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Parametric localized modes in quadratic nonlinear photonic structures
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We analyze two-color spatially localized nonlinear modes formed by parametrically coupled fundamental
and second-harmonic fields excited at quadratic~or x (2)) nonlinear interfaces embedded in a linear layered
structure—a quadratic nonlinear photonic crystal. For a periodic lattice of nonlinear interfaces, we derive an
effective discrete model for the amplitudes of the fundamental and second-harmonic waves at the interfaces
~the so-called discretex (2) equations! and find, numerically and analytically, the spatially localized solutions—
discrete gap solitons. For a single nonlinear interface in a linear superlattice, we study the properties of
two-color localized modes, and describe both similarities to and differences from quadratic solitons in homo-
geneous media.
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I. INTRODUCTION

The physics and applications of photonic band-gap m
rials ~or photonic crystals! have been an active topic of re
search for more than a decade@1#. The next step in applica
tion of photonic crystals is to create tunable band-g
materials where the gap can be controlled by an exte
parameter. One of the recent suggestions@2# is based on the
inverse opal structure—a microscopic lattice of spheres o
surrounded by silicon—with a layer of liquid crystal mater
that can make the transmission properties programmabl
applying an electric field. Continuous temperature tuning
also be realized in liquid crystals@3# and in semiconductors
with sufficiently high free-carrier densities@4#.

Another important idea applicable to creating dynamica
tunable band gap materials for switches and transistors o
ating entirely with light is to employ their nonlinear prope
ties, thus creating nonlinear photonic crystals. The conc
of nonlinear photonic crystals, defined as having a spati
periodic nonlinearity, was introduced by Scaloraet al. @5# in
a numerical study of ultrafast optical switching and limitin
in cubic nonlinear Kerr materials. However, such a struct
was already investigated by Larochelleet al. four years ear-
lier @6#. Bistability and localized modes in photonic superla
tices with embedded layers possessing nonresonant cub~or
Kerr-type! nonlinearities have also been discussed in the
erature@7#. Recent advances in the so-called cascaded n
linearities @8# demonstrate an effective way to lower th
switching power by employing parametric interaction a
frequency conversion in noncentrosymmetric quadratic n
linear optical materials. Parametric interactions are a
known to support solitary waves, spatial quadratic solito
@9#, that exist in homogeneous media where spatial local
tion is induced by two-wave parametric mixing process
between the fundamental wave and its second harmonic.
quadratic nonlinear photonic crystal was introduced as a c
cept by Berger@10# in a study of multiwavelength frequenc
conversion in a plane geometry.

Taking into account the similarities between the localiz
defect modes in linear inhomogeneous media and nonlin
1063-651X/2000/63~1!/016615~9!/$15.00 63 0166
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localized modes in homogeneous media@11#, we wonder if
parametric interactions can support localized modes in a
riety of photonic band-gap structures with quadratic~or x (2))
nonlinearities. The first step in this direction has recen
been presented in Ref.@12#, where we have analyzed secon
harmonic generation~SHG! at a thin, effectively quadratic
nonlinear layer separating two~generally different! homoge-
neous linear media, and predicted multistability of SHG
both plane waves and localized modes, also describing t
color localized photonic modes that can be excited at
interface.

The main purpose of this paper is twofold. First, we ge
eralize the results of Ref.@12# to the case of a thin quadrati
nonlinear layer embedded in an arbitrarily stratified perio
linear medium. In particular, we consider a nonlinear def
layer with second-order nonlinear response in a perfectly
riodic dielectric structure—a one-dimensional analog o
photonic crystal with a nonlinear impurity. Second, we d
velop a general formalism for analyzing parametric localiz
modes in multilayer structures—x (2) nonlinear
superlattices—and describe two-color localized gap mo
supported by a periodic lattice of thin layers with quadra
nonlinearity.

The paper is structured as follows. In Sec. II we pres
our model that is described by a system of two coupled n
linear equations for the envelopes of the fundamental
second-harmonic waves. In the stationary case, the solu
can be presented as a superposition of the forward-
backward-traveling waves, and this makes it possible to
rive an effective system of discrete coupled-mode equati
for the wave amplitudes at the layers, the so-called disc
x (2) equations~Sec. III A!. Solutions of these equations fo
localized nonlinear modes are briefly discussed in Sec. II
and in Sec. III C we outline the connection between disp
sion properties and band-gap structure. Finally, in Sec.
we consider a generalization of the results of Ref.@12# to the
case of a single quadratic nonlinear layer embedded i
periodic linear medium, and describe a number of new f
tures of the localized modes that appear due to the band
structure of the linear spectrum.
©2000 The American Physical Society15-1
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II. MODEL

First, we discuss the physical motivation for our mod
Let us consider an interface between two semi-infinite b
optical media with inversion symmetry. The interface lay
breaks the symmetry and therefore it should possess a
vanishing surface quadratic response@13# that can be en-
hanced by a proper coating creating a nonlinear layer w
quadratic nonlinearity@14#. Such a layer corresponds to a
effective nonlinear defect that can support photonic mo
localized at the interface. There exists strong experime
evidence of SHG in this a type of localized photonic mod
For example, recent experimental results@15# reported SHG
in periodic photonic band-gap structures with embedd
nonlinear defect layers. An enhancement of the parame
interaction in the vicinity of the defects was observed, s
gesting that SHG occurs in localized modes, but is s
pressed for propagating modes. The surface nature of S
was confirmed by comparison of experimental data with
results of direct numerical simulations@14#.

To introduce an analytically solvable model for SHG
localized waves, we follow Ref.@12# and consider a funda
mental frequency~FF! wave propagating along theZ direc-
tion in a linear slab waveguide, as shown in Fig. 1. W
assume that the interfaces~or defect layers! possess a qua
dratic nonlinear response, so that a FF wave can param
cally couple to its second harmonic~SH! wave. The coupled-
mode equations for the complex envelope functionsEj (X,Z)
~we usej 51,2 for FF and SH, respectively! can be written in
the form

i
]E1

]Z
1D1

]2E1

]X2
1e1~X!E11G1~X!E1* E250,

~1!

i
]E2

]Z
1D2

]2E2

]x2
1e2~X!E21G2~X!E1

250,

whereD j are the diffraction coefficients (D j.0). In the ap-
proximation of infinitely thin interface layers~valid when the
width of each layer is much smaller than the characteri
transverse scale of the FF and SH wave envelopes!, we take
« j (X)5e0 j (X)1(nk jd@(X2Xn)/D1# and G j (X)
5(ng jd@(X2Xn)/D1#, whereXn denotes the position of th

FIG. 1. Schematic diagram of an array of thinx (2) layers em-
bedded in a linear slab waveguide, with indication of the direct
of the input laser beam relative to the interfaces.
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nth nonlinear interface.g j are the nonlinearity coefficient
and«0 j (X) andk j account for the phase velocity difference
in bulk and interface materials.

In order to reduce the number of physical parameters,
normalize Eqs. ~1! as follows: E1(X,Z)5u(x,z)ei ē01Z/
(D1Ag1g2), E2(X,Z)5v(x,z)ei2ē01Z/(D1g1), where the
spatial coordinates are measured in units ofD1 , x5X/D1
andz5Z/D1. This gives the dimensionless equations

i
]u

]z
1

]2u

]x2
1n1~x!u1(

n
d~x2xn!~b1u1u* v !50,

~2!

i
]v
]z

1s
]2v

]x2
1n2~x!v1(

n
d~x2xn!~b2v1u2!50.

Heres5D2 /D1 , b j5D1k j , andn j (x)5D1@e0 j (x)2 j ē01#,
with ē01 being the average value ofe0 j (x).

At this point, it is important to note that our system@Eqs.
~1! or ~2!# describes the beam evolution in the framework
the so-called parabolic approximation, valid for the ra
propagating mainly along theZ direction. In other words, the
characteristic length of the beam distortion due to diffract
and refraction along theZ axis should be much larger tha
the beam width in the transverse directionX. This leads to
the requirement of a shallow grating,ue0 j (x)2 ē0 j u! ē0 j . On
the other hand, to make the parametric interaction effect
the mismatch between the phase velocities of the FF and
waves should be small, 2ē01. ē02. The ratio of the diffrac-
tion coefficients is then approximatelys5 1

2 , and we use this
value in the numerical simulations presented below.

For spatially localized solutions, the system~2! conserves
the Hamiltonian

H5E
2`

1` H U]u

]xU
2

1
s

2 U]v
]xU

2

2n1~x!uuu22
n2~x!

2
uvu2

2(
n

d~x2xn!Fb1uuu21
b2

2
uvu21Re~u2v* !G J dx

and the total powerP5*2`
1`(uuu21uvu2)dx.

III. PERIODIC LAYERED STRUCTURES

A. General formalism

To develop a general formalism for describing stationa
spatially localized modes, we consider an infinite system
uniformly spaced nonlinear interfaces located periodically
the positionsxn5nh, which separate identical linear layer
n j (x1nh)[n j (x). An example of such a structure is show
in Fig. 2. This type of one-dimensional~1D! nonlinear pho-
tonic crystal~NPC! can be used to prohibit light propagatio
along the transversex axis under certain conditions, resultin
in field localization, and it resembles the operation of t
so-called photonic crystal fiber in the linear regime@16#. The
fundamental properties of NPC can be understood by stu
ing nonlinear localized modes. Such modes appear in

n
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PARAMETRIC LOCALIZED MODES IN QUADRATIC . . . PHYSICAL REVIEW E63 016615
frequency gap of the layered linear structure, and they ca
called discrete gap solitons or, in a broader context, intrin
localized modes@11#.

We search for solutions of Eqs.~2! in the form

u~x,z!5c1~x!eil1z, v~x,z!5c2~x!eil2z,

wherecj (x) describe the transverse profiles of FF and
waves, respectively, and the real propagation constantl j
satisfy the phase-matching conditionl252l1. Then, since
the FF and SH fields do not interact in a linear bulk mediu
each of them can be presented as a composition of two li
eigenmodes, corresponding to pairs of counterpropaga
waves with opposite wave vector components along thx
axis. Regardless of the internal structure of a linear la
between nonlinear interfaces, the wave amplitudes at
boundaries can be related by a transfer matrix@17#:

S aj
(n11,2)

bj
(n11,2)D 5T( j )~l j !S aj

(n,1)

bj
(n,1)D . ~3!

Here, indices6 stand for the waves on the right and on t
left of a given nonlinear layer, respectively, and the amp
tudes of counterpropagating waves are denoted byaj andbj ,
as shown in Fig. 3.

In order to calculate the dependence of the matrix e
ments on the propagation constants, we should solve the
responding linear problem. For practical applications, N

FIG. 2. Slab waveguide from Fig. 1 viewed from the front wi
indication of the substructure and notation of the identical lin
media~photonic crystal withM sublayers with different refractive
indices! in between thex (2) interfaces. The separation between t
nonlinear interfaces ish. A localized mode centered atx50 is also
illustrated.

FIG. 3. Transfer matrix relating the amplitudes at the bounda
of a linear layer, independently for the FF and SH components;
Eq. ~3!.
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be
ic

,
ar

ng

r
ts

-

-
or-

can be produced by embedding nonlinear layers in an ot
wise linear Bragg grating structure; see, e.g., Ref.@14#. Thus,
we assume that each linear layer consists of several subla
with a constant refractive index~see Fig. 2!, i.e., n j (x)
5n j ,m for xn,m<x<xn,m11, wherem is used to number the
sublayer inside a linear slice (1<m<M ), and we have by
definition thatxn,15xn21,M115xn5nh. Then, the field in
the (n,m)th sublayer can be written as

cj~x!5aj
(n,m)e2m j ,m(x2xn,m)1bj

(n,m)em j ,m(x2xn,m). ~4!

By definition, the amplitudes from Eq.~3! are aj
(n,1)

5aj
(n,1) , aj

(n11,2)5aj
(n,M11) , with similar relations holding

for bj
(n,6) .

Transverse wave numbers can be calculated using the
persion relations,l15m1,m

2 1n1,m andl25sm2,m
2 1n2,m , to-

gether with the phase-matching conditionl252l1. From
these expressions we conclude that, in general, for givenl j
the waves can be either localized~i.e., m j ,m is real! or propa-
gating ~i.e., m j ,m is imaginary!. Then we notice that the
waves in a multilayered linear medium can be determined
linear eigenmodes localized at the sublayer boundaries. F
from Eq. ~4! it follows that the variation of the field ampli
tude through themth sublayer of the widthhm[xn,m11
2xn,m is characterized by the following transfer matrix:

Tp
( j ,m)5S e2m j ,mhm, 0

0, em j ,mhm
D . ~5!

Second, the variation of the wave amplitudes at the bound
can be calculated by applying the field continuity conditio
following from the model~2!. Specifically, we equate the
amplitudescj and their derivativesdcj /dx on both sides of
the interface, and find the transfer matrix accounting for
field localization at a boundary separating themth and (m
11)th sublayers,

Tr
( j ,m)5

1

2 S 11t r
j ,m , 12t r

j ,m

12t r
j ,m , 11t r

j ,mD , ~6!

where t r
j ,m5m j ,m /m j ,m11. To simplify further analysis, we

include all linear properties in the transfer matrix. The
m j ,M11[m j ,1 due to periodicity of the underlying grating
and the lineard response is characterized by the followin
matrix:

Td
( j ,m)5

1

2 S 21td
j ,m , td

j ,m

2td
j ,m , 22td

j ,mD , ~7!

where td
1,m5b1 /m1,m and td

2,m5b2 /(sm2,m), with m being
the index of the linear layer with the delta interface~in our
caseM11). The total transfer matrix can be then found a
product,

T( j )5Td
( j ,M11)Tr

( j ,M )Tp
( j ,M ) . . . Tr

( j ,1)Tp
( j ,1) . ~8!

Note that the determinants areuuTp
( j ,m)uu5uuTd

( j ,m)uu51,
uuTr

( j ,m)uu5m j ,m /m j ,m11, and thereforeuuT( j )uu51.

r

s
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After calculating the matrix elements, we express the fi
in terms of the mode amplitudes defined at the nonlin
interfaces,cj

(n)5cj (xn), combining the relation~3! with the
continuity conditions at the layers,cj

(n)5aj
(n,1)1bj

(n,1)

5aj
(n,M11)1bj

(n,M11) . Integrating Eqs.~2! over small inter-
vals including the nonlinear interfaces at the positionsxn
~note that we exclude linear responses, since they are alr
accounted for in the transfer matrices!, we derive the so-
called discretex (2) equations,

h1Un1~Un211Un11!1x1Un* Vn50,
~9!

h2Vn1~Vn211Vn11!1x2Un
250,

whereUn5c1
(n)Auj1j2u andVn5c2

(n)uj1u are the normalized
FF and SH amplitudes at thenth nonlinear layer. Parameter
x j andh j are defined by the matrix elements,

j152Ts
(1)/~2m1,1!, j252Ts

(2)/~2sm2,1!,
~10!

h j52Tr~T( j )!, x j5sign~j j !,

where

Ts
( j )5T[1,1]

( j ) 1T[2,1]
( j ) 2T[1,2]

( j ) 2T[2,2]
( j ) ,

~11!
Tr~T( j )![T[1,1]

( j ) 1T[2,2]
( j ) .

Hereafter, we use the notationT[n,m]
( j ) to denote the matrix

element in rown and columnm of the matrixT( j ). It is easy
to verify that parametersh j and normalization coefficientsj j
are real for any ~real! propagation constantsl j . A proof of
this fact, together with discussion of some other propertie
the constructed transfer matrices, is given in Appendix A

We note that some particular cases of the system~9! have
been discussed earlier~but, in fact, never derived in a con
sistent manner! in the analysis of the nonlinear interface d
namics under the condition of Fermi resonance@18,19#, ar-
rays of weakly interacting quadratic waveguides@20–23#,
and beam propagation in nonlinear lattices@24#.

B. Discrete gap solitons

Now we use Eqs.~9! to find the stationary localized
modes of nonlinear superlattices, or discrete gap soliton
similar problem was analyzed earlier in Ref.@18# in the so-
called continuum limit, where the modes become wide a
are effectively supported by many interfaces, with the ex
tation profiles approaching those of quadratic solitons@9#.
On the other hand, it has been demonstrated that disc
states in a closed system of few interfaces can have diffe
topologies and possess quite peculiar properties@19,20#. For
the case at hand, when the number of interfaces is infi
~e.g., much larger than the characteristic mode width!, the
different types of highly localized waves have been iden
fied @21#, and their profiles were described by approxima
analytical solutions. However, until now the transitional ca
of moderately localized modes has not been addressed. T
01661
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we develop a more complete analytical description of d
crete gap solitons, which can predict their properties in
the parameter regions.

In order to find approximate solutions for highly localize
modes, we use the variational method. First, we have
choose the trial functions. We use the fact that in the h
localization limit the tails are almost linear, so that the a
plitudes decay nearly exponentially. Then, we introduce t
sets of trial functions to account for different topologies@21#:
odd modes when the center of symmetry is located at a la

Un
(o)5U0s1

unue2r1unu, Vn
(o)5V0s2

unue2r2unu, ~12!

and even modes when the center of symmetry is loca
between two neighboring layers,

Un
(e)5H U0s1

unue2r1unu, n>0,

U0ts1
unue2r1un11u, n,0,

~13!

Vn
(e)5H V0s2

unue2r2unu, n>0,

V0s2
un11ue2r2un11u, n,0.

Here the parameterssj561 are introduced to describe un
staggered and staggered profiles, andt561 to produce ei-
ther untwisted or twisted modes~for the signs ‘‘1 ’’ or
‘‘ 2,’’ respectively!.

After selecting the mode topology and fixing the values
sj and t, the unknown valuesU0 , V0 , r j (r j.0) are deter-
mined by minimizing the Lagrangian corresponding to E
~9!. Details of these calculations will be presented elsewh
@25#. Here we give a brief summary of the main results a
discuss their physical consequences.

Since the system~9! possesses the symmetries~i! x1→
2x1 , s1→2s1 , h1→2h1, and ~ii ! x1→2x1 , x2→
2x2 , Vn→2Vn , we consider, without a lack of generality
the casex j51. The analysis shows that localized solutio
exist only if s1h1,22. The latter condition means that th
FF component is unstaggered forh1,22, and staggered
otherwise (h1.2). Similarly, we consider only the cas
uh2u.2, since for other values the localized solutions a
unstable due to resonant interaction with linear waves@21#.

Analyzing the linear problem, it is straightforward to se
that the SH mode can be staggered only ifh2.2. Then we
distinguish between two limits:~i! a strongly localized FF
mode (h1@2), when the SH consists of staggered linear ta
@21#, and~ii ! the cascading limit (h2@2), when the SH pro-
file is unstaggered and can be found asVn.Un

2/h2, resulting
in an effectively cubic nonlinearity for the FF wave@22# ~see
also @9#!. In the intermediate case, a transition of the S
profile between staggered and unstaggered topologies sh
be observed. Indeed, our variational calculations predict
the SH is staggered for 2,h2,h22, and unstaggered fo
h2.h22. Here, the critical parameter value depends onh1:
for odd modes, it is found from the quadratic equatio
Ah2211/Ah225uh1u, and a similar relation holds for eve
modesAh221111/Ah22115uh1u. The topology does no
change sharply as the parameterh2 crosses the critical value
5-4
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h22(h1), but numerical calculations confirm that such a tra
sition occurs in a region close to the separation line.

We performed numerical analysis and found that the
proximate variational solutions provide close matching
the highly localized profiles, i.e., for relatively large valu
of uh j u. Examples of odd and even modes are presente
Figs. 4 and 5, respectively. We see that the profiles of s
gered modes, supported by only a few interfaces, are
scribed very accurately. However, for wider modes the
viations between the exact numerical and variatio
solutions are more pronounced, see Figs. 4~c! and 5~c!. The
limitation of the variational solution is due to the speci
choice of the trial functions~12!,~13!, which are not suitable
for description of ‘‘moderately’’ localized waves with
smoother profiles.

It can be demonstrated that in the continuum limit (h j

→222) untwisted modes acquire the profiles of quadra
solitons@9#, which can be well approximated with the sec
type functions @26#. A special quasicontinuous approac
which allows one to determine the mode profiles as a sol
bound state, can also be developed. The resulting app
mate solutions provide very good estimates, and they
very useful for understanding the mode scaling propert
i.e., a change from broad solitons to narrow highly localiz
states. On the other hand, it should be noted that the twi
modes do not exist close to the continuum limit because t
profiles are intrinsically discrete due to a sharp amplitu
change between the layers at the mode center. A compre
sive description of these results goes beyond the scope o
present paper and will be presented elsewhere@25#.

FIG. 4. Different types of odd two-frequency localized mode
~Numerical solutions: FF, triangles; SH, squares. Variational p
files: FF, dashed line; SH, solid.! ~a! Staggered FF and unstagger
SH (h152.4, h254.5), ~b! both components staggered (h152.4,
h253), ~c! both unstaggered (h1522.4, h2523.5).
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C. Dispersion properties and band-gap structure

As we have demonstrated in the preceding section, s
tially localized modes exist under the condition that line
waves do not propagate through a periodic structure, i.e
the spectrum band gaps. In our case, such band gaps a
when the conditionuh j u.2 is satisfied. To reveal the ke
features of the linear dispersion, we study the simple cas
a delta-layer array embedded in a homogeneous bulk
dium. In this case, after straightforward calculations, we o
tain the following expression for the parameterh j :

h1522 cosh~hm1!1~b1 /m1!sinh~hm1!,
~14!

h2522 cosh~hm2!1@b2 /~sm2!#sinh~hm2!.

A characteristic dependenceh1(l1) is presented in Fig. 6
The spectrum for largel j corresponds to a total interna

.
-

FIG. 5. Characteristic examples of even two-frequency locali
modes with an untwisted FF component; the notations are the s
as in Fig. 4. Parameter values are~a! h152.45, h254.5; ~b! h1

52.45,h252.5; ~c! h1522.45,h2523.

FIG. 6. Characteristic dispersion dependenceh1(l1). Shading is
used to show the spectrum bands. Dashed rectangle marks th
gion of applicability of the discretex (2) model and Eq.~15!. Pa-
rameters areh52, n150, andb154.
5-5
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reflection. Band gaps in the linear spectrum are created
the Bragg-type reflection, and they appear at smaller va
of l j . Note that the width of the photonic band gaps b
comes vanishingly small whenl j decreases.

In the earlier studies, the discretex (2) model was phe-
nomenologically introduced and analyzed@20–23#. The cor-
responding dispersion relations for the stationary locali
modes of that model are

h j5Aj~l j2l j
(0)!, ~15!

where Aj and l j
(0) are constant parameters. Although t

simplified dependence~15! does not describe the full band
gap spectrum of a realistic layered photonic structure suc
that shown in Fig. 6, in many cases the dispersion rela
~15! has been successfully used to describe the propertie
discrete localized modes close to the edges of the total in
nal reflection and the first photonic band gaps, shown sc
matically by a dashed rectangle in Fig. 6. Analyzing t
complete model of the periodic layers, we find that such
approximation is indeed possible in the limit of weak
coupled nonlinear layers, i.e., forhb j@1 ~note that we
should consider the caseb j.0). For this case, the effectiv
coefficients are found asl1

(0)5n11b1
2/4, l2

(0)5n2

1b2
2/(4s), A1522ehb1 /2/b1

2, andA2522sehb2 /(2s)/b2
2.

Note also that such an approximation should be valid
both FF and SH waves simultaneously, i.e., the relat
ul2

(0)22l1
(0)u!l j

(0) should be satisfied. In general, the no
malization coefficients for the wave amplitudes,j j , also de-
pend on the propagation constantsl j . However, in the limit
hb j@1 the change of these coefficients on the scale of va
tion of the dispersion parameters is negligib
u(dj1 /dh1)/j1u;e2hb1/2!1 and u(dj2 /dh2)/j2u
;e2hb2 /(2s)!1. These results, on one hand, provide t
conditions for the applicability of the so-called discretex (2)

model and, on the other hand, illustrate the serious lim
tions of the use of such a simplified model.

IV. A SINGLE x „2… NONLINEAR LAYER EMBEDDED
IN A PERIODIC STRUCTURE

Let us now consider a special case in which there ex
only a single nonlinear layer~located atx050) embedded in
a linear periodic structure. A similar problem has been c
sidered in our recent paper@12# for the other case where th
linear media on both sides of the nonlinear interface are
form. In this section, we generalize those results to the c
of nonuniform linear media, considering a nonlinear lay
with quadratic nonlinearity embedded in a linear perio
structure. To do so, we modify the model~2! as follows:~i!
nonlinear coupling terms are taken into account only fon
50, and~ii ! a linear response of the central layer is assum
to be different from that of other layers, i.e., we changeb j
→a j1b j at n50. In connection with the preceding proble
~see Secs. II and III!, the case witha j50 corresponds to the
limit of a highly localized mode, when the mode width
much smaller than the distance between the nonlinear la
~see Fig. 2!.

Following the general approach outlined in the preced
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section, we first analyze the linear properties of such a l
ered structure. We also use similar notations, but for a sin
nonlinear interface we omit the indexn50. From the theory
of wave propagation in linear periodic media, it follows th
a link between the linear-wave amplitudes can be charac
ized by the reflection coefficients,r j

15bj
1/aj

1 and r j
2

5aj
2/bj

2 . We do not assume that the linear structure is sy
metric @in general,n j (x)Þn j (2x)# and denote with1 and
2 the wave characteristics at the right and left boundarie
the nonlinear layer, i.e.,n j (x)5n j

1(uxu) for x.0 andn j (x)
5n j

2(uxu) for x,0. If the linear structure is periodic, th
coefficientsr j

6 can be found by solving the following eigen
value problems:

T( j ,6)S 1

r j
6D 5t ( j ,6)S 1

r j
6D . ~16!

Here,T( j ,6) is the transfer matrix of one linear segment in
periodic lattice, starting on the right (1) or the left (2) side
of a nonlinear interface, and it can be calculated accordin
Eqs.~5!–~8!. Using the fact thatuuT( j ,6)uu[1, we solve Eq.
~16! and find the reflection coefficients in the form

r j
65T[2,1]

( j ,6)~t ( j ,6)2T[2,2]
( j ,6)!21, ~17!

where

t ( j ,6)52~h j
6/2!@12A12~2/h j

6!2#.

It can be proven that allh j
6 are real~see Appendix A!. Then

we see that the modes decay at infinity, i.e.,ut ( j ,6)u,1, only
if uh j

6u.2. This condition, which has already been obtain
in Sec. III, defines the spectrum band gaps, where the w
propagation is prohibited for a specific range of the propa
tion constantl j ~see an example in Fig. 7!.

By applying the continuity conditions,cj5aj
61bj

6 , we
obtain the expressions for the amplitudes at the nonlin
layer: uc1u25ã1ã2 , c252ã1, where ã15a12z1

12z1
2 ,

FIG. 7. The band structure for~a! FF and~b! SH modes, and~c!
combined band gap~additional narrow gaps in FF and SH spect
exist for smallerl1, not shown!. Areas without shading correspon
to band gaps. Parameters areh650.6, n1,150, n1,2526, n2,15

28, n2,25213, andb j
650.
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ã25a22sz2
12sz2

2 , and z j
65m j

6(12r j
6)/(11r j

6) are
the effective transverse wave numbers at the right (1) and
left (2) boundaries of the nonlinear layer; their values a
determined by the dispersion relation of the periodic lin
gratings. As has been demonstrated in the preceding sec
the wave numbersm j

6 , the linear transfer matrices, and, a
cording to Eq.~17!, the reflection coefficientsr j

6 depend on
the propagation constantsl j , which in turn are related by
the phase-matching conditionl252l1. Thus, for fixed
physical characteristics, the localized modes constitut
one-parameter family, and we choosel1 as a free parameter
We note that inside the band gaps the coefficientsz1

6 are real
~see Appendix B!.

In order to illustrate the features of nonlinear modes,
consider a structure similar to that used in experiments
the SH generation in localized modes@15#. In the experimen-
tal setup, a periodic linear structure was built of two mate
als with different refractive indices, characterized by the
rametersn j ,65n j (x506), with corresponding finite widths
of the layers,h6 . The nonlinear interface was created
cutting the grating in two parts and coating the interface
enhance the effective quadratic nonlinearity. Characteris
of the defect layer were controlled by adjusting the gap.
example of the band gap for such a photonic structure
presented in Fig. 7. Note that because the linear structure
either sides of the nonlinear layer are chosen to be the s
@up to a constant shift, in our notationn j

2(x)5n j
1(x1h1)#,

the corresponding gaps coincide.
Many of the properties of the localized modes can

understood by analyzing the power diagramP(l1). Charac-
teristic examples of such a dependence are shown in F
8~a!–8~c!. Similarly to the case of a thin layer separating tw
homogeneous linear media@12#, there always exists a branc
in the parameter region unbounded from above, forl1 larger
than some critical value. Quite remarkably, the correspo
ing mode properties are very similar to those of quadra
solitons@9#. In particular, for large values of the propagatio
constantl1 the power dependenceP(l1) always has a posi
tive slope, while for smallerl1 the slope can become neg
tive, resulting in bistability. Such a case is demonstrated
Fig. 8~a!. We found that stability of the corresponding mod
can be determined by the Vakhitov-Kolokolov criterion, i.
the localized modes are stable provideddP/dl1.0, and un-
stable, otherwise.

On the other hand, the spectrum of a linear periodic str
ture consists of several bands. Moreover, even inside a b
gap the modes cannot exist if the conditionã1ã2.0 is not
satisfied. Thus, in sharp contrast with two-color parame
solitons in homogeneous media, other branches can ap
for smaller values ofl1. We find that the localized mod
properties can be very different compared to the modes
responding to the right branch. For example, in Figs. 8~b!
and 8~c!, the left branches at higher intensities correspond
smallerl1 and wider profiles. This happens because the
amplitude is negative,c2,0, which results in effectively
self-defocusing nonlinear response. It is interesting to n
that similar types of power dependencies occur for a loc
ized impurity possessing a self-defocusing Kerr-type non
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earity @27#, in which case the corresponding localized mod
are stable. We have performed a linear stability analysis
have found that, similarly to the case of the Kerr-type no
linearity, the Vakhitov-Kolokolov-type criterion cannot b
applied to determine stability of such modes, which exist
an effectively defocusing medium. However, our calcu
tions demonstrate that parametric resonances can lead t
cillatory instability of such modes, as illustrated in Figs. 8~b!
and 8~c!. A comprehensive analysis of the mode stabil
will be presented elsewhere.

The two-color parametric localized modes can be gen
ated by launching a localized FF wave at the interface,
shown in Fig. 9~a!. We have also studied the evolution of
perturbed unstable mode, which can evolve toward a sta

FIG. 8. Three types of the power dependences for two-co
stationary localized modes, for different linear mismatches:~a! a1

521 anda2521; ~b! a1510 anda258; ~c! a154 anda256.
Solid line, stable; dashed line, unstable, dotted line, oscillatory
stable. Parameters of the linear structure correspond to those in
7.
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state. The example in Fig. 9~b! demonstrates the develop
ment of an oscillatory instability with the subsequent switc
ing to a stable state.

V. CONCLUSIONS

We have developed a general formalism for analyz
spatially localized nonlinear modes~two-color discrete gap
solitons! in periodic photonic structures with embedded qu
dratic ~or x (2)) nonlinear interfaces—nonlinear quadratic s
perlattices. Our approach can be applied to different type
periodic linear media with isolated or periodic nonlinear
terfaces, where nonlinearity can support parametric w
coupling and generation of the second-harmonic field. In
case of a nonlinear superlattice, i.e., periodically spaced
layers possessing a quadratic nonlinear response, we
derived an effective discrete model and found two-mode
crete gap solitons of different topologies in the form of fu
damental and second-harmonic fields coupled parametric
at the nonlinear interfaces.

For a single nonlinear layer embedded in a linear perio
medium, we have described a novel class of nonlinear lo
ized defect modes—two-color photonic modes. Some of
properties of these two-color localized modes, such as sta
ity, generation, and switching, have been shown to be
markably similar to those of quadratic parametric solitons
homogeneous media. However, we have also discuss
number of specific properties of such modes, and dem
strated the possibility of their generation from a localiz
beam of the fundamental frequency, as well as switch

FIG. 9. ~a! Generation of a stable localized mode from an inp
FF beam with a Gaussian transverse profile~initial power P.8).
~b! Switching from a perturbed unstable~corresponding tol15
21) to a stable mode. Left: the field intensities of the FF~dashed!
and SH~solid! components at the interface. Right: evolution of t
SH field. Parameters correspond to those in Fig. 8~c!.
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from an unstable to a stable state.
We believe our results are important, on one hand for

theory of nonlinear photonic crystals where nonlinearit
appear due to phase-matched harmonic generation, and
the other hand for creating tunable band-gap materials wh
gaps could be open or closed, depending on the input in
sity and phase matching.
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APPENDIX A: PROPERTIES OF THE TRANSFER
MATRIX

In order to demonstrate some features of linear mo
existing in periodic structures, we consider the properties
the corresponding transfer matrices. First, we see that a
trix describing changes of the wave amplitudes at the bou
ary between linear layers,Tr , depends only on the wav
numbers on either side of the interface, as follows from E
~6!. It is also easy to check that the following relation hold

Tr
( j ,m)[Tr~m j ,m11 ,m j ,m!5Tr~m j ,m11 ,m̃ !Tr~m̃,m j ,m!,

~A1!

where m̃ is arbitrary, and we assume that it is real. Let
introduce a new matrix,T̃( j )5Tr(m̃,m j ,M11)T( j )Tr(m j ,1 ,m̃),
and use Eq.~A1! to present it in a special form:

T̃( j )5T̃d
( j ,M11)T̃p

( j ,M ) . . . T̃p
( j ,1) .

Here, T̃p
( j ,n)[Tr(m̃,m j ,n)Tp

( j ,n)Tr(m j ,n ,m̃) and T̃d
( j ,n)

[Tr(m̃,m j ,n)Td
( j ,n)Tr(m j ,n ,m̃). It can be verified by direct

substitution that these matrices are real~we use the fact that
for stationary modes,m j ,n are real or purely imaginary! and
thereforeT̃( j ) is real as well. Finally, we find that Tr(T( j ))
[Tr(T̃( j )) and Ts

( j )/m j ,1[T̃s
( j )/m̃, which proves that coeffi-

cientsj j andh j in Eq. ~9! are real.

APPENDIX B: REFLECTION COEFFICIENTS
FOR THE BAND-GAP MODES

Although it is possible to extend the technique presen
in Appendix A to prove the properties of the reflection coe
ficients in the case of an infinite linear grating~introduced in
Sec. IV!, here we employ a different approach. We note t

t
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for stationary waves in a band gap there should be no en
flow along thex axis. The corresponding restrictions follo
from Eq. ~2!:

ImS u
]u*

]x D50, ImS v
]v*

]x D50. ~B1!
in

er
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k-
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01661
gyThese conditions are satisfied when the amplitudes of
counter-propagating waves coincide, i.e.ur j

6u51 provided
m j

6 is imaginary. On the other hand, for the layers with re
m j

6 the linear modes should be in phase, i.e., Im(r j
6)[0.

Then, it immediately follows that in a band gap the coef
cientsz j

6 are real.
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