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Analytical solution of the polarized photon transport equation in an infinite uniform medium using
cumulant expansion
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An analytical solution for time-dependent polarized photon transport equation in an infinite uniform isotro-
pic medium is studied using a circular representation of the polarized light and expansion in the generalized
spherical functions. We extend our cumulant approach for solving the scalar~unpolarized! photon transport
equation to the vector~polarized! case. As before, an exact angular distribution is obtained and a cumulant
expansion is derived for the polarized photon distribution function. By a cutoff at the second cumulant order,
a Gaussian analytical approximate expression of the polarized photon spatial distribution is obtained as a
function of the direction of light and time, whose average center position and half-width are always exact. The
central limit theorem claims that this spatial distribution approaches accuracy in detail when the number of
collisions or time becomes large. The analytical expression of cumulants up to an arbitrary high order is also
derived, which can be used for calculating a more accurate polarized photon distribution through a numerical
Fourier transform. Contrary to what occurs in other approximation techniques, truncation of the cumulant
expansion at ordern is exact at that order and cumulants up to and including ordern remain unchanged when
higher orders are added, at least as applied in our photon transport equation.
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I. INTRODUCTION

Study of the polarized photon transport has lasted
many years since the polarized photon transport equa
~PPTE! was formulated by Gans@1# and by Chandrasekha
@2#. Recently, polarization analysis of light migrating in
multiple-scattering medium has been applied to broad fie
such as diagnostics of biological tissues@3–5#, atmosphere
monitoring@6#, and communications. One goal is to devel
optical tomography with polarization analysis to enhan
ability in image reconstruction of objects inside scatter
media. Because of the depolarization effect in a highly sc
tering medium, scattered photons maintaining polarizat
are those near ballistic and snake like, which suffer less m
tiple scattering. Therefore, a tomographic approach using
larized photons will automatically exclude multiple-scatter
diffusive photons which blur images. In order to build
proper forward model for tomography using a polarizati
analysis, a theoretical study of the propagation of polari
light in scattering media becomes practically important.

In polarized photon transport, the intensity of polariz
light scattered from a scatterer along a certain direction
determined by many scattering processes at different sca
ing planes consisting in a ray scattered from the scatterer
rays incident to the scatterer from different directions.
order to properly describe this process, Kusˇčer and Ribaricˇ
@7# employed a circular representation of the polarized co
ponents of light and an expansion by generalized sphe
functions @8# ~or rotation matrices in angular momentu
theory @9,10#!. The phase matrix, hence, can be analytica
expressed by the angular parameters of the incident and
tered rays in fixed coordinates. Based on this formalis
Herman and Lenoble@11# studied the asymptotic behavior o
1063-651X/2000/63~1!/016606~10!/$15.00 63 0166
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the polarized radiation field at great depths. Domke@12# con-
structed a system of singular eigenfunctions of the PPTE,
which an integral equation and then a recurrence rela
were derived. However, to our knowledge, an explicit an
lytical expression of the solution of the PPTE has not be
obtained. Numerical methods, mainly, Monte Carlo simu
tions, are the main tools in recent theoretical investigatio
of light polarization in multiple-scattering media@5,13#.

In this paper we derive an analytical solution of the tim
dependent PPTE in an infinite uniform medium. Based
our results, inverse image reconstruction of objects insid
scattering medium using polarized light can be develop
The 434 phase matrix is assumed to depend only
the scattering angleQ in the scattering plane:P(s,s0)
5P(s•s0)5P(cosQ). Under this assumption an arbitrar
phase matrix can be handled. By use of the circular rep
sentation of polarized light and an expansion in the gene
ized spherical function@7,9#, we extend our approach in
solving the scalar~unpolarized! photon transport equation
@14,15# using a cumulant expansion to the vector~polarized!
case. Terminating at second order, an approximate Gaus
polarized photon spatial distribution is obtained for a giv
light directions as a function of timet. Our solution for the
distribution in angle is exact, as are the first and seco
cumulants in space at any angle and time, which guaran
the correct central position and the correct half-width of t
spatial distribution. After many scattering events have tak
place, the central limit theorem claims that the spatial Gau
ian distribution calculated will become accurate in deta
since all cumulants higher than the second approach s
values relative to the appropriate power of the second cu
lant. At early times, the spatial distribution is narrow: henc
a distribution function, the mean position and half-width
which are exact, may provide an adequate description o
©2000 The American Physical Society06-1
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polarized beam in the presence of noise and finite instrum
resolution. An analytical expression of cumulants up to
arbitrary high order is also derived. Using these higher-or
cumulants, through a numerical Fourier transform, a m
accurate solution of the PPTE can be calculated.

The paper is organized as follows. Section II provides
preliminary formula of the PPTE, the circular representat
of polarized light and the generalized spherical functio
which have been published in previous literature. In Sec.
an exact solution of the angular distribution of the polariz
light is derived and an expression in the cumulant expans
of the polarized photon distribution is presented. In Sec.
by terminating the cumulant expansion at second orde
Gaussian approximate spatial distribution as a function
light directions and timet is obtained, and the exact expre
sions of the first and second cumulants are derived. In S
V, an expression of cumulants up to an arbitrary high or
is derived. A brief discussion and summary then follows
Sec. VI. In Appendix A, the expressions for coefficien
@Bmn0

l # i in Eq. ~15! are presented. In Appendix B, analytic

formulas for evaluating integrals in Eq.~42! are derived.

II. CIRCULAR REPRESENTATION AND GENERALIZED
SPHERICAL FUNCTIONS

In this section, we summarize the description of polariz
light propagation in a scattering medium discussed in
previous literature.

Considering a light beam traveling along a directions, we
choose a reference plane through the direction of propa
tion. Two complex components of the electric fieldE, such
as Ei5a1 exp(id1), the component parallel to the referen
plane, andE'5a2 exp(id2), the component perpendicular t
the reference plane, can be used to describe a single coh
beam. Four real components were introduced by Stokes@16#,
each with the dimension of the square of a field or, m
precisely, an intensity. The four Stokes parameters are
lected into a four-element arrayISP5@ I ,Q,U,V# @17#. The
componentI is the total intensity:

I 5^a1
2&1^a2

2&5^uEiu21uE'u2&. ~1a!

The componentQ describes a linear polarization:

Q5^a1
2&2^a2

2&5^uEiu22uE'u2&. ~1b!

The componentU describes a linear polarization 45° relativ
to the reference plane:

U5^2a1a2 cosd&5^uE~45°!u22uE~245°!u2&, ~1c!

where

E~645°![221/2~Ei6E'!.

The last componentV is the difference between the intens
ties of right- and left-circularly polarized light:

V5^2a1a2 sind&5^uERu22uELu2&, ~1d!

where the right- and left-circular components of field are
01660
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In Eq. ~1!, d5d12d2 ; the angular brackets mean the ave
age over many waves with independent phases in a l
beam.

To give further physical meaning to the symbols, we no
that the use of the Cauchy-Schwarz inequality leads to
inequality

I 2>Q21U21V2. ~2!

For a coherent beam, which requires no averages in E
1~a!–1~d!, the equality is automatically obeyed. The oppos
extreme case is unpolarized light for which

Q5U5V50,

and the total intensityI is totally incoherent. More generally
the difference between the left- and right-hand sides of
inequality, Eq.~2!, constitutes the incoherent part of the tot
intensity.

The kinetic equation for a polarized photon distributio
function I (r ,s,t) as a function of timet, position r , and di-
rections, in an infinite uniform medium, from a point puls
polarized light source, I (0)d(r2r0)d(s2s0)d(t20), is
given by @2#

]I ~r ,s,t !/]t1cs•“ r I ~r ,s,t !1maI ~r ,s,t !

5msE P~s,s8!@ I ~r ,s8,t !2I ~r ,s,t !#ds8

1I ~0!d~r2r0!d~s2s0!d~ t20!. ~3!

The quantities in the Stokes parameter~SP! representation
will be marked by adding a superindex, for example,ISP.
With a rotation of the reference plane through an anglea
>0 ~in the counterclockwise direction, when looking in th
direction of propagation! around the light propagation direc
tion, I varies asI 85L (a)I . In the SP representation, th
relation is given by

F I 8
Q8
U8
V8

G5F 1 0 0 0

0 cos 2a sin 2a 0

0 2sin 2a cos 2a 0

0 0 0 1

G F I
Q
U
V
G . ~4!

Usually, a meridian plane containing thez axis and the light
directions is used as the reference plane for the descript
of the polarization state@2,9# as shown in Fig. 1. In Eq.~3!,
c is the light speed in the medium,ms is the scattering rate
~per unit time!, ma is the absorption rate, andP(s,s8) is a
434 phase matrix. The following form of the 434 phase
matrix @9# is used:

P~s,s8!5L ~p2x!P~cosQ!L ~2x8!, ~5!

where Q is the angle between light rays before and af
scattering, and the matricesL (2x8) andL (p2x) are those
required to rotate meridian planes before and after scatte
6-2
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onto or from a local scattering plane, as shown in Fig. 1. T
intrinsic property of scattering mechanism is described
the 434 scattering functionP(cosQ), which involves
cosQ5s•s8.

It is convenient to use a representation of the polari
light in which L (a) is diagonal, rather than Eq.~4!. A cir-
cular parameter representation~CP! was first proposed by
Kuščer and Ribaricˇ @7#. Later, a more precise definition o
the CP, which matches with the initial definition of polarize
light in the SP representation by Chandrasekhar@2#, was pre-
sented by Hovenier and van der Mee@9#. Hereafter we use
the definition of the CP in Ref.@9#, which is given byICP

5@ I 2 ,I 0 ,I 20 ,I 22#, where I 05(I 1V)/2, I 205(I 2V)/2, I 2
5(Q1 iU )/2, andI 225(Q2 iU )/2, or ICP5TI SP, with

T5
1

2F 0 1 i 0

1 0 0 1

1 0 0 21

0 1 2 i 0

G . ~6!

In the CP, a rotation of the reference plane through an an
a around the light direction causesI m to be multiplied by
exp(2ima). Notice thatI 0 and I 20 actually have the sam
rotational property. For the phase matrix, the transformPCP

5TPSPT21 is given between two representations.
In the CP, it is convenient to expand the phase matrixPCP

using generalized spherical functions~GSF’s!. The general-
ized spherical functions, which are related to irreducible r
resentations of the rotation group on three nonzero Eul
angles, are defined as follows@8#.

For l>sup(umu,unu) andm5cosu,

Pm,n
l ~m!5Am,n

l ~12m!2~n2m!/2~11m!2~n1m!/2

3
dl 2n

dm l 2n @~12m! l 2m~11m! l 1m#, ~7!

FIG. 1. Geometry of the scattering plane and the refere
planes related to the incident ray,s8(u8,f8), and the scattered ray
s(u,f). The dark plane is the scattering plane.x is the angle be-
tween the meridian plane (s,z) and the scattering plane.x8 is the
angle between the meridian plane (s8,z) and the scattering plane.
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Am,n
l 5

~21! l 2m~ i !n2m

2l~ l 2m!! F ~ l 2m!! ~ l 1n!!

~ l 1m!! ~ l 2n!! G
1/2

.

This function is directly related@9# to the rotation matrix
dmn

l (u) in angular momentum theory@10# by dmn
l (u)

5( i )n2mPmn
l (cosu). Some symmetry properties ofPm,n

l (m)
are Pm,n

l (m)5Pn,m
l (m)5P2m,2n

l (m). The orthogonality re-
lation for Pm,n

l (m) is given by@8,9#

~21!m1nE
21

1

Pm,n
l ~m!Pm,n

l 8 ~m!dm5
2

2l 11
d l ,l 8 . ~8!

The phase matrix in the CP can be expressed using the
eralized spherical functions@7,9#. For notational simplicity,
in the following the quantities without a superindex are u
derstood to be in the CP. Denotings5(m,f) and s8
5(m8,f8), the addition theorem of GSF’s@9# is given by
~see Fig. 1!

exp~ imx!Pm,n
l ~cosQ!exp~ inx8!

5~21!m1n (
s52 l

l

~21!sPm,s
l ~m!Ps,n

l ~m8!

3exp@2 is~f2f8!#. ~9!

Using this addition theorem of GSF’s, the variablesx, x8,
andQ in Eq. ~5! can be eliminated, and the components
the phase matrix in the CP can be expressed using the a
lar parameters of the incident and scattered ray in fixed
ordinates. If we expand elements of the CP phase matri
the scattering plane,Pmn(cosQ), by GSF’s,

Pmn~cosQ!5
1

4p (
l

pmn
l Pm,n

l ~cosQ!,

then, using Eq.~9!, the 434 phase matrix in fixed coordi
nates can be written as

Pmn~m,f;m8,f8!

5
1

4p (
l

pmn
l (

s52 l

l

~21!sPm,s
l ~m!Ps,n

l ~m8!

3exp@2 is~f2f8!#, ~10!

with indicesm, n52,0,20,22 andl>sup(umu,unu).
The coefficientspmn

l provide an intrinsic description o
the scattering mechanism. In most useful cases, the co
cientspmn

l have the properties@7,9# that ~i! pmm
l and pm2m

l

are real,~ii ! pmn
l 5pnm

l 5p2m2n
l , and~iii ! p20

l 5@p220
l #* ~the

asterisk means complex conjugate!. Therefore, for eachl
>2, there are six independent real elementsp00

l , p22
l , p020

l ,
p222

l , Re@p20
l #, Im@p20

l #. For l 50 or 1, only p00
l and p020

l

are nonzero. These numerical coefficients were calcula
using Mie theory for some examples by De Rooij and v
der Stap@18#. Thesepmn

l , together withms and ma , are

e

6-3
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parameters that describe the nature of the scattering pro
and are treated as known in our solution of the transp
equation.

III. DERIVATION

Having the above knowledge, we analytically solve E
~3! in an infinite uniform isotropic medium. Using a proc
dure similar to that discussed in Refs.@14# and@15#, we first
study the dynamics of the photon distribution in the lig
direction space in the CP,F(s,s0 ,t), which is a vector of
four components, on a spherical surface fors of radius 1. The
kinetic equation forF(s,s0 ,t) can be obtained by integratin
Eq. ~3! over whole spacer . The spatial independence ofms ,
ma , andP(s,s8) retains translation invariance. Thus the i
tegral of Eq.~3! obeys

]F~s,s0 ,t !/]t1maF~s,s0 ,t !

1msFF~s,s0 ,t !2E P~s,s8!F~s8,s0 ,t !ds8G
5I ~0!d~s2s0!d~ t20!. ~11!

Since the integral of the gradient term over all space v
ishes, as shown in Ref.@14#, if we expandF(s,s0 ,t) in
GSF’s, itsl components should not be coupled to each oth
Themth component ofF(s,s0 ,t), with the initial polarization
in unit n0 state, can be expanded in GSF’s in the followi
form:

Fmn0
~s,s0 ,t !5(

l
Fmn0

l ~ t !(
s

~21!sPm,s
l ~m!Ps,n0

l ~m0!

3exp@2 is~f2f0!#exp~2mat !, ~12!

with m, n052,0,20,22, l>sup(umu,unu). When s0 is set
along thez direction and the initial reference plane is set
the x-o-zplane, Eq.~12! specializes to

Fmn0
~s,ẑ,t !5(

l
Fmn0

l ~ t !Pm,n0

l ~m!exp~2 in0f!exp~2mat !.

~13!

Substituting Eq.~12! @or Eq. ~13!# into Eq. ~11!, using the
expression, Eq.~10!, of the phase matrix, and the orthog
nality relation of GSF’s, Eq.~8!, an analytically solvable
equation forFmn0

l (t) for eachl is obtained:

dFmn0

l ~ t !/dt5(
n

Pmn
l Fnn0

l ~ t !, ~14a!

with Pmn
l 5ms@dm,n2pmn

l /(2l 11)#. The initial condition
Fm(s,s0 ,t50)5dm,n0

d(s2s0) and the orthogonality rela
tion, Eq. ~8!, lead to

Fmn0

l ~ t50!5dm,n0
~2l 11!/4p. ~14b!

The solution of Eq.~14! can be expanded in terms of eige
states:
01660
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Fmn0

l ~ t !5
2l 11

4p (
i

@Bmn0

l # i exp~2l i
l t !, i 51,2,3,4,

~15!

with the eigenvalues given by

l i
l5~1/2!H ~P00

l 1P22
l 6P020

l 6P222
l !

1F ~P00
l 2P22

l 6P020
l 7P222

l !2

116H 1Re~P20!

2Im~P20!
J 2G1/2J , ~16!

for i 51,2, and fori 53,4, the sign1before square bracket
in Eq. ~16! is replaced by2. The constant coefficients
@Bmn0

l # i can be analytically determined using standard lin

algebra from the initial condition, Eq.~14b!. A detailed ex-
pression for@Bmn0

l # i is presented in Appendix A.

Equation~12! @or Eq. ~13!#, combined with Eqs.~15! and
~16! and the coefficients@Bmn0

l # i in Appendix A, provides an

exact CP solution in the light direction space. In the SP r
resentation, we have

FSP~s,s0 ,t !5T21F~s,s0 ,t !T. ~17!

It can be proved that all components ofFSP(s,s0 ,t) are real
numbers. Themth component@m5I ,Q,U,V# of the angular
distribution function in the SP representation, with the init
polarized stateISP(0), is obtained by

Fm
SP~s,s0 ,t !5@FSP~s,s0 ,t !ISP~0!#m . ~18!

Equation~17! serves as the exact Green’s function of pol
ized light propagation in the light direction space. Since in
infinite uniform medium this function is independent of th
source positionr0 , requirements for a Green’s function a
satisfied: especially, the Chapman-Kolmogorov condition
obeyed: *ds8 FSP(s9,s8,t2t8)FSP(s8,s,t82t0)5FSP(s9,s,t
2t0). In fact, in an infinite uniform medium, this propagato
determines all time evolution of polarized light, including i
spatial distribution, because displacement is an integratio
velocity, cs(t), over time. The mth component @m
5I ,Q,U,V# of the photon distribution function in the S
representation,I m

SP(r ,s,t), with the source located atr050,
the initial directions0 , and the initial polarizationISP(0), is
given by

I m
SP~r ,s,t !5K dS r2cE

0

t

s~ t8!dt8D d„s~ t !2s…L
m

SP

, ~19!

where ^•••&m
SP means themth component of the ensembl

average in the light direction space in the SP representa
The first d function ensures that the displacementr20 is
given by a path integral. The secondd function assures the
correct final value of the direction. Equation~19! is a for-
mally exact solution, but cannot be evaluated directly. W
make a Fourier transform for the firstd function in Eq.~19!,
then make a cumulant expansion@19#, and obtain
6-4
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I m
SP~r ,s,t !5Fm

SP~s,s0 ,t !
1

~2p!3 E dq expH iq•r1 (
k51

`
~2 ic !k

k! (
j k

¯(
j 1

qj k
¯qj 1

3F K E0

t

dtk¯E
0

t

dt1 T@sj k
~ tk!¯sj 1

~ t1!#L
c
G

m

SPJ , ~20!

whereT denotes time-ordered multiplication@20# and Fm
SP(s,s0 ,t) is given by Eq.~18!. In Eq. ~20! the indexc denotes a

cumulant, which is defined in textbooks of statistics@21# and statistical physics@19#. As for an arbitrary random variableA, we
have^A&c5^A&, ^A2&c5^A2&2^A&^A&, and a general expression relating^Ai& and ^Ai&c , which is given by

^Ai&5 i ! (
i 1 ,i 2 ,...

1

i 1! S ^A&
1! D i 1 1

i 2! S ^A2&c

2! D i 2

¯

1

i n! S ^An&c

n! D i n

¯d~ i 2 i 122i 22¯2nin2¯ !, ~21!

Hence, if ^Ai&, i 51,2, . . . ,k, have been calculated,^Ai&c , i 51,2, . . . ,k, can be recursively obtained and conversely@19#.
The kth moment ~the term without indexc! which, according to the cumulant expansion theorem, is related
*dr r j k

¯r j 1
I m

SP(r ,s,t). This moment can be evaluated using a standard time-dependent Green’s function approach, w
given by

F K E
0

t

dtk¯E
0

t

dt1 T@sj k
~ tk!¯sj 1

~ t1!#L G
m

SP

5
1

Fm
SP~s,s0 ,t ! H F E

0

t

dtkE
0

tk
dtk21¯E

0

t2
dt1E ds~k!E ds~k21!

¯E ds~1!FSP~s,s~k!,t2tk!sj k

~k!

3FSP~s~k!,s~k21!,tk2tk21!sj k21

~k21!
¯FSP~s~2!,s~1!,t22t1!sj 1

~1!FSP~s~1!,s0 ,t120!ISP~0!G
m

1~perm.!J , ~22!
ch
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where the abbreviation ‘‘perm’’ means allk! 21 terms ob-
tained by permutation of$ j i%, i 51, . . . ,k, from the first
term.

In Eq. ~22!, FSP(s( i ),s( i 21),t i2t i 21) is given by Eq.~17!.
Since Eq.~22! is obtained using a Green’s function approa
without making any approximation and Eq.~17! is an exact
expression of the angular Green’s function, Eq.~22! provides
an exact formula for thekth moment. If we are able to ex
actly evaluate Eq.~22! up tokth order, through Eq.~21!, we
can obtain the exact cumulants of the distribution up to
kth order.

IV. GAUSSIAN APPROXIMATION
OF THE DISTRIBUTION

Terminating Eq.~20! at second order of the cumulant an
settings in Cartesian coordinates, integration overq in Eq.
~20! can be analytically performed, which leads to the f
lowing Gaussian approximation expression of the polari
photon distribution. When the initials0 is set alongz, it is
given by

I m
SP~r ,s,t !5

Fm
SP~s,ẑ,t !

~4p!3/2

1

@detDm
SP#1/2expF2

1

4
@~Dm

SP!21#ab

3~r a2^Ra&m
SP!~r b2^Rb&m

SP!G , ~23!
01660
e

-
d

with m5 l ,Q,U,V anda, b5x,y,z. In Eq. ~23!, ^Ra&m
SP rep-

resents the position of the average center of the distribut
and@Dm

SP#ab is related to the half-width of the spread of th
distribution, which is given by

@Dm
SP#ab5@^RaRb&m

SP2^Ra&m
SP^Rb&m

SP#/2. ~24!

^Ra&m
SP in Eq. ~23! and ^RaRb&m

SP in Eq. ~24! can be evalu-
ated using, separately, the first order and the second ord
Eq. ~22!:

^Ra&m
SP[cK E

0

t

dt8sa~ t8!L
m

SP

5
c

Fm
SP~s,ẑ,t ! F E

0

t

dt8E ds8FSP~s,s8,t2t8!sa8

3FSP~s8,ẑ,t8!ISP~0!G
m

~25!

and
6-5
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^RaRb&m
SP[c2K E

0

t

dt8E
0

t

dt9T@sa~ t8!sb~ t9!#L
m

SP

5
c2

Fm
SP~s,ẑ,t !

3H F E
0

t

dt8E
0

t8
dt9E ds8E ds9 FSP~s,s8,t2t8!sa8FSP~s8,s9,t82t9!sb9FSP~s9,ẑ,t9!ISP~0!G

m

1~ t.c.!J , ~26!
ex
d

n

CP

l

-

lar

ory
where ~t.c.! means that the second term is obtained by
changing the indicesa andb in the first term. As discusse
at end of last section, Eqs.~25! and ~26! provide exact ex-
pressions for evaluation of the first and the second mome

In evaluation of Eqs.~25! and~26!, it is convenient to use
the components ofs in a spherical harmonic basis:

s5@s1 ,s0 ,s21#

5@2221/2sinue1 if,cosu,1221/2sinue2 if#, ~27!

and first calculate the corresponding quantities in the
Hence we write Eq.~25! as

^Ra&m
SP5

1

Fm
SP~s,ẑ,t ! F(

j
Ua jT

21^Rj&TI SP~0!G
m

, ~28!

with a5x,y,z and j 51,0,21, the indices of the spherica
harmonic basis.U is a matrix for the transform from a
spherical harmonic basis to a Cartesian basis,sa5Ua j sj ,
given by

U5F 2221/2 0 221/2

221/2i 0 221/2i

0 1 0
G . ~29!

^R& in Eq. ~28! is defined in the CP as

^Rj&mn0
[cE

0

t

dt8E ds8(
n

Fmn~s,s8,t2t8!sj8Fmn0
~s8,ẑ,t8!,

~30!

whereFmn(s2 ,s1 ,t22t1) is the exact angular Green’s func
tion in the CP, Eq.~12!. Similarly, Eq.~26! is written as
01660
-

ts.

.

^RaRb&m
SP5

1

Fm
SP~s,ẑ,t ! F(

j 1
(
j 2

~Ua j 1
Ub j 2

1Ua j 2
Ub j 1

!T21^Rj 2
Rj 1

&TI SP~0!G
m

, ~31!

where^Rj 2
Rj 1

& is defined in the CP as

^Rj 2
Rj 1

&mn0
[c2E

0

t

dt8E
0

t8
dt9E ds8E ds9

3(
n2

Fmn2
~s,s8,t2t8!sj 2

8

3(
n1

Fn2n1
~s8,s9,t82t9!sj 1

9 Fn1n0
~s9,ẑ,t9!,

~32!

where j 1 and j 2 are spherical components, 1, 0,21.
In the evaluation of Eqs.~30! and~32!, a recurrence rela-

tion of GSP’s is used, which is directly derived from angu
momentum theory@10#. Defining sj5m je

i j f, with j 51,0,
21, we have

m j Pm,n
l ~cosu!5g j(

h
^ l ,1,m,0u l 1h,m&

3^ l ,1,n,6 j u l 1h,n6 j &Pm,n6 j
l 1h ~cosu!,

j ,h511,0,21, ~33!

with g7151
2i and g051, and^ l 1 ,l 2 ,m1 ,m2uL,M & are the

Clebsch-Gordan coefficients in angular momentum the
@10#, given by
’s
^ l 2h,1,m,2 j u l ,m2 j &5F F ~ l 2m!~ l 2m11!

~2l 21!2l G1/2 F ~ l 1m!~ l 2m11!

2l ~ l 11! G1/2 F ~ l 1m!~ l 1m11!

~2l 12!~2l 13! G1/2

F ~ l 2m!~ l 1m!

~2l 21!l G1/2 F m2

l ~ l 11!G
1/2

2F ~ l 1m11!~ l 2m11!

~ l 11!~2l 13! G1/2

F ~ l 1m!~ l 1m11!

~2l 21!2l G1/2

2F ~ l 2m!~ l 1m11!

2l ~ l 11! G1/2 F ~ l 2m!~ l 2m11!

~2l 12!~2l 13! G1/2
G ,

~34!

with the row index~from above! j 51,0,21 and the column index~from left! h51,0,21. These recurrence relations of GSF
6-6
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were provided in Ref.@8# with some misprints. Substituting Eqs.~12! and ~13! into Eq. ~30!, and using Eq.~33! and the
orthogonality relation of GSF’s, Eq.~8!, integrations overds8 anddt8 in Eq. ~30! can be analytically performed. When th
final directions5(u,f), we have

^Rj&mn0
5c(

l
Pm,n02 j

l ~cosu!e2 i ~n02 j !fg j

3(
n

(
h

2~ l 2h!11

4p
Dm,n,n0

l ,h ~ t !^ l 2h,1,n,0u l ,n&^ l 2h,1,n0 ,2 j u l ,n02 j &, ~35!

with n52,0,20,22, h511,0,21 and

Dm,n,n0

l ,h ~ t !5(
i j

@Bmn
l # i@Bnn0

l 2h# jFexp~2l j
l 2ht !2exp~2l i

l t !

l i
l2l j

l 2h Gexp~2mat !, i , j 51,2,3,4. ~36!

Similarly, integrations in Eq.~32! can also be analytically performed. We have

^Rj 2
Rj 1

&mn0
5c2(

l
Pm,n02 j 22 j 1

l ~cosu!e2 i ~n02 j 22 j 1!fg j 2
g j 1(n2

(
n1

(
h2

(
h1

2~ l 2h22h1!11

4p

3Em,n2 ,n1 ,n0

l ,h2 ,h1 ~ t !^ l 2h2,1,n2,0u l ,n2&^ l 2h2,1,n02 j 1 ,2 j 2u l ,n02 j 12 j 2&

3^ l 2h22h1,1,n1,0u l 2h2 ,n1&^ l 2h22h1,1,n0 ,2 j 1u l 2h2 ,n02 j 1&, ~37!

with n1 , n252,0,20,22, h1 ,h2511,0,21, and

Em,n2 ,n1 ,n0

l,h2 ,h1 ~ t !5(
i j f

@Bmn2

l # i@Bn2n1

l 2h2# j@Bn1n0

l 2h22h1# f

3F exp~2l f
l 2h22h1t !2exp~2l i

l t !

~l j
l 2h22l f

l 2h22h1!~l i
l2l f

l 2h22h1!
2

exp~2l j
l 2h2t !2exp~2l i

l t !

~l j
l 2h22l f

l 2h22h1!~l i
l2l j

l 2h2!
Gexp~2mat !. ~38!
rs

.
-

y-
of

P

q
q

ted

f.

on
is
the
Up to now, algebraic analytical expressions for the fi
cumulant~the average center of the distribution! and the sec-
ond cumulant~the half-width of spread! have been derived
Equations~36! and~38! involve the related scattering param
eters: ms and Pmn

l @defined after Eq.~14!#, throughl i
l in

Eq. ~16! and @Bmn0

l # i in Appendix A, and the absorption

parameter,ma . Thus they determine the time evolution d
namics. The final light directions appears as an argument
the generalized spherical harmonics in Eqs.~35! and ~37!.
Substituting Eqs.~18!, ~35!, and ~37! into Eqs. ~28!, ~31!,
and then Eq.~24!, the first and second cumulants in the S
representation are obtained as functions ofs and t. The dis-
tribution function of polarized light is then expressed by E
~23!, with Eq. ~28! for the average center position and E
~24! for the width of the spread. Equation~23! produces the
mth Stokes component of polarized light at positionr , with
light direction s, as a function of timet, initialed by r050,
s05 ẑ, and polarized stateISP(0) in an infinite uniform me-
dium.

It is easy to reduce the above solution to the scalar~un-
polarized! case by considering only theI 0 component. Be-
causê l ,1,0,0u l ,0&50 in Eq. ~34!, Eqs.~35! and~37! can be
greatly simplified. Also, Eq.~15! is reduced to (2l 11)exp
01660
t

.
.

(2P00
l t)/4p in the scalar case. Notice that the associa

Legendre function Pl
(m)(m)5( i )m@( l 1m)!/( l

2m)! #1/2P0,m
l (m); our formula reduces to that given in Re

@14# in the scalar case.

V. DISTRIBUTION FUNCTION ACCURATE UP TO AN
ARBITRARY HIGH-ORDER CUMULANT

In order to calculate the polarized photon distributi
function with accuracy up to an arbitrary high order, it
more convenient to set all spatial and angular vectors in
spherical harmonics basis, similar to Eq.~27!, and to evalu-
ate Eq.~22! via the CP:

F K E
0

t

dtk¯E
0

t

dt1 T@sj k
~ tk!¯sj 1

~ t1!#L G
m

SP

5
1

Fm
SP~s,s0 ,t !

@T21G~ j k ,...,j 1 ,t !TI SP~0!#m ,

~39!

with j 1 ,...,j k51,0,21 andG( j k ,...,j 1 ,t) given by
6-7
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G~ j k ,...,j 1 ,t !5H E
0

t

dtkE
0

tk
dtk21¯E

0

t2
dt1E ds~k!E ds~k21!

¯E ds~1!

3F~s,s~k!,t2tk!sj k

~k!F~s~k!,s~k21!,tk2tk21!sj k21

~k21!
¯F~s~2!,s~1!,t22t1!sj 1

~1!F~s~1!,s0 ,t120!1perm.J ,

~40!

where Fmn(s
( i ),s( i 21),t i2t i 21) is given by Eq.~12!. Using the GSF recurrence relation, Eq.~33!, and the orthogonality

relation of GSF’s, Eq.~8!, the integrals overds(k)
¯ds(1) in Eq. ~40! can be analytically performed. We obtain, when the init

s0 is alongz and the finals5(u,f), that

@G~ j k ,....j 1 ,t !#mn0
5H(

l
Pm,n02(

f 51
k j f

l
~cosu!expF2 i S n02(

f 51

k

j f DfGF )
f 51

k

g j fG(nk

¯(
n1

(
hk

¯(
h1

2~ l 2( f 51
k hf !11

4p

3Hmnk ,...,n1n0

l ,hk ,...,h1 ~ t !)
g51

k K l 2(
f 51

g

hk2 f 11,1,nk2g11,0U l 2 (
f 51

g21

hk2 f 11 ,nk2g11L
3K l 2(

f 51

g

hk2 f 11,1,n02 (
f 51

k2g

j f ,2 j k2g11U l 2 (
f 51

g21

hk2 f 11 ,n02 (
f 51

k2g11

j f L J 1perm, ~41!

with nf52,0,20,22 andhf51,0,21, f 51,2, . . . ,k, with

Hmnk ,...,n1n0

l ,hk ,...,h1 ~ t !5exp~2mat ! (
i k1151

4

¯ (
i 151

4

@Bmnk

l # i k11
@Bnknk21

l 2hk # i k
¯@B

n1n0

l 2( f 51
k hk2 f 11# i 1

3E
0

t

dtkE
0

tk
dtk21¯E

0

t2
dt1 exp@2l i k11

l ~ t2tk!#exp@2l i k

l 2hk~ tk2tk21!#¯exp@2l
i 1

l 2( f 51
k hk2 f 11~ t120!#.

~42!
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Note that all ensemble averages have been performed. E
tion ~42! involves integrals of exponential functions, whic
can be analytically performed. An explicit expression f
evaluating integrals in Eq.~42! is presented in the Appendi
B. Equation~42! involves all related scattering and absor
tion parameters and determines the time evolution dynam
The final direction of light,s, appears as an argument
GSF’s in Eq. ~41!. Substituting Eq.~42! into Eq. ~41!,
through Eq.~39!, which transfers to the SP representati
and introduces the initial polarized condition, and using
standard cumulant procedure, the cumulants as function
angle s and time t up to an arbitrarykth order in the SP
representation can be recursively obtained. The final posi
r appears in Eq.~20!, and its components can be express
on a spherical harmonics basis, similar to Eq.~27!. Then,
performing a numerical three-dimensional inverse Fou
transform over q, an approximate distribution functio
I m

SP(r ,s,t) in the SP representation, accurate up tokth cumu-
lant, can be calculated.

VI. DISCUSSION

In Sec. III, we derived an explicit expression of the p
larized photon distribution function, which guarantees
exact average central position~the first cumulant! and the
exact width of spread~the second cumulant!. Moreover, with
01660
ua-

r

s.

a
of

n
d

r

e

an increase of collision events or time, the distribution a
proaches accuracy in detail since the higher cumulants
come relatively small compared to the appropriate powe
the second cumulant. If we examine the spatial displacem
after each collision event as an independent random vari
Dr i , the total displacement isSDr i ( i 51, . . . ,N), with N
the number collision events, which can be estimated
t/ms . If we defineY5(N)21/2SDr i , the central limit theo-
rem claims that ifN is a large number, then̂Yn&c /^Y2&c
;N12n/2, n>3. Therefore, the sum ofN variables will have
an essentially Gaussian distribution. At early times, the p
ton’s spread is narrow: hence, in many applications the
tailed shape is less important than the correct position
correct narrow width of the beam, because of the finite re
lution of detection devices. In case a more accurate distr
tion at early times is needed, Sec. IV provides formulas
analytically calculating the higher cumulants up to an ar
trary kth order. Then, performing a numerical thre
dimensional Fourier transform, the distribution function a
curate up to thekth order cumulant approximation can b
obtained.

In summary, we present an analytical solution of the tim
dependent polarized radiative transport equation in an i
nite uniform isotropic medium. The Green’s function for th
angular part is exact. Using a cumulant expansion, we
analytically calculate the spatial cumulants up to an arbitr
6-8
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high order. By terminating at the second order, we have
rived an explicit expression of the polarized light distributi
function. This expression is quantitatively accurate up to
second order cumulant approximation. Namely, the ce
position and the half-width are always exact and not mo
fied when higher-order cumulants are added. The cen
limit theorem claims that after enough collision events,
cumulants higher than second approach small values, an
Gaussian spatial distribution calculated approaches accu
in detail. Our results are given in terms of a distribution w
coefficients that can be calculated algebraically, with mod
ate effort at the second cumulant level and additional ef
to induce the third- and higher-order cumulants. This anal
cal solution provides a background distribution function
further study of optical tomography using polarized light.
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APPENDIX A

In this appendix we calculate@Bmn0

l # i in Eq. ~15!. Substi-

tuting Eq.~15! into Eq.~14!, we obtain a set of linear homo
geneous equations

(
n

@Pmn
l 2l i

ldm,n#@Bnn0

l # i50, ~A1!

where eigenvaluesl i
l ( i 51,2,3,4) are given by Eq.~16!.

These equations, however, are not linearly independ
Adding the initial condition, Eq.~14b!, given by
01660
e-

e
er
i-
al
ll
the
cy

r-
rt
i-
r

l-

t.

(
i

@Bmn0

l # i5dm,n0
, ~A2!

the unique solution of@Bmn0

l # i then can be obtained. Fo

givenn0 andl, 16 components of@Bmn0

l # i construct a column

vector in the space of the direct product ofi 3m. Combining
Eqs. ~A1! and ~A2! in i 3m space, we obtain the following
matrix equation:

AB5C. ~A3!

A is a 16316 matrix:

Ai 3m, j 3n5@Pmn
l d i , j2l i

ld i , jdm,n1dm,n#. ~A4!

B and C are 1631 column vectors:Bj 3n5@Bnn0

l # j and

Ci 3m5dm,n0
. HereA andC are given, whileB is unknown.

Equation ~A3! is a standard form of a group of 16 linea
equations. The solution is given by

Bi 3m5D i 3m /det~A!, ~A5!

with D i 3m is obtained by replacing the (i 3m)th column in
the determinant ofA by the column vectorC.

APPENDIX B

In this appendix, we derive an analytical expression
Eq. ~42! to kth order. By defining

bg[l
i g11

@ l 2( f 51
k2ghk2 f 11#

2l
i g

@ l 2( f 51
k2g11hk2 f 11#

, g51, . . . ,k,

~B1!

Eq. ~42! can be written as
Hmnk ,...,n1n0

l ,hk ,...,h1 ~ t !5exp~2mat ! (
i k1151

4

¯ (
i 151

4

@Bmnk

l # i k11
@Bnknk21

l 2hk # i k
¯@B

n1n0

l 2( f 51
k hk2 f 11# i 1

exp~2l i k11

l t !F ~k!~ t !, ~B2!
he
is
with

F ~k!~ t !5E
0

t

dtk ebktkE
0

tk
dtk21 ebk21tk21

¯E
0

t2
dt1 eb1t1.

~B3!

It is easy to directly calculate Eq.~B3! for a few low k
orders:

F ~1!~ t !5
eb1t

b1
2

1

b1
, ~B4a!
F ~2!~ t !5
e~b11b2!t

b1~b11b2!
2

eb2t

b1b2
1

1

~b11b2!b2
, ~B4b!

F ~3!~ t !5
e~b11b21b3!t

b1~b11b2!~b11b21b3!
2

e~b21b3!t

b1b2~b21b3!

1
eb3t

~b11b2!b2b3
2

1

~b11b21b3!~b21b3!b3
.

~B4c!

In each step of integration, the difficulty is in determining t
constant term. In the following we prove that this term
6-9
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given by (21)k/@bk(bk1bk21)¯(bk1bk211¯1b1)#.
Equation~B3! can be written as

F ~k!~ t !5E
0

t

dt8 ebkt8Fk21~ t8!. ~B5!

Using integration by parts to Eq.~B5!, we obtain
,

ar

s

ia

01660
F ~k!~ t !5
1

bk
FebktF ~k21!~ t !2E

0

t

dt8 e~bk1bk21!t8F ~k22!~ t8!G .
~B6!

Recursively applying Eq.~B6!, we obtain
-

F ~k!~ t !5
ebkt

bk
F ~k21!~ t !2

e~bk1bk21!t

bk~bk1bk21!
F ~k22!~ t !

1¯1~21! f
e~bk1bk211¯1bk2 f !t

bk~bk1bk21!¯~bk1bk211¯1bk2 f !
Fk2 f 21~ t !

1¯1~21!k21
e~bk1bk211¯1b1!t21

bk~bk1bk21!¯~bk1bk211¯1b1!
. ~B7!

Equation ~B7! provides a formula to recursively evaluate Eq.~40! up to kth order. Also, Eq.~B7! produces the above
mentioned constant term. An explicit expression of Eq.~42! can then be written as

Hmnk ,...,n1n0

1,hk ,...,h1 ~ t !5exp~2mat ! (
i k1151

4

¯ (
i 151

4

@Bmnk

l # i k11
@Bnknk21

l 2hk # i k
¯@B

n1n0

l 2(g51
k hk2g11# i 1

3exp~2l i k11

l t ! (
g50

k
~21!g exp@( f 50

k2gbk2 f 11t#

) j 51
k L j

~g! , ~B8!

with bk11[0, and

L j
~g!5(

f 5 j

g

bf , j <g, or L j
~g!5 (

f 5g11

j

bf , j .g, ~B9!

wherebg is defined in Eq.~B1!.
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