003g21 for
Eb55kBT ~having setg[1) and Dt50.001g21 for Eb
2-7
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FIG. 5. Efficiency in rate computations using the DIMS a
proach. The standard deviationsk of a set of 20 rate estimate
computed by either unbiased or DIMS simulation is plotted aga
the length of each simulation~top two plots!. The spans of the
horizontal arrows measure the efficiency by indicating the diff
ences in simulation length required to obtain a given variance~i.e.,
precision!. For example, when the barrier height isEb59kBT, the
best DIMS approaches are roughly 300 times faster in obtainin
precision given bysk51024. The ‘‘DIMS-Wagner’’ algorithm is
from our earlier work@14#, while the other DIMS simulations us
the algorithm of Eq.~4.1! and the surrounding text. For the latte
the most probable step is chosen according to either the Jaco
augmented formulation~3.6! or that without~3.7!, as indicated. The
label ‘‘CURV’’ indicates that the Gaussian sampling width w
modified according to Eq.~4.4!. The bottom plot shows rate est
matesk for the 9kBT barrier height. Both DIMS@Eqs. ~4.1! and
~3.6!# and unbiased estimates converge toward a common re
with increasing simulation length. The error bars indicate the s
dard error of the mean, and underestimate the 95% confidenc
terval.
01670
59kBT. These were determined to be close to the maxim
values for which the rate estimates did not change asDt
increased in unbiased simulation. As discussed above,
rate is computed as the slope of the linear regime in a plo
the arrival probability~to be in the right well,x.0) as a
function of time; see Fig. 4. The slopes~rates,ki) were com-
puted from a least-squares fit to 10 data points, thet values
of which were held fixed for a given barrier height. Th
particle massm and the thermal energykBT were both set to
1. Note that Fig. 3 uses the parameters given in the capt

A. What is the optimal efficiency?

‘‘The system is so simple. How does one know whethe
300-time improvement in efficiency is impressive?’’ So
skeptic might wonder, and the attempt to answer seem
worthwhile exercise.

The basic point is that computing a rate by simulati
involves the simultaneous calculation of a series of diffic
integrals of the form~2.8! discussed in Sec. II. Each da
point in Fig. 4 is an estimate for such an integral.

We can try to estimate the minimum number of trajec
ries needed for the rate computation by multiplying toget
estimates for the following:~i! the number of trajectories
needed to estimate the probabilitydensityto be at a single
location x in stateB at a given time,P(t j ;xPBu0;A); ~ii !
the number of discrete locationsx in stateB required to es-
timate the probability for the whole state; and~iii ! the num-
ber of independent time points needed to estimate a slop
the linear regime. Regarding~i!, only in the case of a con
stant force canP(t j ;xPBu0;A) be computed exactly@50#—
equivalently, with a single trajectory. One might expect th
at least ten trajectories would be required for any real s
face, setting~i!. In a similar manner for~ii !, at least ten
points should be required to characterize a state~which, in
principle, is known only numerically!. The number of inde-
pendent time points is a slightly more complex issue sin
some~through not all! trajectories from a given time poin
may also be used to estimate another. Conservatively, t
we use the estimate three for~iii !. Our estimate for the mini-
mum number of trajectories required to calculate a rate
thus 300. We believe our DIMS results of Fig. 5 compa
favorably with this heuristic—and conservative—theoretic
minimum.

VI. POSSIBLE EXTENSIONS TO MULTIDIMENSIONAL
PROBLEMS

While the results presented here for a one-dimensio
potential seem a far cry from a high-dimensional biomole
lar system, we believe they teach important lessons for
large system. The simplest point is that a biased trajec
must closely mimic the natural barrier-crossing dynamics
efficiency in rate computations is to be obtained. Indeed,
have found that a poor bias can be worse than no bias a
It is not enough to know—as one does automatically in o
dimension—even the optimal geometric channel for a tr
sition: the size of the steps along that geometric path
critical, as we have shown.

Although the problem of finding channels is extreme
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challenging in itself, let us ask ‘‘How can one compute t
rate for a large system assuming the channels are know
A natural choice would be to start with an initial trajecto
within each channel, and then attempt either to optimiz
@56,46–48,6,37,57,58# or to generate an ensemble of traje
tories from it@7,15#. Given the importance of closely follow
ing the optimal course, it seems natural to use an optim
tion or sampling scheme which builds in the knowledge
the most probable path~3.7! and its multidimensional ana
log. The risks, otherwise, could be great: since a hi
dimensional path will be very rough, it is easy to imagine
multistep segment of a trajectory becoming trapped in a
gion of the potential surface with far too few or too ma
steps to be even close to optimal. One idea for overcom
this difficulty would be to use a scheme capable of remov
and inserting time steps, in order to search for an appropr
distribution of steps along a predefined geometric path.
intend to pursue further investigations along these lines.

Returning to the issue of finding multidimensional cha
nels in the first place, we note that the DIMS method
ideally suited to attack this problem since it generates
ensemble of completelyindependenttrajectories. Indeed, we
have already developed an algorithm which has proved
pable of efficiently finding distinct, important channels in
multidimensional system@59#. We have named the idea th
‘‘soft-ratcheting algorithm,’’ and we note that its efficienc
is thus far limited to finding channels, rather than determ
ing rates. The essence of the technique is simple: genera
unbiased step and accept it with aprobability ~hence the
‘‘softness’’!, depending on how far the trajectory has pr
gressed toward the target state. To complete the calcula
in the DIMS formulation, one then estimates the overall
ceptance probability—which is an inexpensive calculation
a large system. Note that the soft-ratcheting algorithm
quires no second derivatives of the potential.

Finally, a time-scale problem could prove serious, ev
though we do not expect it to be nearly the handicap it is
molecular dynamics. In particular, a fundamental limitati
of applying the DIMS method~or a related approach@5–15#!
to multidimensional problems is the barrier-crossing timetb .
In practical terms,tb shows up as the transient time prior
the linear regime in a plot used for rate evaluation~Fig. 4!.
Probability cannot accrue, after all, until crossing eve
have occurred. In a large system,tb is the limiting time scale
for applying a method like DIMS to computing rates. Since
reasonable number, sayN, of crossing events will be neede
to estimate the rate, one would have to simulate for a t
exceedingNtb . The authors are unaware of any estimates
tb for biomolecular systems, but we note that—for the DIM
method to potentially yield a rate estimate—tb would have to
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be less than a nanosecond for a large, explicitly solva
protein. Recent work on large time steps@60,57,58,15# holds
promise, however, for attacking the time-scale problem.

VII. SUMMARY AND CONCLUSIONS

We have demonstrated substantial increases in efficie
for simulation-based calculations of transition rates
bistable potentials with modest barrier heights, 5kBT and
9kBT, using biasing methods which are extensions of
dynamic importance sampling~DIMS! formulation @8,14#.
Computations were sped up by a factor of approximately 3
for the 9kBT barrier, and the primary results~Fig. 5! suggest
the speed-up will increase significantly for larger barrie
The critical ingredient in our efficiency was close emulati
of probable crossing events suggested by the Onsa
Machlup action, Eqs.~3.2! and ~3.3!.

The simple one-dimensional problem has been addre
from a variety of theoretical and numerical perspectives in
effort to pave the way for more difficult problems. In Sec.
we examined the stochastic correction—or ‘‘Jacobian’’
term ~3.5! in the Onsager-Machlup action from theoretic
and numerical perspectives. There, we also discussed th
sired distribution of waiting times between artificial crossi
events, as well as the effect~and utility! of the curvature of
the potential. After presenting the explicit results for ef
ciency levels in rate computations, we discussed the opti
efficiency one could hope to attain in principle.

In commenting on the extension of the DIMS method
large, high-dimensional systems in Sec. VI, we noted that
problem may be conceptually broken up into two parts: fin
ing the geometric channels and then sampling trajecto
within those channels. The DIMS method is ideally suit
for the first step, channel finding, and we described an
plicit algorithm effective in that capacity. Our hope is th
the results of the present paper will be useful in construct
techniques for the second stage, single-channel trajec
sampling.
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