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Multimode soliton dynamics in perturbed ladder lattices
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We investigate the interplay between the longitudinal and lateral solitonic modes in perturbed ladder lattices
in regard to the transmission of soliton wave packet.~1! In a longitudinal uniform field the lateral and
longitudinal solitonic modes are shown to be independent. However, unlike in the unperturbed case the
dynamics of the soliton center of mass becomes confined within a finite spatial domain via the Bloch-Zener
mechanism in the longitudinal direction and due to the transverse finiteness of the ladder in the lateral one.
~2! The segment of on-site impurities causes the soliton mode-mode mixing. As a result the soliton exhibits
rather complex two- or three-dimensional dynamics accompanied by wave radiation which may give rise to
soliton trapping. Nevertheless, under some specific conditions the soliton is able to bypass even the strong
impurities slaloming between them. In particular, the slalom soliton dynamics is possible on a ladder lattice
with a segment of zigzig-distributed on-site impurities. We formulate the conditions favorable to the case and
show that their violation gives rise to either soliton trapping on or soliton reflection from the impure segment.
~3! Finally, we study the effect of the modified transverse bond on the longitudinal soliton dynamics and reveal
that it might act on the soliton as either an attractive or a repulsive potential, depending on the sign of the
transverse energy of the ingoing soliton. The effect is essentially a solitonic one and becomes strictly pro-
nounced for heavy solitons, when imperfection-induced radiation effects are exponentially suppressed. We
expect that transverse-bond imperfection could serve as a filter selecting the solitons with prescribed properties.
A similar function is feasible for zigzag-distributed on-site impurities too.

DOI: 10.1103/PhysRevE.63.016612 PACS number~s!: 45.05.1x, 05.45.Yv, 72.10.Fk
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I. INTRODUCTION

Driven by the contemporary boom in the field of optic
telecommunications@1# scientific interest in nonlinear Schro¨-
dinger and related systems is exhibiting the same ra
growth @2,3#. Except for widely known applications to th
problems of light pulse propagation in optical fibers@4,5# the
models of nonlinear Schro¨dinger type serve as a good sta
ing point for the investigation of a number of other physic
phenomena such as energy and charge transport in biolo
macromolecules@6–8#, charge-density-wave conductivity i
quasi-one-dimensional conductors@9,10#, and the dynamics
of dark solitons in Bose-Einstein condensates@11# as well as
the self-organization in nonlinear wave turbulence@12# and
envelope soliton propagation through cylindrical fibers w
a nematic liquid cladding@13#.

The most famous among the continuous one-dimensio
models are the Zakharov-Shabat@14# and Manakov@15#
ones. They are exactly integrable, allow precise Hamilton
formulations@16#, and possess well-developed perturbat
theories@17–19#. The corresponding discrete versions@20–
25# are also integrable. However, apart from a few exc
tions their Hamiltonian formulations are either nonstand
or simply unknown. For example the Ablowitz-Ladik mod
@20# has nonstandard Poisson brackets@26,16#. As a result an
application of its perturbation theory@27# to nonintegrable
nonlinear Schro¨dinger models requires some physically m
tivated precautions@28#. Namely we always have to trans
form either the Ablowitz-Ladik model or the model und
study to the form prescribing the same Poisson bracket
1063-651X/2000/63~1!/016612~11!/$15.00 63 0166
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both of them@28#. Only in this case will the amplitudes o
both models be of the same meaning and will we manag
obtain the same analytical results either by means of per
bation theory@28# or within the framework of collective vari-
able ~trial Lagrangian! approach@28–31#.

In this paper we will follow such kinds of reasoning an
investigate the peculiarities of the one-soliton dynamics
intramolecular excitations on multileg~in particular, two-leg!
ladder lattices subjected to an external linear potential~Sec.
III ! or one of two types of imperfections typical exclusive
of the multileg ladder lattices~Secs. IV and V!. We will
show, e.g., that on a two-leg ladder lattice the soliton dyna
ics actually becomes the two-dimensional one and supp
some new and even unexpected effects forbidden princip
for one-chain lattices.

In order to avoid unnecessary complications inspired
the Peierls-Nabarro potential relief@28#, we invoke here the
exactly integrable model of nonlinear intramolecular exci
tions on a multileg ladder lattice@32–34#:

i q̇a~n!1 (
b51

M

tabqb~n!1@qa~n11!1qa~n21!#

3F11 (
b51

M

qb~n!r b~n!G
5 (

b51

M

@qa~n21!qb~n!2qa~n!qb~n21!#r b~n!, ~1!
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2 i ṙ a~n!1 (
b51

M

r b~n!tba1@r a~n11!1r a~n21!#

3F11 (
b51

M

r b~n!qb~n!G
5 (

b51

M

@r a~n11!r b~n!2r a~n!r b~n11!#qb~n!, ~2!

appropriately correcting its on-site amplitudesqa(n) and
r a(n) and omitting simultaneously some irrelevant and u
physical terms. Here the overdot stands for the deriva
with respect to the dimensionless timet, and the longitudinal
numerical coordinaten runs from minus to plus infinity,
while the transverse onea runs from 1 to the number o
chains~legs!, M. The parameterstab describe the interchain
linear coupling, while the constants of the intrachain line
coupling,t i , are normalized to unity.

By the way, throughout the paper we will deal with d
mensionless quantities exclusively. As a consequence q
tities labeling the axes of the illustrative figures~Figs. 1–16!
are assumed to be dimensionless too.

II. UNPERTURBED PHYSICALLY CORRECTED MODEL

The model ~1!,~2! conserves the quantity(n52`
` ln@1

1(a51
M qa(n)ra(n)#. However, in terms ofqa(n) andr a(n) it

scarcely resembles the standard expression for the total n
ber of excitations. For this reason we reformulate the origi
model ~1!,~2! in terms of corrected amplitudes

Qa~n!5qa~n!/E~n!, ~3!

Ra~n!5r a~n!/E~n!, ~4!

and obtain

iQ̇a~n!2]H0 /]Ra~n!52E~n11!dE~n!/dr~n!

3 (
b51

M

@Qa~n!Qb~n11!2Qa~n11!Qb~n!#Rb~n!

12E~n21!dE~n!/dr~n!

3 (
b51

M

@Qa~n!Qb~n21!2Qa~n21!Qb~n!#Rb~n!

1E~n21!E~n!

3 (
b51

M

@Qa~n21!Qb~n!2Qa~n!Qb~n21!#Rb~n!, ~5!

2 iṘa~n!2]H0 /]Qa~n!52E~n11!dE~n!/dr~n!

3 (
b51

M

@Ra~n!Rb~n11!2Ra~n11!Rb~n!#Qb~n!

12E~n21!dE~n!/dr~n!

3 (
b51

M

@Ra~n!Rb~n21!2Ra~n21!Rb~n!#Qb~n!

1E~n11!E~n!

3 (
b51

M

@Ra~n11!Rb~n!2Ra~n!Rb~n11!#Qb~n!. ~6!
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Here

r~n!5 (
b51

M

Rb~n!Qb~n!, ~7!

E~n!5Aexp@r~n!#21

r~n!
, ~8!

H052 (
a51

M

(
b51

M

(
n52`

`

Ra~n!tabQb~n!

2 (
a51

M

(
n52`

`

E~n11!E~n!

3@Qa~n11!Ra~n!1Ra~n11!Qa~n!#. ~9!

The resulting model ~5!–~9! conserves the quantity
(n52`

` r(n); however, in view of the right-hand-side term
in Eqs. ~5! and ~6! it does not permit either the reduction
Ra(n)56Qa* (n) or any Hamiltonian formulation.

We overcome both of these difficulties simply by omittin
the just-mentioned right-hand-side terms. As a result
come to the model

iQ̇a~n!5]H0 /]Ra~n!, ~10!

2 iṘa~n!5]H0 /]Qa~n!. ~11!

Under any of the reductionsRa(n)5Qa* (n) or Ra(n)
52Qa* (n) the model~7!–~11! becomes a Hamiltonian on
with the Hamiltonian given byH0 or 2H0, respectively. Its
Poisson brackets are standard, whereas the amplit
Qa* (n), Qa(n) acquire the meaning of probability ampl
tudes relating to the siten,a. The total number of excitations
(a51

M (n52`
` Qa* (n)Qa(n) is conserved as expected.

We call the model~7!–~11! the physically corrected
model of nonlinear intramolecular excitations on a multil
ladder lattice. Like both of its predecessors~1!, ~2!, and~5!–
~9! it sustains the one-soliton solution as well as the mu
soliton solutions of factorized typeQa(n)5baQ(n). This
remarkable fact allows us to use the model~7!–~11! as the
main ~regular! part of realistic physical models dealing wit
soliton propagation in imperfect ladder lattices as well as
ladder lattices subjected to external fields.

In this paper we restrict ourselves to the reducti
Ra(n)5Qa* (n) corresponding to an attractive nonlineari
and bright soliton solutions.

III. LISSAJOU’S SOLITON DYNAMICS ON A LADDER
LATTICE IN THE PRESENCE OF A SPATIALLY

LINEAR POTENTIAL

The lateral degrees of freedom unleashed by the in
chain linear couplings (tabÞ0,aÞb) make the soliton dy-
namics on multileg ladder lattices substantially richer
compared with that of one-leg ladder lattices@27,28,35–37#.
This statement is true even for the simplest case of reg
multileg ladder models@32–34#.
2-2
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For this reason it is interesting to study the soliton dyna
ics in a more general case:

iQ̇a~n!5]H/]Ra~n!, ~12!

2 iṘa~n!5]H/]Qa~n!, ~13!

when the model HamiltonianH5H01U consists of regular,
Eq. ~9!, and perturbed,

U5 (
a51

M

(
b51

M

(
n52`

`

(
m52`

`

Ra~n!Uab~nutum!Qb~m!,

~14!

parts. Here the potential matrixUab(nutum)[Uba* (mutun)
will be specified by the lattice imperfections or the extern
fields, whereasRa(n)[Qa* (n).

We will use the exact dynamical equations~12! and ~13!
mainly for the numerical integration. However, when the p
tential U is spatially linear,

Uab~nutum!52dabdnmmE~t!, ~15!

the model~12!–~14! permits at least some particular exa
solutions. For example, seeking the solution in the form o
one-soliton ansatz

Qa~n!5baAln@11sinh2m sech2m~n2x!# exp~ ikn1 iu!,
~16!

ba[aaYA(
b51

M

ab* ab, ~17!

we come to the set of ordinary differential equations

ṁ50, ~18!

ẋ52
sinhm

m
sink, ~19!

k̇5E~t!, ~20!

ḃa5 i (
b51

M

tabbb , ~21!

ḃa* 52 i (
b51

M

bb* tba , ~22!

u̇52 coshm cosk, ~23!

which can be formally integrated at any temporal modulat
of the uniform fieldE(t).

The equations of motion~19!,~20! and ~21!,~22! are
Hamiltonian with respect to two pairs of canonically conj
gated collective variablesx,k and ba ,ba* and describe, re-
spectively, the longitudinal and lateral dynamics of the so
ton as a whole.
01661
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When the lattice is the two-leg one,M52, tab5(1
2dab)t, this dynamics can be readily traced in terms
longitudinal

X5

(
n52`

`

(
a51

2

nRa~n!Qa~n!

(
n52`

`

(
a51

2

Ra~n!Qa~n!

~24!

and lateral

Y5

(
n52`

`

(
a51

2

~21!aRa~n!Qa~n!

(
n52`

`

(
a51

2

Ra~n!Qa~n!

~25!

coordinates of the nonlinear wave packet. The situation
comes especially simple provided the fieldE(t) is constant,
E(t)5E. Indeed, manipulating the dynamical equatio
~19!–~22! with the use ofX and Y calculated on the one
soliton ansatz~16!,~17! we obtain

X5
2 sinhm

mE $cosk~0!2cos@Et1k~0!#%1x~0!, ~26!

Y52@cos 2w cos~2tt!1sin~d12d2!sin 2w sin~2tt!#,
~27!

where the identityX[x has been taken into account. Th
initial conditions for b1 and b2 were parametrized as fol
lows: b1(0)5exp(id1)cosw, b2(0)5exp(id2)sinw.

Thus the solitonic center of mass exhibits two indepe
dent mutually orthogonal motions along and across the
der lattice with the cyclic frequencies given byv i5E and
v'52t, respectively. The former is nothing but the we
known Bloch-Zener oscillations@38,39# caused by the inter-
play between the linear potential and the spatial discreten
of the lattice, while the latter is the beating oscillations@32–
34# originating from the interchain linear couplingt.

The Bloch oscillations are experimentally observable
semiconductor superlattices~see, e.g.,@40# and references
therein!. They also have been intensively studied within t
framework of different one-chain nonlinear Schro¨dinger
models @41–45#. When related to the arrays of optica
waveguides, the effects, generally analogous to those
Bloch oscillations and dynamical localization, are also un
intense experimental@46# and theoretical@47# study.

The amplitudes of Bloch (Ai) and beating (A') oscilla-
tions are evidently given by

Ai5
2sinhm

mE , ~28!

A'5Acos22w1sin2~d12d2!sin22w. ~29!

At EÞ0 and cos 2wÞ0 or/and sin(d12d2)Þ0 both of them
are finite and nonzero. As a result the parametrically defi
trajectory of the soliton center of mass~26!,~27! becomes
2-3



-

o
by

b
ca

m
ra

re

al
u-

on
e

ol
th

wo-
ss-
lat-
is

-

he

a
l

ity

ton
ome

leg

cs
ch
e-

re-

de

de

OLEKSIY O. VAKHNENKO AND MICHAEL J. VELGAKIS PHYSICAL REVIEW E 63 016612
confined dynamically within a finite rectangle of length 2Ai
and width 2A' . When the periods of longitudinalTi
52p/E and lateralT'5p/t oscillations become commensu
rate,T' /Ti5p/q ~wherep and q are the natural numbers!,
the soliton c.m. trajectory has to be closed into some
Lissajou’s curves~see, e.g., the classical monograph
Hemholtz@48#!.

Figures 1 and 2 illustrate typical Lissajou’s curves o
tained by direct numerical integration of the exact dynami
equations~12!–~15! with the use of definitions~24! and~25!
for the coordinates of the solitonic center of mass. Para
eters irrelevant to the frequencies of longitudinal and late
oscillations were kept the same for both of these pictu
Namely, we choosek(0)5p/6, x(0)550, m53, w5p/6,
and d22d15p. However, the strength of the longitudin
uniform fieldE and the strength of the interchain linear co
pling t were taken to be different. In particularE51,t51/2
for Fig. 1 andE53, t51 for Fig. 2. Hence the ratioT' /Ti
is equal to 1 and 3/2 for Fig. 1 and Fig. 2 respectively.

We would like to stress that the trajectories of the solit
center of mass have been calculated with great accuracy
erywhere throughout the paper. The reason for the interp
tion of trajectories by straight segments is only to mark

FIG. 1. The trajectory of the soliton center of mass on a lad
lattice in longitudinal uniform fieldE51 at t51/2.

FIG. 2. The trajectory of the soliton center of mass on a lad
lattice in longitudinal uniform fieldE53 at t51.
01661
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points equally distanced in time.

IV. TWO-DIMENSIONAL SOLITON DYNAMICS ON A
LADDER LATTICE WITH ZIGZAG-DISTRIBUTED

IMPURITIES

In this section we demonstrate the advantages of the t
dimensional soliton dynamics on a ladder lattice in bypa
ing strong on-site impurities as compared to one-chain
tices @36,42,49#, where the two-dimensional dynamics
forbidden.

We take the impurity potential matrix to be in the form

Uab~nutum!5dabdnmVb~m! (
s50

Z21

D~m2nb2Mls!,

~30!

whereVa(na1Mls) is the energy shift of the impurity mol
ecule located on theath chain within the (na1Mls)th unit
cell andna is the position of the first impurity on theath
chain. The integerMl measures the distance between t
impurities belonging to the same chain, andZ is the total
number of impurities on each chain, whereasD(n2m) is the
Kronecker delta functiondnm . In a particular case,na5ni
1(a21)l , a51,2, . . . ,M , for M52, the impurity matrix
~30! corresponds to the zigzag distribution of impurities on
two-leg ladder lattice, while forM53 it describes the spira
distribution of impurities on a three-leg ladder lattice.

We consider in detail only the case of zigzag impur
distribution on a two-leg ladder lattice (n15ni ,n25ni1 l ,
M52) and we examine some different scenarios of soli
propagation through the impure segment. Nevertheless, s
initial formulas, in particular Eqs.~31!–~34!, will be written
in a general form to be equally applicable to the three-
ladder lattice with a spiral distribution of impurities.

We start with a qualitative estimation of soliton dynami
within the framework of the collective coordinate approa
@28–31# in the lowest approximation. Substituting the on
soliton ansatz~16!,~17! into the model Lagrangian

L5
i

2 (
a51

M

(
n52`

`

@Ra~n!Q̇a~n!2Ṙa~n!Qa~n!#2H

~31!

and using the standard Euler-Lagrange formalism with
spect to the collective variables (x,k,aa ,aa* ,m,u), we obtain
the following set of dynamical equations:

ẋ5]H/]k, k̇52]H/]x, ~32!

i ḃa5]H/]ba* , 2 i ḃa* 5]H/]ba . ~33!

Here

r

r

2-4
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H52
2 sinhm

m
cosk

2 (
a51

M

(
b51

M

ba* tabbb1
V

2m (
a51

M

ba* ba

3 (
s51

Z21

ln$11sinh2 m sech2 m@x2ni~a21!l 2Mls#%

~34!

is an effective Hamiltonian with the pairsx,k andba ,ba* to
be canonically conjugated variables, where for simplificat
reasons we have considered all impurities to be of the s
strength,Va@ni1(a21)l 1Mls#[V. The parameterm is
understood to be positive and time independent,ṁ50. Its
relation to the longitudinal width of the solitond is estimated
asd;cothm.

As in the case of the linear external potential the variab
x andk have a sense of the mean longitudinal coordinate

FIG. 3. The trajectory of the soliton center of mass on a lad
lattice with the attractive on-site impuritiesV5210 for k(0)
50.7965 andw50.

FIG. 4. The trajectory of the soliton center of mass on a lad
lattice with the repulsive on-site impuritiesV5110 for k(0)
50.7965 andw50.
01661
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the soliton pattern and corresponding momentum, wher
the variablesba and ba* reproduce the temporal redistribu
tion of the soliton density along the lateral direction.

Of course we also could take into account the princi
possibility of the longitudinal soliton breathing multiplyin
the trial soliton function ~16!,~17! by the factor
An/mexp@icf(n2x)# with f (2y)5 f (y). However, unlike in
continuous models@50,51# or discrete models dealing with
immobile pulses@52#, in our problem such a kind of gener
alization seems to be of minor practical validity since t
corresponding trial Lagrangian can scarcely be calcula
with an acceptable accuracy.

In a regular ladder lattice (V50) with tab5(12dab)t
the equations of the collective dynamics~32!–~34! are exact.
As a result the lateral~25! and longitudinal~24! mean coor-
dinates of the soliton pattern are governed by the equatio
the harmonic oscillator,Ÿ1(2t)2Y50, and the equation o
uniform motion, Ẍ50, respectively. These equations giv
rise to a sinusoidal trajectory for the soliton center of ma

r

r

FIG. 5. The trajectory of the soliton center of mass on a lad
lattice with the attractive on-site impuritiesV5210 for k(0)
50.7 andw50.

FIG. 6. The trajectory of the soliton center of mass on a lad
lattice with the repulsive on-site impuritiesV5110 for k(0)50.7
andw50.
2-5
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The amplitude of the sinusoidal trajectory coincides with
amplitude of the beating oscillationsA' given by Eq.~29!
and can vary from zero to unity, depending on the init
conditions of the transverse solitonic distributionb1(0)
5exp(id1)cosw, b2(0)5exp(id2)sinw.

In an irregular ladder lattice (VÞ0) the equations of the
collective dynamics~32!–~34! are approximate. They ar
certainly valid when the impurity-induced effects of wa
radiation@53# and the soliton-induced effects of the impuri
excitation @54# are small. For an isolated impurityZ51,
Va(na1Mls)5Vda1, these effects are suppressed expon
tially, when the radius of the unexcited localized~staggered
localized! impurity state 1/g exceeds the longitudinal width
of the solitond. Hereg5uarsh(V/2)u. The requirementg21

.d is a rather strong condition. It justifies the adiaba
theory ~32!–~34! at any stage of the one-soliton dynamic
Moreover, it preserves the soliton robustness against
impurity-induced two-soliton splitting, at least in process
of soliton-impurity scattering@55#.

FIG. 7. The trajectory of the soliton center of mass on a lad
lattice with the attractive on-site impuritiesV5210 for k(0)
50.7965 andw5p/2.

FIG. 8. The trajectory of the soliton center of mass on a lad
lattice with the repulsive on-site impuritiesV5110 for k(0)
50.7965 andw5p/2.
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In one-chain nonlinear systems the restrictiong21.d is a
decisive condition although it undoubtedly could be ignor
at the early and some final stages of the soliton-impu
scattering, when the distance between soliton and impu
exceeds substantially the soliton width.

On the contrary, in two-chain ladder nonlinear system
the restrictiong21.d can be relaxed or even neglected
cases when the soliton and impurity are located on oppo
chains, irrespectively to the longitudinal distance betwe
them. In particular, according to the equations of collect
dynamics~32!–~34! we can expect a very weak disturban
of the sinusoidal soliton trajectory with unity amplitude by
finite segment of strong impuritiesg21,d zigzag distributed
in antiphase order to the ideal sinusoidal soliton trajecto
As a consequence, the soliton is bypassed in a slalom mo
between the obstacles, resulting in practically full solit
transmission through the impure segment.

More precisely, under the assumption of zero longitudi
solitonic width, the basic condition supporting the solito
slalom reads as

l 5S j 1
1

2DT'v i , j 50,1,2, . . . , ~35!

whereT'5p/t and v i5(2/m)sinhm sink(0) are the period
of lateral soliton oscillations and the longitudinal soliton v
locity in an ideal ladder lattice, respectively. This conditio
synchronizes the longitudinal and lateral soliton motion in
the slalom motion, provided the ideal soliton trajectory
passed through the lattice siten5ni ,a52 situated just
across from the first impurity siten5ni ,a51.

In real cases, the above requirements must be sup
mented by a natural demand of the soliton narrowness in
longitudinal direction:

d!
1

2
T'v i . ~36!

We have verified the qualitative results of the adiaba
theory by solving numerically the exact dynamical equatio
~12!,~13! with the perturbed part of Hamiltonian~14! speci-
fied by Eq. ~30! and Va(na1Mls)[V, na5ni1(a21)l ,
M52, Z52. In other words, we have considered the solit
propagation on a two-leg ladder lattice with four zigza
distributed on-site impurities.

In our calculations both impurity types, attractiv
(V,0) and repulsive (V.0), have been inspected. The lo
gitudinal distance between neighboring impurities has b
fixed at l 515. To make the comparison more clear, we ke
the profile of ingoing solitons to be the same (m53) for all
cases~see Figs. 3–8!. Also, the initial solitons were im-
planted on the same unit cellX(0)5n0[20 at a fixed dis-
tanceni2n0515 from the first impurity. The intrachain an
interchain coupling constants were kept at the valuest i51
andt51/2, respectively. Finally, we kept fixed the differenc
d22d15p. However, the initial soliton velocity
(2/m)sinhm sink(0) and the parameterw, which determine
both the initial amplitude of lateral soliton oscillations~29!

r

r

2-6
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and the initial transverse position of the soliton center
massY(0)52cos 2w, can be varied.

We have presented our numerical results using Eqs.~24!
and~25! as definitions of the longitudinal and lateral coord
nates of any nonlinear pulselike wave packet regardles
the particular analytical ansatz~16!,~17!.

All odd-numbered figures~i.e., Figs. 3, 5, and 7! represent
the soliton trajectory through a ladder lattice with an attr
tive impurity interactionV5210, while the even-numbere
figures~Figs. 4, 6, and 8! are related to the repulsive impu
rity interactionV5110.

Figures 3 and 4 are referred to the situation when
synchronization conditions are satisfied. That is,j 50 @in Eq.
~35!#, k(0)50.7965, andw50. We clearly see that the sol
ton slaloms between the impurities~marked by large solid
circles! and finally it escapes from the impure segment. C
sequently the soliton is fully transmitted through the impu
segment.

However, when the initial soliton momentum is slight
decreased,k(0)50.7, we observe a soliton trapping in th
impure segment, irrespectively of the sign of the solito
impurity interaction~Figs. 5 and 6!. Naturally, the soliton
trapping is caused by radiation effects of low-amplitu
waves.

In Figs. 7 and 8 the synchronization conditions are v
lated by assigning the initial soliton on chain 2 instead of
contrary to the case of Figs. 3 and 4. Specifically, we to
k(0)50.7965 andw5p/2. In this case, the soliton ap
proaching the first impurity is trapped or reflected by it, f
an attractiveV5210 or repulsiveV5110 interaction, re-
spectively.

As a result, the dynamics of soliton propagation on
impure ladder lattice with zigzag-distributed impurities
shown to be rather complex and rich. Depending on the s
ton initial conditions and the sign of the soliton-impuri
interaction, we can observe~a! a slalom soliton motion, lead
ing practically to the soliton transmission through the impu
segment,~b! soliton trapping in the impure segment, acco
panied by the radiation of spatially extended waves, and~c!
soliton reflection from the impure segment.

V. ATTRACTIVE-REPULSIVE ALTERNATIVE IN A
SOLITON INTERACTION WITH MODIFIED

TRANSVERSE BONDS

Another sort of defect feasible for the multileg ladder la
tices is the local modification of transverse bonds:

Uab~nutum!52D~n2nt!D~m2nt!hab . ~37!

Here the parametershab describe the changes of lateral co
pling parameterstab within the (nt)th unit cell.

In what follows we consider only the case of proportion
modification,

hab5wtab , ~38!

bearing in mind that it is always justified at least for t
two-leg ladder lattice. We will see that such a kind of mo
fication might act on the longitudinal soliton dynamics
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two absolutely different ways: either as a repulsive or as
attractive potential depending exclusively on the purely
trinsic conditions of the transverse solitonic modes. T
main features of this effect can be understood already wi
the framework of the trial Lagrangian formalism.

As in the previous section we substitute the one-soli
ansatz~16!,~17! into the Lagrangian~31! with the perturba-
tion ~14! specified by Eqs.~37! and ~38! and once again
apply the Euler-Lagrange formalism. As a result we obt
the dynamical equations for the collective variablesx,k and
ba ,ba* in the same Hamiltonian form~32!,~33! with ṁ50.
However, the explicit expression for the effective Ham
tonianH has to be changed and reads as

H52
2 sinhm

m
cosk2h2

wh

2m

3 ln@11sinh2m sech2m~x2nt!#, ~39!

where

FIG. 9. A phase portrait of longitudinal soliton motion on
ladder lattice with the modified transverse bond for the attrac
casewh.0, H(6p,nt).H(0,nt6`). wt52, d22d150, andw
5p/6.

FIG. 10. A phase portrait of longitudinal soliton motion on
ladder lattice with the modified transverse bond for the repuls
casewh,0,H(0,nt),H(6p,nt6`). wt52, d22d15p, andw
5p/6.
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h[ (
a51

M

(
b51

M

ba* tabbb . ~40!

The quantityh when being conserved appears to be
key importance in the whole problem under study. Its co
servation is possible provided the transverse coupling par
eters tab are time independent. Indeed, differentiating t
definition ~40! with respect to timet and subsequently usin
the dynamical equations forba andba* , Eqs.~33!, ~39!, and

~40!, yields ḣ[0. As a result the effective equations of th
longitudinal dynamics, Eqs. ~32!,~39!, become self-
consistent, insofar as the effect of the transverse subsyste
taken into account integrally by means of the conser
quantityh. Of course, we can safely calculateh at any fixed
moment of time including the initial one. Hence the val
and sign of this quantity are regulated by the initial con
tions of the transverse solitonic modes. For example, turn
to the two-chain ladder modelM52, tab5(12dab)t and
using the parametrization b1(0)5exp(id1)cosw, b2(0)
5exp(id2)sinw, we come to the expression

FIG. 11. The trajectory of the soliton center of mass on a lad
lattice with the modified transverse bondwt52 (w54,t51/2) for
k(0)5p/12, d22d150, andw5p/6.

FIG. 12. The trajectory of the soliton center of mass on a lad
lattice with the the modified transverse bondwt52 (w54,t
51/2) for k(0)5p/12, d22d15p, andw5p/6.
01661
f
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h5t cos~d12d2!sin 2w, ~41!

which confirms the above statement.
From Eq.~39! we see that except for other factors the si

and strength of the effective longitudinal potential energy
determined by those ofh. Thus we could treath as some
effective charge of the soliton. Through the effective cha
h we are capable of regulating the character of the inter
tion between the soliton and the modified transverse b
from attractive to repulsive and vice versa by merely vari
ing the initial parameters of the transverse soliton distrib
tion. We believe this effect might play a crucial role in th
phenomena of soliton separation or selection with respec
the effective transverse energy of the ingoing soliton2h,
which happens to be determined by the effective soli
chargeh.

Similarly to the previous section the qualitative theory
this section is certainly valid provided the imperfectio
induced effects of wave radiation by soliton and solito

r

r

FIG. 13. The trajectory of the soliton center of mass on a lad
lattice with the modified transverse bondwt52 (w54,t51/2) for
k(0)5p/2, d22d150, andw5p/6.

FIG. 14. The trajectory of the soliton center of mass on a lad
lattice with the modified transverse bondwt52 (w54,t51/2) for
k(0)5p/2, d22d15p, andw5p/6.
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induced effects of impurity-state excitation are negligib
For the modified transverse bond on a two-leg ladder latt
e.g., these effects are small when the radius of the co
sponding unexcited localized~staggered localized! state 1/G
exceeds the longitudinal width of the solitond. Here G
5uarsh(wt/2)u. However, unlike in the case of on-site imp
rities, the restrictionG21.d cannot be relaxed since th
transverse-bond imperfection is stretched equally to both
chains. Here it is worth noticing that in practice the restr
tion G21.d can be readily replaced by the approximate b
more simple one

2 tanhm.uwtu. ~42!

Proceeding further we can find possible regimes of lon
tudinal soliton motion analyzing the family of phase traje
tories H(k,x)5E parametrized by the effective energyE.
~The pointsk52p andk5p should be considered as ide
tical.!

Thus when the interaction between soliton and transve
imperfection is attractivewh.0 the two types of phase por
traits are feasible depending on the relationships betw
H(6p,nt) andH(0,nt6`). However, the basic restrictio
~42! selects only the type withH(6p,nt).H(0,nt6`)
@i.e., 4 sinhm.wh ln(coshm)#. The typical phase portrai
related to the case whenH(6p,nt).H(0,nt6`) is plotted
in Fig. 9, wherem53, wt52, d22d150, andw5p/6. The
three different regimes of soliton motion are as follows:~i!
oscillations near the bottom of the Hamiltonian surfacex
5nt , k50 at H(0,nt),E,H(0,nt6`), ~ii ! open ~trans-
port! trajectories atH(0,nt6`),E,H(6p,nt), and ~iii !
boomerang trajectories near the lineuku5p at H(6p,nt)
,E,H(6p,nt6`).

When the interaction between the soliton and transve
imperfection is repulsivewh,0 another two types of phas
portraits are feasible depending on whetherH(0,nt) is larger
or smaller thanH(6p,nt6`). However, once again the ba

FIG. 15. The trajectory of the soliton center of mass on a lad
lattice with the the modified transverse bondwt52 (w54,t
51/2) for k(0)511p/12, d22d150, andw5p/6.
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sic restriction~42! selects only one of them, namely, wit
H(0,nt),H(6p,nt6`) @i.e., 4sinhm.2wh ln(coshm)#.
The typical phase diagram related to the case w
H(0,nt),H(6p,nt6`) is plotted in Fig. 10, wherem
53, wt52, d22d15p, and w5p/6. We clearly see~i!
oscillations on the top of Hamiltonian surfacex5nt , uku
5p at H(6p,nt6`),E,H(6p,nt), ~ii ! open~transport!
trajectories atH(0,nt),E,H(6p,nt6`), and ~iii ! boo-
meranglike trajectories near the linek50 at H(0,nt6`)
,E,H(0,nt).

The described phase diagrams provide a good opportu
for the direct numerical cross-examination of the who
qualitative soliton dynamics formulated in the framework
the pseudocharge concept. We have inspected the exact
ton dynamics with several initial conditions relating to bo
attractive and repulsive interactions between the soliton
modified transverse bond in the case of a two-leg lad
lattice M52, tab5(12dab)t and obtained good agreeme
with the results of qualitative soliton dynamics.

The results of our calculations were based upon the e
dynamical equations~12! and ~13! with the HamiltonianH
5H01U specified by the expressions~9!,~14! and~37!,~38!.
They are presented in Figs. 11–16 in the form of trajector
of the solitonic center of mass. For comparative reasons w
the collective variable theory we took the parametersm
53,wt52 (w54, t51/2), t i51, and w5p/6 to be the
same as in Figs. 9 and 10 for all cases. For the same rea
we keptd22d150 for the odd-numbered figures~i.e., Figs.
11, 13, and 15! andd22d15p for the even-numbered one
~i.e., Figs. 12, 14, and 16!. Also the ingoing solitons were
implanted on the same unit cellX(0)5n0[40 at a fixed
distancent2n0510 from the modified transverse bond.

Now tracing the ingoing soliton momentumk(0) we see
that the odd-numbered figures~i.e., Figs. 11, 13, and 15! are
in agreement with the phase portrait described in Fig.
while the even-numbered figures~i.e., Figs. 12, 14, and 16!
are in agreement with the phase portrait described in Fig.
Indeedk(0)5p/12 is related to the open phase trajectory

r FIG. 16. The trajectory of the soliton center of mass on a lad
lattice with the modified transverse bondwt52 (w54,t51/2) for
k(0)511p/12, d22d15p, andw5p/6.
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Fig. 9 and the soliton transmission in Fig. 11 atd22d150
on the one hand and to the boomerang phase trajector
Fig. 10 and the soliton reflection in Fig. 12 atd22d15p on
the other. Converselyk(0)511p/12 is related to the boo
merang phase trajectory in Fig. 9 and the soliton reflection
Fig. 15 atd22d150 on the one hand and to the open pha
trajectory in Fig. 10 and the soliton transmission in Fig. 16
d22d15p on the other. But it is precisely what we expect
since apart from other common parameters Figs. 9, 11,
and 15 are characterized by the same positive productwh
[wt cos(d12d2)sin 2w5A3. A similar conclusion is valid
for Figs. 10, 12, 14, and 16, however with the same nega
productwh[wt cos(d12d2)sin 2w52A3.

To be sure in the theory of collective soliton dynamics
have changed the sign of the parameterw from positive to
negative and performed exact numerical calculations o
again. As in the previous case the analytical results h
totally been confirmed by direct numerical integration. W
do not present here the corresponding pictures only for
sake of brevity.
i-
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VI. CONCLUDING REMARKS

In conclusion, we have developed a physically correc
model of intramolecular excitations on a multileg ladder l
tice supporting both exact soliton solutions and the stand
Hamiltonian formulation. We have subjected this syste
subsequently to three different perturbations and have in
tigated the corresponding multimode soliton dynamics.
particular we have paid attention to the uniform longitudin
field, zigzag-distributed on-site impurities, and local mod
cation of transverse bonds and described the effects ca
by the nontrivial mixing between the lateral and longitudin
solitonic modes. Most of these effects are summarized in
abstract.
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