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Parallel excluded volume tempering for polymer melts
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~Received 29 June 2000; published 22 December 2000!

We have developed a technique to accelerate the acquisition of effectively uncorrelated configurations for
off-lattice models of dense polymer melts that makes use of both parallel tempering and large-scale Monte
Carlo moves. The method is based upon simulating a set of systems in parallel, each of which has a slightly
different repulsive core potential, such that a thermodynamic path from full excluded volume to an ideal gas of
random walks is generated. While each system is run with standard stochastic dynamics, resulting in anNVT
ensemble, we implement the parallel tempering through stochastic swaps between the configurations of adja-
cent potentials, and the large-scale Monte Carlo moves through attempted pivot and translation moves that
reach a realistic acceptance probability as the limit of the ideal gas of random walks is approached. Compared
to pure stochastic dynamics, this results in an increased efficiency even for a system of chains as short asN
560 monomers, however at this chain length the large-scale Monte Carlo moves were ineffective. For even
longer chains, the speedup becomes substantial, as observed from preliminary data forN5200. We also
compare our scheme to the end bridging algorithm of Theodorouet al. For N560, end bridging must allow a
polydispersity of more than 10% in order to relax the end-to-end vector more quickly than our method. The
comparison is, however, hampered by the fact that the end-to-end vector becomes a somewhat artificial
quantity when one implements end bridging, and is perhaps no longer the slowest dynamic variable.

DOI: 10.1103/PhysRevE.63.016701 PACS number~s!: 05.10.Ln, 61.20.Ja, 61.25.Hq, 61.41.1e
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I. INTRODUCTION

Computer simulations of dense polymer systems t
make use of off-lattice models have been successful in
determination of both static properties, such as phase e
libria @1–4# and rubber elasticity@5#, and dynamic proper-
ties, such as the details of single-chain and collective re
ation @6–9#. For a melt of polymers of lengthN, the
relaxation timet, the time taken for the polymer to assume
new configuration, scales ast}N2 for small N ~Rouse dy-
namics!, while for larger values ofN reptation behavior,t
}N3 @6,10# sets in. If the computer simulation of a polym
melt is performed in such a way that the dynamic proper
are realistically reproduced, then this scaling will be direc
related to the computational effort needed to effectiv
sample phase space and obtain meaningful results for
static properties@11#. As a result, progress in the simulatio
of systems involving polymers with largeN has been se
verely hampered.

A modern trend in Monte Carlo simulations in statistic
physics is to strictly distinguish between simulations th
only aim to determine the static properties of a given sys
and those that also set out to determine the dynamic be
ior. In the latter case, one has to follow the natural motion
the system confined to local dynamics constrained by to
ogy and/or barriers. If one is, however, only interested
generating uncorrelated configurations as quickly as p
sible, one can use an artificial dynamics that is able to re
new effectively uncorrelated configurations much mo
quickly than the physical dynamics would allow.

The Rouse scaling lawt}N2 is a direct consequence o
only allowing local motions to occur. It is independent
any constraint to motion and holds even for phantom cha
with no interaction whatsoever except connectivity. Clea
violating locality is an important step if one wishes to acc
erate the acquisition of uncorrelated configurations. Part
1063-651X/2000/63~1!/016701~10!/$15.00 63 0167
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larly successful examples of schemes that achieve this
clude cluster algorithms@12# for critical phenomena, and th
pivot algorithm @13,14# for isolated polymer chains, which
collectively rotates a large part of the chain at once, th
allowing one to study the static properties forN5105 and
above@14#.

In a dense polymer system, however, such an appro
will clearly fail, since practically any attempted large-sca
move will be rejected due to overlap with other monome
The effective constraints to motion that cause these te
niques to fail are of physical importance—this is the mec
nism that, for sufficiently long chains, gives rise to the on
of the considerably slower reptation dynamics. As a res
previous attempts to speed up simulations of polymer m
by only lifting locality are unable to alleviate the problem
For example, the continuum configurational biased Mo
Carlo method~CCB @15–18#! and its variants@19# remove a
chain~partly!, and attempt to regrow it into the existing ma
trix. This can in principle be seen as a nonlocal approach
the pivot algorithm. However, in a simulation of a den
polymer melt the chain will grow preferentially back into th
cavity from which it was previously removed. This effe
becomes more pronounced with increasing chain length.

A simulation algorithm geared at only generating unc
related equilibrium configurations should thus not only find
way to violate locality but also the constraints resulting fro
the topology of the system and/or barriers. Fortunately, te
niques have been developed to achieve this. The mult
nonical ensemble and its variants~also called ‘‘umbrella
sampling,’’ ‘‘entropic sampling,’’ or ‘‘1/k sampling’’! @20–
25# try to identify barriers and then introduce a suitable b
in order to remove them~i.e., to allow the system to easil
enter these unfavorable states!. Simulated tempering~also
called ‘‘expanded ensemble’’! @26–28# tries to systemati-
cally soften the constraints to motion by giving the syste
access to different parameter values where the barriers
weaker.
©2000 The American Physical Society01-1
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ALEX BUNKER AND BURKHARD DÜNWEG PHYSICAL REVIEW E63 016701
While the original implementations of simulated tempe
ing @26,27# focused on rather obvious intensive variab
such as temperature or chemical potential, it is evident
the formalism is applicable to any parameter that appear
the ~effective! Hamiltonian. One useful parameter for pol
mer systems is the length of a particular tagged chain; th
the approach followed in the work by dePabloet al. @28#.
Later this was combined with additional parameters~tem-
perature, chemical potential! @29#. Another possible contro
parameter is the strength of the excluded volume interact
and this is the route we follow in this paper. Since this te
in the Hamiltonian directly generates the topological co
straints that ultimately give rise to reptation-like slowin
down, it is reasonable to expect that a systematic reduc
of its strength should bear the potential of significant spe
ups. This latter manipulation has already successfully b
applied to lattice polymers to measure chemical potent
@30,31# and within the framework of a multicanonical en
semble@32#, while for continuum polymers it has so far on
been used in anad hoc fashion for equilibration purpose
@6,8#. The present work should thus be viewed as an alte
tive approach to the existing method of dePabloet al. @29#.
While their simulations introduce nonlocal moves by cha
growth and removal, and effective constraint reduction
linking the system to lower chemical potentials, and th
lower densities, we rather remove the constraints by redu
the excluded volume interaction within the framework
parallel tempering and introduce nonlocality via pivot mov
@13,14#.

Parallel tempering, also called ‘‘multiple Markov chains
@33,34# or ‘‘exchange Monte Carlo’’@35#, is very similar in
spirit to simulated tempering@26,27#, but offers a number of
both conceptual and technical advantages. Both approa
are based on studying a whole family of HamiltoniansHi ,i
51,...,n, each of which defines a standard Boltzmann wei
exp(2Hi), where, for convenience, the temperature has b
absorbed into the definition of the Hamiltonian. This fam
of Hamiltonians will form a sequence in the one-dimensio
space of the control parameter. Along this line, the Hami
nians must be located close enough to each other such
the distribution of equilibrium states resulting from the Bo
zmann weight exp(2Hi) has significant overlap with the dis
tributions given by the Boltzmann weights exp(2Hi 21) and
exp(2Hi 11). A typical configuration for HamiltonianHi
should be within the thermal fluctuations for both Hamilt
nians,Hi 21 andHi 11 . As system size~volumeV! increases,
the distributions become sharper and sharper. As a re
more and more Hamiltonians will be required for this con
tion to still be satisfied. One should thus, in principle, stu
a system that is as small as possible.

If we denote the control parameter byf, the above con-
dition can be expressed as follows: For the averages
given extensive variableA in two adjacent ensembles cha
acterized byf andf1Df, the relation

u^A&f1Df2^A&fu'U]^A&
]f UuDfu&~^A2&f2^A&f

2 !1/2 ~1!

should hold. Since
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~^A2&f2^A&f
2 !1/2}V1/2 ~2!

for reasons of Gaussian statistics and]A/]f}V, one finds
Df}V21/2 or n, the number of Hamiltonians in the se
quence,}V1/2.

Given a family of Hamiltonians with the above conditio
satisfied, the tempering procedure consists of allowing
given system to make stochastic switches to neighbo
Hamiltonians on the sequence in parameter space at fi
system configuration. Ideally, this results in a diffusion pr
cess with respect to the Hamiltonians. In particular, a c
figuration that was originally subject to a ‘‘hard’’ Hamil
tonian~with constraints! can diffuse to a ‘‘soft’’ Hamiltonian
~without!, relax there quickly, and return to the original ha
Hamiltonian. This should, ideally, accelerate the rate
which the system traverses phase space.

For a dense three-dimensional melt of flexible polyme
one expects the following scaling: The time to diffuse alo
the path of Hamiltonians and back is proportional ton2

}V. Assuming that the soft Hamiltonian does not provi
any constraints, and that a suitable algorithm is able to g
erate there a completely new configuration in practically z
relaxation time, one finds altogethert}V. Furthermore, the
smallest system one can study is given by equating the lin
box size to the mean end-to-end distanceR}N1/2 ~in a melt,
the conformations are random walks@10#!. Thus t}V
}N3/2, which is somewhat better than plain Rouse rela
ation, t}N2, and considerably faster than reptation,t}N3.
Nevertheless, it should be noted that the well-kno
slithering-snake algorithm@14# scales ast}N'1, i.e., is ex-
pected to be asymptotically even better than our proced
For very dense systems, the prefactor in this law will, ho
ever, be large, due to small acceptance rates of the slithe
snake moves, such that one might need unrealistically l
chains in order to actually observe the superiority. Where
expect the biggest payoff for our algorithm, however, is
systems where the~true physical! dynamics is governed by
an activated process, such as star polymers@36#, where

t}exp~constN!, ~3!

and for which the slithering-snake algorithm is not app
cable. Regardless of these considerations, our first tests
deliberately focused on melts of linear chains, since this
the system that is characterized best with respect to b
statics and dynamics.

The difference between simulated tempering and para
tempering originates in how this idea is put into practic
Standard simulated tempering@26–28# considers only one
system, whose configurations we denote byxW , and simply
adds the parameterf as an additional degree of freedom
which is treated via a standard Monte Carlo algorithm in t
expanded state space. This procedure is governed by
Hamiltonian H(f,xW )2h(f), where h is a suitable pre-
weighting factor, to be determined self-consistently in ord
to prevent the simulation from getting trapped in the soft
Hamiltonian. The partition function of the resulting ex
panded ensemble is given by
1-2
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Z5(
i

exp~h i !E dxW exp~2Hi !5(
i

exp~h i2Fi !,

~4!

whereF is the free energy~temperature is again absorbed
the definition!. Since the arguments of the exponentials
extensive, the sum will always be strongly dominated by
largest term, unless all of them are practically identical. T
means that unlessh i'Fi; i , the system will not be able to
traverse the full extent of the available parameter spac
one or more parameter values will become highly impro
able.

In parallel tempering,n systems are run in parallel, eac
of which is assigned one of the HamiltoniansHi . Diffusion
in Hamiltonian space is then facilitated by simple swaps
the configurations of adjacent Hamiltonians. Since e
Hamiltonian will always be occupied, there is no problem
the simulation not visiting any particular ‘‘unfavorable
Hamiltonian, and thus it is no longer necessary to determ
preweighting factors. Furthermore, the scaling considerat
from above remain valid; the increased CPU effort by a f
tor of n is rewarded by the fact that we now haven random
walkers available to produce data. The series ofn systems
can be seen as one extended ensemble with the par
function

Z5E dxW1¯dxWn

1

n! (p
exp„2Hp~1!~xW1!…¯

3exp„2Hp~n!~xWn!…

5)
i

Zi , ~5!

wherep denotes the possible permutations of the index
i 51,...,n, and we have made use of the arbitrariness in
beling. Thus the method just simulatesn statistically inde-
pendent systems.

The detailed balance condition for the swap is derived
a straightforward manner: If we denote two systems in wh
we attempt to switch the Hamiltonians byxW ~governed ini-
tially by Hamiltonian H1! and yW ~governed initially by
Hamiltonian H2!, then the transition probabilitiesw must
satisfy

w@~xW ,yW !→~yW ,xW !#

w@~yW ,xW !→~xW ,yW !#
5

Peq~yW ,xW !

Peq~xW ,yW !

5exp@2H1~yW !2H2~xW !1H1~xW !1H2~yW !#

5..B ~6!

~the partition functions cancel out in the ratio of equilibriu
distributions!. Using the standard Metropolis rule, the a
tempted swap (xW ,yW )→(yW ,xW ) is accepted with probability
min(1,B).

Given the simplicity of the method, and its potential, o
should expect that its popularity will increase substantially
the future. So far, its use has not been very widespre
partly due to the fact that access to massively parallel c
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puting facilities~for which the approach is ideally suited! is
still somewhat limited. Applications up to now have include
spin glasses@35,37#, structural glasses@37,38#, liquid-vapor
phase coexistence in both simple@39# and polymeric@29#
fluids, and several studies on the theta collapse of sin
polymer chains and related issues@34,40–45#. The fact that
the strength of the excluded volume interaction could
used as a parameter in parallel tempering is mentione
Ref. @32#; however, no actual run data were presented.

The remainder of this paper is organized as follows.
Sec. II, we describe the details of the model and the al
rithm. Section II A defines the standard Kremer-Grest mo
of a polymer melt@6# and its simulation by means of sto
chastic Langevin dynamics. Section II B then describes
most important ingredients of our parallel tempering pro
dure, which is based upon altering the functional form of t
repulsive core potential and replacing it by a nondiverg
‘‘soft-core’’ potential, until the limit of phantom chains is
reached. This allows the chains to pass through each o
thus eliminating the slow reptation dynamics. When the
pulsive core potential is soft enough, we will be able to p
form pivot and whole polymer translation moves in the m
for which t}N'0, as described in more detail in Sec. II C
We also perform a comparison with end bridging@46,47#, a
very fast Monte Carlo algorithm that, however, does not c
serve the chain lengths, and whose basic features are out
in Sec. II D. Section III reports our numerical results. Secti
III A describes how we found the parameters for our pro
dure, while important time correlation functions to measu
the efficiency of our algorithm are defined and presented
Sec. III B, resulting in our conclusion~Sec. III C!.

II. MODEL AND ALGORITHM

A. Kremer-Grest model and Langevin dynamics

The Kremer-Grest model@6# is one of several off-lattice
models for polymer melts which are commonly known
‘‘bead-spring’’ models. All particles have purely repulsiv
Lennard-Jones~LJ! cores of the form

ULJ~r !54eF S s

r D 12

2S s

r D 6

1
1

4G , r<21/6s,

ULJ~r !50, r>21/6s, ~7!

wheree ands, as well as the bead mass, are set to unity s
that time is in Lennard-Jones units. The finitely extensi
nonlinear elastic attraction between the neighboring mo
mers on the chains is given by

Uch~r !52
k

2
R0

2 lnS 12
r 2

R0
2D , ~8!

whereR051.5 is the maximum extension of the nonline
spring, andk530 is the spring constant. The spring consta
is set to be strong enough to prohibit two polymer cha
from crossing each other. We consider a system ofM chains
of lengthN in a cubic box with periodic boundary condition
at constant volume with densityr50.85.
1-3
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ALEX BUNKER AND BURKHARD DÜNWEG PHYSICAL REVIEW E63 016701
We have simulated anNVT ensemble of this system
through the use of Langevin~stochastic! dynamics@6,11#,
fixing the temperature atkBT51.0, wherekB denotes Boltz-
mann’s constant. This involves the addition of a rand
force and a friction term, resulting in the following equatio
of motion in terms of particle positionsrW i and momentapW i :

pẆ i5Ḟ i2
g

mi
pW i1 fW i ,

~9!

rẆ i5
pW i

mi
,

where FW i is the force due to the interactions with oth
monomers,mi the particle mass,g the friction constant, and
fW i the stochastic force that satisfies the standard fluctuat
dissipation relation,

^ f ia~ t ! f j b~ t8!&52gkBTd i j dabd~ t2t8! ~10!

~i.e., uncorrelated with respect to both particle indicesi and
Cartesian indicesa!. These equations were solved using t
standard velocity Verlet integrator@11,48#, with friction co-
efficient g50.5 and time stepDt50.0125.

Both static and dynamic properties of this model are v
well known @6,11#. In particular, its slow Rouse- o
reptation-like dynamics serves as a reference for the spe
obtained from our new Monte Carlo procedure.

B. Parallel tempering

We have performed parallel tempering by connecting
series of systems to the Kremer-Grest potential using suc
sively softer repulsive core potentials. Then systems are
simulated in parallel, and each system is on a separate
cessor of a massively parallel system~Cray T3E!. Once an
initial locally equilibrated configuration~in real and momen-
tum space! is obtained for each of the systems, the potent
are allowed to switch between systems through Metrop
Monte Carlo steps, as described above. It should be n
that the kinetic energies cancel out in the Metropolis cr
rion. The swaps are implemented in a checkerboard fash
where either the odd-even pairs or the even-odd pairs
tried. Between these swaps each system is run for a
stochastic dynamics steps; it is known that this procedur
quite efficient for equilibrating local degrees of freedom. F
example, if we were to use eight processors we would fi
attempt to switch the systems 1–2, 3–4, 5–6, and 7–8,
run some stochastic dynamics, then attempt the switc
2–3, 4–5, and 6–7, then run more stochastic dynamics
fore attempting the first set of switches again. Figure 1 sho
how this aspect of the algorithm is implemented. A reas
able duration for the Langevin runs between the swap
obtained from studying the potential-energy relaxation,
described later.

In order to achieve large acceptance rates for the swap
is necessary to choose the form of the ‘‘softened core’’
tential such that the bond lengthb and the chain stiffnessC`

are approximately maintained. The core repulsion of
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neighbors and next-nearest neighbors on chains was
kept intact, while all other repulsive Lennard-Jones pot
tials were replaced by the following ‘‘softened core’’ pote
tial:

USC~r !5A2Br2, r<r t ,

USC~r !54eF S s

r D 12

2S s

r D 6

1
1

4G , r t<r<21/6s, ~11!

USC~r !50, r>21/6s,

where A and B are fixed by the continuity ofU(r ) and
dU/dr, leaving r t as the only free parameter. For th
Kremer-Grest potentialr t50, and r t is successively large
for each softer potential until the final potential in the ser
has r t5r c521/6s, the cutoff radius, which is the case fo
phantom chains. A graph of such a family of potentials
shown in Fig. 2. We will refer to the ratior t /r c as the ‘‘soft-
core parameter.’’ Observing Fig. 2, it becomes quite app
ent why our tempering parameter is a superior choice to t
perature for the Kremer-Grest model. Tempering

FIG. 1. Schematic representation of our parallelization sche
The double arrows represent attempted switches and the thick
represents the path through the Hamiltonians followed by one of
systems.

FIG. 2. A set of successively softer repulsive core potentials
the simulation, we connect the system with the purely repuls
Lennard-Jones potential, shown as the solid line, through a serie
such softened core repulsion potentials to the limit of phant
chains (U50).
1-4
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PARALLEL EXCLUDED VOLUME TEMPERING FOR . . . PHYSICAL REVIEW E 63 016701
temperature would be the equivalent of altering the poten
by a constant multiple. No matter how high a temperat
reached, ther 212 divergence of the core would not be all
viated.

C. Pivot and translation moves

When we reach systems with extremely soft repuls
core potentials, then large-scale motions within the syste
will have observable transition probabilities. We must ens
that these large-scale motions through phase space are
that only the parts of the potential that have been softe
are affected. Thus the large-scale motions should not af
any bond lengths or angles within the polymers. Large-sc
moves that fulfill this criterion are pivot and translatio
moves.

The pivot move involves rotating part of the polym
around the axis of a given bond. As shown in Fig. 3, all
the interactions that have not been softened are unchang
this move. The translation move involves taking the en
polymer and shifting it a random distance in a random dir
tion. It is in reaching systems where these kinds of moves
possible before returning to the Kremer-Grest Hamilton
where we expect our algorithm to pay off. We have imp
mented the pivot and translation moves together in a sin
move where the whole chain is simultaneously translated
every bond is rotated, thus relaxing all the degrees of fr
dom of the chain with the exception of the bond lengths a
angles, which are relaxed by the Langevin dynamics.
attempt these moves also quite frequently, as discussed
in the paper.

D. End bridging

In order to compare our algorithm with an establish
Monte Carlo method for equilibrating dense polymer s
tems, we have also implemented an end-bridging proced
combined with Langevin dynamics. End bridging, develop
by Theodorouet al.@46,47#, is a very efficient algorithm;
however, it gains its speed only by giving up monodispers
Instead, a fixed number of monomers and a fixed numbe
chains are simulated; the length, however, is allowed to fl
tuate within predefined limits. In practice, these limits a
defined by allowing all chain lengths betweenN(12 f ) and
N(11 f ), wheref is typically of order1

2. The algorithm in-
volves allowing bonds within polymers to break and reatta

FIG. 3. Schematic representation of our implementation of pi
moves: Neither the nearest-neighbor nor the next-nearest-neig
distances on the polymer chain are affected. As a result, none o
potential interactions that are kept at full strength are affected.
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to the ends of different polymers. It was originally devis
for atomistic simulations with fixed bond lengths and i
volved an intricate procedure. Implementing this algorith
on the Kremer-Grest model, however, is far simpler sin
our bond lengths are able to fluctuate. The end of a ch
searches for a possible chain to bridge to. This searc
performed by finding all the monomers within the cuto
radius that are not on the same chain as the chain en
question. One out of these is selected at random. If a poss
end bridge is found, then the move is accepted accordin
a Metropolis function, where the Boltzmann factor is mul
plied with a weight factor. This weight factor is given by th
number of monomers to which the end could possibly brid
divided by the number of monomers to which the new
created end could bridge back. This is necessary to sa
detailed balance, i.e., to correct for the different probabilit
to select the original reaction and the backreaction. A d
gram of how end bridging works for the Kremer-Grest mod
is shown in Fig. 4. In our implementation, we run the Lang
vin dynamics for 10 LJ time units, followed bynbr bridging
attempts, wherenbr is 20 times the number of chains.

III. RESULTS AND DISCUSSION

A. Construction of simulation procedure

We first tested the algorithm with a system of 20 chains
length 60. For further simulation parameters~r50.85, kBT
51.0, etc., which were not varied!, see Sec. II A. The effec
of softening the potential is clearly seen in the standard p
correlation functiong(r ), which is the probability to find a
particle pair with distancer, normalized by the ideal ga
value. This function is shown in Fig. 5, excluding the near
and next-nearest neighbors on the polymer chains where
core repulsions are maintained at full strength. Compare
the fully repulsive system, there is a considerable probab
for very short distances as soon asr t /r c*0.95, reflecting the
ability of chains to pass through each other. This removes
topological constrains for chains of arbitrary length. Th
even without pivot moves, the dynamics would not be slow
than Rouse relaxation.

Furthermore, we measured the single-chain static st
ture factorS(q)5N21^u( i exp(iqW•rWi)u2& for both the Kremer-
Grest model and the phantom chains as shown in Fig. 6

t
or

he

FIG. 4. End-bridging move for the Kremer-Grest model. If th
end-bridging move in question involves an energy changeDE, then
the probability of the move is given byP5min(1,We2DE), where
W is a weight factor given by the ratio between the number
possible monomers to which the initial end can bridge, and
number of monomers to which the newly created end could bri
back.
1-5
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ALEX BUNKER AND BURKHARD DÜNWEG PHYSICAL REVIEW E63 016701
expected, the Kremer-Grest model reproduces the rand
walk exponent n50.5, observed from the decayS(q)
}q22. The result for the phantom chains is very similar
the Kremer-Grest model, indicating that the overall struct
of the chain does not change very much as we soften
repulsive core potentials. This in turn means that no ma
chain rearrangements are necessary along the therm
namic path, such that the transitions should be quite eas

Nevertheless, it turned out that for our number of mon
mers one needs of the order of 102 ~due to computer restric

FIG. 5. Pair correlation function of anN560 polymer system a
densityr50.85 for several values ofr t /r c , excluding nearest- and
next-nearest-neighbor pairs along the chain backbone. Note
starting at aboutr t /r c50.95, the chains are effectively able to pa
through each other.

FIG. 6. Single-chain static structure factor for both the Krem
Grest model~chain lengthN560, densityr50.85! and phantom
chains where the nearest- and next-nearest-neighbor intera
along the chain was left intact. The similarity in the static struct
factor indicates that the large-scale structure of the chains is ne
invariant as the repulsive core potentials are softened. The stra
line represents a slope of22 corresponding ton50.5.
01670
m-

e
e
r

dy-
.
-

tions we used 128! systems in order to connect from the ful
repulsive potential to the phantom chain limit, requiring th
the swap acceptance rates are of order1

2. The soft-core pa-
rameters were adjusted by hand, in essence via a trial-
error procedure. It was found that ther t step size to the nex
softer potential had to be reduced drastically as the phan
chain limit was approached.

A graph of the resulting transition probabilities for ea
of the 128 potentials for both 20 chains of length 60 a
1200 purely repulsive Lennard-Jones particles is shown
Fig. 7. The first potential with a softened core was chosen
r t /r c50.74. From then on, we picked furtherr t values with
uniform spacing; however, occasionally this spacing had
be reduced along the path, in order to prevent the transi
rates from dropping too strongly. This procedure thus int
duced a number of steps in ther t spacing, as shown in the
inset of Fig. 7. These steps in turn give rise to jumps in
transition rates, as clearly seen in Fig. 7. Furthermore, th
are very rapid oscillations, which we believe to be a con
quence of the checkerboard algorithm.

Comparing the low molecular weight case with the po
mer system, one observes that in the regime of smallr t /r c
50,...,0.95, where the pair correlation function exhibits cle
core repulsion~see Fig. 5!, the transition probabilities in-
crease with increasing chain length. In the intermediate
gime, the transition probabilities are roughly independent
chain length and as the limit of phantom chains is a
proached,r t /r c*0.99, the transition probability drops of
drastically with increasing chain length.

We believe this phenomenon can be explained as follo
The transition probability is governed by the overlap in t
energy distributions. The degree of this overlap is depend
on the difference between the mean energies and the wid

at

-

ion
e
rly
ht

FIG. 7. Probability that a system would transfer to the ne
softer potential, as a function of its own potential index, whi
increases with softness. Although the low molecular weight fl
and the polymer system have the same densityr50.85 and tem-
peraturekBT51.0, there are marked differences in behavior,
discussed in the text. The inset graph shows the steps in soft-
parameter values for each of the potentials.
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the energy distributions. In the low soft-core parameter
gime, the dominant factor is the difference in average
ergy, since large interaction energies are present. As c
length increases, the fraction of interactions which belong
nearest or next-nearest neighbors along a chain also
creases. As these interactions are not softened, the differ
in mean energy between adjacent potentials is reduced u
increasing the degree of polymerization. Thus the over
and the transition probability, is raised. Conversely, as
limit of phantom chains is approached, the interaction en
gies involved become very weak, and the behavior rat
becomes entropy-driven. Since polymerization reduces
translational entropy, one should expect that also thevaria-
tion of the free energy withr t is decreased upon polymeriza
tion. As the width of the energy distributions should be
rectly related to the ‘‘specific heat,’’ i.e., the secon
derivative of the free energy with respect tor t ~which can be
viewed as the equivalent of temperature for our system!, one
expects an entropic narrowing of the distributions, while
mean values remain largely unaffected. Thus the overlap
the transition rate are reduced.

We feel that an analytical relationship between the ch
length and the transition probability in the phantom ch
limit can probably be developed, maybe by a perturbat
expansion around the ideal gas of random walks. If this is
then, from a determination of a set of soft-core parame
that have a constant transition probability for a certain nu
ber of Lennard-Jones particles, a general relationship co
be developed that would provide a set of soft-core para
eters for an arbitrary number of chains of an arbitrary leng
The development of such a procedure is, however, bey
the scope of this paper.

From measuring the time autocorrelation function of t
potential energy for the untempered system~i.e., without
swaps between potentials!, shown in Fig. 8, we have found
that the correlations decay very quickly after only a few tim

FIG. 8. Normalized energy-energy correlation function as
function of time in Lennard-Jones time units, at densityr50.85.
Note the very fast decay on short time scales followed by a m
slower decay that is dependent on the soft-core parameter.
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steps of Langevin dynamics and then cross over to a m
slower decay. Our interpretation of the very fast initial dec
is that it is a direct consequence of the local bond osci
tions, which happen on roughly this time scale. This is a
in accord with the observation that it occurs independently
the degree of softening, see Fig. 8, since the potentials
tween bond neighbors remained unchanged for all potent
Conversely, the long-time behavior is quite strongly affec
by the softening, again in agreement with the expectat
that the function should decay much faster for a softer s
tem. Furthermore, the energy-energy autocorrelation fu
tion is independent of chain length, as expected.

These results suggest that it is most efficient to attem
the switches frequently, on the time scale of the bond os
lations. We thus constructed the following algorithm: On e
ery system we perform the large-scale chain reorienta
attempt on enough chains so that attempts are made to m
at least 5% of the monomers. This is followed by fo
Langevin dynamics steps, after which the Hamiltonian sw
~either even-odd or odd-even! are performed. Then the pro
cedure is repeated. For reasons of simplicity, we have
plied the identical moves to all systems. It should be sta
in the interest of future development of this method, that t
condition is, however, not necessary. Any algorithm th
leaves the Boltzmann distributions of the different syste
invariant will be valid. For our algorithm, however, as cu
rently implemented, not to attempt the large-scale moves
the hard systems would only generate idle CPU time si
the processors all have to wait for the slowest system
finish before attempting the next swap. A further optimiz
tion could, however, involve eliminating the large-sca
moves on the hard systems and replacing them by m
Langevin steps. By fine-tuning this, one should be able
reduce synchronization overhead to a minimum. We a
found that as the soft-core parameter approaches the p
tom chain limit, local bond oscillations can become unstab
This can be easily remedied by increasing the friction in
Langevin dynamics as the soft-core parameter increases

B. Correlation functions

An appropriate way to benchmark the program is to d
termine the CPU time needed per relaxed chain. Since e
system periodically passes through the Hamiltonian with
full Lennard-Jones repulsive hard-core potential, each s
tem can be seen as a Kremer-Grest model that is sam
every time this Hamiltonian happens to lie on it. Usef
single-chain quantities to measure are the normalized end
end vector autocorrelation function,^RW (t)•RW (0)&/^R2& with
RW 5rWN2rW1 , and the autocorrelation function of the lowe
five Rouse modes,̂XW p(t)•XW p(0)& with p51,...,5 and@8#

XW p5&N21/2(
i 51

N

rW i cosFpp

N
~ i 21/2!G . ~12!

These quantities must be measured in such a way that
correlations between configurations where the Kremer-G
Hamiltonian is present are counted. Thus we define the
lowing procedure to measure autocorrelation functions:

a

h
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C~ t !5
( t8u~ t81t !u~ t8!d„U~ t81t !,U0…d„U~ t8!,U0…

( t8d„U~ t81t !,U0…d„U~ t8!,U0…
,

~13!

whereu(t) is the quantity whose autocorrelation function
determined,U0 is the Kremer-Grest potential, andU(t) is
the potential at timet. The Kroneckerd„U(t),U0… vanishes
unless the potential isU0 , where it is unity.

Figure 9 displays the normalized end-to-end vector au
correlation function for~i! end bridging with degree of poly
dispersity set to 10% and 20% of the chain length,~ii ! our
parallel tempering procedure, and~iii ! standard Langevin
~Rouse-like! dynamics, for our system of 20 chains of leng
N560. It is seen that end bridging can achieve better e
ciency in the relaxation ofRW , but only if the polydispersity
exceeds 10%, which must be considered a large value if
is mainly interested in the properties of an approximat
monodisperse sample. Furthermore, it is most likely that
end-to-end vector does not describe the slowest relaxatio
the system for this type of algorithm. Since for the en
bridging algorithm what constitutes a polymer chain b
comes an ill-defined quantity, what actually does become
slowest mode is unclear. It is probably a collective quan
like the stress or similar; however, since the fluctuations
such quantities are hard to measure with good statistica
curacy, due to lack of self-averaging, we did not study t
point further.

The parallel tempering procedure turns out to be som
what faster than plain Rouse relaxation, in particular in
long-time limit. In terms of integrated autocorrelation tim
the speedup amounts to roughly 10% with the pivot mo
present and 30% without. The reason why performing pi
moves actually slows the simulation down is explained
Figs. 10 and 11, which show the normalized end-to-end v
tor autocorrelation function and the autocorrelation of

FIG. 9. Normalized end-to-end vector autocorrelation functi
for chain lengthN560 at densityr50.85, using standard Langevi
dynamics, our parallel tempering procedure with and without pi
moves, and end-bridging simulations for various degrees of p
dispersity.
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first Rouse mode~in terms of ‘‘physical’’ time, not CPU
time!. The parallel tempering alone already needs suc
long time for traversing Hamiltonian space from the ide
gas to the full repulsive interaction that on this time scale
chains are already fully relaxed. After a ‘‘diffusive loop
through Hamiltonian space, the configuration is thus alre
fully decorrelated, even without pivot moves. Therefore, t
pivot moves just generate additional CPU overhead
cause a slowdown.

In Fig. 12, the autocorrelation of the lowest five Rou
modes is shown as a function of the Rouse scaling varia
t sin2(pp/2N), such that for pure Rouse dynamics all curv
would collapse onto a single line. As is known from old
simulations@6,8#, N560 is already slightly in the crossove
regime to reptation, where ultimately the lower modes
slowed down. Nevertheless,N560 is still too short for this
effect to become visible, such that Rouse behavior for

,

t
-

FIG. 10. Normalized end-to-end vector autocorrelation functi
for chain lengthN560 at densityr50.85, using our parallel tem
pering algorithm with and without pivot moves.

FIG. 11. Normalized autocorrelation of the first Rouse mode,
chain lengthN560 at densityr50.85, using our parallel temperin
algorithm with and without pivot moves.
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case of pure Langevin dynamics can still be assumed.
tempering procedure, on the other hand, produces a dis
portionate acceleration of the lower modes. They are
only modes that are slow enough to be able to capitalize
the excursions to the softer interactions. They first relax
ponentially in accord with the pure Rouse dynamics of
hard system, while at later times the decay is significan
steeper.

We were also able to obtain results, shown in Fig. 13,
a system of 32 chains of length 200, using 256 Hamiltonia
Limitations in the CPU time available to us have preven
us from performing a comparison between simulations w
and without pivot moves and from measuring the correlat

FIG. 12. Rouse mode analysis for the lowest five Rouse mo
for our parallel tempering procedure, and compared to the cas
pure Langevin dynamics, for chain lengthN560 and densityr
50.85. Though we have shown only the result for the second Ro
mode, all Rouse modes fall onto the same line for pure Lange
dynamics.

FIG. 13. Normalized autocorrelation of the first Rouse mode
our parallel tempering procedure for chain length 200 at densitr
50.85. We have compared our result to a fit to results previou
obtained by Pu¨tz @49#.
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function until full decay. Nevertheless, our preliminary da
clearly show a steep drop off in the correlation function
which is much more pronounced than for the case ofN
560. These data were obtained for the casewith pivot
moves; we believe that they actually did help to acceler
the equilibration of this system. The data for pure Lange
dynamics without tempering were taken from Ref.@49#.
From an approximate fit to our data, we see a speedup~in
terms of integrated autocorrelation time for the first Rou
mode! of greater than a factor of 8.

C. Conclusions

Our results indicate that parallel excluded volume temp
ing combined with large-scale chain moves is a viable ro
to speeding up simulations of dense polymer systems.
expected that the method will become more and more us
as the chain length increases, as indicated from our prel
nary results for chain length 200, in particular when co
pared to the results for shorter chains. For our initial attem
which is most likely not the optimal choice of all simulatio
parameters, it seems thatN560 is rather close to the cross
over length, whileN5200 is significantly above. Even mor
dramatic speedups are expected for more complicated
lecular architectures such as stars. These issues will be
subject of future investigations. Current trends in the dev
opment of computational facilities indicate that over the n
decade we will see an increase in the availability of m
sively parallel computers with more and more process
running at approximately the speed of today’s process
With the advent of such facilities, we expect the full pote
tial of this algorithm to be realized.

There are several directions in which this algorithm c
be further developed. Through the development of an a
lytical understanding of the effect of chain length on tran
tion probabilities as the phantom chain limit is approach
one could realize a general scheme to generate an optima
of transfer radii for a particular system. Another possib
development is performing the parallel excluded volum
tempering by only softening a limited set of interactions
the Hamiltonian, if the original system is based upon a m
fine-grained or even atomistic model. In such models, i
quite typical that a particular term in the Hamiltonian crea
a significantly greater energy barrier than any other te
Since such ‘‘hard’’ interactions pertain only to a subset
the overall system, the effective system sizeV on which the
tempering acts is reduced. This results in a smaller num
of necessary processors.

One could also consider the softening of only a subv
ume of the system, for example a single polymer or all si
in a certain region of the simulation box. However, su
approaches need careful testing, since one must expect
the softening perturbation is not strictly local, due to lon
range elastic stresses. Combining parallel excluded volu
tempering with CCB may also yield a more efficient alg
rithm.

In its current form, our algorithm should be seen
complementary to the ‘‘hyperparallel tempering’’ algorith
of dePabloet al. @29#. Both approaches are geared at co
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‘straint softening~via the density in the ‘‘hyperparallel tem
pering,’’ via direct manipulation of the interaction in ou
case!, combined with nonlocal chain moves~chain growing
versus pivot moves!. Chain insertion then becomes feasib
and thus both methods are, in principle, well suited for c
culating phase equilibria. The results presented in Ref.@29#
for the gas-liquid transition of dense polymer systems lo
very encouraging. At the present stage, it seems an o
question which algorithm~or perhaps a combination! will
prove the most feasible and successful for such problem
particular when dealing with very dense systems.
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