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A rigorous classical electromagnetic theory of the transition radiation in finite and infinite multilayer struc-
tures is presented. It makes the standard results of thin-film optics, such as the matrix formalism, accountable;
it allows thus an exact treatment of the propagation of the waves induced by the electron. This method is
applied to the particular case of the periodic structures to treat the resonant transition rg@&afnlt is
noted that the present theory gives, in the hard x-ray domain, results previously published. The reason for this
approach is to make the numerical calculations rigorous and easy. The numerical results of our theory are
compared to experimental RTR data obtained recently by Yametidh[Phys. Rev. A59, 3673(1999] with
a nickel-carbon multilayer structure.
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[. INTRODUCTION poses the media to be periodic and infinite, consists of call-

ing upon the Bloch-Floquet theorem for help. Datta and Ka-

When an electrically charged particle crosses an interfacplan[12] have used such an approach in the framework of a

at a constant velocity between two different dielectric mediaguantum description of the phenomenon allowing them to

an electromagnetic radiation is emittétll. This radiation deal with both spontaneous and stimulated radiation. By ex-

is known as transition radiation. It is caused by a collectivepanding the classical electromagnetic fields in Bloch waves,

response of the matter surrounding the particle trajectoryardo and Andrél3] have developed a model that accounts

to readjust the electromagnetic field of the charged particleglobally for the Cherenkov emission, the RTR, and the
This process has been studied experimentally by meansyagg resonances. Dubovikdt4] has extended the previ-

of radiators consisting generally of a small number of thingys results in a quantum context with emphasis on Bragg
foils made up with light materialg2—5]. In the pioneering | esonances.

experiments quoted above, no interference effects between Recently

i X with the intent to handle the case of periodic
the foils have been observed. With the help of MOrCstratified but finite media, we have used a perturbative

soph_isti_cated radiators, coherent emiss_ion resul_ting fr(.)m.'nr'nethod in the framework of electromagnetism in continuous
terfoil interferences has been obtained; this em|SS|oanedia[15] This work allowed us to compute the yield and
:3' g\allnzljercifg: Sa n\}vrtrr? n;:téor; Jggéaetéaﬁsg?q%eg' t'?g %:g:’r spatial distribution of xuv resonant transition radiations.

In the present paper our purpose is, by adopting the point

of 0.9995 and xuv emission of wavelengthof the order ) . . g .
of 0.5 nm, the well-known law of resonance feb=(1/8) of view of physical optics, to treat the case of finite radiators
: ' and to extend it to the infinite ones. The radiator is consid-

—p(\/d) (wherea is the angle of emission am@an integer :
corresponding to the ordeindicates that the period of ere_d asast_ack of homogeneous and Qbsorbmg Igyers thrqugh
the stack must be in the submicrometer range. In fact, t§/hich the light propagates. By applying a classical matrix
detect a maximum of intensity, the observation anglaust formalism, the actual propagation, which involves the mul-
be of the order of I [wherey?=1/(1— 2)]; a simple cal- tiple reflections and the absorption, can be computed rigor-
culation neglecting the refraction effects indicates that toPusly and be compared with experimental dgt@] where
match this condition, the periatimust scale apy®\. Inthis  the stack is made up of a small number of absorbing layers.
case, it has been proposed to use radiator multilayer stacRdhis method will be tested by considering its limits when the
similar to those implemented in soft x-ray opti&9]. Re-  optical indices are small enougbase of hard x raysso that
cently, Yamadaet al.[10] have used a Ni/C multilayer target the kinematical approximations can be applied.
with 15-MeV electrons to produce soft x rays in the range This paper is organized as follows. Section Il gives the
2—7 keV. field produced by an electron crossing the interface between
The theoretical studies devoted to the modelization of thewo different homogeneous media. Section Il introduces the
RTR are not numerous. Some studies deal with the processatrix formalism for the propagation of the field in stack of
of transition radiation at an interface by solving the Maxwell plane layers. Section IV deals with the propagation in a pe-
equation, and without taking into account the multiple scat+iodic stack. Section V gives the radiation intensity far from
tering, they treat the contribution of the different interfacesthe stack. Section VI tackles the case of hard x rays. Section
as a mere interference effect: see Héfl] and Eq.(5) in VIl presents numerical applications about the recent experi-
Ref.[12]. A first so-called dynamical approach, which sup- ment of Yamadaet al.[10] and discusses the results.
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Il. EQUATION OF THE ELECTROMAGNETIC FIELD we[w]
PRODUCED BY AN ELECTRON CROSSING TWO g o2 VK
HOMOGENEOUS MEDIA SEPARATED BY A PLANE B[k, 0]= = ——lw—k-v]. (9
INTERFACE 278 w] 2 @ glo]
C2

We consider the electromagnetic field associated with an

electron crossing the interface at a constant speed betwegihe electric field in the space-time domain is obtained by

two homogeneous media. We use the Gauss unit system. frier transforms. By introducing the following quantity
these conditions the Maxwell equations read after Fouriegmpellished by a tilde:

transform,
e[k-v]k-v
) N iw. q 1 . -
ikxH=——D+ = =V w—k-V], 1) = __a ¢
Cc c 2w E[k,V] 27728[k'V] k2 8[k'V](k~V)2’ (10)
- 2
kD= — k () i
e 2772q6[w adl one obtains this field in cylindrical coordinates which ac-
counts for the symmetry of the problem
A~ w ~
kX E= —B, 3 ~ .
c ( ) E[p,Z,t]:f f f E[k,v]el(kH-p+kJ_Z—kAvt)d2k”dkl-
. (11)
k-B=0, 4

The space variable and the wave vector have been split in
whereE, D, H, andB are, respectively, the generic symbols tangential and normal components, respectivglyz and
for the electric-field intensity, the electric flux density, the k;, Kk, .
magnetic-field intensity, and the magnetic flux densitys To use the laws of optics it is convenient to introduce a
the algebraic charge of electrown,is the speed vectoc is  partial Fourier transform; this quantity, embellished by an
the velocity of light in vacuum¢ andk are, respectively, the overbar is defined by the following expression:
angular frequency and the wave vector of the figlds the
Dirac distribution; and the caret stands for the Fourier trans- — 1 o
form defined by E[ku ,(1),2]: —(27T)3f f J' E[p,z,t]e'( k”-p+wt)dtd2p'

(12)
“ 1 )
Alk,w]= (27)4] f f f Alrtle”'®T=eVdr dt, It can be showr{see Appendix Athat the above quantity is

given by
glw] 1 "
1 g “\TeZ VTN
v 27%[w] 5 (w)z w’e[w]
(L R
1%
If e[w] denotes the dielectric constant and if the magnetic (13

permeability is assumed to be equal to unity then, in a ho-
mogeneous Iaydf)z s[w]E B={. and the Maxwell equa- The general solution of the problem is obtained as the sum of

so that

A[r,t]=fffjA[k,w]ei(k'r""“dk do. Elk,0,2]=

tions become the particular solution of the nonhomogeneous Maxwell
equations as given by E¢7) and the solution of the homo-
. we[w] . g i geneous equations. The latter is in terms of electric-field in-
kXH=—TE—Eﬁ5[w—k~v]v, (5) tensity

Eo[P,Z,t]:f f JEo[kuakﬂei(k”'wklz_wt)dzkudk ,

. [
kIE:_ZWZ—S[a}]qb‘[a)_k.V]’ (6) (14)
o wherew, k;, andk, are related by the dispersion relation
kxE=—H, 7)
c w2
ki=€zs[w]—kﬁ. (15)
k-H=0. (8)
As done previously, one introduces the partial Fourier trans-
By combining the above equations it follows that form
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Er Nnterface
1

Eo[kawaZ]Z(z—i)gfffEo[p,z,t]ei(_k"’“"t)dtdzp.
(16)

Then one obtains readily by calculations similar to the one:

of Appendix A: Hr

Eo[k”,w,z]zjffﬁo[k’]eikizé[k“'—k”]

X 8o’ — 0]d?%k dk] . a7
After some manipulationésee Appendix Bone gets Ei

FIG. 1. Distribution of the electromagnetic field at an interface

Eolky,@,2]=Eg[k, 0]k el2—E] [k, w]e ik ok, and corresponding geometry.
(189
where ® —8[w]—i v
1 qi ¢z v? ol
E’ Tk = 2 v 272 0\’ w’elo] el
oLk 0]= 2k, [ky,w]c welel k'2+(_) o
v C
de[w]) = — .
+ wz%) Eoilky, @] (18b) +e[w](Eg, [k, w]eth )
and —Equ [k wle ki) (200)
_ are conserved at the interfaces.
Eollkj 0l= 51— ( 2welw] Let us show that the field due to the electron is transverse
magnetic, i.e., the Fourier transform of the magnetic field is
de[w])| ~ perpendicular both to the trajectory of the electron andkthe
,de[w] dicular both to th ' f the el ckth
+o ' ——|EBolk),0]. (180  vector. As a matter of fact, taking into account Eg) and

Eq. (7), one gets
It is well known that the tangential component of the
electric-field intensity and the normal component of the elec- ~ qi —vik
tric flux density must be continuous at the interface. Hlk o]= 272¢c w’e[w]
If one denotes by k?— s

Jo—k-v]. (21

= —E' ik, [k ,w]z . L . .
Bolky,@,2]=Eoyky,w]e™ Since this field is the cause of the total field, the latter must
_Ec,mr[ku,w]e“kl[ku'w]z (193 have the same symmetry and consequently be transverse
magnetic, too.

and
o _ _ IIl. MATRIX FORMALISM FOR THE PROPAGATION OF
Do [k, 0,2]=e[w](Eg, [K;,w]e/iLkielz THE FIELD IN A STACK OF PLANE LAYERS
—Ef, [y, wle " ulkielzy - (19p) The stack consists of an arrangement of plane layers char-

acterized by their dielectric constantsand their thicknesses
the tangential component of the electric-field intensity andd; . Introducing the anglé (see Fig. 1 and taking into ac-
the normal component of the electric flux density associatedount the fact that the field is transverse magnetic, it is pos-
with the homogeneous equation, the continuity conditionssible to express the components of the electric field as fol-

require that the following quantities: lows:

1_a —ki a0}z E) [k, w]=— Tk, w]cogi],
v 27%e[ w] ) (a))2 w’e[w]
Flv c? By ilky @)= +Tlky,0]sini],
+E’ Tk, eiki[kH ,w]Z_E' K, e*ikL[kH ]z — (22)
onllq e ol k1] Eoi[Ki,w]=+R[k,0]codi].
(209

and g [ky, 0]=+ Rk, 0]sini].
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With these notations one can rewrite quantities given by Eqs Zon 22 Z Zan
(20), which remain continuous at the interface, in the follow- ;

ing matrix form:

T) Si +ik,z
izl ]+ g Je (234
where
_(S[w]Sif'[i]eri[k“”]Z S[w]Sir[i]e‘ikl[kl'“’]Z>
M[Z]_ —Coii]eﬂki[k”'w]z COS{i]eiiki[kH'w]z
(23b)
(8[&)]_ 1)
g ‘T 2
2n’ 2 (“’)2 w’s[w]
(2): v c . (239
| al 1 —k;
2n%[0]v , [0\? o%[w]
i ) T T
and
I(zzg- (230
v
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Vacuum Vacuum
Electron €
-
Beam
01 T - 2 N+1

FIG. 2. Scheme of a periodic multilayer stack with the relevant
notations. The stack consists of alternated layers of a material of
dielectric constant; and thicknessl; and of a material of dielec-
tric constante, and thicknessl,.

By introducing the following notations:

1

- _[F
a FH

—ik,z; T
=Mj[zj_1]e 27 R/ (28)
J

i
and

dj:Zj_Zj*ll (29)
one gets the recursive formula

Fj:Aj_le_ikzdj+e_ikzdej_1[21_1]Mj__11[2j_2]|:j_1.
(30)

In the case of a stack of plane layers one indexes the media

and the interfaces. At the interface, whose abscissa is
and which separates the laygr-1 from the layerj, the
continuity relations give the set of recurrent equations

S

T A
M [2_7 ] ) + e’szZj*l
JlJle_l S'j—l
T S .
Mzl g H[S] e
i '
By introducing the following quantities:
A= = - , 25
-1 AH i-1 S\ i-1 S\ i ( )
one has
T T A :
J = 1=
(26)
which can be rewritten
. T A ‘
Mj[zj—l]e_lkzzj(R).:(Ai e ikazj=z_1)

-1

+e—ikZ(Zj—Zj71)Mj71[21_71]

J

XM (7 5IM [ 7]

—ik,z; T
Xe -1 R . (27

ji—1

IV. PROPAGATION IN A PERIODIC MULTILAYER
STACK

Now, one handles the case of a periodic multilayer stack
immersed in the vacuurtsee Fig. 2 We suppose that the
stack consists of an alternate arrangement of two materials
characterized by the dielectric constaatsand e, and the
thicknessedd; and d,, respectively. We denote bg the
periodd,+d, and byN the number of periods. The number
of the first medium is O while the one of the last medium is
equal to N+1.

Using Eq.(30) twice one obtains

Foj1=—Ae Mt e kdAA e MIBF, _;, (31
whereA andB are two matrices defined by

A=M [ 25 IM 5[ 2211, (32

B= MZj[ZZj]M2_jl[22j71]M2j71[22j71]M2_jl71[22j72](- )
33

and
A:Al.

These matrices depend only upon the thicknesses of the lay-
ers. In this derivation, we have used the fact thgt, ;=
—A,. By setting

6=—Ae 1+ e KAAA (39

and
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u=e 'kAB, (35  the two solutions+k;, and—k, . In fact, we shall be inter-
ested in the time Fourier transform,

Eq. (31) becomes

. 1 o, ~
F2j+l: 5+1u“|:2j—1' (36) ED[p,Z,w’]: Zf dte® tf f dzkuf dw EBr][kH ,(l)]
A little algebra leads to a linear relation in termsFf: @i 7KLk @]zgi(k)-ptk [k, @]D~wt)
K, [k, o]
Foj+1=S[u]o+Pjlu]F, (37 X%. (41)

where

The integrations over and w give
j-1

Slul=2, u' and Pi[u]=p. (38)

ED[P,Z,w']IJ f d’k; Eg,[ky,0']
V. DETERMINATION OF THE RADIATION INTENSITY

FAR FROM THE STACK o i 7K, Ky 0" T2 (ky- 0K, Ky 0 1D) t?kL[ku’,w ]_
The field seen by a detector can always be calculated by I
Fourier transforms, (42
_ = Now we calculate the field at a far point, the spherical coor-
Ep[p,zt]= Ep[k; .k . . . : .
olp.2.1] f f f ol ki k] dinates of which ar®,,0 without loss of the generality of

the problem.
By introducing the projections EBH”[k” ,o'] and
In Eq. (39), zmust be taken from the boundaries of the stackEs. /LK. @] of Eg,[k;, "], one has

and we have taken into account that the Fourier component
of the electric field depends on the tangential component of

X ei(k”~p+ k| z— o[k ’kL]t)dzk” ko_ . (39)

the wave vector only through its modulks and that the ~Esun[ku L' ]cog @]

electric field depends on the radial compongmif the posi- - , ~ S ok, [k ']z

tion vector only through its modulus Eolp.z,0"]= EB”j[k”'w Isinf@] | et e e
Two cases must be considerdd: the forward one—the Egy 4Lk, 0]

point of observation, assumed to be in vacuum, is beyond the
stack andz=z5+D (zg, abscissa of the exit surface of the
stack, equals the thickness of the stack willlés the dis-
tance of the detector taken this exit surfacand (ii) the
backward one—the point of observation is in front of the
stack andz=zg—D (zg, the abscissa of the entrance surface
of the stack, equals)0

From the above considerations and by changing the int
gration variable using Eq(15), it can be shown that
Ep[p,D,t], the field at the observation point, is given by

X eiD(kH siaJcog ®]+k, [k @' ]cog a])

Jk [k, o'
% L[k o]

o ki dk do. (43)

dntegration overd ends in the Bessel functiods, and gives

iEpgy, [k, 14 1(kD sifa])

) ~ ED[,D,D,O),]ZZ’ZTJ’ 0
ED[p!D’t]:f f d kuj do Eg,[k;, @] 0 EBM[ku,w']Jo(kuD sin a])
x el 7KK @]zggi (k- prk [k ’w]D*wt)M x gl meuthi o Jzaglbl iy o Jeod )
J ’ ,
¢ ok, [k, ']
(40) XTKH dkH . (44)

whereEBv[kH ,w] is the partial Fourier transform calculated
on the appropriate boundary. The presence of the symbol If we consider large values dd sin«] we can replace the
is due to the fact that the dispersion relation, Bdp), admits  Bessel functions by their asymptotic expressions
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~ / 2
iEgy,[k,0'] WCO{MD Sin(a)—3g}

IAED[D,a,w']IZﬂ'f 0
0
Eg. [k, 0’1\ 2 kD si il
BL LK @] mco I Sln(a')—z
i I , Ik, [k, o'
x @ 7KLk 0" ]zgaiDk, [k @ ]COS{Q)% k, dk; . (45)

Expanding the trigonometric functions leads to

~ 2 . , . : , )
iE Kk ' i i{k [k, 0" ]co§ @]D+k D Slr‘[a]—3(ﬂ'/4)}+ i{k [k, 0" ]cog§ a]D—KkD sin a]+(7/4)}
BigLK, @1\ kD siMa] S”.[a](e e )
° 2
E K '] / _ eilki [k @'l @]D+kD sial—(m/4)} | gi{k [k o’ lcogalD—k D sin{a]+(m/4)}
BL 77[ @ ] 7Tk”D Slr[a] ( )

ED[D,a,w']

. 0k [k,
X e 7k, [k, o ]ZB—LE_'(;', ] k” dk“ . (46)
|
Now we have to deal with integrals of the form ~ 27w’
[e'P"Wg(u)du, wheref is a real-valued function. Wheh EpiD,a,0'|=i 5~ —~coga]ts[zs kis, @]
becomes very large, it can be estimated by the method of
stationary phase. The integration is presented in Appendix C cog a]
and gives X 0 glD(w'le). (49)
—sin a]
R _ 27 ' Eoialkis, '] where
ED[D,a,w’]=—IU[a]FE§ 0
Epialkis 0’] ta[Zg . kis, @' 1= Ta[Kis, 0' ] kilkis: @128 (50)
x elPleilelghmiull oz, (47) denotes the transmitted field near the exit surface of the

stack; and(ii) in the backward case where theangle lies

ks is the tangential component of the wave vector whichPetweens/2 and
goes from the stack to the point of observation. In EL)

P 2 : : N 27 o’
the denv_aUvg ofk{ has been calculated using the point of Epo[D,a,0']=i — — cog alrs[zs ks, o']
observation in the vacuum. D c
ExpressingE}, in terms ofE[, by means of Eqg18), one —coda]
obtains % 0 oD (w'fc) 51)
- sin «]
. o 2m @' Epjulkis,@'] where
Ep[D,a,w ]——I(r[a]F?COE{a] 0
Epiolkis, 0] relzs.Kis,0'1=Rglkjs, '€ 7k [kis, o' ]zg (52)
XeiD(w//C)ei 7K, [k ,w/]ZB. (48)

denotes the reflected field near the entrance surface of the
stack.

Using Eq.(22) to express the amplitudes of the fields on the  Now the problem is the determination tf andrg. The

two external surfaces of the stack, one obtains the followingalgebraic procedure that we have used is given in Appendix
(i) in the forward case where theangle lies between 0 and D. It gives their expression in terms of the eigenvaldgs

72 and\, and the components of the eigenvectors of matrix
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Ugg For the forward case one has
1= ( Ulz)'
2 12
Il 2@ 12
Uy R TCOSZ[aMtB[ZB!kHva 1% 67
H2= ( U22>'
while in the backward case one has
Note that the module of the product of the eigenvalues
equals 1. It can be admitted that has a module less than 1 &y, ,0'? -
while X, has a module greater than 1. In these conditions the EP TR TCOSZ[‘V]“B[ZB Kis @17 (58)
expressions of the modules ¢f and rg become simple
when the number of bilayers is infinite VI. APPROXIMATION OF HARD X RAYS
(UygqUgp— Ugslng) &y In the case of hard x rays the optical indices are close to
[tg|= - , (53 unity and if the absorption by materials can be neglected,
(UzoSina ]+ Uz cog ])(1=Xy) important simplifications arise in the formulation of the ra-
diated intensity. In these conditions it can be shown that the
(UgqUpo—Uq5Uo1) O two eigenvalues\; and\, and their associated normalized
Irel= (Ugpsin a]—uy;cod al)(1—\,)|’ (54 eigenvectorsiy,u, are, respectively,
where §, and &, are defined by Np=e dlkztky) (593
o= 51U1+ 52U2 . (55) )\2: efid(sz ki), (59b)
Let us emphasize that these expressionig @ndr g remain
finite as long as there is a tiny bit of absorption in the media. 1/ -k
In this case the photon yield tends towards a finite limit when UFE( K, ) (590
the numbeN of bilayers becomes infinite. When the absorp-
tion vanishes the yield diverges BMdecomes large as shown
in Sec. VI. :E kll) (599)
The intensity of the resonant transition radiation per unit 2k \ky )

positive angular frequency interval and per unit solid angle

can be deduced straightforwardly from the modulus of thealo(r?nethzssmanc?isc) r;[h;t t:]r:aeeﬁan;tlfosilc;n tﬁakr?z ﬂ?ﬂ?gug?;gﬂy
field by the relation 9 !

tion using series expansion at the first order in unit decre-
ment of the optical indices leads to the following expression
of the modulus of the projection8; and §, of & following

the basisuq,u,:

Plla,0']

P . . 2|E 1112
EETY) cD?|Ep[D,a,0']|% (56)

Bqde tarf a](1— B%— B cod a])sin

dok 1
T(C"W‘BH

|01 = 2m2ck(1— pZcod[a])(1— B cog a]) ’ (603
S ldyok 1
Bqde tarf a](1— B2+ B cod a])sin - ( cod a]+ —) }
_ B
|921= 272ck(1— B?cosa])(1+ B cog a]) (600
|
From Egs.(D15), (D16), and(5939—(590), it follows that eigenvalues are
|tg|=]61]S4, (613 [ dk 1
sw{N—(cos{a]— /—3”
[rel=182l|S,]. (61b HE T (623
In the hard-x-ray approximation the sums of the power of the sir{7 ( coga]- E”
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(a)

dk 1
N7 cofa]+ —

sin B photons/ (eV sr electron)
1S, = 1 (62b) 0.00004
sin 7(005{a]+l§ 0.00003
0.00002
The use of Eqs(57), (58), (608 and(60b), (618 and(61b),
and (623 and(62b) allows one to write the intensity as the 0.0000L
product of three factors, . EG ) Y = Energy (keV)
&
(®)
——=14l5l5. 63
JEeQ 123 (633 photons/ (eV sr electron)
. N . . 0.00035}
Here the intensity is given by the unit photon energy interval 0.0003
instead of the unit angular frequency interval. 0.00025
For the forward case, the first factor reads 0.0002
0.00015
o 1— 82— Bcod a 2 0.0001
= (G2 si o) LoD -00008
4ar (1-B?cosTal)(1-Bcodal)| ———5—L————=— Energy (keV)

(63b)

(e)

where« is the fine-structure constant. It gives the intensity
photons/ (eV sr electron)

of the transition radiation by a single interface. This formula

is in agreement with the result of Garibiab6]. 0.0005
The second factor reads 0.0004
dok 1 0.0003
| ,=4 sirf % cofal—— (630 0.0002
B 0.0001
It accounts for the interferences between two successive in- 3.5 4 15 5 Energy (kev)
erfaces. It is nothing else but the structure factor of a bhi- .
|ta er 9 FIG. 3. Calculated photon yield versus the photon energy of the
yFir'1aII the third factor reads RTR emitted by Ni/C stacks crossed by 15-MeV electrons. The
Y thickness of the Ni layer is 176 nm while the thickness of the
dk 1 2 carbon layer is 221 nm. These parameters correspond to the experi-
sir{N;(cos{a]— E” ment of Ref[10]. Number of bilayers: (a) N=10, (b) N=50, (c)
_ N=oo,
I3 “Tdk 1 . (630
sin | cod er] - 5 Always in these conditions, the emission of the RTR takes

place when the following well-known resonance condition is
It accounts for the interferences between the bilayers. fulfilled:

Similar formulas could be deduced for the backward case.
It is worth discussing the behavior of these different factors. cod o= l_ pﬁ_ (65)
When the particle is very relativistic, the first factbr is B d
proving to peak for an angle, expressed in radian, close to
1/y= 11— @, which means that the radiation is mainly 1nen: the second teriy becomes
emitted along a cone centered on the trajectory of the particle |, =4 sif[T7p] (66)
with an opening angle equal to2/To compare with previ- '
ous works we consider the case when the nuniberf bi-
layers becomes very large. In this case, the falgidrehaves
as a sum ofs functions, as pointed out ifiL1] and[12],

wherel is the rationd,/(d;+d,). The relation(60) gives
conditions of extinction which are similar to the ones of a
Bragg reflectof17]. One can consider the matrix method to
be tested by its behavior in the hard-x-ray case.

. (64)

1
l3=27NY, § dk( cod a]— E) —2mp
p

VII. NUMERICAL APPLICATION AND DISCUSSION

As mentioned before, one sees from the above equation that, In this section we consider the experiment recently per-
in case of no absorption, the photon yield diverges wNen formed by Yamadat al.[10]. They observed the soft x rays
tends towards infinity. The integration over the solid angleproduced by the RTR from a Ni/C multilayer with a submi-
leads, for the intensity, to the classical formula given by Eq.crometer period. This target consisted of only ten bilayers of
(11) and is in agreement with E@23) of Ref.[13] applied  176-nm-thick Ni and 221-nm-thick C stacked on a SiN mem-
far from the Bragg domains. brane. The energy of the electrons was 15 MeV. For different
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(a)

photons/ (eV sr electron)

PHYSICAL REVIEW B3 016613

(i) The multilayer target used in the experiment is not
ideal; there is interface roughness which degrades the sharp-

0.0014 ness of the interface and consequently tends to diminish the
Oéogéi photon yield.

0.0008 (i) Pile-up effects in the detection of the radiation are
0.0006 difficult to account for and probably the number of recorded
8'0004 counts are less than the number of emitted ones.

(b)

photons/ (eV sr electron)
0.

(e)

photons/ (eV sr electron)

0002

0007

.0001

S

= Energy (keV)

.5

5 Energy (keV)

(iii) The optical constants retained in the calculation cor-
respond to bulk materials and are likely larger than the true
ones.

To get an insight of the influence of the absorption upon the
photon yield, we have computed this quantity for imaginary

8:8882 parts of the dielectric constants equal to 0, 0.5, 10 times the
0.0004 very values. The calculations have been carried out for the
0.0003 same kind of target as in Rgf10], but for 50 bilayers in-

8'0002 stead of 10. Their results are shown in Fig. 4. As expected,

the bandwidth increases when the absorption becomes large.

VIIl. CONCLUSION

0.00001 A theory of the transition radiation by a stack of layers
8.10°¢ crossed normally by an electron has been developed. It rig-
6.10°F orously takes into account absorption and the dynamical ef-
4.10°5 fects such as the multiple scattering. Extension to the oblique
5.10°° case corresponding to the so-called parametric radiation is

planned; this problem will be more difficult to handle be-

35 4 4.5 5 teergy (kev) i
’ : cause of the lack of the cylindrical symmetry.

FIG. 4. Calculated photon yield versus the photon energy of the
RTR emitted by targets, the parameters of which are the same as
those of Fig. &) for different values of the imaginary part of the APPENDIX A
optical index: (a) 0, (b) 0.5, (c) 10 times the very values.

The transverse spatial and temporal Fourier transform of

values of the number of bilayet$, Fig. 3 shows the photon the field is defined by

yield versus the RTR photon energy for an observation angle

«a equal to 17 mrad, calculated by our approach. 4The calcu- 1

lations are performed with an energy step of 10" * keV. Bl o ) — f f J i(—Kk-pto')qt 42
The optical constants used in the calculations are borrowedE(k" @'12) (2m)° Elp.ze™ dtdp.
from Ref.[18] which uses the theory developed in R (AL)
In practice, the variations of the complex index1— 4

+iB versus the photon enerdy, expressed in eV, can be o _

calculated with a reasonable approximation by means of theombining Eqs(9), (10), and(12) yields

following empirical formula:

s=expla;—by In[E]), E(k"w"z):#fffffffzwzq—si[“’]

B=expa,—b,In[E]).

we[w] "
The parameters for nickel are c? Ve
Xw—zs[w] Slw—k-v]
a;=4.2511, b,;=1.5796, a,=16.8626, b,=3.4487 k2— 2

and the parameters for carbon are xelkT=ot gy dk e~k P+ Ot Pp.

a;=6.4609, b,;=2.0372, a,=16.8646, b,=3.8762. (A2)
We note that the values of the photon yield calculated by our
method are slightly different from the measured ones; thiferforming the integration over the timand the variablg
discrepancy can be attributed to different points. gives
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w’e[w]

E(kj ,0'2)= ffffzw 8[“’]
C2

X Sl w—k v]e® 25k, —k|]
X 8w — w]do d?k, dk, .

(A3)

The integration ovemw leads to

E(kj 0',2)= IIJZW “e[0’]

X 6[(1), —kiv]eikiz5[ku—k“']d2ku dkl .

ws[w’]

v—k

we[a)]

C2

(Ad)
The integration ovek gives
w’s[w’] ,
k||1(‘) Z) J'27T 8[(1) ] ,2 ) (1),28[(1),]
Ki“+ki——=—
X 8w’ —k v]e*zdk, . (A5)

After a last integration ovek, one obtains the expression of

E,

1 qi
v 2m%e[w']

J[elo'] o ,
oz F)V_k

E(k”, lwlaz):

@ C
X i(a)'/v)Z.
Y wr 2 (1),28[(1),]
kl\ ] - 2
v C
(A6)
APPENDIX B

One starts from Eq17)

Eo[kn,'wl’z]:f f fEO[ku:ki]eikizts[ku_kn,]
X 8lo—w']d%k dk, . (B1)

From the dispersion equation

wZ
kf=?—e[w]—kf, (B2)

one obtains

PHYSICAL REVIEW E 63 016613

de[w
20e[ 0]+ w? il

w
dk, =+ do. (B3)
2 w2 2
2c ?S[w]—k“

Inserting Eq.(B3) into Eq. (B1) gives

Eo[kH ,w’,Z]=if f fﬁo[kuaikﬂkn,w]]
Xeiikl[ku,w]zts[k”_kli]

de[ w]

2we[ w]+ w?

w
: .
202\/w—s[w]—k2
CZ Il

(B4)

X 5[a)—a)']d2kH

Performing the integration one obtains

Eolki.0",z]==| Eolk| ,ikL[w',kﬁ]]eiiki[“”'kﬁ]z

de[w']
2w'e[w']+w'?
do’

X . (B5)
a)/ 2

2c? ?s[w’]—k“’z

APPENDIX C

According to the method of stationary phase, integrals of

the following form:

| eregipian, e

wheref is a real-valued function, integrals are given wiizn
becomes very large by

) 2
elDf[u][ 1d :2 S
f Il 2 N D[ )]
% @lDflxlgl ng(f”[/tj])(wlll)g[ﬂj]'

(C2

where u; are the roots of the equatidri[ u]=0 which ex-

presses the stationarity of the phase. Introducing the follow-

ing quantities:
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91,k a,0'1=Eqg [k, '] P, LK a, 0" 1= 7K, [k, 0" ]cod a] +k;siM a],

2 K [Ky,o'
A/ _ ql e ]k”,
kD sifa] Jdw

(€3

(C4

qn[kH ,a,(.l)/]: 77kj_[ku ,w']COS{a]—k” Sll’{a],

g1 ,Lk 'CY’w/]:Eom[ku ']

2 K, [Ky, o'
o _ il e ]kua
7wk DsiNa] Jo

the integral(53) can be rewritten as

and

’ —i (3l iDpﬂ[kH,a,w'] i(3/4)m iDqﬂ[k”,a,w']
g, K, 0" (e e +e e )

277277f 0 dk;. (C5)
gi 7][kH 1a,w’](e7i(77/4)eiDp”[kH ,a,w’]+ el('ﬂ'/4)e|Dq”[k” ,a,w’])

EO[D,a,w’]= E

ne{-11

The first derivative of the phases are P ks, @, 0'1=q9"Ks,a,@']

—k . _ 1
p;[ku,a,w']=7]W,“w,]Cos{a]+Slr{a], " kcof[a]
(Co) c 1
— kH = - U m (ClO)

alkp a,0']= ﬂmcoia]—sﬁa],

L ) It should be noted that these second derivatives are negative.
that is, in terms of the anglé between the electron axis and 1 phasep andq are not simultaneously stationary accord-
the wave vectok, ing to the value off and «. The stationary phases are

—sin 6]cog a]+cog 6]sin «] /

polky,a,0']= cos 6] ’ p[k”S,a,w']Zk[kHS,w']:%,

(C7)
" o —sin #]cog a]—cog ]sin «] , (11
Aolk er '] = cog 6] ' Alkis, @ 0'1=—Kkjs,0']=— .

The zeros of the first derivative of the phases which are the

stationary pointss are obtained, respectively, for The value ofg’'s at the stationary points are, in terms of the
angle 6,

(€8 Aid ks, 0" 1=Eqlkis, o' i

The second derivatives are

Pyl Kis,a, 0" ]=dy[Kis,a,@"]
B cog o
"~ kcos[6]
_c cog «]
T cos[6]

At the stationary points they take the values

2 &ki[kns,(l)’] 1
" kD Jw' 2|cog a]|’
gw[knsﬂ'w']=E0La[kus'w']

[ 2 Ik ks, '] 1
“N7kD g0’ 2|cog a]|"

(C12

(C9

Collecting the preceding results gives the expression of the
field
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2% oki ks, o'] ~iEqalkis, @' 169+ Egyr-alkis 0 Je™ 0
D do 0 . (13
—iEo, o kis,0'1€P@TO—Ey, o [kis, 0 ]e D@0

EO[D,a,w’]Zo[a]

whereo] a] stands for the sign of cpa]. However, there are whereSandP are given in terms of the eigenvalue®f the
only waves outgoing from the stack, so that the solution matrix u by
=7 — a must be rejected,

1—\N
. , ) 2 ﬂki[k|\s,w,] S= 11—\ (D7)
EO[D,C(,(U ]__IG[Q]TT
5 P=\N. (D8)
Eoialkis @'] o N ) ) )
X 0 gP(@'/©) (c14  The limit conditions(no incoming wave from vacuum into
Eor ki 0'] the multilayer structurelead to the four following equations
OLal RS involving the boundary field amplitudeg andrg:
APPENDIX D @itnU11t @ionU21= Pinls (D9)
One starts from the formul with j=N,
&7 J PitnU12H @ianU22= Piol B (D10
Fon+1= Snlp]o+ Pl p]F;. (D1)
PoiNU11T PoanU21= Po1ls (D1))
One decomposes thés and é in terms of the eigenvectors
Uq and Uy of the matriX/.L, QDolNU12+ ©QoaNU20= ¢02tB . (D12)
Fan+1= @oinU1t @oanUz, (D2)  The ¢'s can be determined from Eq28). The variables
Ux.'s are defined as the components of the eigenvectors by
F1= @ianU1+ @ianUz, (D3)
Ugg
5= 61Uy + SoUs. (D4) U= ( U:LZ) : (D13
This decomposition applied to E4D1) leads to the two U
i i . 21
following equations: Up= Uy (D14)
$oin= 0151t Projin, (D5) . _ .
Solving the system of six equatiofi€D5), (12), (15)—(18)]
Poan= 0231 Pagion, (D6)  gives

to= (UgoUp1—= UgqU0)[ P2S; 81 (U16hi1 — U116hi2) + P1S,65(Ugphin — Unihin) ]
B P1(Uzp¢i1— U210i2) (U12¢01— U11002) — P2(U12¢i1— U116i2) (Ugapo1 — Uz1hop) |

_ (UgaUp1— U1qUp0)[ S161(U12¢P01— U11h02) + Sp62(Ugapo1 — Uz1hor) |
. P1(U20hi1— U216i2) (U12¢01 — U11002) — Po(U126hi1 — Ug10hi2) (Ugahor — Uzichgo) |

(D15)

. (D16)
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