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Classical theory of resonant transition radiation in multilayer structures
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A rigorous classical electromagnetic theory of the transition radiation in finite and infinite multilayer struc-
tures is presented. It makes the standard results of thin-film optics, such as the matrix formalism, accountable;
it allows thus an exact treatment of the propagation of the waves induced by the electron. This method is
applied to the particular case of the periodic structures to treat the resonant transition radiation~RTR!. It is
noted that the present theory gives, in the hard x-ray domain, results previously published. The reason for this
approach is to make the numerical calculations rigorous and easy. The numerical results of our theory are
compared to experimental RTR data obtained recently by Yamadaet al. @Phys. Rev. A59, 3673~1999!# with
a nickel-carbon multilayer structure.
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I. INTRODUCTION

When an electrically charged particle crosses an interf
at a constant velocity between two different dielectric med
an electromagnetic radiation is emitted@1#. This radiation
is known as transition radiation. It is caused by a collect
response of the matter surrounding the particle trajec
to readjust the electromagnetic field of the charged parti
This process has been studied experimentally by me
of radiators consisting generally of a small number of th
foils made up with light materials@2–5#. In the pioneering
experiments quoted above, no interference effects betw
the foils have been observed. With the help of mo
sophisticated radiators, coherent emission resulting from
terfoil interferences has been obtained; this emiss
is called resonant transition radiation~RTR! @6,7#. For a few
MeV electrons with the reduced speedb of the order
of 0.9995 and xuv emission of wavelengthl of the order
of 0.5 nm, the well-known law of resonance cos@a#5(1/b)
2p(l/d) ~wherea is the angle of emission andp an integer
corresponding to the order! indicates that the periodd of
the stack must be in the submicrometer range. In fact
detect a maximum of intensity, the observation anglea must
be of the order of 1/g @whereg251/(12b2)#; a simple cal-
culation neglecting the refraction effects indicates that
match this condition, the periodd must scale aspg2l. In this
case, it has been proposed to use radiator multilayer st
similar to those implemented in soft x-ray optics@8,9#. Re-
cently, Yamadaet al. @10# have used a Ni/C multilayer targe
with 15-MeV electrons to produce soft x rays in the ran
2–7 keV.

The theoretical studies devoted to the modelization of
RTR are not numerous. Some studies deal with the pro
of transition radiation at an interface by solving the Maxw
equation, and without taking into account the multiple sc
tering, they treat the contribution of the different interfac
as a mere interference effect: see Ref.@11# and Eq.~5! in
Ref. @12#. A first so-called dynamical approach, which su
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poses the media to be periodic and infinite, consists of c
ing upon the Bloch-Floquet theorem for help. Datta and K
plan @12# have used such an approach in the framework o
quantum description of the phenomenon allowing them
deal with both spontaneous and stimulated radiation. By
panding the classical electromagnetic fields in Bloch wav
Pardo and Andre´ @13# have developed a model that accoun
globally for the Cherenkov emission, the RTR, and t
Bragg resonances. Dubovikov@14# has extended the previ
ous results in a quantum context with emphasis on Br
resonances.

Recently, with the intent to handle the case of perio
stratified but finite media, we have used a perturbat
method in the framework of electromagnetism in continuo
media@15#. This work allowed us to compute the yield an
spatial distribution of xuv resonant transition radiations.

In the present paper our purpose is, by adopting the p
of view of physical optics, to treat the case of finite radiato
and to extend it to the infinite ones. The radiator is cons
ered as a stack of homogeneous and absorbing layers thr
which the light propagates. By applying a classical mat
formalism, the actual propagation, which involves the m
tiple reflections and the absorption, can be computed rig
ously and be compared with experimental data@10# where
the stack is made up of a small number of absorbing lay
This method will be tested by considering its limits when t
optical indices are small enough~case of hard x rays! so that
the kinematical approximations can be applied.

This paper is organized as follows. Section II gives t
field produced by an electron crossing the interface betw
two different homogeneous media. Section III introduces
matrix formalism for the propagation of the field in stack
plane layers. Section IV deals with the propagation in a
riodic stack. Section V gives the radiation intensity far fro
the stack. Section VI tackles the case of hard x rays. Sec
VII presents numerical applications about the recent exp
ment of Yamadaet al. @10# and discusses the results.
©2000 The American Physical Society13-1
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B. PARDO AND J.-M. ANDRÉ PHYSICAL REVIEW E 63 016613
II. EQUATION OF THE ELECTROMAGNETIC FIELD
PRODUCED BY AN ELECTRON CROSSING TWO

HOMOGENEOUS MEDIA SEPARATED BY A PLANE
INTERFACE

We consider the electromagnetic field associated with
electron crossing the interface at a constant speed betw
two homogeneous media. We use the Gauss unit system
these conditions the Maxwell equations read after Fou
transform,

ik3Ĥ52
iv

c
D̂1

q

c

1

2p2 vd@v2k•v#, ~1!

ik•D̂5
1

2p2 qd@v2k•v#, ~2!

k3Ê5
v

c
B̂, ~3!

k•B̂50, ~4!

whereE, D, H, andB are, respectively, the generic symbo
for the electric-field intensity, the electric flux density, th
magnetic-field intensity, and the magnetic flux density;q is
the algebraic charge of electron,v is the speed vector;c is
the velocity of light in vacuum;v andk are, respectively, the
angular frequency and the wave vector of the field;d is the
Dirac distribution; and the caret stands for the Fourier tra
form defined by

Â@k,v#5
1

~2p!4 E E E E A@r ,t#e2 i ~k•r2vt !dr dt,

so that

A@r ,t#5E E E E Â@k,v#ei ~k•r2vt !dk dv.

If «@v# denotes the dielectric constant and if the magne
permeability is assumed to be equal to unity then, in a
mogeneous layerD̂5«@v#Ê, B̂5Ĥ, and the Maxwell equa-
tions become

k3Ĥ52
v«@v#

c
Ê2

q

c

i

2p2 d@v2k•v#v, ~5!

k•Ê52
i

2p2«@v#
qd@v2k•v#, ~6!

k3Ê5
v

c
Ĥ, ~7!

k•Ĥ50. ~8!

By combining the above equations it follows that
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Ê@k,v#5
qi

2p2«@v#

v«@v#

c2 v2k

k22
v2«@v#

c2

d@v2k•v#. ~9!

The electric field in the space-time domain is obtained
Fourier transforms. By introducing the following quanti
embellished by a tilde:

Ẽ@k,v#5
qi

2p2«@k•v#

«@k•v#k•v

c2 v2k

k22
«@k•v#~k•v!2

c2

, ~10!

one obtains this field in cylindrical coordinates which a
counts for the symmetry of the problem

E@r,z,t#5E E E Ẽ@k,v#ei ~ki•r1k'z2k•vt !d2ki dk' .

~11!

The space variable and the wave vector have been spl
tangential and normal components, respectivelyr, z and
ki , k' .

To use the laws of optics it is convenient to introduce
partial Fourier transform; this quantity, embellished by
overbar is defined by the following expression:

Ē@ki ,v,z#5
1

~2p!3E E E E@r,z,t#ei ~2ki•r1vt !dt d2r.

~12!

It can be shown~see Appendix A! that the above quantity is
given by

Ē@ki ,v,z#5
1

v
qi

2p2«@v#

vS «@v#

c2 2
1

v2D v2ki

ki
21S v

v D 2

2
v2«@v#

c2

ei ~v/v !z.

~13!

The general solution of the problem is obtained as the sum
the particular solution of the nonhomogeneous Maxw
equations as given by Eq.~7! and the solution of the homo
geneous equations. The latter is in terms of electric-field
tensity

E0@r,z,t#5E E E Ẽ0@ki ,k'#ei ~ki•r1k'z2vt !d2ki dk' ,

~14!

wherev, ki , andk' are related by the dispersion relation

k'
2 5

v2

c2 «@v#2ki
2. ~15!

As done previously, one introduces the partial Fourier tra
form
3-2
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CLASSICAL THEORY OF RESONANT TRANSITION . . . PHYSICAL REVIEW E63 016613
Ē0@ki ,v,z#5
1

~2p!3E E E E0@r,z,t#ei ~2ki•r1vt !dt d2r.

~16!

Then one obtains readily by calculations similar to the o
of Appendix A:

Ē0@ki ,v,z#5E E E Ẽ0@k8#eik'8 zd@ki82ki#

3d@v82v#d2ki8 dk'8 . ~17!

After some manipulations~see Appendix B! one gets

Ē0@ki ,v,z#5Ē0i8 @ki ,v#eik'@ki ,v#z2Ē0r8 @ki ,v#e2 ik'@ki ,v#z,
~18a!

where

Ē0i8 @ki ,v#5
1

2k'@ki ,v#c2 S 2v«@v#

1v2
d«@v#

dv D Ẽ0i@ki ,v# ~18b!

and

Ē0r8 @ki ,v#5
1

2k'@ki ,v#c2 S 2v«@v#

1v2
d«@v#

dv D Ẽ0r@ki ,v#. ~18c!

It is well known that the tangential component of th
electric-field intensity and the normal component of the el
tric flux density must be continuous at the interface.

If one denotes by

Ē0i@ki ,v,z#5Ē0i i8 @ki ,v#eik'@ki ,v#z

2Ē0ir8 @ki ,v#e2 ik'@ki ,v#z ~19a!

and

D̄0'@ki ,v,z#5«@v#~Ē0' i8 @ki ,v#eik'@ki ,v#z

2Ē0'r8 @ki ,v#e2 ik'@ki ,v#z!, ~19b!

the tangential component of the electric-field intensity a
the normal component of the electric flux density associa
with the homogeneous equation, the continuity conditio
require that the following quantities:

1

v
qi

2p2«@v#

2ki

ki
21S v

v D 2

2
v2«@v#

c2

ei ~v/v !z

1Ē0i i8 @ki ,v#eik'@ki ,v#z2Ē0ir8 @ki ,v#e2 ik'@ki ,v#z

~20a!

and
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v
qi

2p2

vS «@v#

c2 2
1

v2D v

ki
21S v

v D 2

2
v2«@v#

c2

ei ~v/v !z

1«@v#~Ē0' i8 @ki ,v#eik'@ki ,v#z

2Ē0'r8 @ki ,v#e2 ik'@ki ,v#z! ~20b!

are conserved at the interfaces.
Let us show that the field due to the electron is transve

magnetic, i.e., the Fourier transform of the magnetic field
perpendicular both to the trajectory of the electron and thek
vector. As a matter of fact, taking into account Eq.~9! and
Eq. ~7!, one gets

Ĥ@k,v#5
qi

2p2c

2v∧k

k22
v2«@v#

c2

d@v2k•v#. ~21!

Since this field is the cause of the total field, the latter mu
have the same symmetry and consequently be transv
magnetic, too.

III. MATRIX FORMALISM FOR THE PROPAGATION OF
THE FIELD IN A STACK OF PLANE LAYERS

The stack consists of an arrangement of plane layers ch
acterized by their dielectric constants« i and their thicknesses
di . Introducing the anglei ~see Fig. 1! and taking into ac-
count the fact that the field is transverse magnetic, it is p
sible to express the components of the electric field as f
lows:

Ē0i i8 @ki ,v#52T@ki ,v#cos@ i #,

Ē0' i8 @ki ,v#51T@ki ,v#sin@ i #,
~22!

Ē0ir8 @ki ,v#51R@ki ,v#cos@ i #.

Ē0'r8 @ki ,v#51R@ki ,v#sin@ i #.

FIG. 1. Distribution of the electromagnetic field at an interfac
and corresponding geometry.
3-3
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With these notations one can rewrite quantities given by E
~20!, which remain continuous at the interface, in the follo
ing matrix form:

M @z#S T
RD1S S'

Si
De1 ikzz, ~23a!

where

M @z#5S «@v#sin@ i #e1 ik'@ki ,v#z «@v#sin@ i #e2 ik'@ki ,v#z

2cos@ i #e1 ik'@ki ,v#z cos@ i #e2 ik'@ki ,v#z D ,

~23b!

S S'

Si
D5S qi

2p2

vS «@v#

c2 2
1

v2D
ki

21S v

v D 2

2
v2«@v#

c2

qi

2p2«@v#

1

v
2ki

ki
21S v

v D 2

2
v2«@v#

c2

D , ~23c!

and

kz5
v

v
. ~23d!

In the case of a stack of plane layers one indexes the m
and the interfaces. At the interface, whose abscissa iszj 21
and which separates the layerj 21 from the layerj, the
continuity relations give the set of recurrent equations

M j 21@zj 21#S T
RD

j 21
1S S'

Si
D

j 21
e1 ikzzj 21

5M j@zj 21#S T
RD

j

1S S'

Si
D

j

e1 ikzzj 21. ~24!

By introducing the following quantities:

D j 215S D'

D i
D

j 21
5S S'

Si
D

j 21
2S S'

Si
D

j

, ~25!

one has

M j@zj 21#S T
RD

j

5M j 21@zj 21#S T
RD

j 21
1S D'

D i
D

j 21
e1 ikzzj 21,

~26!

which can be rewritten

M j@zj 21#e2 ikzzj S T
RD

j

5S D'

D i
D

j 21
e2 ikz~zj 2zj 21!

1e2 ikz~zj 2zj 21!M j 21@zj 21#

3M j 21
21 @zj 22#M j 21@zj 22#

3e2 ikzzj 21S T
RD

j 21
. ~27!
01661
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By introducing the following notations:

Fj5S F'

F i
D

j

5M j@zj 21#e2 ikzzj S T
RD

j

~28!

and

dj5zj2zj 21 , ~29!

one gets the recursive formula

Fj5D j 21e2 ikzdj1e2 ikzdjM j 21@zj 21#M j 21
21 @zj 22#Fj 21 .

~30!

IV. PROPAGATION IN A PERIODIC MULTILAYER
STACK

Now, one handles the case of a periodic multilayer sta
immersed in the vacuum~see Fig. 2!. We suppose that the
stack consists of an alternate arrangement of two mate
characterized by the dielectric constants«1 and «2 and the
thicknessesd1 and d2 , respectively. We denote byd the
periodd11d2 and byN the number of periods. The numbe
of the first medium is 0 while the one of the last medium
equal to 2N11.

Using Eq.~30! twice one obtains

F2 j 1152De2 ikzd11e2 ikzdAD1e2 ikzdBF2 j 21 , ~31!

whereA andB are two matrices defined by

A5M2 j@z2 j #M2 j
21@z2 j 21#, ~32!

B5M2 j@z2 j #M2 j
21@z2 j 21#M2 j 21@z2 j 21#M2 j 21

21 @z2 j 22#,
~33!

and

D5D1 .

These matrices depend only upon the thicknesses of the
ers. In this derivation, we have used the fact thatDn115
2Dn . By setting

d52De2 ikzd11e2 ikzdAD ~34!

and

FIG. 2. Scheme of a periodic multilayer stack with the releva
notations. The stack consists of alternated layers of a materia
dielectric constant«1 and thicknessd1 and of a material of dielec-
tric constant«2 and thicknessd2 .
3-4
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m5e2 ikzdB, ~35!

Eq. ~31! becomes

F2 j 115d1mF2 j 21 . ~36!

A little algebra leads to a linear relation in terms ofF1 :

F2 j 115Sj@m#d1Pj@m#F1 , ~37!

where

Sj@m#5(
i 50

j 21

m i and Pj@m#5m j . ~38!

V. DETERMINATION OF THE RADIATION INTENSITY
FAR FROM THE STACK

The field seen by a detector can always be calculated
Fourier transforms,

ED@r,z,t#5E E E ẼD@ki ,k'#

3ei ~ki•r1k'z2v@ki ,k'#t !d2ki dk' . ~39!

In Eq. ~39!, z must be taken from the boundaries of the sta
and we have taken into account that the Fourier compon
of the electric field depends on the tangential componen
the wave vector only through its moduluski and that the
electric field depends on the radial componentr of the posi-
tion vector only through its modulusr.

Two cases must be considered:~i! the forward one—the
point of observation, assumed to be in vacuum, is beyond
stack andz5zB1D (zB , abscissa of the exit surface of th
stack, equals the thickness of the stack whileD is the dis-
tance of the detector taken this exit surface!, and ~ii ! the
backward one—the point of observation is in front of t
stack andz5zB2D (zB , the abscissa of the entrance surfa
of the stack, equals 0!.

From the above considerations and by changing the i
gration variable using Eq.~15!, it can be shown tha
ED@r,D,t#, the field at the observation point, is given by

ED@r,D,t#5E E d2ki E dv ẼBh@ki ,v#

3eihk'@ki ,v#zBei ~ki•r1k'@ki ,v#D2vt !
]k'@ki ,v#

]v
,

~40!

whereẼBh@ki ,v# is the partial Fourier transform calculate
on the appropriate boundary. The presence of the symbh
is due to the fact that the dispersion relation, Eq.~15!, admits
01661
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the two solutions1k' and2k' . In fact, we shall be inter-
ested in the time Fourier transform,

ÊD@r,z,v8#5
1

2p E dt eiv8tE E d2ki E dv ẼBh@ki ,v#

3eihk'@ki ,v#zBei ~ki•r1k'@ki ,v#D2vt !

3
]k'@ki ,v#

]v
. ~41!

The integrations overt andv give

ÊD@r,z,v8#5E E d2ki ẼBh@ki ,v8#

3eihk'@ki ,v8#zBei ~ki•r1k'@ki ,v8#D !
]k'@ki ,v8#

]v8
.

~42!

Now we calculate the field at a far point, the spherical co
dinates of which areD,a,0 without loss of the generality o
the problem.

By introducing the projections ẼBih@ki ,v8# and
ẼB'h@ki ,v8# of ẼBh@ki ,v8#, one has

ÊD@r,z,v8#5E E S ẼBih@ki ,v8#cos@F#

ẼBih@ki ,v8#sin@F#

ẼB'h@ki ,v8#
D eihk'@ki ,v8#zB

3eiD ~ki sin@a#cos@F#1k'@ki ,v8#cos@a#!

3
]k'@ki ,v8#

]v8
ki dki dF. ~43!

Integration overF ends in the Bessel functionsJm and gives

ÊD@r,D,v8#52pE
0

`S iẼBih@ki ,v8#J11~kiD sin@a#!

0

ẼB'h@ki ,v8#J0~kiD sin@a#!
D

3eihk'@ki ,v8#zBeiDk'@ki ,v8#cos~a!

3
]k'@ki ,v8#

]v8
ki dki . ~44!

If we consider large values ofD sin@a# we can replace the
Bessel functions by their asymptotic expressions
3-5
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ÊD@D,a,v8#52pE
0

`S iẼBih@ki ,v8#A 2

pkiD sin~a!
cosFkiD sin~a!23

p

4 G
0

ẼB'h@ki ,v8#A 2

pkiD sin~a!
cosFkiD sin~a!2

p

4 G D
3eihk'@ki ,v8#zBeiDk'@ki ,v8#cos~a!

]k'@ki ,v8#

]v8
ki dki . ~45!

Expanding the trigonometric functions leads to

ÊD@D,a,v8#

5pE
0

`S iẼBih@ki ,v8#A 2

pkiD sin@a#
~ei $k'@ki ,v8#cos@a#D1kiD sin@a#23~p/4!%1ei $k'@ki ,v8#cos@a#D2kiD sin@a#1~p/4!%!

0

ẼB'h@ki ,v8#A 2

pkiD sin@a#
~ei $k'@ki ,v8#cos@a#D1kiD sin@a#2~p/4!%1ei $k'@ki ,v8#cos@a#D2kiD sin@a#1~p/4!%!

D
3eihk'@ki ,v8#zB

]k'@ki ,v8#

]v8
ki dki . ~46!
d
ix

ich

of

he
ng
d

the

the

dix
Now we have to deal with integrals of the form
*eiD f (m)g(m)dm, wheref is a real-valued function. WhenD
becomes very large, it can be estimated by the metho
stationary phase. The integration is presented in Append
and gives

ÊD@D,a,v8#52 is@a#
2p

D

v8

c2 S ẼDia@kiS ,v8#
0

ẼD'a@kiS ,v8#
D

3eiD ~v8/c!eihk'@ki ,v8#zB. ~47!

kiS is the tangential component of the wave vector wh
goes from the stack to the point of observation. In Eq.~47!
the derivative ofk'

2 has been calculated using the point
observation in the vacuum.

ExpressingẼD8 in terms ofĒD8 by means of Eqs.~18!, one
obtains

ÊD@D,a,v8#52 is@a#
2p

D

v8

c
cos@a#S ĒDia8 @kiS ,v8#

0

ĒD'a8 @kiS ,v8#
D

3eiD ~v8/c!eihk'@ki ,v8#zB. ~48!

Using Eq.~22! to express the amplitudes of the fields on t
two external surfaces of the stack, one obtains the followi
~i! in the forward case where thea angle lies between 0 an
p/2
01661
of
C

:

ÊD f@D,a,v8#5 i
2p

D

v8

c
cos@a#tB@zB ,kiS ,v8#

3S cos@a#
0

2sin@a#
D eiD ~v8/c!, ~49!

where

tB@zB ,kiS ,v8#5TB@kiS ,v8#eihk'@kiS ,v8#zB ~50!

denotes the transmitted field near the exit surface of
stack; and~ii ! in the backward case where thea angle lies
betweenp/2 andp

ÊDb@D,a,v8#5 i
2p

D

v8

c
cos@a#r B@zB ,kiS ,v8#

3S 2cos@a#
0

sin@a#
D eiD ~v8/c!, ~51!

where

r B@zB ,kiS ,v8#5RB@kiS ,v8#eihk'@kiS ,v8#zB ~52!

denotes the reflected field near the entrance surface of
stack.

Now the problem is the determination oftB and r B . The
algebraic procedure that we have used is given in Appen
D. It gives their expression in terms of the eigenvaluesl1
andl2 and the components of the eigenvectors of matrixm
3-6
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u15S u11

u12
D ,

u25S u21

u22
D .

Note that the module of the product of the eigenvalu
equals 1. It can be admitted thatl1 has a module less than
while l2 has a module greater than 1. In these conditions
expressions of the modules oftB and r B become simple
when the number of bilayers is infinite

utBu5U ~u11u222u12u21!d1

~u22sin@a#1u21cos@a#!~12l1!
U, ~53!

ur Bu5U ~u11u222u12u21!d2

~u12sin@a#2u11cos@a#!~12l2!
U, ~54!

whered1 andd2 are defined by

d5d1u11d2u2 . ~55!

Let us emphasize that these expressions oftB andr B remain
finite as long as there is a tiny bit of absorption in the med
In this case the photon yield tends towards a finite limit wh
the numberN of bilayers becomes infinite. When the absor
tion vanishes the yield diverges asN becomes large as show
in Sec. VI.

The intensity of the resonant transition radiation per u
positive angular frequency interval and per unit solid an
can be deduced straightforwardly from the modulus of
field by the relation

]2I @a,v8#

]v8]V
5cD2uÊD@D,a,v8#u2. ~56!
th
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For the forward case one has

]2I f

]v8]V
54p2

v82

c
cos2@a#utB@zB ,kiS ,v8#u2. ~57!

while in the backward case one has

]2I b

]v8]V
54p2

v82

c
cos2@a#ur B@zB ,kiS ,v8#u2. ~58!

VI. APPROXIMATION OF HARD X RAYS

In the case of hard x rays the optical indices are close
unity and if the absorption by materials can be neglect
important simplifications arise in the formulation of the r
diated intensity. In these conditions it can be shown that
two eigenvaluesl1 and l2 and their associated normalize
eigenvectorsu1 ,u2 are, respectively,

l15e2 id~kz1k'!, ~59a!

l25e2 id~kz2k'!, ~59b!

u15
1

k S 2ki

k'
D , ~59c!

u25
1

k S ki

k'
D . ~59d!

One assumes that the emission takes place practic
along the direction of the electrons, then a tedious calcu
tion using series expansion at the first order in unit dec
ment of the optical indices leads to the following express
of the modulus of the projectionsd1 andd2 of d following
the basisu1 ,u2 :
ud1u5Ubqd« tan@a#~12b22b cos@a#!sinFd2k

2 S cos@a#2
1

b D G
2p2ck~12b2 cos2@a#!~12b cos@a#!

U , ~60a!

ud2u5Ubqd« tan@a#~12b21b cos@a#!sinFd2k

2 S cos@a#1
1

b D G
2p2ck~12b2 cos2@a#!~11b cos@a#!

U . ~60b!
From Eqs.~D15!, ~D16!, and~59a!–~59d!, it follows that

utBu5ud1uuS1u, ~61a!

ur Bu5ud2uuS2u. ~61b!

In the hard-x-ray approximation the sums of the power of
 e

eigenvalues are

uS1u5U sinFN
dk

2 S cos@a#2
1

b D G
sinFdk

2 S cos@a#2
1

b D G U , ~62a!
3-7



e

va

ity
la

i
b

s
rs

to
ly
tic

th
n
gl
q

es
is

a
to

er-
s
i-
of

m-
ent

the
he
he
peri-
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uS2u5U sinFN
dk

2 S cos@a#1
1

b D G
sinFdk

2 S cos@a#1
1

b D G U . ~62b!

The use of Eqs.~57!, ~58!, ~60a! and~60b!, ~61a! and~61b!,
and ~62a! and ~62b! allows one to write the intensity as th
product of three factors,

]2I

]E]V
5I 1I 2I 3 . ~63a!

Here the intensity is given by the unit photon energy inter
instead of the unit angular frequency interval.

For the forward case, the first factor reads

I 15
ā

4p2 ~d«!2b2Usin@a#
~12b22b cos@a#!

~12b2 cos2@a#!~12b cos@a#!
U2

,

~63b!

whereā is the fine-structure constant. It gives the intens
of the transition radiation by a single interface. This formu
is in agreement with the result of Garibian@16#.

The second factor reads

I 254 sin2Fd2k

2 S cos@a#2
1

b D G . ~63c!

It accounts for the interferences between two successive
terfaces. It is nothing else but the structure factor of a
layer.

Finally, the third factor reads

I 35U sinFN
dk

2 S cos@a#2
1

b D G
sinFdk

2 S cos@a#2
1

b D G U
2

. ~63d!

It accounts for the interferences between the bilayers.
Similar formulas could be deduced for the backward ca

It is worth discussing the behavior of these different facto
When the particle is very relativistic, the first factorI 1 is
proving to peak for an anglea, expressed in radian, close
1/g5A12b2, which means that the radiation is main
emitted along a cone centered on the trajectory of the par
with an opening angle equal to 2/g. To compare with previ-
ous works we consider the case when the numberN of bi-
layers becomes very large. In this case, the factorI 3 behaves
as a sum ofd functions, as pointed out in@11# and @12#,

I 3>2pN(
p

dFdkS cos@a#2
1

b D22ppG . ~64!

As mentioned before, one sees from the above equation
in case of no absorption, the photon yield diverges wheN
tends towards infinity. The integration over the solid an
leads, for the intensity, to the classical formula given by E
~11! and is in agreement with Eq.~23! of Ref. @13# applied
far from the Bragg domains.
01661
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Always in these conditions, the emission of the RTR tak
place when the following well-known resonance condition
fulfilled:

cos@a#5
1

b
2p

l

d
. ~65!

Then, the second termI 2 becomes

I 254 sin2@Gpp#, ~66!

whereG is the rationd2 /(d11d2). The relation~60! gives
conditions of extinction which are similar to the ones of
Bragg reflector@17#. One can consider the matrix method
be tested by its behavior in the hard-x-ray case.

VII. NUMERICAL APPLICATION AND DISCUSSION

In this section we consider the experiment recently p
formed by Yamadaet al. @10#. They observed the soft x ray
produced by the RTR from a Ni/C multilayer with a subm
crometer period. This target consisted of only ten bilayers
176-nm-thick Ni and 221-nm-thick C stacked on a SiN me
brane. The energy of the electrons was 15 MeV. For differ

FIG. 3. Calculated photon yield versus the photon energy of
RTR emitted by Ni/C stacks crossed by 15-MeV electrons. T
thickness of the Ni layer is 176 nm while the thickness of t
carbon layer is 221 nm. These parameters correspond to the ex
ment of Ref.@10#. Number of bilayers: ~a! N510, ~b! N550, ~c!
N5`.
3-8
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values of the number of bilayersN, Fig. 3 shows the photon
yield versus the RTR photon energy for an observation an
a equal to 17 mrad, calculated by our approach. The ca
lations are performed with an energy step of 431024 keV.
The optical constants used in the calculations are borro
from Ref.@18# which uses the theory developed in Ref.@19#.
In practice, the variations of the complex indexn512d
1 ib versus the photon energyE, expressed in eV, can b
calculated with a reasonable approximation by means of
following empirical formula:

d5exp~a12b1 ln@E# !,

b5exp~a22b2 ln@E# !.

The parameters for nickel are

a154.2511, b151.5796, a2516.8626, b253.4487

and the parameters for carbon are

a156.4609, b152.0372, a2516.8646, b253.8762.

We note that the values of the photon yield calculated by
method are slightly different from the measured ones;
discrepancy can be attributed to different points.

FIG. 4. Calculated photon yield versus the photon energy of
RTR emitted by targets, the parameters of which are the sam
those of Fig. 3~b! for different values of the imaginary part of th
optical index: ~a! 0, ~b! 0.5, ~c! 10 times the very values.
01661
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~i! The multilayer target used in the experiment is n
ideal; there is interface roughness which degrades the sh
ness of the interface and consequently tends to diminish
photon yield.

~ii ! Pile-up effects in the detection of the radiation a
difficult to account for and probably the number of record
counts are less than the number of emitted ones.

~iii ! The optical constants retained in the calculation c
respond to bulk materials and are likely larger than the t
ones.

To get an insight of the influence of the absorption upon
photon yield, we have computed this quantity for imagina
parts of the dielectric constants equal to 0, 0.5, 10 times
very values. The calculations have been carried out for
same kind of target as in Ref.@10#, but for 50 bilayers in-
stead of 10. Their results are shown in Fig. 4. As expec
the bandwidth increases when the absorption becomes la

VIII. CONCLUSION

A theory of the transition radiation by a stack of laye
crossed normally by an electron has been developed. It
orously takes into account absorption and the dynamical
fects such as the multiple scattering. Extension to the obli
case corresponding to the so-called parametric radiatio
planned; this problem will be more difficult to handle b
cause of the lack of the cylindrical symmetry.

APPENDIX A

The transverse spatial and temporal Fourier transform
the field is defined by

Ē~ki8 ,v8,z!5
1

~2p!3E E E E~r,zt!ei ~2ki8•r1v8t !dt d2r.

~A1!

Combining Eqs.~9!, ~10!, and~12! yields

Ē~ki8 ,v8,z!5
1

~2p!3 E E E E E E E qi

2p2«@v#

3

v«@v#

c2 v2k

k22
v2«@v#

c2

d@v2k•v#

3ei ~k•r2vt !dv dk ei ~2ki8•r1v8t !dt d2r.

~A2!

Performing the integration over the timet and the variabler
gives

e
as
3-9
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Ē~ki8 ,v8,z!5E E E E qi

2p2«@v#

v«@v#

c2 v2k

k22
v2«@v#

c2

3d@v2k'v#eik'zd@ki2ki8#

3d@v82v#dv d2ki dk' . ~A3!

The integration overv leads to

Ē~ki8 ,v8,z!5E E E qi

2p2«@v8#

v«@v8#

c2 v2k

k22
v2«@v8#

c2

3d@v82k'v#eik'zd@ki2ki8#d2ki dk' .

~A4!

The integration overki gives

Ē~ki8 ,v8,z!5E qi

2p2«@v8#

v8«@v8#

c2 v2ki82k'

v

v

ki8
21k'

2 2
v82«@v8#

c2

3d@v82k'v#eik'z dk' . ~A5!

After a last integration overk' one obtains the expression o
Ē,

Ē~ki8 ,v8,z!5
1

v
qi

2p2«@v8#

3

v8S «@v8#

c2 2
v8

v2 D v2ki8

ki8
21S v8

v D 2

2
v82«@v8#

c2

ei ~v8/v !z.

~A6!

APPENDIX B

One starts from Eq.~17!

Ē0@ki8 ,v8,z#5E E E Ẽ0@ki ,k'#eik'zd@ki2ki8#

3d@v2v8#d2ki dk' . ~B1!

From the dispersion equation

k'
2 5

v2

c2 «@v#2ki
2, ~B2!

one obtains
01661
dk'56

2v«@v#1v2
d«@v#

dv

2c2Av2

c2 «@v#2ki
2

dv. ~B3!

Inserting Eq.~B3! into Eq. ~B1! gives

Ē0@ki8 ,v8,z#56E E E Ẽ0†ki ,6k'@ki ,v#‡

3e6 ik'@ki ,v#zd@ki2ki8#

3d@v2v8#d2ki

2v«@v#1v2
d«@v#

dv

2c2Av2

c2 «@v#2ki
2

.

~B4!

Performing the integration one obtains

Ē0@ki8 ,v8,z#56S Ẽ0†ki8 ,6k'@v8,ki8#‡e6 ik'@v8,ki8#z

3

2v8«@v8#1v82
d«@v8#

dv8

2c2Av82

c2 «@v8#2ki8
2
D . ~B5!

APPENDIX C

According to the method of stationary phase, integrals
the following form:

E eiD f @m#g@m#dm, ~C1!

wheref is a real-valued function, integrals are given whenD
becomes very large by

E eiD f @m#g@m#dm5(
j
A 2p

Du f 9@m j #u

3eiD f @m j #ei sgn~ f 9@m j # !~p/4!g@m j #,

~C2!

wherem j are the roots of the equationf 8@m#50 which ex-
presses the stationarity of the phase. Introducing the follo
ing quantities:
3-10
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gih@ki ,a,v8#5Ẽ0ih@ki ,v8# i

3A 2

pkiD sin@a#

]k'@ki ,v8#

]v8
ki ,

~C3!
g'h@ki ,a,v8#5Ẽ0'h@ki ,v8#

3A 2

pkiD sin@a#

]k'@ki ,v8#

]v8
ki ,

and
d

th

01661
ph@ki ,a,v8#5hk'@ki ,v8#cos@a#1ki sin@a#,
~C4!

qh@ki ,a,v8#5hk'@ki ,v8#cos@a#2ki sin@a#,

the integral~53! can be rewritten as
Ê0@D,a,v8#5 (
hP$21,1%

2p2hE S gih@ki ,a,v8#~e2 i ~3/4!peiDph@ki ,a,v8#1ei ~3/4!peiDqh@ki ,a,v8#!

0

g'h@ki ,a,v8#~e2 i ~p/4!eiDph@ki ,a,v8#1ei ~p/4!eiDqh@ki ,a,v8#!
D dki . ~C5!
tive.
d-

e

the
The first derivative of the phases are

ph8 @ki ,a,v8#5h
2ki

k'@ki ,v8#
cos@a#1sin@a#,

~C6!

qh8 @ki ,a,v8#5h
2ki

k'@ki ,v8#
cos@a#2sin@a#,

that is, in terms of the angleu between the electron axis an
the wave vectork,

pu8@ki ,a,v8#5
2sin@u#cos@a#1cos@u#sin@a#

cos@u#
,

~C7!

qu8@ki ,a,v8#5
2sin@u#cos@a#2cos@u#sin@a#

cos@u#
.

The zeros of the first derivative of the phases which are
stationary pointskiS are obtained, respectively, for

u5a,
~C8!

u5p2a.

The second derivatives are

pu9@kiS ,a,v8#5qu9@kiS ,a,v8#

52
cos@a#

k cos3@u#

52
c

v8

cos@a#

cos3@u#
. ~C9!

At the stationary points they take the values
e

p9@kiS ,a,v8#5q9@kiS ,a,v8#

52
1

k cos2@a#

52
c

v8

1

cos2@a#
. ~C10!

It should be noted that these second derivatives are nega
The phasesp andq are not simultaneously stationary accor
ing to the value ofu anda. The stationary phases are

p@kiS ,a,v8#5k@kiS ,v8#5
v8

c
,

~C11!

q@kiS ,a,v8#52k@kiS ,v8#52
v8

c
.

The value ofg’s at the stationary points are, in terms of th
angleu,

giu@kiS ,a,v8#5Ẽ0iu@kiS ,v8# i

3A 2

pkD

]k'
2 @kiS ,v8#

]v8

1

2ucos@a#u
,

g'u@kiS ,a,v8#5Ẽ0'u@kiS ,v8#

3A 2

pkD

]k'
2 @kiS ,v8#

]v8

1

2ucos@a#u
.

~C12!

Collecting the preceding results gives the expression of
field
3-11



2p2 ]k'
2 @kiS ,v8#

2 iẼ0ia@kiS ,v8#eiD ~v8/c!1Ẽ0i~p2a!@kiS ,v8#e2 iD ~v8/c!
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Ê0@D,a,v8#5s@a#
D ]v8 S 0

2 iẼ0'a@kiS ,v8#eiD ~v8/c!2Ẽ0'~p2a!@kiS ,v8#e2 iD ~v8/c!
D , ~C13!
s

by
wheres@a# stands for the sign of cos@a#. However, there are
only waves outgoing from the stack, so that the solutionu
5p2a must be rejected,

Ê0@D,a,v8#52 is@a#
2p2

D

]k'
2 @kiS ,v8#

]v8

3S Ẽ0ia@kiS ,v8#
0

Ẽ0'a@kiS ,v8#
D eiD ~v8/c!. ~C14!

APPENDIX D

One starts from the formula~37! with j 5N,

F2N115SN@m#d1PN@m#F1 . ~D1!

One decomposes theF’s andd in terms of the eigenvector
u1 andu2 of the matrixm,

F2N115wo1Nu11wo2Nu2 , ~D2!

F15w i1Nu11w i2Nu2 , ~D3!

d5d1u11d2u2 . ~D4!

This decomposition applied to Eq.~D1! leads to the two
following equations:

wo1N5d1S11P1w i1N , ~D5!

wo2N5d2S21P2w i2N , ~D6!
s

.

F

rt

01661
whereSandP are given in terms of the eigenvaluesl of the
matrix m by

S5
12lN

12l
, ~D7!

P5lN. ~D8!

The limit conditions~no incoming wave from vacuum into
the multilayer structure! lead to the four following equations
involving the boundary field amplitudestB and r B :

w i1Nu111w i2Nu215f i1r B , ~D9!

w i1Nu121w i2Nu225f i2r B , ~D10!

wo1Nu111wo2Nu215fo1tB , ~D11!

wo1Nu121wo2Nu225fo2tB . ~D12!

The f’s can be determined from Eq.~28!. The variables
uk1’s are defined as the components of the eigenvectors

u15S u11

u12
D , ~D13!

u25S u21

u22
D . ~D14!

Solving the system of six equations@~D5!, ~12!, ~15!–~18!#
gives
tB5
~u12u212u11u22!@P2S1d1~u12f i12u11f i2!1P1S2d2~u22f i12u21f i2!#

P1~u22f i12u21f i2!~u12fo12u11fo2!2P2~u12f i12u11f i2!~u22fo12u21fo2!
, ~D15!

r B5
~u12u212u11u22!@S1d1~u12fo12u11fo2!1S2d2~u22fo12u21fo2!#

P1~u22f i12u21f i2!~u12fo12u11fo2!2P2~u12f i12u11f i2!~u22fo12u21fo2!
. ~D16!
A
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