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We analyze two-color spatially localized nonlinear modes formed by parametrically coupled fundamental
and second-harmonic fields excited at quadréicy(®)) nonlinear interfaces embedded in a linear layered
structure—a quadratic nonlinear photonic crystal. For a periodic lattice of nonlinear interfaces, we derive an
effective discrete model for the amplitudes of the fundamental and second-harmonic waves at the interfaces
(the so-called discretg(® equationsand find, numerically and analytically, the spatially localized solutions—
discrete gap solitons. For a single nonlinear interface in a linear superlattice, we study the properties of
two-color localized modes, and describe both similarities to and differences from quadratic solitons in homo-
geneous media.
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[. INTRODUCTION localized modes in homogeneous mefid], we wonder if
parametric interactions can support localized modes in a va-
The physics and applications of photonic band-gap materiety of photonic band-gap structures with quadraticy (%))
rials (or photonic crystalshave been an active topic of re- nonlinearities. The first step in this direction has recently
search for more than a decadd. The next step in applica- been presented in RgfL2], where we have analyzed second-
tion of photonic crystals is to create tunable band-gapharmonic generatiofSHG) at a thin, effectively quadratic
materials where the gap can be controlled by an externalonlinear layer separating twigenerally differenthomoge-
parameter. One of the recent suggestidtjss based on the neous linear media, and predicted multistability of SHG for
inverse opal structure—a microscopic lattice of spheres of aiboth plane waves and localized modes, also describing two-
surrounded by silicon—with a layer of liquid crystal material color localized photonic modes that can be excited at the
that can make the transmission properties programmable bpterface.
applying an electric field. Continuous temperature tuning can The main purpose of this paper is twofold. First, we gen-
also be realized in liquid crysta|8] and in semiconductors eralize the results of Ref12] to the case of a thin quadratic
with sufficiently high free-carrier densitig¢d]. nonlinear layer embedded in an arbitrarily stratified periodic
Another important idea applicable to creating dynamicallylinear medium. In particular, we consider a nonlinear defect
tunable band gap materials for switches and transistors opelayer with second-order nonlinear response in a perfectly pe-
ating entirely with light is to employ their nonlinear proper- riodic dielectric structure—a one-dimensional analog of a
ties, thus creating nonlinear photonic crystals. The concepthotonic crystal with a nonlinear impurity. Second, we de-
of nonlinear photonic crystals, defined as having a spatiallywelop a general formalism for analyzing parametric localized
periodic nonlinearity, was introduced by Scaletzal.[5] in modes in  multilayer  structuresy®’  nonlinear
a numerical study of ultrafast optical switching and limiting superlattices—and describe two-color localized gap modes
in cubic nonlinear Kerr materials. However, such a structuresupported by a periodic lattice of thin layers with quadratic
was already investigated by Larochedleal. four years ear- nonlinearity.
lier [6]. Bistability and localized modes in photonic superlat- The paper is structured as follows. In Sec. Il we present
tices with embedded layers possessing nonresonant @ubic our model that is described by a system of two coupled non-
Kerr-type nonlinearities have also been discussed in the litlinear equations for the envelopes of the fundamental and
erature[7]. Recent advances in the so-called cascaded norsecond-harmonic waves. In the stationary case, the solution
linearities [8] demonstrate an effective way to lower the can be presented as a superposition of the forward- and
switching power by employing parametric interaction andbackward-traveling waves, and this makes it possible to de-
frequency conversion in noncentrosymmetric quadratic nonrive an effective system of discrete coupled-mode equations
linear optical materials. Parametric interactions are alsdor the wave amplitudes at the layers, the so-called discrete
known to support solitary waves, spatial quadratic solitonsy(?) equations(Sec. Ill A). Solutions of these equations for
[9], that exist in homogeneous media where spatial localizalocalized nonlinear modes are briefly discussed in Sec. Il B,
tion is induced by two-wave parametric mixing processesand in Sec. Ill C we outline the connection between disper-
between the fundamental wave and its second harmonic. Theon properties and band-gap structure. Finally, in Sec. IV
quadratic nonlinear photonic crystal was introduced as a conwe consider a generalization of the results of R&2] to the
cept by Bergef10] in a study of multiwavelength frequency case of a single quadratic nonlinear layer embedded in a
conversion in a plane geometry. periodic linear medium, and describe a number of new fea-
Taking into account the similarities between the localizedtures of the localized modes that appear due to the band-gap
defect modes in linear inhomogeneous media and nonlineatructure of the linear spectrum.
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[ ] linear medium nth nonlinear interfacey; are the nonlinearity coefficients
ande;(X) and«; account for the phase velocity differences
in bulk and interface materials.

In order to reduce the number of physical parameters, we

normalize Eqgs.(1) as follows: E1(X,Z)=u(x,z)€ 0/
(DlV’Yl’)/Z)I EZ(Xaz):U(X1Z)eiZEOlzl(DlYl)v where the
spatial coordinates are measured in unitsDgf, x=X/D;,
andz=Z/D;. This gives the dimensionless equations

(2)_; .
|>\ interface Xpz Xpt Xa  Xan  Xpee

=

_ du U
X |5+—2+v1(x)u+2 S(X—Xp)(Bru+u*v)=0,
X n
FIG. 1. Schematic diagram of an array of thif?) layers em- @
bedded in a linear slab waveguide, with indication of the direction p 2
i i i v v
of the input laser beam relative to the interfaces. iE+ o v +uy(X)0 + 2 S(X— X)) ( Bov + u2)=0.
X n

Il. MODEL

First, we discuss the physical motivation for our model.Herea=D>/Dy, Bj=D«;, andv;(X) =Dy €0j(X) — ] €0al,
Let us consider an interface between two semi-infinite bulkwith €y, being the average value ef;(x).
optical media with inversion symmetry. The interface layer At this point, it is important to note that our syst¢eqgs.
breaks the symmetry and therefore it should possess a noft) or (2)] describes the beam evolution in the framework of
vanishing surface quadratic respor{48] that can be en- the so-called parabolic approximation, valid for the rays
hanced by a proper coating creating a nonlinear layer witlpropagating mainly along th2 direction. In other words, the
quadratic nonlinearity14]. Such a layer corresponds to an characteristic length of the beam distortion due to diffraction
effective nonlinear defect that can support photonic modeand refraction along th& axis should be much larger than
localized at the interface. There exists strong experimentahe beam width in the transverse directi¥n This leads to
evidence of SHG in this a type of localized photonic mode.the requirement of a shallow grating; (x) _:Oj|<?0j . On
For example, recent experimental res{iltS] reported SHG  the other hand, to make the parametric interaction effective,
in periodic photonic band-gap structures with embeddegdhe mismatch between the phase velocities of the FF and SH
nonlinear defect layers. An enhancement of the parametrig . < <hould be small,e2,~ e,. The ratio of the diffrac-

interaction in the vicinity of the defects was observed, sug-. e : ; 1 ;
. . : . tion coefficients is then approximateby= 3, and we use this
gesting that SHG occurs in localized modes, but is sup- pp 2

ressed for propagating modes. The surface nature of SH&alue in the numerical simulations presented below.
p or propagating It : ) ; For spatially localized solutions, the systé&) conserves
was confirmed by comparison of experimental data with theth

. ! ; ; Hamiltonian
results of direct numerical simulatiofig4]. e Hamiltonia

To introduce an analytically solvable model for SHG in +ofloul?2  olov|? V,(X)
localized waves, we follow Ref12] and consider a funda- H :f [ |+ == = (0|ulP- = p 2
mental frequencyFF) wave propagating along the direc- —e | 9X 2]ax 2

tion in a linear slab waveguide, as shown in Fig. 1. We

assume that the interfacésr defect layerspossess a qua- _2 S(X—Xp)
dratic nonlinear response, so that a FF wave can parametri- n

cally couple to its second harmor(i&H) wave. The coupled- Y
mode equations for the complex envelope functigy,z) ~ and the total poweP=[" |ul?+]v]?)dx.

(we usgj = 1,2 for FF and SH, respectivelgan be written in

the form I1l. PERIODIC LAYERED STRUCTURES

Bululz+ 22 o[+ Retuzo*)

o

IE, 2 A. General formalism

. 9By
-7 Tha X2 +e(X)E +T1(X)ETE,=0, To develop a general formalism for describing stationary,

1) spatially localized modes, we consider an infinite system of
5 uniformly spaced nonlinear interfaces located periodically at
ia_EZ+ D2L|E2+ ex(X)E,+TH(X)E2=0 the positionsx,=nh, which separate identical linear layers,
x2 L vj(x+nh)=v;(x). An example of such a structure is shown
in Fig. 2. This type of one-dimensionélD) nonlinear pho-
whereD; are the diffraction coefficients);>0). In the ap-  tonic crystal(NPC) can be used to prohibit light propagation
proximation of infinitely thin interface layerwalid when the  along the transverseaxis under certain conditions, resulting
width of each layer is much smaller than the characteristién field localization, and it resembles the operation of the
transverse scale of the FF and SH wave envelppestake  so-called photonic crystal fiber in the linear regifdé]. The
£j(X) = €0j(X) + =,k 0 (X—X,,)/D4] and I';(X) fundamental properties of NPC can be understood by study-
=2,7;0[ (X—X,)/D4], whereX,, denotes the position of the ing nonlinear localized modes. Such modes appear in the
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can be produced by embedding nonlinear layers in an other-
’/T\“\L wise linear Bragg grating structure; see, e.g., Ref]. Thus,
= we assume that each linear layer consists of several sublayers
—3h —-2h -h 0 h 2h 3h with a constant refractive indexsee Fig. 2 i.e., vj(X)

=Vj m for Xp m=<X<X, my1, wheremis used to number the
sublayer inside a linear slice &m=M), and we have by
definition thatx,=X,_1m+1=Xp,=nh. Then, the field in
the (n,m)th sublayer can be written as

LIJ(X) | L | L ] Cj(x):aj(n,m)e—p,jym(x—xn'm)_f_b](n,m)eujym(x—xn'm). (4)

Zra, Tz s Lim XM (n,+)
]
, With similar relations holding

By definition, the amplitudes from Eq(3) are a
. . . . _ 4(n1) (n+1,-)_ o(n,M+1)
FIG. 2. Slab waveguide from Fig. 1 viewed from the front with =&; ", & =4,

indication of the substructure and notation of the identical linearfor bj(n'i)-
media (photonic crystal withM sublayers with different refractive Transverse wave numbers can be calculated using the dis-
indices in between they? interfaces. The separation between the persion relations),\1=,u,im+ Vim andi,= Uﬂg,m“L Vom, tO-
nonlinear interfaces is. A localized mode centered at=0 is also  gether with the phase-matching conditiap=2\,. From
illustrated. these expressions we conclude that, in general, for giyen
. the waves can be either localizéc., u;  is rea) or propa-
frequency gap of the layered linear structure, and they can bgating (i.e., 4jm is imaginary. Then we notice that the
called discrete gap solitons or, in a broader context, intrinsigyaves in a muitilayered linear medium can be determined as
localized mode$11]. _ linear eigenmodes localized at the sublayer boundaries. First,
We search for solutions of Eq&) in the form from Eq. (4) it follows that the variation of the field ampli-
_ Nz _ iNoz tude through themth sublayer of the widthh,=X, n+1
U(x,2)=C1 ()€™, v(x,2)=Cp(x)e"%, —Xn.m is characterized by the following transfer matrix:

where c;(x) describe the transverse profiles of FF and SH

waves, respectively, and the real propagation constents T(J,m):(
satisfy the phase-matching conditian=2\,. Then, since P

the FF and SH fields do not interact in a linear bulk medium, L )
each of them can be presented as a composition of two lineat©cOnd, the variation of the wave amplitudes at the boundary
eigenmodes, corresponding to pairs of counterpropagating" bg calculated by applying the f!e_ld continuity conditions
waves with opposite wave vector components alongxhe following from the model(2). Specifically, we equate the
axis. Regardless of the internal structure of a linear layefMPlitudesc; and their derivativesic;/dx on both sides of
between nonlinear interfaces, the wave amplitudes at itthe interface, and find the transfer matrix accounting for the

boundaries can be related by a transfer mdtti: field localization at a boundary separating tinéh and M
+1)th sublayers,
( a_(n+ 1,-)

( _ aJ(n,+)
o] 7000 ) ¥ =3

e ,Ufj,mhm, 0
) . (5)

0, gtimm

1+th™, 1-th™
1-th™, 1+t

. , ®)

Here, indices+ stand for the waves on the right and on the
left of a given nonlinear layer, respectively, and the ampli-! X e ,
tudes of counterpropagating waves are denotea andb , include all linear prope_rtle_s_m the transfer rr_1atnx. Then,
as shown in Fig. 3. MM +1= M1 due to per|OQ|C|ty of the. underlying gratlng,
In order to calculate the dependence of the matrix ele@d the linears response is characterized by the following
ments on the propagation constants, we should solve the cofatrix:
responding linear problem. For practical applications, NPC

Wheret’}’m=ﬂj,m/ﬂj‘m+1. To simplify further analysis, we

im jm
Tgm_> B ) (7)
(n,+) (n+1,) 2\ -, 22—ty
) T Gl where t3™=B1/u1;m and t3"= B, /(o uam), With m being
b b the index of the linear layer with the delta interfa@e our
caseM +1). The total transfer matrix can be then found as a
product,
(n) (n+1)
¢ ¢ TO=TGMEDTEMTOM 076D (g)
FIG. 3. Transfer matrix relating the amplitudes at the boundaries : :
of a linear layer, independently for the FF and SH components; seblote that the determinants aréTg'm_)H:HTg’m)H: 1,
Eq. (3). [[TO™ = wj /s me1, and thereford| TO[|=1.
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After calculating the matrix elements, we express the fieldve develop a more complete analytical description of dis-
in terms of the mode amplitudes defined at the nonlineacrete gap solitons, which can predict their properties in all
interfaces ¢{"” = ¢;(x,), combining the relatior3) with the  the parameter regions.
continuity conditions at the Iayerscj(”)=aj(”’1)+ p(n1) In order to find approx!mgte solutions for highly localized
=a(MM*+1) L h(WM+D) ntegrating Egs(2) over small inter- Modes, we use the variational method. First, we have to

vals including the nonlinear interfaces at the positiogs ~Choose the trial functions. We use the fact that in the high

(note that we exclude linear responses, since they are alreafffalization limit the tails are almost linear, so that the am-
accounted for in the transfer matrigesve derive the so- Plitudes decay nearly exponentially. Then, we introduce two
called discretey® equations, sets of trial functions to account for different topologi24]:
odd modes when the center of symmetry is located at a layer,
mUn+(Up-1+Upi1)+x1UR V=0, U@=y.gnlg=rilnl @y gnlg=palnl (12
(9) n 01 ! n 022 ’

2_
72Vnt (Vn1+Vnea) +x2Up =0, and even modes when the center of symmetry is located

between two neighboring layers,
whereU,=c{"\[£,&,] andV,=c{"|&| are the normalized g gy

FF and SH amplitudes at thegh nonlinear layer. Parameters

X; and n; are defined by the matrix elements, US]E):

Uosllnlefpllnl, n;o,
Uotslle riln*+1l - n<p,
E=—TM2p1y), &E=—TPI(20u,,), (13)

(10 © Voslznle—pz\ﬂl, n=0,
i B e)__
nj=—Tr(TW),  x;=sign(§)), Vy'= Vosi e ran+1l <o,
where . .
Here the parameteis=+1 are introduced to describe un-
Tgl):Tfll)yl]+TEJZ?l]_TEJI?Z]_TEJZ?ZI1 staggered. and stagggred profiles, amd-1 tp pro‘c‘Ju’(':e ei-

(11) ther untW|steq or twisted mode@or the signs “+” or

“ —." respectively.

Tr(T(J))=Tf11)'1]+TEJZ)'2] ’ After selecting the mode topology and fixing the values of
(i . s andt, the unknown value$l,, Vg, pi(pi>0) are deter-
Hereafter, we use the notatiory) ) to d'a_noge) the matrix  pineq by minimizing the Lagrangian (J:orjresponding to Egs.
element in rown and columnm of the matrixT"". Itis easy  (g) petails of these calculations will be presented elsewhere
to verify that parameterg; and normalization coefficienj 5], Here we give a brief summary of the main results and
are real for any (reap propagation constants;. A proof o_f discuss their physical consequences.
':Els fact, ttog?tr(;etr Wltl‘} d|SCUfs_|on o_f some o_th(X propg_rtlis of since the systenf9) possesses the symmetriés y;—
"We note that some particular cases of the systarhave | _ X1t SIS i and () xa— . xo
, ) : i : -x2, V,— —V,, we consider, without a lack of generality,
been discussed earliébut, in fact, never derived in a con- e casey;=1. The analysis shows that localized solutions
sistent manngrin the analysis of the nonlinear interface dy- st only if s, ,< — 2. The latter condition means that the
hamics under th_e condl_tlon of Fern_1| resonamza,lq, ar  gg component is unstaggered fgy<—2, and staggered
rays of weakly Interacting qu_adratlc vyaveguu:[@t)—za, otherwise 7;>2). Similarly, we consider only the case
and beam propagation in nonlinear latti¢ed]. |7,/>2, since for other values the localized solutions are
unstable due to resonant interaction with linear wa\a4s.
B. Discrete gap solitons Analyzing the linear problem, it is straightforward to see
Now we use Egs(9) to find the stationary localized that the SH mode can be staggered onlyjf>2. Then we
modes of nonlinear superlattices, or discrete gap solitons, Alistinguish between two limits(i) a strongly localized FF
similar problem was analyzed earlier in REE8] in the so- ~ Mode (7,>2), when the SH consists of staggered linear tails
called continuum limit, where the modes become wide and21): and(ii) the cascading limit §,>2), when the SH pro-
are effectively supported by many interfaces, with the excidile is unstaggered and can be foundvas=U./ 7,, resulting
tation profiles approaching those of quadratic solitpels i an effectively cubic nonlinearity for the FF wai/22] (see
On the other hand, it has been demonstrated that discre@so [9]). In the intermediate case, a transition of the SH
states in a closed system of few interfaces can have differefrofile between staggered and unstaggered topologies should
topologies and possess quite peculiar propefi€s20. For be observed. Indeed, our variational calculations predict that
the case at hand, when the number of interfaces is infinithe SH is staggered for<27,<7,,, and unstaggered for
(e.g., much larger than the characteristic mode widthe 72> 722. Here, the critical parameter value dependsmgn
different types of highly localized waves have been identi-for odd modes, it is found from the quadratic equation,
fied [21], and their profiles were described by approximatey/ 720+ 1/v72=| 71|, and a similar relation holds for even
analytical solutions. However, until now the transitional casemodesy 7,5+ 1+ 1/y/ 7,5+ 1=|7,|. The topology does not
of moderately localized modes has not been addressed. Thug)ange sharply as the parametgrcrosses the critical value
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2.5

-1.5
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n n
2.5 2 I3
(b) ! (b) L
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’ Pt /0
o, | I‘,/::lx b :’ L/ =
X\ /x u
-1.5 -2
-10 -5 0 5 10 -10 -5 0 5 10
n n
1.5 1
K
D=
0.0 0
-10 -5 0 5 10 -10 -5 0 5 10

FIG. 4. Different types of odd two-frequency localized modes.  FIG. 5. Characteristic examples of even two-frequency localized
(Numerical solutions: FF, triangles; SH, squares. Variational pro-modes with an untwisted FF component; the notations are the same
files: FF, dashed line; SH, soljda) Staggered FF and unstaggered as in Fig. 4. Parameter values d@ 7,=2.45, 5,=4.5; (b) 7,

SH (,=2.4, n,=4.5), (b) both components staggereg,=2.4, =2.45,7,=2.5;(c) p1=—2.45,7,=—3.
1,=3), (¢) both unstaggeredr(;= —2.4, ,=—3.5).
C. Dispersion properties and band-gap structure

1722(11), but numerical calculations confirm that such a tran- As we have demonstrated in the preceding section, spa-
sition occurs in a region close to the separation line. tially localized modes exist under the condition that linear
We performed numerical analysis and found that the apwaves do not propagate through a periodic structure, i.e., in
proximate variational solutions provide close matching forthe spectrum band gaps. In our case, such band gaps appear
the highly localized profiles, i.e., for relatively large valueswhen the conditiorj 7;|>2 is satisfied. To reveal the key
of |,,j|. Examples of odd and even modes are presented ifeatures of the linear dispersion., we study the simple case of
Figs. 4 and 5, respectively. We see that the profiles of stag@ delta-layer array embedded in a homogeneous bulk me-
gered modes, supported by only a few interfaces, are déj_u_Jm. In this case, after s'gralghtforward calculations, we ob-
scribed very accurately. However, for wider modes the del@in the following expression for the parametgr.
viatiqns between the exact numer?cal and variational 1= —2 costihuy)+ (B1/ wy)sinhuy),
solutions are more pronounced, see Figs) 4nd 5c). The
limitation of the variational solution is due to the specific
choice of the trial function$12),(13), which are not suitable
for description of “moderately” localized waves with
smoother profiles.
It can be demonstrated that in the continuum limi (
— —27) untwisted modes acquire the profiles of quadratic 3

solitons[9], which can be well approximated with the sech- ! \[ \

(14
7= —2 costithuy) +[ B2/ (opz)]sinf(hps).

A characteristic dependencg (A1) is presented in Fig. 6.
The spectrum for large; corresponds to a total internal

type functions[26]. A special quasicontinuous approach, 4
which allows one to determine the mode profiles as a soliton _,
bound state, can also be developed. The resulting approxi=
mate solutions provide very good estimates, and they are 4
N\

very useful for understanding the mode scaling properties,
i.e., a change from broad solitons to narrow highly localized 33 20 ~10
states. On the other hand, it should be noted that the twistei 2z
modes do not exist close to the continuum limit because theil 1

profiles are intrinsically discrete due to a sharp amplitude FIG. 6. Characteristic dispersion dependengé ). Shading is
change between the layers at the mode center. A comprehefiseq to show the spectrum bands. Dashed rectangle marks the re-

sive description of these results goes beyond the scope of thgon of applicability of the discretq(® model and Eq(15). Pa-
present paper and will be presented elsewh2a& rameters aré=2, v,=0, andB;=4.
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reflection. Band gaps in the linear spectrum are created by
the Bragg-type reflection, and they appear at smaller value: Band structure }\’1
of \;. Note that the width of the photonic band gaps be- mE
comes vanishingly small whex; decreases. - . - .
In the earlier studies, the discref¢?’ model was phe- = .
nomenologically introduced and analyzZgD—-23. The cor-
responding dispersion relations for the stationary localized
modes of that model are

I
|
I
|
|
o

7 =Aj(A =), (15)

fundamental
second harmonic
combined

where A; and \{%) are constant parameters. Although the
simplified dependencél5) does not describe the full band-
gap spectrum of a realistic layered photonic structure such a
that shown in Fig. 6, in many cases the dispersion relation
(15) has been successfully used to describe the properties of FIG. 7. The band structure f¢a) FF and(b) SH modes, an¢c)
discrete localized modes close to the edges of the total intecombined band gafadditional narrow gaps in FF and SH spectra
nal reflection and the first photonic band gaps, shown scheexist for smallerx;, not shown. Areas without shading correspond
matically by a dashed rectangle in Fig. 6. Analyzing theto band gaps. Parameters &we=0.6, v; , =0, vy =—6, v5, =
complete model of the periodic layers, we find that such an-8, v,_=—13, andg;"=0.

approximation is indeed possible in the limit of weakly

coupled nonlinear layers, i.e., fdig;>1 (note that we section, we first analyze the linear properties of such a lay-

should consider the cagg>0). For this case, the effective ered structure. We also use similar notations, but for a single
coefficients are found asA{¥=wv,+p%/4, \P=p, nonlinearinterface we omit the index=0. From the theory

+ B2 (40), Ay=—2e"1721 82 and A,= — 2gehb2!(29)) g2, of wave propagatiorj in linear periodi'c media, it follows that
Note also that such an approximation should be valid fo link between the linear-wave _ampll'iudeicaf be character-
both FF and SH waves simultaneously, i.e., the relatiorzed by the reflection coefficients;; =bj’/a;" and r;
|)\(20)_2)\(10)|<)\J(0) should be satisfied. In general, the nor- =& ./bj. . We do not assume that the linear structure is sym-
malization coefficients for the wave amplitudgs, also de- ~Metric [in general,v;(x) # v;(—x)] and denote with+ and
pend on the propagation constaiis However, in the limit ~ ~ the wave characte_zrlstlcs at th+e right and left boundaries of
hB;>1 the change of these coefficients on the scale of variathe nonlinear layer, i.ex;(x) = v/’ (|x|) for x>0 andw;(x)

tion of the dispersion parameters is negligible, =v; (|x|) for x<0. If the linear structure is periodic, the
|(d&,/dmy)/ & ~e MPrP<1 and [(dé,/d )l &) coefficientsrji can be found by solving the following eigen-
~e P2/(29)<1 . These results, on one hand, provide thevalue problems:
conditions for the applicability of the so-called discrgt&

model and, on the other hand, illustrate the serious limita- T(j'i)( 1 ):T(j:)< 1 ) (16)
tions of the use of such a simplified model. = r=

-

—-20

T i
IV. A SINGLE x® NONLINEAR LAYER EMBEDDED Her.e,'ll'(i'i) is the transfer matrix of one linear segment in a
IN A PERIODIC STRUCTURE periodic lattice, starting on the right) or the left (—) side
of a nonlinear interface, and it can be calculated according to
Let us now consider a special case in which there existggs. (5)—(8). Using the fact tha}| TU:*)||=1, we solve Eq.
only a single nonlinear laydtocated a,=0) embedded in  (16) and find the reflection coefficients in the form
a linear periodic structure. A similar problem has been con- ) _ _
sidered in our recent papgt2] for the other case where the rji=Tf’z*yf])(q-“’i)—TEJZ';]))*, (17
linear media on both sides of the nonlinear interface are uni-
form. In this section, we generalize those results to the caswhere
of nonuniform linear media, considering a nonlinear layer (o) N AV
with quadratic nonlinearity embedded in a linear periodic T == (g 12)[1= V1= (2177)7].
structure. To do so, we modify the mod@) as follows: (i) . .
nonlinear coupling terms are taken into account onlyrfor 't €&n be proven that aly;- are realsee Appendix A Then

=0, and(ii) a linear response of the central layer is assumed{’® S€€ that the modes decay at infinity, el =<1, only

to be different from that of other layers, i.e., we chargje if |7 [>2. This condition, which has already been obtained
—a;+ B; atn=0. In connection with the preceding problem N Sec. Ill, dgfmes t.h'e spectrum ba'n.d gaps, where the wave
(see Secs. Il and Il) the case withy;=0 corresponds to the propagation is prohibited for a spgmﬂ_c range of the propaga-
limit of a highly localized mode, when the mode width is tion constant; (see an example in Fig).7

much smaller than the distance between the nonlinear layers BY applying the continuity conditions;;=a; +b;~, we

(see Fig. 2 obtain the expressions for the amplitudes at the nonlinear

Following the general approach outlined in the precedindayer: |c;|?=aja,, C,=—a;, where ay=a;—{1 {7,
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w=a—0l3—0l;, and {=p (1-r)/(1+r]) are 40
the effective transverse wave numbers at the righ} @nd

left (—) boundaries of the nonlinear layer; their values are "
determined by the dispersion relation of the periodic linear
gratings. As has been demonstrated in the preceding sectioia 20
the wave numberﬂf , the linear transfer matrices, and, ac-
cording to Eq.(17), the reflection coefficientsji depend on - -
the propagation constanls, which in turn are related by (a)
the phase-matching condition,=2\,. Thus, for fixed 0 .
physical characteristics, the localized modes constitute &
one-parameter family, and we choosgas a free parameter. 7L1

We note that inside the band gaps the coefficigntsre real

(see Appendix B 2 ' : ' | '

In order to illustrate the features of nonlinear modes, we :
consider a structure similar to that used in experiments or -
the SH generation in localized modds]. In the experimen-
tal setup, a periodic linear structure was built of two materi-
als with different refractive indices, characterized by the pa-
rametersy; . = Vj(X:Oi), with corresponding finite widths
of the layers,h... The nonlinear interface was created by
cutting the grating in two parts and coating the interface to (b)
enhance the effective quadratic nonlinearity. Characteristicc 9 ' 5 ' = ' 30
of the defect layer were controlled by adjusting the gap. An A
example of the band gap for such a photonic structure is 1
presented in Fig. 7. Note that because the linear structures o
either sides of the nonlinear layer are chosen to be the sam
[up to a constant shift, in our notation (x) = vf(x+ h,)],
the corresponding gaps coincide.

Many of the properties of the localized modes can be L
understood by analyzing the power diagr®f\;). Charac- /A~ 1~ -
teristic examples of such a dependence are shown in Figs
8(a)—8(c). Similarly to the case of a thin layer separating two L ’ _
homogeneous linear media2], there always exists a branch (C) \
in the parameter region unbounded from above Mplarger 0 , L , | , | ,
than some critical value. Quite remarkably, the correspond- -2 0 2 4 6 8
ing mode properties are very similar to those of quadratic A
solitons[9]. In particular, for large values of the propagation
constant\; the power dependend®(\ ;) always has a posi- FIG. 8. Three types of the power dependences for two-color
tive slope, while for smallek; the slope can become nega- stationary localized modes, for different linear mismatclieso;
tive, resulting in bistability. Such a case is demonstrated in= -1 anda,=—1; (b) a;=10 anda,=8; (c) &;=4 anda,=6.

Fig. 8(a@). We found that stability of the corresponding modesSolid line, stable; dashed line, unstable, dotted line, oscillatory un-
can be determined by the Vakhitov-Kolokolov criterion, i.e., stable. Parameters of the linear structure correspond to those in Fig.
the localized modes are stable providd@/d\,>0, and un- 7.

stable, otherwise.

On the other hand, the spectrum of a linear periodic strucgarity[27], in which case the corresponding localized modes
ture consists of several bands. MoreoverLe\ien inside a bange stable. We have performed a linear stability analysis and
gap the modes cannot exist if the conditiape,>0 is not  have found that, similarly to the case of the Kerr-type non-
satisfied. Thus, in sharp contrast with two-color parametridinearity, the Vakhitov-Kolokolov-type criterion cannot be
solitons in homogeneous media, other branches can appeapplied to determine stability of such modes, which exist in
for smaller values oh;. We find that the localized mode an effectively defocusing medium. However, our calcula-
properties can be very different compared to the modes cotions demonstrate that parametric resonances can lead to os-
responding to the right branch. For example, in Figh) 8 cillatory instability of such modes, as illustrated in Figé&o)3
and &c), the left branches at higher intensities correspond t@nd 8c). A comprehensive analysis of the mode stability
smaller\ ; and wider profiles. This happens because the SHwill be presented elsewhere.
amplitude is negative¢,<0, which results in effectively The two-color parametric localized modes can be gener-
self-defocusing nonlinear response. It is interesting to notated by launching a localized FF wave at the interface, as
that similar types of power dependencies occur for a localshown in Fig. 9a). We have also studied the evolution of a
ized impurity possessing a self-defocusing Kerr-type nonlinperturbed unstable mode, which can evolve toward a stable

——— - ——]

[
|
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from an unstable to a stable state.

30t 1 | (a) We believe our results are important, on one hand for the
JY; \ theory of nonlinear photonic crystals where nonlinearities
20t h Nr"*f”f;" M I appear due to phase-matched harmonic generation, and, on
I Hiie

the other hand for creating tunable band-gap materials where
gaps could be open or closed, depending on the input inten-
sity and phase matching.

I
»‘h“"?)
iy

It
b
il H)’// “\‘
)‘:“‘}/}/\ | \

|
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FIG. 9. (a) Generation of a stable localized mode from an input APPENDIX A: PROPERTIES OF THE TRANSFER

FF beam with a Gaussian transverse prdiifitial power P=8). MATRIX

(b) Switching from a perturbed unstableorresponding to\;=

—1) to a stable mode. Left: the field intensities of the (BBshegl In order to demonstrate some features of linear modes
and SH(solid) components at the interface. Right: evolution of the existing in periodic structures, we consider the properties of
SH field. Parameters correspond to those in F{(g).8 the corresponding transfer matrices. First, we see that a ma-

trix describing changes of the wave amplitudes at the bound-
state. The example in Fig.(9 demonstrates the develop- ary between linear layersT,, depends only on the wave
ment of an oscillatory instability with the subsequent switch-nymbers on either side of the interface, as follows from Eq.
ing to a stable state. (6). It is also easy to check that the following relation holds:

T =T 1y, m) = oty me 102 T 2 ),
V. CONCLUSIONS r R R )

We have developed a general formalism for analyzing - ) o
spatially localized nonlinear modégwo-color discrete gap Whereu is arbitrary, and we assume that it is real. Let us
solitong in periodic photonic structures with embedded qua-introduce a new matrixT(J)=.'I'.r(,u,,uj,MJT1)T(')Tr(,uj,1,,u),
dratic (or x{?)) nonlinear interfaces—nonlinear quadratic su-and use Eq(A1) to present it in a special form:
perlattices. Our approach can be applied to different types of . . .
periodic linear media with isolated or periodic nonlinear in- T(J)z'”rg”\/'”)'”rg’“") . _Tgi)_
terfaces, where nonlinearity can support parametric wave
coupling and generation of the sgcond—hgrmonlc field. In th. ere, :T-E)J’n)ETr(ILan,n)T;()]’n)Tr(:U’j,n %) and T'E,«"“)
case of a nonlinear superlattice, i.e., periodically spaced thin __ ~ (i) ~ . .

T,y ) Ts Ty nope). It can be verified by direct

layers possessing a quadratic nonlinear response, we ha\?eb tution that th ) he f h
derived an effective discrete model and found two-mode disSuPstitution that these matrices are et use the fact that,

crete gap solitons of different topologies in the form of fun- fOr Stationary modesy; , are real or purely imaginayyand
damental and second-harmonic fields coupled parametricalfpereforeT() is real as well. Finally, we find that TF()
at the nonlinear interfaces. =Tr(TW) and TV u; ;=TI 1, which proves that coeffi-
For a single nonlinear layer embedded in a linear periodiq:ientsgj and »; in Eq. (9) are real.

medium, we have described a novel class of nonlinear local-
ized defect modes—two-color photonic modes. Some of the
properties of these two-color localized modes, such as stabil-
ity, generation, and switching, have been shown to be re-
markably similar to those of quadratic parametric solitons in
homogeneous media. However, we have also discussed a Although it is possible to extend the technique presented
number of specific properties of such modes, and demonn Appendix A to prove the properties of the reflection coef-
strated the possibility of their generation from a localizedficients in the case of an infinite linear gratifigtroduced in
beam of the fundamental frequency, as well as switchingec. I\V), here we employ a different approach. We note that

APPENDIX B: REFLECTION COEFFICIENTS
FOR THE BAND-GAP MODES

016615-8



PARAMETRIC LOCALIZED MODES IN QUADRATIC ... PHYSICAL REVIEW E63 016615

for stationary waves in a band gap there should be no energihese conditions are satisfied when the amplitudes of the
flow along thex axis. The corresponding restrictions follow counter-propagating waves coincide, ileﬂzl provided

from Eq. (2): i is imaginary. On the other hand, for the layers with real
ou go* i the linear modes should be in phase, i.e., l)EO0.
Im(u P )=0, Im(v X )=O. (B1)  Then, it immediately follows that in a band gap the coeffi-

cients{; are real.
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