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Parallel excluded volume tempering for polymer melts
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We have developed a technique to accelerate the acquisition of effectively uncorrelated configurations for
off-lattice models of dense polymer melts that makes use of both parallel tempering and large-scale Monte
Carlo moves. The method is based upon simulating a set of systems in parallel, each of which has a slightly
different repulsive core potential, such that a thermodynamic path from full excluded volume to an ideal gas of
random walks is generated. While each system is run with standard stochastic dynamics, resultiNyin an
ensemble, we implement the parallel tempering through stochastic swaps between the configurations of adja-
cent potentials, and the large-scale Monte Carlo moves through attempted pivot and translation moves that
reach a realistic acceptance probability as the limit of the ideal gas of random walks is approached. Compared
to pure stochastic dynamics, this results in an increased efficiency even for a system of chains ashshort as
=60 monomers, however at this chain length the large-scale Monte Carlo moves were ineffective. For even
longer chains, the speedup becomes substantial, as observed from preliminary ddta2fe®. We also
compare our scheme to the end bridging algorithm of Theodet@l. For N=60, end bridging must allow a
polydispersity of more than 10% in order to relax the end-to-end vector more quickly than our method. The
comparison is, however, hampered by the fact that the end-to-end vector becomes a somewhat artificial
guantity when one implements end bridging, and is perhaps no longer the slowest dynamic variable.
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I. INTRODUCTION larly successful examples of schemes that achieve this in-
clude cluster algorithmfl2] for critical phenomena, and the
Computer simulations of dense polymer systems thapivot algorithm[13,14 for isolated polymer chains, which
make use of off-lattice models have been successful in theollectively rotates a large part of the chain at once, thus
determination of both static properties, such as phase equiloWing one to study the static properties fur= 10° and

libria [1-4] and rubber elasticity5], and dynamic proper- ab(l)ve[lél]. | N h h h
ties, such as the details of single-chain and collective relax- h a dense polymer system, nowever, such an approac

ation [6-9]. For a melt of polymers of lengtiN, the will clearly fail, since practically any attempted large-scale

relaxation timer, the time taken for the polymer to assume a2 < will be rejected due to overlap with other monomers.
: N 2 poly The effective constraints to motion that cause these tech-
new configuration, scales as<N< for small N (Rouse dy-

. . . . niques to fail are of physical importance—this is the mecha-
namics, while for larger values oN reptation behaviory — nism that, for sufficiently long chains, gives rise to the onset
<N*[6,10] sets in. If the computer simulation of a polymer of the considerably slower reptation dynamics. As a result,
melt is performed in such a way that the dynamic propertiegrevious attempts to speed up simulations of polymer melts
are realistically reproduced, then this scaling will be directlypy only lifting locality are unable to alleviate the problem.
related to the computational effort needed to effectivelyFor example, the continuum configurational biased Monte
sample phase space and obtain meaningful results for th@arlo method CCB [15-18) and its variant$19] remove a
static propertie$11]. As a result, progress in the simulation chain(partly), and attempt to regrow it into the existing ma-
of systems involving polymers with largd has been se- trix. This can in principle be seen as a nonlocal approach like
verely hampered. the pivot algorithm. However, in a simulation of a dense

A modern trend in Monte Carlo simulations in statistical polymer melt the chain will grow preferentially back into the
physics is to strictly distinguish between simulations thatcavity from which it was previously removed. This effect
only aim to determine the static properties of a given systenbecomes more pronounced with increasing chain length.
and those that also set out to determine the dynamic behav- A simulation algorithm geared at only generating uncor-
ior. In the latter case, one has to follow the natural motion ofrelated equilibrium configurations should thus not only find a
the system confined to local dynamics constrained by topolway to violate locality but also the constraints resulting from
ogy and/or barriers. If one is, however, only interested inthe topology of the system and/or barriers. Fortunately, tech-
generating uncorrelated configurations as quickly as posaiques have been developed to achieve this. The multica-
sible, one can use an artificial dynamics that is able to reachonical ensemble and its variantalso called “umbrella
new effectively uncorrelated configurations much moresampling,” “entropic sampling,” or “1k sampling”) [20—
quickly than the physical dynamics would allow. 25] try to identify barriers and then introduce a suitable bias

The Rouse scaling law=N? is a direct consequence of in order to remove theni.e., to allow the system to easily
only allowing local motions to occur. It is independent of enter these unfavorable stateSimulated temperindalso
any constraint to motion and holds even for phantom chaingalled “expanded ensemble¢’[26—2§ tries to systemati-
with no interaction whatsoever except connectivity. Clearly,cally soften the constraints to motion by giving the system
violating locality is an important step if one wishes to accel-access to different parameter values where the barriers are
erate the acquisition of uncorrelated configurations. Particuweaker.

1063-651X/2000/6@)/01670110)/$15.00 63016701-1 ©2000 The American Physical Society



ALEX BUNKER AND BURKHARD DUNWEG PHYSICAL REVIEW E63 016701

While the original implementations of simulated temper- (<A2>¢—<A>(2f))1/20cvl/2 2)
ing [26,27] focused on rather obvious intensive variables
such as temperature or chemical potential, it is evident th
the formalism is applicable to any parameter that appears i
the (effective Hamiltonian. One useful parameter for poly-
mer systems is the length of a particular tagged chain; this i
the approach followed in the work by dePaldoal. [28].
Later this was combined with additional parametéesm-
perature, chemical potentjdl29]. Another possible control

or reasons of Gaussian statistics atil d¢=V, one finds
A¢pxV~Y2 or n, the number of Hamiltonians in the se-
guence,ocvl/z.

Given a family of Hamiltonians with the above condition
satisfied, the tempering procedure consists of allowing a
given system to make stochastic switches to neighboring

parameter is the strength of the excluded volume interactior{;arp'ltomanf? on t‘ghe slgqultlancti_m par?[mcter g%acc at fixed
and this is the route we follow in this paper. Since this term ystem connguration. ideally, thiS results in a diffusion pro-

in the Hamiltonian directly generates the topological con-:f.ess ‘t’.V'th :ﬁsFect to the_ Hﬁ\mllto;lar:st. In cf;rtlc;l,a{_,' a clon-
straints that ultimately give rise to reptation-like slowing 'guration that was originally subject 1o a “har amil-

down, it is reasonable to expect that a systematic reductio%?n'an(w'th constraintscan diffuse to a "soft” Hamiltonian

of its strength should bear the potential of significant speed-WithOUt)’ relax there quickly, and return to the original hard

ups. This latter manipulation has already successfully beeHﬁmgt?r:"a”- ';rhlst should, Id;:ally, accelerate the rate at
applied to lattice polymers to measure chemical potentiaI¥V Ich the system lraverses pnase space. .

[30,31 and within the framework of a multicanonical en- For a dense three-tﬁmenspnal melt pf erX|bI_e polymers,
semble[32], while for continuum polymers it has so far only one expects the fcllovylng scaling: Thc time to d!ffuse along
been used in amad hocfashion for equilibration purposes the path of Hamiltonians and back is proportional rto

[6,8]. The present work should thus be viewed as an alternas-cv' Assuming that the soft Hamiltonian does not provide

tive approach to the existing method of dePaélal. [29] any constraints, and that a suitable algorithm is able to gen-
While their simulations introduce nonlocal moves by chain€rate there a completcly new configuration in practically zero
growth and removal, and effective constraint reduction by'€!axation time, one finds altogetherV. Furthermore, the

linking the system to lower chemical potentials, and thusSmallest system one can study is given by equating the linear

H H 12 (3
lower densities, we rather remove the constraints by reducinﬁjoX size to the mean end-to-end distafteN™* (in a melt,
e conformations are random walK40]). Thus 7=V

the excluded volume interaction within the framework of 32 T .
«N*4, which is somewhat better than plain Rouse relax-

parallel tempering and introduce nonlocality via pivot moves™ ' 2 ] X 3
[13,14. ation, 7«<N<, and considerably faster than reptationN°.

» Nevertheless, it should be noted that the well-known

[33,34 or “exchange Monte Carlo’[35], is very similar in  Slithering-snake algorithril4] scales ag<N™", i.e., is ex-
spirit to simulated tempering26,27, but offers a number of pected to be asymptotically even better thgn our pr_ocedure.
both conceptual and technical advantages. Both approachEST Very dense systems, the prefactor in this law will, how-
are based on studying a whole family of Hamiltonidts,i ever, be large, due to small acceptance rates of t'he'slltherlng-
=1....n, each of which defines a standard Boltzmann Weigmsnake moves, such that one might need unrealistically long

exp(—"H,), where, for convenience, the temperature has beefhains in ord_er to actually observe the s_uperiority. Wher_e we
absorbed into the definition of the Hamiltonian. This family €XP€ct the biggest payoff for our algorithm, however, is in

of Hamiltonians will form a sequence in the one-dimensionaSYStemMs where thérue physical dynamics is governed by

space of the control parameter. Along this line, the Hamilto-2n activated process, such as star polymaés where

nians must be located close enough to each other such that
the distribution of equilibrium states resulting from the Bolt- Tocexp(constN), 3
zmann weight expf H;) has significant overlap with the dis-

tributions given by the Boltzmann weights exgkfi_1) and  and for which the slithering-snake algorithm is not appli-
exp(—H+1). A typical configuration for Hamiltoniar#;  cable. Regardless of these considerations, our first tests have
should be within the thermal fluctuations for both Hamilto- de”berate]y focused on melts of linear ChainS, since this is

nians,H;_; and’;. . As system sizévolumeV) increases, the system that is characterized best with respect to both
the distributions become sharper and sharper. As a resulatics and dynamics.
more and more Hamiltonians will be required for this condi- The difference between simulated tempering and para||e|
tion to still be satisfied. One should thUS, in principle, StUdytempering Originates in how this idea is put into practice_
a system that is as small as possible. Standard simulated temperiig6—2§ considers only one

If we denote the control parameter kly the above con- system, whose configurations we denotespyand simply
dition can be expressed as follows: For the averages of gqds the parametap as an additional degree of freedom,
given extensive variablé in two adjacent ensembles char- which is treated via a standard Monte Carlo algorithm in that
acterized byp and ¢+ A ¢, the relation expanded state space. This procedure is governed by the
Hamiltonian H(¢,X) — »(¢), where 7 is a suitable pre-
weighting factor, to be determined self-consistently in order
to prevent the simulation from getting trapped in the softest
Hamiltonian. The partition function of the resulting ex-
should hold. Since panded ensemble is given by

Parallel tempering, also called “multiple Markov chains

HA) 2 2\1/2
|<A>¢+A¢_<A>¢|”‘W’|A¢|5(<A Yo~ (AYy) T (1)
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puting facilities(for which the approach is ideally suiteis

z=2 expl ﬂi)f dxexp(—H) =2, expn—F)), still somewhat limited. Applications up to now have included

' ' 4) spin glasse$35,37], structural glasseg37,38, liquid-vapor
phase coexistence in both simdlgd] and polymeric[29]

whereF is the free energytemperature is again absorbed in fluids, and several studies on the theta collapse of single
the definition. Since the arguments of the exponentials arg?olymer chains and related issug&},40—49. The fact that
extensive, the sum will always be strongly dominated by théhe strength of the excluded volume interaction could be
largest term, unless all of them are practically identical. Thisused as a parameter in parallel tempering is mentioned in
means that unless,~F;Yi, the system will not be able to Ref.[32]; however, no actual run data were presented.
traverse the full extent of the available parameter space as The remainder of this paper is organized as follows. In
one or more parameter values will become highly improb-Sec. Il, we describe the details of the model and the algo-
able. rithm. Section Il A defines the standard Kremer-Grest model

In parallel temperingn systems are run in parallel, each of a polymer melt[6] and its simulation by means of sto-
of which is assigned one of the Hamiltoniais. Diffusion  chastic Langevin dynamics. Section II B then describes the
in Hamiltonian space is then facilitated by simple swaps offost important ingredients of our parallel tempering proce-
the configurations of adjacent Hamiltonians. Since eactélure, which is based upon altering the functional form of the
Hamiltonian will always be occupied, there is no problem offepulsive core potential and replacing it by a nondivergent
the simulation not visiting any particular “unfavorable” “soft-core” potential, until the limit of phantom chains is
Hamiltonian, and thus it is no longer necessary to determinéeached. This allows the chains to pass through each other,
preweighting factors. Furthermore, the scaling considerationus eliminating the slow reptation dynamics. When the re-
from above remain valid; the increased CPU effort by a faculsive core potential is soft enough, we will be able to per-
tor of n is rewarded by the fact that we now haveandom form inOt and whole pOlymer translation moves in the melt
walkers available to produce data. The series dystems for which 7« N%O, as described in more detail in Sec. Il C.

can be seen as one extended ensemble with the partitidfe also perform a comparison with end bridgie$,47, a
function very fast Monte Carlo algorithm that, however, does not con-

serve the chain lengths, and whose basic features are outlined

~ _ 1 . in Sec. 11 D. Section Ill reports our numerical results. Section

Z:f dxl"'dxnm2 exp(— Hp(1) (X)) I A describes how we found the parameters for our proce-
: dure, while important time correlation functions to measure

X exp(—Hpm)(Xn)) the efficiency of our algorithm are defined and presented in

Sec. Il B, resulting in our conclusio¢Bec. Il C.

=11 z, (5)
I II. MODEL AND ALGORITHM

wherep denotes the possible permutations of the index set A. Kremer-Grest model and Langevin dynamics

i=1,..n, and we have made use of the arbitrariness in la-  The Kremer-Grest modéB] is one of several off-lattice
beling. Thus the method just simulatesstatistically inde-  ,5qels for polymer melts which are commonly known as

pendent systems. o _ _ . “bead-spring” models. All particles have purely repulsive
The detailed balance condition for the swap is derived IN_ennard-Jone&LJ) cores of the form

a straightforward manner: If we denote two systems in which
6

we attempt to switch the Hamiltonians &y (governed ini- o\? o 1 "

tially by Hamiltonian ;) and y (governed initially by U(n=4el| | —|1] t7], r<27o,
Hamiltonian #,), then the transition probabilitiess must

satisty Uiy(r)=0, r=2Y, (7)
W[()E’X)%(BI')E)]: Peq(}:’)f) wheree ando, as well as the bead mass, are set to unity such
WL(Y,X) = (X,Y)]  PedX,Y) that time is in Lennard-Jones units. The finitely extensible

_ - - _ nonlinear elastic attraction between the neighboring mono-
= = Hu(Y) = H )+ HI )+ Ho (D] s on the chains is given by ’ k

(the partition functions cancel out in the ratio of equilibrium
distributiong. Using the standard Metropolis rule, the at-
tempted swap X,¥)—(Y,X) is accepted with probability whereRy=1.5 is the maximum extension of the nonlinear
min(1B). spring, andk= 30 is the spring constant. The spring constant

Given the simplicity of the method, and its potential, oneis set to be strong enough to prohibit two polymer chains
should expect that its popularity will increase substantially infrom crossing each other. We consider a systefi ahains
the future. So far, its use has not been very widespreadf lengthN in a cubic box with periodic boundary conditions
partly due to the fact that access to massively parallel comat constant volume with densigy=0.85.

U(0=—ERH%1—rj (8)
ch! 20 Egy
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We have simulated amNVT ensemble of this system U
through the use of Langevifstochastig dynamics[6,11], } [ [ I ' ' [ [
fixing the temperature &T=1.0, wherekg denotes Boltz- U2
mann’s constant. This involves the addition of a random I 1 ] [ I I
force and a friction term, resulting in the following equations ul l l l ' j ‘ I I
of motion in terms of particle position§ and momenta; : U
0
ﬁi = |':i _r P+ fi , FIG. 1. Schematic representation of our parallelization scheme.
m; The double arrows represent attempted switches and the thick line

(9) represents the path through the Hamiltonians followed by one of the
- P systems.

neighbors and next-nearest neighbors on chains was thus
where Ifi is the force due to the interactions with other !{(lelpt Intact, w|h|le daltl) o:ﬂerf rﬁpullswe:‘ L?tnnaré:i—\]on(is p?ten-
monomersm; the particle massy the friction constant, and :Z_S were replaced Dy the following “softened core™ poten-
ﬂ the stochastic force that satisfies the standard fluctuation-

dissipation relation, Usdr)=A—Br?, r=ry,
F-[7

(i.e., uncorrelated with respect to both particle indicesd r r

Cartesian indices). These equations were solved using the Ve

standard velocity Verlet integratgi 1,48, with friction co- Usdr)=0, r=2",

efficient y=0.5 and time stegAt=0.0125. : o

Both static and dynamic properties of this model are very¥here A and B are fixed by the continuity otJ(r) and
well known [6,11]. In particular, its slow Rouse- or du/dr, leaving r; as the only free parameter. For the

reptation-like dynamics serves as a reference for the speediffémer-Grest potential; =0, andr, is successively larger
obtained from our new Monte Carlo procedure. for each softer potential until the final potential in the series

hasr,=r.=2Y¢, the cutoff radius, which is the case for
phantom chains. A graph of such a family of potentials is
shown in Fig. 2. We will refer to the ratig /r . as the “soft-

We have performed parallel tempering by connecting acore parameter.” Observing Fig. 2, it becomes quite appar-
series of systems to the Kremer-Grest potential using succeent why our tempering parameter is a superior choice to tem-
sively softer repulsive core potentials. Tinesystems are perature for the Kremer-Grest model. Tempering in
simulated in parallel, and each system is on a separate pro-
cessor of a massively parallel systé@ray T3B. Once an 200
initial locally equilibrated configuratiofin real and momen-
tum spacgis obtained for each of the systems, the potentials
are allowed to switch between systems through Metropolis
Monte Carlo steps, as described above. It should be note:
that the kinetic energies cancel out in the Metropolis crite-
rion. The swaps are implemented in a checkerboard fashion
where either the odd-even pairs or the even-odd pairs art
tried. Between these swaps each system is run for a fev—) 100
stochastic dynamics steps; it is known that this procedure is
quite efficient for equilibrating local degrees of freedom. For
example, if we were to use eight processors we would first
attempt to switch the systems 1-2, 3—4, 5-6, and 7-8, thel
run some stochastic dynamics, then attempt the switche:

2-3, 4-5, and 6-7, then run more stochastic dynamics be
fore attempting the first set of switches again. Figure 1 shows
how this aspect of the algorithm is implemented. A reason- 0
able duration for the Langevin runs between the swaps is
obtained from studying the potential-energy relaxation, as

described later. FIG. 2. A set of successively softer repulsive core potentials. In

In order to achieve large acceptance rates for the swaps, e simulation, we connect the system with the purely repulsive
is necessary to choose the form of the “softened core” po4 ennard-Jones potential, shown as the solid line, through a series of
tential such that the bond lengthand the chain stiffness,, such softened core repulsion potentials to the limit of phantom
are approximately maintained. The core repulsion of thehains J=0).

(fia(O)fjp(t")) =29k T 8jj Sppo(t—t") (10 6

+ —

Usdr):4€ 4

. n=r=<2Y%gs (11

B. Parallel tempering
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FIG. 4. End-bridging move for the Kremer-Grest model. If the

FIG. 3. Schematic representation of our implementation of pivot d-bridai . ion invol hakBe th
moves: Neither the nearest-neighbor nor the next-nearest-neighb pd-bridging move in question involves an energy chakie then

0 i A —mi - AE

distances on the polymer chain are affected. As a result, none of thtWe_ prObab_'"%/ ?f the move |sé)g|vrt]3n W._ nt1)|n(1,We h ): whel;e f

potential interactions that are kept at full strength are affected. IS a weig t factor given by ! € r_a_tlo etween t '€ number o
possible monomers to which the initial end can bridge, and the

number of monomers to which the newly created end could bridge

temperature would be the equivalent of altering the potenti ack

by a constant multiple. No matter how high a temperature

reached, the ~!? divergence of the core would not be alle- to the ends of different polymers. It was originally devised
viated. for atomistic simulations with fixed bond lengths and in-
volved an intricate procedure. Implementing this algorithm

C. Pivot and translation moves on the Kremer-Grest model, however, is far simpler since

. .our bond lengths are able to fluctuate. The end of a chain
When we reach systems with extremely soft repulsive 9

) . 2 searches for a possible chain to bridge to. This search is
core potentials, then Iarge_-_scale motions within the system erformed by finding all the monomers within the cutoff
will have observable transition probabilities. We must ensur dius that are not on the same chain as the chain end in
that these large-scale motions through phase space are s stion. One out of these is selected at random. If a possible
that only the parts of the potential that have been softene

number of monomers to which the end could possibly bridge
divided by the number of monomers to which the newly
created end could bridge back. This is necessary to satisfy

. . detailed balance, i.e., to correct for the different probabilities
th_e interactions that hav_e hot been_ softened are unchanggdtlg select the original reaction and the backreaction. A dia-
this move. The translation move involves taking the er‘t'regram of how end bridging works for the Kremer-Grest model
polymgr qnd sh|ft-|ng it a random distance n a random d|rec~ls shown in Fig. 4. In our implementation, we run the Lange-
tion. _It is in reaching systems where these kinds of moves arg; | dynamics for 10 LJ time units, followed by, bridging
possible before returning to the Kremer-Grest Ham'l.tomanattempts, whera, is 20 times the number of chains.
where we expect our algorithm to pay off. We have imple-
mented the pivot and translation moves together in a single
move where the whole chain is simultaneously translated and lll. RESULTS AND DISCUSSION
every bond is rotated, thus relaxing all the degrees of free- A. Construction of simulation procedure
dom of the chain with the exception of the bond lengths and
angles, which are relaxed by the Langevin dynamics. W
attempt these moves also quite frequently, as discussed la
in the paper.

moves.
The pivot move involves rotating part of the polymer
around the axis of a given bond. As shown in Fig. 3, all of

We first tested the algorithm with a system of 20 chains of
?&ngth 60. For further simulation parametéps=0.85, kgT
=1.0, etc., which were not varigdsee Sec. Il A. The effect
of softening the potential is clearly seen in the standard pair
correlation functiong(r), which is the probability to find a
particle pair with distance, normalized by the ideal gas

In order to compare our algorithm with an establishedvalue. This function is shown in Fig. 5, excluding the nearest
Monte Carlo method for equilibrating dense polymer sys-and next-nearest neighbors on the polymer chains where the
tems, we have also implemented an end-bridging procedureore repulsions are maintained at full strength. Compared to
combined with Langevin dynamics. End bridging, developedhe fully repulsive system, there is a considerable probability
by Theodorouet al[46,47), is a very efficient algorithm; for very short distances as soonraér.=0.95, reflecting the
however, it gains its speed only by giving up monodispersity ability of chains to pass through each other. This removes the
Instead, a fixed number of monomers and a fixed number abpological constrains for chains of arbitrary length. Thus
chains are simulated; the length, however, is allowed to fluceven without pivot moves, the dynamics would not be slower
tuate within predefined limits. In practice, these limits arethan Rouse relaxation.
defined by allowing all chain lengths betweli(1—f ) and Furthermore, we measured the single-chain static struc-
N(1+f), wheref is typically of orders. The algorithm in-  ture factorS(q) =N~Y(|=; exp(q-f;)|?) for both the Kremer-
volves allowing bonds within polymers to break and reattachGrest model and the phantom chains as shown in Fig. 6. As

D. End bridging
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FIG. 5. Pair correlation function of ak=60 polymer system at FIG. 7. Probability that a system would transfer to the next

densityp=0.85 for several values of /r., excluding nearest- and softer potential, as a function of its own potential index, which
next-nearest-neighbor pairs along the chain backbone. Note thatcreases with softness. Although the low molecular weight fluid
starting at about, /r .= 0.95, the chains are effectively able to pass and the polymer system have the same density0.85 and tem-

through each other. peraturekgT=1.0, there are marked differences in behavior, as

discussed in the text. The inset graph shows the steps in soft-core
expected, the Kremer-Grest model reproduces the randomyarameter values for each of the potentials.

walk exponent v=0.5, observed from the deca$(q)

72 . . . .
o;]q K, The rGesuIt for éhT phda}nto_m C?]a'nsh IS very "3|m|lar O tions we used 128systems in order to connect from the fully
the remer- rest model, indicating that the overa StrUCturerepulsive potential to the phantom chain limit, requiring that
of the chain does not change very much as we soften thg - swap acceptance rates are of orieFhe soft-core pa-

repulsive core potentials. This in turn means that no major'ameters were adjusted by hand, in essence via a trial-and-

chain rearrangements are necessary along the tmrmOdé(Fror procedure. It was found that thestep size to the next

hamic path, such_that the transitions should be quite easy. softer potential had to be reduced drastically as the phantom
Nevertheless, it turned out that for our number of mono-

ds of th d 1@l ) chain limit was approached.
mers one needs of the order of<1@ue to computer restric- A graph of the resulting transition probabilities for each

, of the 128 potentials for both 20 chains of length 60 and
1200 purely repulsive Lennard-Jones patrticles is shown in
Fig. 7. The first potential with a softened core was chosen at
ri/r.=0.74. From then on, we picked furthervalues with
uniform spacing; however, occasionally this spacing had to
be reduced along the path, in order to prevent the transition
rates from dropping too strongly. This procedure thus intro-
duced a number of steps in the spacing, as shown in the
inset of Fig. 7. These steps in turn give rise to jumps in the
transition rates, as clearly seen in Fig. 7. Furthermore, there
are very rapid oscillations, which we believe to be a conse-
quence of the checkerboard algorithm.

Comparing the low molecular weight case with the poly-
mer system, one observes that in the regime of smétl,
=0,...,0.95, where the pair correlation function exhibits clear
- ) ‘ core repulsion(see Fig. 3, the transition probabilities in-

In(CI) crease with increasing chain length. In the intermediate re-
gime, the transition probabilities are roughly independent of

FIG. 6. Single-chain static structure factor for both the Kremer-Cha'n length and as the limit _Qf phantom. -Chalns IS ap-
Grest model(chain lengthN =60, densityp=0.85 and phantom Proached,r/r.=0.99, the transition probability drops off
chains where the nearest- and next-nearest-neighbor interactigliastically with increasing chain length.
along the chain was left intact. The similarity in the static structure e believe this phenomenon can be explained as follows.
factor indicates that the large-scale structure of the chains is neariyhe transition probability is governed by the overlap in the
invariant as the repulsive core potentials are softened. The straigénergy distributions. The degree of this overlap is dependent
line represents a slope ef2 corresponding ta=0.5. on the difference between the mean energies and the width of

4

—— Kremer-Grest model

% [ ———. phantom chains
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. . steps of Langevin dynamics and then cross over to a much

— ;g g::::: :Z:gm ;g slower decay. Our interpretation of the very fast initial decay
-~ 60 chains |ength 20 is that it is a direct consequence of the local bond oscilla-
— — - 60 phantom chains length 20 tions, which happen on roughly this time scale. This is also

1 . . ] in accord with the observation that it occurs independently of

the degree of softening, see Fig. 8, since the potentials be
tween bond neighbors remained unchanged for all potentials.
Conversely, the long-time behavior is quite strongly affected
by the softening, again in agreement with the expectation
that the function should decay much faster for a softer sys-
tem. Furthermore, the energy-energy autocorrelation func-
tion is independent of chain length, as expected.

These results suggest that it is most efficient to attempt
the switches frequently, on the time scale of the bond oscil-
lations. We thus constructed the following algorithm: On ev-
ery system we perform the large-scale chain reorientation
attempt on enough chains so that attempts are made to move
at least 5% of the monomers. This is followed by four

FIG. 8. Normalized energy-energy correlation function as alangevin dynamics steps, after which the Hamiltonian swaps
function of time in Lennard-Jones time units, at dengity0.85.  (either even-odd or odd-eveare performed. Then the pro-
Note the very fast decay on short time scales followed by a mucttedure is repeated. For reasons of simplicity, we have ap-
slower decay that is dependent on the soft-core parameter. plied the identical moves to all systems. It should be stated,

in the interest of future development of this method, that this
the energy distributions. In the low soft-core parameter re€ondition is, however, not necessary. Any algorithm that
gime, the dominant factor is the difference in average en!eave:s the.BoItzma'nn distributions pf the different systems
ergy, since large interaction energies are present. As chalfvariant will be valid. For our algorithm, however, as cur-
length increases, the fraction of interactions which belong t¢€ntly implemented, not to attempt the large-scale moves on
nearest or next-nearest neighbors along a chain also i€ hard systems would only generate idle CPU time since
creases. As these interactions are not softened, the differenffe® Processors all have to wait for the slowest system to
in mean energy between adjacent potentials is reduced updish before attempting the next swap. A further optimiza-
increasing the degree of polymerization. Thus the overlapton could, however, involve eliminating the large-scale
and the transition probability, is raised. Conversely, as thénoves on the hard systems and replacing them by more
limit of phantom chains is approached, the interaction ener-@ngevin steps. By fine-tuning this, one should be able to
gies involved become very weak, and the behavior rathefeduce synchronization overhead to a minimum. We also
becomes entropy-driven. Since polymerization reduces thi{Pund that as the soft-core parameter approaches the phan-
translational entropy, one should expect that alsovééa- tom chain limit, Ipcal bond_ osmllqﬂons can become _uns_table.
tion of the free energy with, is decreased upon polymeriza- This can be easﬂy remedied by increasing the f_rlctlon in the
tion. As the width of the energy distributions should be di-L-@ngevin dynamics as the soft-core parameter increases.
rectly related to the “specific heat,” i.e., the second
derivative of the free energy with respectriqwhich can be B. Correlation functions

VieWed as the eqUiVaIent Of temperature for our Sy$,tﬂme An appropriate Way to benchmark the program iS to de_
expects an entropic narrowing of the distributions, while therermine the CPU time needed per relaxed chain. Since every
mean values remain largely unaffected. Thus the overlap angl;stem periodically passes through the Hamiltonian with the
the transition rate are reduced. full Lennard-Jones repulsive hard-core potential, each sys-
We feel that an analytical relationship between the Chairiem can be seen as a Kremer-Grest mode' that is samp|ed
length and the transition probability in the phantom chaineyery time this Hamiltonian happens to lie on it. Useful
limit can probably be developed, maybe by a perturbationsingle-chain quantities to measure are the normalized end-to-

expansion around the ideal gas of random walks. If this is SO, \.ector autocorrelation functiofiR(t) - R(0))/(R2) with
then, from a determination of a set of soft-core parameters. .

that have a constant transition probability for a certain numR="n~F1, and the autocorrelation function of the lowest
ber of Lennard-Jones particles, a general relationship couliveé Rouse modegX(t)-X,(0)) with p=1,...,5 and 8]

be developed that would provide a set of soft-core param- N

eters for an arbitrary number of chains of an arbitrary length. - 1o - pm .
The development of such a procedure is, however, beyond Xp=v2N .21 Fi CO{W(' 1/2)
the scope of this paper.

From measuring the time autocorrelation function of theThese quantities must be measured in such a way that only
potential energy for the untempered systéine., without correlations between configurations where the Kremer-Grest
swaps between potentiglshown in Fig. 8, we have found Hamiltonian is present are counted. Thus we define the fol-
that the correlations decay very quickly after only a few timelowing procedure to measure autocorrelation functions:

energy—energy correlation
o
(3]

time

. (12

016701-7
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FIG. 10. Normalized end-to-end vector autocorrelation function,

FIG. 9. Normalized end-to-end vector autocorrelation function, . ) )
for chain lengthN=60 at densityp=0.85, using our parallel tem-

for chain lengthiN =60 at densityp=0.85, using standard Langevin . . . : -
dynamics, our parallel tempering procedure with and without pivotP€ing algorithm with and without pivot moves.

moves, and end-bridging simulations for various degrees of poly-, . " T
dispersity. first Rouse mod€gin terms of “physical” time, not CPU

time). The parallel tempering alone already needs such a
, , , , long time for traversing Hamiltonian space from the ideal
Zpu(t’ +Hu(t) U +1),U)S(U(L'),Uo) gasgto the full repulsiveginteraction that (FJ)n this time scale the
Zpo(U(t' +1),Ug)a(U(t"),Uo) ’ chains are already fully relaxed. After a “diffusive loop”
(13 through Hamiltonian space, the configuration is thus already
fully decorrelated, even without pivot moves. Therefore, the
whereu(t) is the quantity whose autocorrelation function is pivot moves just generate additional CPU overhead and
determined,U, is the Kremer-Grest potential, and(t) is cause a slowdown.
the potential at time. The Kroneckers(U(t),U,) vanishes In Fig. 12, the autocorrelation of the lowest five Rouse
unless the potential i§ly, where it is unity. modes is shown as a function of the Rouse scaling variable
Figure 9 displays the normalized end-to-end vector autot sir’(pa/2N), such that for pure Rouse dynamics all curves
correlation function foii) end bridging with degree of poly- would collapse onto a single line. As is known from older
dispersity set to 10% and 20% of the chain lendth, our  simulations[6,8], N=60 is already slightly in the crossover
parallel tempering procedure, ani) standard Langevin regime to reptation, where ultimately the lower modes are
(Rouse-like dynamics, for our system of 20 chains of length slowed down. Nevertheless,=60 is still too short for this
N=60. It is seen that end bridging can achieve better effieffect to become visible, such that Rouse behavior for the
ciency in the relaxation oR, but only if the polydispersity
exceeds 10%, which must be considered a large value if oni  1.00 ' '
is mainly interested in the properties of an approximately
monodisperse sample. Furthermore, it is most likely that the
end-to-end vector does not describe the slowest relaxation ii
the system for this type of algorithm. Since for the end- ,
bridging algorithm what constitutes a polymer chain be- A .
comes an ill-defined quantity, what actually does become the% Lin'™
slowest mode is unclear. It is probably a collective quantity & o0.10 |- . L 1 —
like the stress or similar; however, since the fluctuations in x —— No pivot moves L 1T
such quantities are hard to measure with good statistical acsz [ ------ Pivot moves Hr
curacy, due to lack of self-averaging, we did not study this ¥
point further.
The parallel tempering procedure turns out to be some-
what faster than plain Rouse relaxation, in particular in the
long-time limit. In terms of integrated autocorrelation time, 0.01 . . ‘
the speedup amounts to roughly 10% with the pivot moves 0 2000 4000 6000 8000
present and 30% without. The reason why performing pivot time
moves actually slows the simulation down is explained by FIG. 11. Normalized autocorrelation of the first Rouse mode, for
Figs. 10 and 11, which show the normalized end-to-end vecehain lengthN =60 at density=0.85, using our parallel tempering
tor autocorrelation function and the autocorrelation of thealgorithm with and without pivot moves.

C(t)=
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1.00 . function until full decay. Nevertheless, our preliminary data
clearly show a steep drop off in the correlation functions,
which is much more pronounced than for the caseNof
=60. These data were obtained for the casgi¢h pivot
moves; we believe that they actually did help to accelerate

A the equilibration of this system. The data for pure Langevin
3 dynamics without tempering were taken from R@49].
g 0.10 |- From an approximate fit to our data, we see a spedaup
< terms of integrated autocorrelation time for the first Rouse
fm mode of greater than a factor of 8.
\%
C. Conclusions
~ Our results indicate that parallel excluded volume temper-
0.01 . ing combined with large-scale chain moves is a viable route
0 tsinz(;t/2N) 10 to speeding up simulations of dense polymer systems. It is

expected that the method will become more and more useful
FIG. 12. Rouse mode analysis for the lowest five Rouse modeS the chain length increases, as indicated from our prelimi-
for our parallel tempering procedure, and compared to the case dtary results for chain length 200, in particular when com-
pure Langevin dynamics, for chain lenghh=60 and densityp ~ Pared to the results for shorter chains. For our initial attempt,
=0.85. Though we have shown only the result for the second Rous#hich is most likely not the optimal choice of all simulation
mode, all Rouse modes fall onto the same line for pure Langeviparameters, it seems thiet=60 is rather close to the cross-
dynamics. over length, whileN= 200 is significantly above. Even more
dramatic speedups are expected for more complicated mo-
case of pure Langevin dynamics can still be assumed. Odecular architectures such as stars. These issues will be the
tempering procedure, on the other hand, produces a dispreubject of future investigations. Current trends in the devel-
portionate acceleration of the lower modes. They are th@pment of computational facilities indicate that over the next
only modes that are slow enough to be able to capitalize odecade we will see an increase in the availability of mas-
the excursions to the softer interactions. They first relax exsively parallel computers with more and more processors
ponentially in accord with the pure Rouse dynamics of therunning at approximately the speed of today’s processors.
hard system, while at later times the decay is significantlywith the advent of such facilities, we expect the full poten-
steeper. tial of this algorithm to be realized.
We were also able to obtain results, shown in Fig. 13, for There are several directions in which this algorithm can
a system of 32 chains of length 200, using 256 Hamiltoniansbe further developed. Through the development of an ana-
Limitations in the CPU time available to us have preventedytical understanding of the effect of chain length on transi-
us from performing a comparison between simulations withtion probabilities as the phantom chain limit is approached,
and without pivot moves and from measuring the correlatiorone could realize a general scheme to generate an optimal set
of transfer radii for a particular system. Another possible
N development is performing the parallel excluded volume
S tempering by only softening a limited set of interactions in
the Hamiltonian, if the original system is based upon a more
N ) fine-grained or even atomistic model. In such models, it is
N - quite typical that a particular term in the Hamiltonian creates
T T a significantly greater energy barrier than any other term.
D) T Since such “hard” interactions pertain only to a subset of
N M the overall system, the effective system sizen which the
tempering acts is reduced. This results in a smaller number
of necessary processors.
N One could also consider the softening of only a subvol-
O Parallel tempering - N ume of th<=T system, for exam_ple a §ingle polymer or all sites
— — - Approximate fit 1 N in a certain region of the simulation box. However, such
—— Langevin Dynamics (Puetz) - N approaches need careful testing, since one must expect that
011 : ‘ ‘ ‘ i the softening perturbation is not strictly local, due to long-
0 10000 20000 30000 40000 50000 range elastic stresses. Combining parallel excluded volume
time tempering with CCB may also yield a more efficient algo-
FIG. 13. Normalized autocorrelation of the first Rouse mode forfithm.
our parallel tempering procedure for chain length 200 at depsity [N its current form, our algorithm should be seen as
=0.85. We have compared our result to a fit to results previoushcomplementary to the “hyperparallel tempering” algorithm
obtained by Ptz [49]. of dePabloet al. [29]. Both approaches are geared at con-

1.0 T

<X, (H)X,(0)>/<X,>>
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‘straint softening(via the density in the “hyperparallel tem-
pering,” via direct manipulation of the interaction in our
case, combined with nonlocal chain movéshain growing

versus pivot moves Chain insertion then becomes feasible,

PHYSICAL REVIEW E63 016701
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