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Multimode soliton dynamics in perturbed ladder lattices
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We investigate the interplay between the longitudinal and lateral solitonic modes in perturbed ladder lattices
in regard to the transmission of soliton wave pacKkéj. In a longitudinal uniform field the lateral and
longitudinal solitonic modes are shown to be independent. However, unlike in the unperturbed case the
dynamics of the soliton center of mass becomes confined within a finite spatial domain via the Bloch-Zener
mechanism in the longitudinal direction and due to the transverse finiteness of the ladder in the lateral one.
(2) The segment of on-site impurities causes the soliton mode-mode mixing. As a result the soliton exhibits
rather complex two- or three-dimensional dynamics accompanied by wave radiation which may give rise to
soliton trapping. Nevertheless, under some specific conditions the soliton is able to bypass even the strong
impurities slaloming between them. In particular, the slalom soliton dynamics is possible on a ladder lattice
with a segment of zigzig-distributed on-site impurities. We formulate the conditions favorable to the case and
show that their violation gives rise to either soliton trapping on or soliton reflection from the impure segment.
(3) Finally, we study the effect of the modified transverse bond on the longitudinal soliton dynamics and reveal
that it might act on the soliton as either an attractive or a repulsive potential, depending on the sign of the
transverse energy of the ingoing soliton. The effect is essentially a solitonic one and becomes strictly pro-
nounced for heavy solitons, when imperfection-induced radiation effects are exponentially suppressed. We
expect that transverse-bond imperfection could serve as a filter selecting the solitons with prescribed properties.
A similar function is feasible for zigzag-distributed on-site impurities too.
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I. INTRODUCTION both of them[28]. Only in this case will the amplitudes of
both models be of the same meaning and will we manage to
Driven by the contemporary boom in the field of optical obtain the same analytical results either by means of pertur-
telecommunicationgl] scientific interest in nonlinear Schro bation theonyf28] or within the framework of collective vari-
dinger and related systems is exhibiting the same rapidble (trial Lagrangian approacH28-31.
growth [2,3]. Except for widely known applications to the In this paper we will follow such kinds of reasoning and
problems of light pulse propagation in optical fibg4s5] the  investigate the peculiarities of the one-soliton dynamics of
models of nonlinear Schdinger type serve as a good start- intramolecular excitations on multilggn particular, two-leg
ing point for the investigation of a number of other physicalladder lattices subjected to an external linear pote8at.
phenomena such as energy and charge transport in biologicil) or one of two types of imperfections typical exclusively
macromolecule$6—8], charge-density-wave conductivity in of the multileg ladder lattice$Secs. IV and V. We will
quasi-one-dimensional conductd®&10], and the dynamics show, e.g., that on a two-leg ladder lattice the soliton dynam-
of dark solitons in Bose-Einstein condensdtel as well as ics actually becomes the two-dimensional one and supports
the self-organization in nonlinear wave turbuleié€] and  some new and even unexpected effects forbidden principally
envelope soliton propagation through cylindrical fibers withfor one-chain lattices.

a nematic liquid claddingj13]. In order to avoid unnecessary complications inspired by
The most famous among the continuous one-dimensiondhe Peierls-Nabarro potential religZ8], we invoke here the
models are the Zakharov-Shabdt4] and Manakov[15] exactly integrable model of nonlinear intramolecular excita-

ones. They are exactly integrable, allow precise Hamiltoniartions on a multileg ladder lattick32—34:

formulations[16], and possess well-developed perturbation

theories[17-19. The corresponding discrete versid¥—

25] are also integrable. However, apart from a few excep- M

tions their Hamiltonian formulations are either nonstandardq (n)+ E togdp(n)+[gu(n+1)+q,(n—1)]

or simply unknown. For example the Ablowitz-Ladik model
[20] has nonstandard Poisson bracke®,16. As a result an M

application of its perturbation theoff27] to nonintegrable x| 1+ 2 p(n)rg(n)
nonlinear Schrdinger models requires some physically mo- B=1

tivated precaution$28]. Namely we always have to trans- M

form either the Ablowitz-Ladik model or the model under — _ _ _

study to the form prescribing the same Poisson brackets to [3’21 [8a(n=1)a5(M ~Au(mapn=1)Irsn). (1)
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M Here

—ifL,(n)JrBZl Fa(Mtga+r(n+1)+r,(n—1)]

M
p<n>=;1 Ra(M)Qg(n), @)

-1
E(n)= \/—GXF[Z E?‘;] , ®

2 Ra(MtegQp(n)

n=-—

X

M
1+ﬁ21 r3<n>qﬁ<n)}

M
- 21 [ra(n+Drgn)—ry(Mrgn+1)]agn), (2

M M
appropriately correcting its on-site amplitudgg(n) and Hgy=-— > >
r,(n) and omitting simultaneously some irrelevant and un- a=1p=1

physical terms. Here the overdot stands for the derivative Mo
with respect to the dimensionless timeand the longitudinal — E Z E(n+1)E(n)
numerical coordinaten runs from minus to plus infinity, a=1n=-=

while the transverse one runs from 1 to the number of
) : . ) X + + + .

chains(legs, M. The parameters,; describe the interchain [Qu(n+ DR(M+Ro(N+1)Qul(n)] ©

linear coupling, while the constants of the intrachain linearrhe resulting model (5)—(9) conserves the quantity

coupling, t, are normalized to unity. >r__p(n); however, in view of the right-hand-side terms

By the way, throughout the paper we will deal with di- j,"Eqs. (5) and (6) it does not permit either the reductions
mensionless quantities exclusively. As a consequence quapy (n)=+Q*(n) or any Hamiltonian formulation
tities labeling the axes of th.e ilustrative figurésigs. 1-16 aWe overc%me both of these difficulties simply by omitting
are assumed to be dimensionless too. the just-mentioned right-hand-side terms. As a result we
come to the model
Il. UNPERTURBED PHYSICALLY CORRECTED MODEL

The model (1),(2) conserves the quantityg,__.In[1 1Qa(n)=Ho/IR.(N), (19

+E’C‘¥":1qa(n)ra(n)]. However, in terms of,(n) andr ,(n) it
scarcely resembles the standard expression for the total num-
ber of excitations. For this reason we reformulate the OriginaLlnder any of the reduction®,(n)=Q*(n) or R,(n)

model(1),(2) in terms of corrected amplitudes =—Q%(n) the model(7)—(11) becomes a Hamiltonian one

—iR,(N)=dHq/dQ,(n). (11)

Qa(n)=q,(n)/E(n), (3 with the Hamiltonian given by, or —H,, respectively. Its
R,(n)=r,(n)/E(N), (4) Pgisson brackets are standardz whereas th.ej amplitydes
Q% (n), Q.(n) acquire the meaning of probability ampli-
and obtain tudes relating to the site «. The total number of excitations

=M S Q*(n)Q,(n) is conserved as expected.
We call the model(7)—(11) the physically corrected

iQ,(N)—dHy/dR,(n)=2E(n+1)dE(n)/dp(n)
M
model of nonlinear intramolecular excitations on a multileg

><B§=:l [Qa(MQp(n+1) = Qu(n+1)Qp(N)JR4(N) ladder lattice. Like both of its predecess¢ts, (2), and(5)—
+2E(n—1)dE(n)/d (9) it sustains the one-soliton solution as well as the multi-
M (n=1)dE(n)/dp(n) soliton solutions of factorized typ®,(n)=b,Q(n). This
« _1)— 1 R remarkable fact allows us to use the mo@8(11) as the
/;1 [Qu(MQp(n=1)=Qu(n=1)Qp(N) JR4(N) main (regulaj part of realistic physical models dealing with
+E(n—1)E(n) soliton propagation in imperfect ladder lattices as well as in
M ladder lattices subjected to external fields.
X 2 [Q.(N—1)Qu(N)—Q,(N)Qs(N—1)R4(N), (5) In this paper we restrict ourselves to the reduction
p=1 R.(n)=Q%(n) corresponding to an attractive nonlinearity

LiRL(N)— dHo 19Q,.(n) = 2E(n+ 1)dE(n)/dp(n) and bright soliton solutions.
M

% R (MRAN+1) —R.(n+1)RA(N N lll. LISSAJOU’S SOLITON DYNAMICS ON A LADDER
B§=:l [Ra(m) ﬁ( ) ol ) B( )]QB( ) LATTICE IN THE PRESENCE OF A SPATIALLY
+2E(n—1)dE(n)/dp(n) LINEAR POTENTIAL

M

N _ The lateral degrees of freedom unleashed by the inter-

Xﬁzl [Ra(MRg(N=1)=Ra(n=1)Rs(N)]Q4(N) chain linear couplingst(,z# 0,a# B) make the soliton dy-
+E(n+1)E(n) namics on multileg ladder lattices substantially richer as

M compared with that of one-leg ladder lattid@s,28,35-3T.

_ This statement is true even for the simplest case of regular
X R,(n+1)Rs(N)—R,(N)Rz(n+1 n). (6
le [Ral IRp(N) = Ra(MRg( J1Qp(n). (6 multileg ladder model§32—-34.
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For this reason it is interesting to study the soliton dynam-

ics in a more general case:
iQ,(n)=3dH/R,(n), (12

—iR,(N)=aH/4Q (n), (13

when the model HamiltoniaH =Hy+ U consists of regular,

Eq. (9), and perturbed,

M

U:a:l f=1 n:E_w m;_m Ra(MU p(n|7im)Qg(m),
(14

parts. Here the potential matrid,,(n|7/m)=U%,(m||n)

will be specified by the lattice imperfections or the external

fields, whereaRR ,(n)=Q%(n).
We will use the exact dynamical equatiofi®) and(13)

mainly for the numerical integration. However, when the po-

tential U is spatially linear,

u aﬁ( n| T| m) == §aB5nmm5( T)! (15)

the model(12)—(14) permits at least some particular exact
solutions. For example, seeking the solution in the form of a X =

one-soliton ansatz

b, VIN[1+ sintfu sechu(n—x)] exp(ikn+i6),
(16)

M
bazaa/ \/le a%ay, (17)

we come to the set of ordinary differential equations

Qq(n)=
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When the lattice is the two-leg oneV=2, t,z=(1
— J,p)t, this dynamics can be readily traced in terms of
longitudinal

© 2

> 2 nR,(NQu(n)

n=—w a=1

X=—— (24)
2 2 Ru(mQu(m)
and lateral
o 2
22 (CDR(MQ(N)
Y= (25)

E3 2
2 2 RamQu(m)

coordinates of the nonlinear wave packet. The situation be-
comes especially simple provided the fi€lgr) is constant,
E(7)=¢&. Indeed, manipulating the dynamical equations
(19—(22) with the use ofX and Y calculated on the one-
soliton ansat216),(17) we obtain

2 sinh ,u

{cosk(0)—cog E7+k(0)]}+x(0), (26)

Y= —[c0s 2p coq 2t7)+sin(5;— 55)sin 2¢ sin(2t7)],

(27)

where the identityX=x has been taken into account. The
initial conditions forb, and b, were parametrized as fol-
lows: b1(0)=exp(d;)cose, by(0)=exp(s,)sin ¢.

Thus the solitonic center of mass exhibits two indepen-
dent mutually orthogonal motions along and across the lad-
der lattice with the cyclic frequencies given ly=¢ and

©u=0, (18  w, =2t, respectively. The former is nothing but the well-
known Bloch-Zener oscillationg38,39 caused by the inter-
: sinhy play between the linear potential and the spatial discreteness
x=2 sink, (19 of the lattice, while the latter is the beating oscillati¢B8—
34] originating from the interchain linear coupling
k=&(7) (20 The Bloch oscillations are experimentally observable on
' semiconductor superlatticgsee, e.g.[40] and references
M therein. They also have been intensively studied within the
A framework of different one-chain nonlinear Sctimger
b, =i 521 tagbp @D models [41-45. When related to the arrays of optical
waveguides, the effects, generally analogous to those of
Bloch oscillations and dynamical localization, are also under
=—i 2 b;;t Ba (22 intense experimentd#6] and theoretical47] study.
p=1 The amplitudes of Bloch4j) and beating &, ) oscilla-
, tions are evidently given by
0=2 coshu cosk, (23
2sinhu
which can be formally integrated at any temporal modulation A= P (28)
of the uniform field&( 7).
The equations of motion(19),(20) and (21),(22) are A, = \JcoF2 ¢+ SIr(6,— 5,)SiP2¢. (29)

Hamiltonian with respect to two pairs of canonically conju-

gated collective variables,k andb,,b% and describe, re- At £#0 and cos 2+#0 or/and sin§,— 8,)#0 both of them
spectively, the longitudinal and lateral dynamics of the soli-are finite and nonzero. As a result the parametrically defined
ton as a whole. trajectory of the soliton center of ma$26),(27) becomes
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64 - points equally distanced in time.
62
60_. IV. TWO-DIMENSIONAL SOLITON DYNAMICS ON A
1 LADDER LATTICE WITH ZIGZAG-DISTRIBUTED
%87 IMPURITIES
X 567 In this section we demonstrate the advantages of the two-
54 dimensional soliton dynamics on a ladder lattice in bypass-
ing strong on-site impurities as compared to one-chain lat-
527 tices [36,42,49, where the two-dimensional dynamics is
50 forbidden.
i ; We take the impurity potential matrix to be in the form
06 04 02 00 02 04 06

Y z-1

FIG. 1. The trajectory of the soliton center of mass on a ladder U“ﬁ(n| 7[m)= SapOnmV p(M) 520 A(m—ng—Mls),
lattice in longitudinal uniform field€=1 att=1/2. (30)

confined dynamically within a finite rectangle of length2 _ _ _ _

and width 27, . When the periods of longitudinalj ~ WhereV,(n,+MIs) is the energy shift of the impurity mol-
=27/€ and laterall, = 7/t oscillations become commensu- €cule located on theth chain within the (,+Mls)th unit
rate,Tl /TH: p/q (Wherep andq are the natural numbers Ce”.and n, |.S the pOSItIOI’] of the first Impurlty on theth

the soliton c.m. trajectory has to be closed into some ofhain. The integeM| measures the distance between the
Lissajou’s curves(see, e.g., the classical monograph byimpurities belonging to the same chain, aAds the total
Hemholtz[48]). number of impurities on each chain, wherédgs —m) is the

Figures 1 and 2 illustrate typical Lissajou’s curves ob-Kronecker delta function,n. In a particular casen,=n;
tained by direct numerical integration of the exact dynamicai (¢—1)l, a=1,2,... M, for M=2, the impurity matrix
equationg12)—(15) with the use of definition$24) and(25) (30) corresponds to the zigzag distribution of impurities on a
for the coordinates of the solitonic center of mass. Paramtwo-leg ladder lattice, while foM =3 it describes the spiral
eters irrelevant to the frequencies of longitudinal and lateraflistribution of impurities on a three-leg ladder lattice.
oscillations were kept the same for both of these pictures. We consider in detail only the case of zigzag impurity
Namely, we choos&(0)=#/6, x(0)=50, u=3, ¢=/6, distribution on a two-leg ladder latticen{=n; ,n,=n;+1,
and 8,— 8,=m. However, the strength of the longitudinal M=2) and we examine some different scenarios of soliton
uniform field £ and the strength of the interchain linear cou- Propagation through the impure segment. Nevertheless, some
pling t were taken to be different. In particuld=1,t=1/2  initial formulas, in particular Eq931)—(34), will be written
for Fig. 1 andé=3, t=1 for Fig. 2. Hence the ratid, /T, ~ in & general form to be equally applicable to the three-leg
is equal to 1 and 3/2 for Fig. 1 and Fig. 2 respectively. ladder lattice with a spiral distribution of impurities.

We would like to stress that the trajectories of the soliton ~We start with a qualitative estimation of soliton dynamics
center of mass have been calculated with great accuracy eWithin the framework of the collective coordinate approach
erywhere throughout the paper. The reason for the interpold28—31 in the lowest approximation. Substituting the one-
tion of trajectories by straight segments is only to mark thesoliton ansat216),(17) into the model Lagrangian

i M
LZEE

a=1n

54

2 [Ru(MQu(N) = R(NQ,(M]—H

53 1 (32

521 and using the standard Euler-Lagrange formalism with re-

spect to the collective variables,k,a, ,a% ,u,6), we obtain
51 1 the following set of dynamical equations:

50

x=dHlok, k=—dHIax, (32

Y ' ' ' ib,=dHldb%, —ib*=0Hldb,. (33

FIG. 2. The trajectory of the soliton center of mass on a ladder
lattice in longitudinal uniform field€=3 att=1. Here

016612-4



MULTIMODE SOLITON DYNAMICS IN PERTURBED. . . . PHYSICAL REVIEW E63 016612

100
_________ 80
90 //1 )l
804 gy T ® 70
70 T T 60_'
X 60—- . )/’_/,,,,,.,/’—'/N ]
50- .;_::.,,,/ o X 7
40 S 7\7""'\’“‘\.,,,,;\_ 40
[ e |
30 e e—
] e 30
204
10— | . . . 20
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FIG. 3. The trajectory of the soliton center of mass on a ladder . .
lattice with the attractive on-site impuritie¥=—10 for k(0) FIG. 5. The trajectory of the soliton center of mass on a ladder
=0.7965 andp=0. lattice with the attractive on-site impuritie¥=—10 for k(0)
=0.7 ande=0.
2 sinhu . .
H=— ——  cosk the soliton pattern and corresponding momentum, whereas
M the variablesh,, and b% reproduce the temporal redistribu-
MM v M tion of the soliton density along the lateral direction.
2 2 b*t,sbs+ —E b*b, Of course we also could take into account the principal
a=1p= 2pa=1 possibility of the longitudinal soliton breathing multiplying
z-1 the trial soliton function (16),(17) by the factor
X >, In{1+sint? usech u[x—n;(a—1)I—MIs]} Vvl pexdicf(n—x)] with f(—y)=f(y). However, unlike in
s=1 continuous model$50,51] or discrete models dealing with

(34) immobile pulsed52], in our problem such a kind of gener-
alization seems to be of minor practical validity since the
corresponding trial Lagrangian can scarcely be calculated
with an acceptable accuracy.
In a regular ladder latticeM=0) with t,z;=(1—J,p)t
e equations of the collective dynami@&®)—(34) are exact

is an effective Hamiltonian with the paissk andb,, ,b% to
be canonically conjugated variables, where for S|mpl|f|cat|0
reasons we have considered all impurities to be of the sam

strength,V [ n;+ 1)I+Mls]=V. The parametep is
g [ (a= ) 1= . . P 1ete As a result the laterg25) and longitudinal24) mean coor-
understood to be positive and time independent 0. Its

i L . = . dinates of the soliton pattern are governed by the equation of
relation to the longitudinal width of the solitahis estimated . . - 2 .
asd~cothu. the harmonic oscillatory + (2t)“Y=0, and the equation of

As in the case of the linear external potential the variableginiform motion, X=0, respectively. These equations give
x andk have a sense of the mean longitudinal coordinate ofise to a sinusoidal trajectory for the soliton center of mass.

100 4 ) 80 - o
| oo |
90 e
] e —— 70
80 L .
= ° ° _
70 4 e —— 60 + .——‘—/;ﬁ'\
X 60 ® - 1 e
60 - e —
1 T T X 80 " & = e " .
o o - e
J \“\‘\______\ 40 4 — T TRy om
40 Te— B =g
| @ = 1 @ .
30 D 30 e
20 — - ) T
] 20 —
10 T M T T T T T T T 1 T T T T T T T T T
-1.0 0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Y Y

FIG. 4. The trajectory of the soliton center of mass on a ladder FIG. 6. The trajectory of the soliton center of mass on a ladder
lattice with the repulsive on-site impuritie¥=+10 for k(0) lattice with the repulsive on-site impuritids= + 10 for k(0)=0.7
=0.7965 andp=0. and¢=0.

016612-5



OLEKSIY O. VAKHNENKO AND MICHAEL J. VELGAKIS

80
70 -
60-

X5o—.
40-’
30—-

20 4

PHYSICAL REVIEW E 63 016612

In one-chain nonlinear systems the restriction'>d is a
decisive condition although it undoubtedly could be ignored
at the early and some final stages of the soliton-impurity
scattering, when the distance between soliton and impurity
exceeds substantially the soliton width.

On the contrary, in two-chain ladder nonlinear systems,
the restrictiony 1>d can be relaxed or even neglected in
cases when the soliton and impurity are located on opposite
chains, irrespectively to the longitudinal distance between
them. In particular, according to the equations of collective
dynamics(32)—(34) we can expect a very weak disturbance
of the sinusoidal soliton trajectory with unity amplitude by a
finite segment of strong impuritieg *<d zigzag distributed
in antiphase order to the ideal sinusoidal soliton trajectory.
As a consequence, the soliton is bypassed in a slalom motion
between the obstacles, resulting in practically full soliton

FIG. 7. The trajectory of the soliton center of mass on a laddetransmission through the impure segment.

lattice with the attractive on-site impuritie¥=—10 for k(0)

=0.7965 andp= /2.

More precisely, under the assumption of zero longitudinal
solitonic width, the basic condition supporting the soliton
slalom reads as

The amplitude of the sinusoidal trajectory coincides with the

amplitude of the beating oscillation’s, given by Eq.(29)

and can vary from zero to unity, depending on the initial I=
conditions of the transverse solitonic distributidn(0)
=exp(,)cose, by(0)=exp(sd,)sin¢.

In an irregular ladder latticeM#0) the equations of the
collective dynamics(32)—(34) are approximate. They are
certainly valid when the impurity-induced effects of wave
radiation[53] and the soliton-induced effects of the impurity
excitation [54] are small. For an isolated impuritg=1,
V,.(n,+Mls)=Vé,, these effects are suppressed exponen
tially, when the radius of the unexcited localizestaggered
localized impurity state 14 exceeds the longitudinal width
of the solitond. Here y=|arsh{/2)|. The requirement !
>d is a rather strong condition. It justifies the adiabatic
theory (32)—(34) at any stage of the one-soliton dynamics.
Moreover, it preserves the soliton robustness against the
impurity-induced two-soliton splitting, at least in processes
of soliton-impurity scattering55].

1
j+§)TLU’ j=0,1,2..., (35)

where T, = m/t and v = (2/u)sinhu sink(0) are the period
of lateral soliton oscillations and the longitudinal soliton ve-
locity in an ideal ladder lattice, respectively. This condition
synchronizes the longitudinal and lateral soliton motion into
the slalom motion, provided the ideal soliton trajectory is
passed through the lattice site=n;,a=2 situated just
across from the first impurity site=n;,a=1.

In real cases, the above requirements must be supple-
mented by a natural demand of the soliton narrowness in the
longitudinal direction:

1
d<§TLU”. (36)

We have verified the qualitative results of the adiabatic
theory by solving numerically the exact dynamical equations

80 o (12),(13) with the perturbed part of Hamiltoniaii4) speci-
1 fied by Eq.(30) andV,(n,+Mls)=V, n,=n;+(a—21)I,
701 M=2,Z=2. In other words, we have considered the soliton
eo—. * propagation on a two-leg ladder lattice with four zigzag-
] distributed on-site impurities.
50 o ® In our calculations both impurity types, attractive

(V<0) and repulsive\{>0), have been inspected. The lon-
40 gitudinal distance between neighboring impurities has been

20 4 Q\\\ . fixed atl =15. To make the comparison more clear, we kept
] CTTT—— the profile of ingoing solitons to be the same=3) for all
20 - T cases(see Figs. 3—B Also, the initial solitons were im-
T e planted on the same unit cefl(0)=ny=20 at a fixed dis-
10 . , . - . : T - . tancen; —ny=15 from the first impurity. The intrachain and
10 05 OYO 05 10 interchain coupling constants were kept at the valyesl

andt=1/2, respectively. Finally, we kept fixed the difference

FIG. 8. The trajectory of the soliton center of mass on a ladderS,— 61=. However, the initial ~soliton velocity
lattice with the repulsive on-site impuritie¥=+10 for k(0)  (2/u)sinhu sink(0) and the parametep, which determine
=0.7965 andp= 7/2. both the initial amplitude of lateral soliton oscillatiof29)
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and the initial transverse position of the soliton center of
massY(0)= —cos 2p, can be varied.

We have presented our numerical results using Ez.
and(25) as definitions of the longitudinal and lateral coordi-
nates of any nonlinear pulselike wave packet regardless of L e e —
the particular analytical ansa(6),(17).

All odd-numbered figure§.e., Figs. 3, 5, and)#epresent
the soliton trajectory through a ladder lattice with an attrac-
tive impurity interactionvV= — 10, while the even-numbered
figures(Figs. 4, 6, and Bare related to the repulsive impu-
rity interactionV= + 10.

Figures 3 and 4 are referred to the situation when the
synchronization conditions are satisfied. Thaj is0 [in Eq.
(35)], k(0)=0.7965, andp=0. We clearly see that the soli-
ton slaloms between the impuritiémarked by large solid FIG. 9. A phase portrait of longitudinal soliton motion on a
circles and finally it escapes from the impure segment. Conladder lattice with the modified transverse bond for the attractive
sequently the soliton is fully transmitted through the impurecasew»>0, H(* m,n)>H(0n**). wt=2, §,—6;=0, ande
segment. =ml6.

However, when the initial soliton momentum is slightly
decreasedk(0)=0.7, we observe a soliton trapping in the two absolutely different ways: either as a repulsive or as an
impure segment, irrespectively of the sign of the soliton-attractive potential depending exclusively on the purely in-
impurity interaction(Figs. 5 and & Naturally, the soliton trinsic conditions of the transverse solitonic modes. The
trapping is caused by radiation effects of low-amplitudemain features of this effect can be understood already within
waves. the framework of the trial Lagrangian formalism.

In Figs. 7 and 8 the synchronization conditions are vio- As in the previous section we substitute the one-soliton
lated by assigning the initial soliton on chain 2 instead of 1,ansatz(16),(17) into the Lagrangiar{31) with the perturba-
contrary to the case of Figs. 3 and 4. Specifically, we tookion (14) specified by Eqs(37) and (38) and once again
k(0)=0.7965 ande=m/2. In this case, the soliton ap- apply the Euler-Lagrange formalism. As a result we obtain
proaching the first impurity is trapped or reflected by it, for the dynamical equations for the collective variabtels and
an attractiveV=—10 or repulsiveV= + 10 interaction, re- b,,b* in the same Hamiltonian forn82),(33) with ,iL=0.
spectively. However, the explicit expression for the effective Hamil-

As a result, the dynamics of soliton propagation on anonjan’ has to be changed and reads as
impure ladder lattice with zigzag-distributed impurities is

shown to be rather complex and rich. Depending on the soli-

ton initial conditions and the sign of the soliton-impurity _ 2 sinhu cosk— n_Vﬂ
interaction, we can obserya) a slalom soliton motion, lead- " 2u
ing practically to the soliton transmission through the impure .
gp y 9 P X In[ 1+ sintu secku(x—ny)], (39

segment(b) soliton trapping in the impure segment, accom-
panied by the radiation of spatially extended waves, @nd
soliton reflection from the impure segment. where

V. ATTRACTIVE-REPULSIVE ALTERNATIVE IN A
SOLITON INTERACTION WITH MODIFIED
TRANSVERSE BONDS

Another sort of defect feasible for the multileg ladder lat-
tices is the local modification of transverse bonds:

Ugp(n|7lm)=—A(n—npA(m-nph,z.  (37)

Here the parametets, ; describe the changes of lateral cou-
pling parameters, within the (n,)th unit cell.

In what follows we consider only the case of proportional I bt
modification, 3 :

haB:Wtaﬁi (38)

FIG. 10. A phase portrait of longitudinal soliton motion on a
bearing in mind that it is always justified at least for the |adder lattice with the modified transverse bond for the repulsive
two-leg ladder lattice. We will see that such a kind of modi- casew7»<0,H(0,n,) <H(* m,n*x»). wt=2, 8,— §;=, and¢
fication might act on the longitudinal soliton dynamics in = /6.
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FIG. 13. The trajectory of the soliton center of mass on a ladder

lattice with the modified transverse boad=2 (w=4,t=1/2) for
k(0)=w/2, 6,— 6,=0, andp= /6.

FIG. 11. The trajectory of the soliton center of mass on a ladder
lattice with the modified transverse bomd=2 (w=4,t=1/2) for
k(0)==/12, 5,— 6;=0, andp=7/6.

M M
n= 2 E bZtagb/a _ (40) n=tcog 6;— &,)sin 2¢, (41
a=1 p=1

. . which confirms the above statement.
The quantity when being conserved appears to be of From Eq.(39) we see that except for other factors the sign

key importance in the whole problem under study. Its con- : A :
servation is possible provided the transverse coupling para ind strength of the effective longitudinal potential energy are

eterst,z are time independent. Indeed, differentiating thegi?ffeecrtrir\]/giﬂat;yethocm)‘stieoz.olizgﬁs#?ozoﬂdthtéesge?tsivzoéﬂiu R
definition (40) with respect to timer and subsequently using 9 ' 9 9

. . * n we are capable of regulating the character of the interac-
the dynamical equations fdr, andby,, Egs.(33), (39), and tion between the soliton and the modified transverse bond

(40), yields »=0. As a result the effective equations of the from attractive to repulsive and vice versa by merely variat-
longitudinal - dynamics, Egs. (32),(39), become self- ing the initial parameters of the transverse soliton distribu-
consistent, insofar as the effect of the transverse subsystemiig. We believe this effect might play a crucial role in the
taken into account integrally by means of the conserveghenomena of soliton separation or selection with respect to
quantity 7. Of course, we can safely calculageat any fixed  the effective transverse energy of the ingoing solitom,
moment of time including the initial one. Hence the value\hich happens to be determined by the effective soliton
and sign of this quantity are regulated by the initial condi-charges.

tions of the trar_13verse solitonic modes. For example, turning Similarly to the previous section the qualitative theory of
to the two-chain ladder mod@l =2, t,z=(1-3d.p5)t and  this section is certainly valid provided the imperfection-

using the parametrization b,(0)=exp(é&)cose, b (0)  induced effects of wave radiation by soliton and soliton-
=exp(d,)sing, we come to the expression

50 100 1
q ./"'\\. T .\'\\
48 \/. TT— 90 '}
4 \. T 1 L
46 - — e o
] T A 80 —
44 T —" =
] e 1 &
] T T X N
X 42 — . 704 -
] e ™y ] p—
)/ \‘l\\
40 / e 60 - -
1 — Y
38 — 1 A
l/ /l
] o 50 o "
36 4 — —
] L | e
34 - 40 4
T T T AR B B BN EREL A e e L A L A
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 06 -05 -04 03 -02 01 00 01 02 03 04 05 06
Y Y

FIG. 12. The trajectory of the soliton center of mass on a ladder FIG. 14. The trajectory of the soliton center of mass on a ladder
lattice with the the modified transverse bomdt=2 (w=4t lattice with the modified transverse bond=2 (w=4,t=1/2) for
=1/2) fork(0)=n/12, 6,— 6,=m, and o= 7/6. k(0)=x/2, 6,— 8,=m, andp=7/6.
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FIG. 15. The trajectory of the soliton center of mass on a ladder FIG. 16. The trajectory of the soliton center of mass on a ladder
lattice with the the modified transverse bomet=2 (w=4,t lattice with the modified transverse bomd=2 (w=4,t=1/2) for
=1/2) fork(0)=117/12, §,— 8,=0, andeg= /6. k(0)=117/12, 8,— &,= =, and o= /6.

induced effects of impurity-state excitation are negligible.sic restriction(42) selects only one of them, namely, with
For the modified transverse bond on a two-leg ladder latticer/(0 n,) <H(* m,n, =) [i.e., 4sinlu>—wzln(coshx)].

e.g., these eﬁeCtS are Sma” When the I’adius Of the Correrhe typ|ca| phase diagram re'ated to the case When
sponding unexcited localize@taggered localizedstate 1I' 30 n)<H(=m,n,+=) is plotted in Fig. 10, whereu
exceeds the longitudinal width of the solitah Here I’ =3, wt=2, 8,— 8,=m, and p=m/6. We clearly sed(i)
=|arsh{vt/2)|. However, unlike in the case of on-site impu-
rities, the restrictionl' "*>d cannot be relaxed since the
transverse-bond imperfection is stretched equally to both th
chains. Here it is worth noticing that in practice the restric-
tion ' "1>d can be readily replaced by the approximate but
more simple one

oscillations on the top of Hamiltonian surfase=n,, |K|
= at H(*x 7,ny= o) <E<H(xm,ny), (i) open(transport
?rajectories atH(0,n)) <E<H(=*m,n;x ), and (iii) boo-
meranglike trajectories near the line=0 at H(0,n,*)
<E<H(On,).
The described phase diagrams provide a good opportunity
for the direct numerical cross-examination of the whole
2 tanhu>|wt|. (42) qualitative soliton dynamics formulated in the framework of
the pseudocharge concept. We have inspected the exact soli-
ton dynamics with several initial conditions relating to both
Proceeding further we can find possib|e regimes of |0ngi.attractive and repUlSive interactions between the soliton and
tudinal soliton motion analyzing the family of phase trajec-modified transverse bond in the case of a two-leg ladder
tories H(k,x)=E parametrized by the effective energy latticeM=2,t,5=(1—6,5)t and obtained good agreement
(The pointsk= — 7 andk= 7 should be considered as iden- with the results of qualitative soliton dynamics.
tical.) The results of our calculations were based upon the exact
Thus when the interaction between soliton and transversdynamical equation§l2) and (13) with the HamiltonianH
imperfection is attractivevz>0 the two types of phase por- =H,+U specified by the expressio(®),(14) and(37),(38).
traits are feasible depending on the relationships betweeThey are presented in Figs. 11-16 in the form of trajectories
H(=m,ny) andH(0,n;+). However, the basic restriction of the solitonic center of mass. For comparative reasons with
(42) selects only the type withH{(=x m,n;)>H(0n,*= ) the collective variable theory we took the parametgrs
[i.e., 4sinhu>wyIn(coshu)]. The typical phase portrait =3,wt=2 (w=4, t=1/2), tj=1, and ¢=m/6 to be the
related to the case whéi( = 7,n;)>H(0n;£=) is plotted same as in Figs. 9 and 10 for all cases. For the same reasons
in Fig. 9, whereu=3, wt=2, §,— 8;=0, ande= /6. The  we keptd,— ;=0 for the odd-numbered figurése., Figs.
three different regimes of soliton motion are as folloWi$: 11, 13, and 1band §,— 8;= = for the even-numbered ones
oscillations near the bottom of the Hamiltonian surface (i.e., Figs. 12, 14, and 16Also the ingoing solitons were
=n;, k=0 at H(0,n)) <E<H(O,n;=), (ii) open (trans- implanted on the same unit ce{(0)=n,=40 at a fixed
port) trajectories atH(0,n,t)<E<H(*=,ny), and (i)  distancen,—ny=10 from the modified transverse bond.
boomerang trajectories near the lifld= = at H(=* m,n,) Now tracing the ingoing soliton momentuk{0) we see
<E<H(*=m,n;Ex), that the odd-numbered figurése., Figs. 11, 13, and 1&re
When the interaction between the soliton and transversen agreement with the phase portrait described in Fig. 9,
imperfection is repulsivevn<<0 another two types of phase while the even-numbered figuréise., Figs. 12, 14, and 16
portraits are feasible depending on whethg0,n,) is larger  are in agreement with the phase portrait described in Fig. 10.
or smaller thar(=* 7r,n,* ). However, once again the ba- Indeedk(0)= /12 is related to the open phase trajectory in

016612-9
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Fig. 9 and the soliton transmission in Fig. 11&t-6,=0 VI. CONCLUDING REMARKS
on the one hand and to the boomerang phase trajectory in

Fig. 10 and the soliton reflection in ',:'9' 128¢=6,=m on model of intramolecular excitations on a multileg ladder lat-
the other. Converselk(0)=11m/12 is related to the boo- ce supporting both exact soliton solutions and the standard
merang phase trajectory in Fig. 9 and the soliton reflection inyamiitonian formulation. We have subjected this system
Fig. 15 at,— 6, =0 on the one hand and to the open phasesyhsequently to three different perturbations and have inves-
trajectory in Fig. 10 and the soliton transmission in Fig. 16 atjgated the corresponding multimode soliton dynamics. In
d,— 6= on the other. But it is precisely what we expectedparticular we have paid attention to the uniform longitudinal
since apart from other common parameters Figs. 9, 11, 13ield, zigzag-distributed on-site impurities, and local modifi-
and 15 are characterized by the same positive progugt cation of transverse bonds and described the effects caused
=wt cos(,— 8,)sin 2p=+/3. A similar conclusion is valid by the nontrivial mixing between the lateral and longitudinal
for Figs. 10, 12, 14, and 16, however with the same negativéolitonic modes. Most of these effects are summarized in the
productw 7=wt cos(, — &,)sin 2p=—1/3. abstract.
To be sure in the theory of collective soliton dynamics we
have changed the sign of the parametefrom positive to
negative and performed exact numerical calculations once
again. As in the previous case the analytical results have This work was supported in part by the Research Com-
totally been confirmed by direct numerical integration. Wemission, University of Patras, Grant C. Caratheodory
do not present here the corresponding pictures only for th&911/98, and by the INTAS Foundation under Grant No.

In conclusion, we have developed a physically corrected
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