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An analytical solution for time-dependent polarized photon transport equation in an infinite uniform isotro-
pic medium is studied using a circular representation of the polarized light and expansion in the generalized
spherical functions. We extend our cumulant approach for solving the qcalpolarizedl photon transport
equation to the vectofpolarized case. As before, an exact angular distribution is obtained and a cumulant
expansion is derived for the polarized photon distribution function. By a cutoff at the second cumulant order,
a Gaussian analytical approximate expression of the polarized photon spatial distribution is obtained as a
function of the direction of light and time, whose average center position and half-width are always exact. The
central limit theorem claims that this spatial distribution approaches accuracy in detail when the number of
collisions or time becomes large. The analytical expression of cumulants up to an arbitrary high order is also
derived, which can be used for calculating a more accurate polarized photon distribution through a numerical
Fourier transform. Contrary to what occurs in other approximation techniques, truncation of the cumulant
expansion at ordem is exact at that order and cumulants up to and including ardemain unchanged when
higher orders are added, at least as applied in our photon transport equation.
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I. INTRODUCTION the polarized radiation field at great depths. Dorfik# con-
structed a system of singular eigenfunctions of the PPTE, for

Study of the polarized photon transport has lasted fowhich an integral equation and then a recurrence relation
many years since the polarized photon transport equatiowere derived. However, to our knowledge, an explicit ana-
(PPTB was formulated by Ganl] and by Chandrasekhar lytical expression of the solution of the PPTE has not been
[2]. Recently, polarization analysis of light migrating in a obtained. Numerical methods, mainly, Monte Carlo simula-
multiple-scattering medium has been applied to broad fielddions, are the main tools in recent theoretical investigations
such as diagnostics of biological tissU@s-5], atmosphere  ©f light polarization in multiple-scattering medj&,13.
monitoring[6], and communications. One goal is to develop !N this paper we derive an analytical solution of the time-
optical tomography with polarization analysis to enhanced€Pendent PPTE in an infinite uniform medium. Based on
ability in image reconstruction of objects inside scatteringOur re;ults, INverse image reconstruction of objects inside a
media. Because of the depolarization effect in a highly sca scattering medium using polanzed light can be developed.

. . L !~ The 4X4 phase matrix is assumed to depend only on
tering medium, scattered photons maintaining poIanzatloq . . . .
are those near ballistic and snake like, which suffer less muI-he scattering angled) in the scattering plane:P(s,s)
. ) o . =P(s-5)=P(cos®). Under this assumption an arbitrary
tlp[e scattering. Therefore, a.tomograph|c apprpach using poﬁhase matrix can be handled. By use of the circular repre-
anze_d photons will agtomahca_lly exclude muIt|ple-scat_teredsentatiOn of polarized light and an expansion in the general-
diffusive photons which blur images. In _order to b_und_ ajzed spherical functior[7,9], we extend our approach in
proper forward model for tomography using a polarizationgg|ying the scalafunpolarized photon transport equation
analysis, a theoretical study of the propagation of polarlzeql4,13 using a cumulant expansion to the vedpolarized
light in scattering media becomes practically important.  case. Terminating at second order, an approximate Gaussian

In polarized photon transport, the intensity of polarizedpolarized photon spatial distribution is obtained for a given
light scattered from a scatterer along a certain direction isight directions as a function of time. Our solution for the
determined by many scattering processes at different scattedistribution in angle is exact, as are the first and second
ing planes consisting in a ray scattered from the scatterer anclbmulants in space at any angle and time, which guarantees
rays incident to the scatterer from different directions. Inthe correct central position and the correct half-width of the
order to properly describe this process, Bersand Ribaric  spatial distribution. After many scattering events have taken
[7] employed a circular representation of the polarized complace, the central limit theorem claims that the spatial Gauss-
ponents of light and an expansion by generalized sphericéhn distribution calculated will become accurate in detail,
functions [8] (or rotation matrices in angular momentum since all cumulants higher than the second approach small
theory[9,10]). The phase matrix, hence, can be analyticallyvalues relative to the appropriate power of the second cumu-
expressed by the angular parameters of the incident and sc#nt. At early times, the spatial distribution is narrow: hence,
tered rays in fixed coordinates. Based on this formalisma distribution function, the mean position and half-width of
Herman and Lenoblgl1] studied the asymptotic behavior of which are exact, may provide an adequate description of a
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polarized beam in the presence of noise and finite instrument ER=2"Y4E,FiE,).

resolution. An analytical expression of cumulants up to an

arbitrary high order is also derived. Using these higher-ordem Eq. (1), = 6,— &,; the angular brackets mean the aver-
cumulants, through a numerical Fourier transform, a moreage over many waves with independent phases in a light
accurate solution of the PPTE can be calculated. beam.

The paper is organized as follows. Section Il provides the To give further physical meaning to the symbols, we note
preliminary formula of the PPTE, the circular representationthat the use of the Cauchy-Schwarz inequality leads to the
of polarized light and the generalized spherical function,nequality
which have been published in previous literature. In Sec. llI,
an exact solution of the angular distribution of the polarized 12=Q%+U?+ V2, 2
light is derived and an expression in the cumulant expansion . . )
of the polarized photon distribution is presented. In Sec. Iv,Or @ coherent beam, which requires no averages in Egs.
by terminating the cumulant expansion at second order &(@—1(d), the equality is automatically obeyed. The opposite
Gaussian approximate spatial distribution as a function ofXtreme case is unpolarized light for which
light directions and timet is obtained, and the exact expres- Q=U=V=0
sions of the first and second cumulants are derived. In Sec. '

v, ;n .exgressti)o.n og.cumullants ug to an arbitrr?ry hi?lh ordeq 4 the total intensity is totally incoherent. More generally,
is derived. A brief discussion and summary then follows iny,q gitference between the left- and right-hand sides of the
Sec. VI. In Appendix A, the expressions for coefficientsi,qqality, Eq(2), constitutes the incoherent part of the total

[B'mno]i in Eq. (15) are presented. In Appendix B, analytical intensity.
formulas for evaluating integrals in E¢42) are derived. The kinetic equation for a polarized photon distribution
functionI(r,s,t) as a function of time, positionr, and di-
Il. CIRCULAR REPRESENTATION AND GENERALIZED rections, in an infinite uniform medium, from a point pulse
SPHERICAL FUNCTIONS polarized light source,|(D8(r—rg)8(s—s) 8(t—0), is

. . . e . iven by[2
In this section, we summarize the description of polarlzeag yi2]

light propagation in a scattering medium discussed in the al(r,st)/at+cs V, I(r,st)+ual(r,st)
previous literature.

Considering a light beam traveling along a directipme
choose a reference plane through the direction of propaga-
tion. Two complex components of the electric fidtd such
asE,=a, exp(éy), the component parallel to the reference

plane, ande, =a, exp(d,), the component perpendicular to o .
the reference plane, can be used to describe a single cohere-zrrﬂe quantities in the Stokes parame(SF) representation
will be marked by adding a superindex, for examgle,

beam. Four real components were introduced by Stfl@ls . .
each with the dimension of the square of a field or, moreWlth a rotation of the reference plane through an angle

precisely, an intensity. The four Stokes parameters are col?o (|_n the counterclqckwse dlrectlpn, when Iool_<|ng In the
lected into a four-element array®=[1,Q,U,V] [17]. The direction of propagationaround the light propagation direc-
component is the total intensity: e tion, | varies asl’=L(a)l. In the SP representation, the

relation is given by

=,uSJ P(s,s)[I(r,s',t)—=I(r,s1)]ds

+1O8(r—rg)8(s— ) 8(t—0). ©)

_ 2 2\ _ 2 2
= + = + )
I =(ap)+(azy)=(|E[*+|E.|%) (18 g 1 0 0 o,
The componen@ describes a linear polarization: Q’ 0 coszx sin2a 0| Q
2\ /2 2 2 U'|=| o —sinza cosz of|u| @
Q=(ap)—(ax) =(|E)[*—[E.[). (1b) ,
, . o , v 0o o0 o 1ftV
The component) describes a linear polarization 45° relative
to the reference plane: Usually, a meridian plane containing theaxis and the light

2 (2 directions is used as the reference plane for the description

U=(2a,a,coss)=(|E(45°)|°~|E(=45°)[%), (10  of the polarization statE2,9] as shown in Fig. 1. In Eq3),
c is the light speed in the mediunp, is the scattering rate
(per unit timeg, u, is the absorption rate, arfé(s,s’) is a

E(t45°)52*1’2(E”iEL). 4X 4 phase matrix. The following form of thexd4 phase

matrix [9] is used:

The last componer¥ is the difference between the intensi-

ties of right- and left-circularly polarized light: P(s,;s") =L (7= x)P(cos®)L(—x"), (5)

where

V=(2a,a,sin8)=(|Eg|?>—|E.|?), (1d  Where® is the angle between light rays before and after
scattering, and the matricég — x’) andL (7 — x) are those
where the right- and left-circular components of field are required to rotate meridian planes before and after scattering
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Z A with
(I—=m)!(1+n)1]¥2

(I+m)!(l—=n)!

G O
Amn =211 m)

This function is directly related9] to the rotation matrix

| H |
dnhn(6) in angular momentum theory10] by d,,.(6)
=(i)" ™P},(cosé). Some symmetry properties &, ,(x)
are Py, (1) =Ph (1) =P _.(1). The orthogonality re-
lation for Py, (1) is given by[8,9]

+ ! | 1’ 2
(—)" ”fﬁle,n(mpm,n(mdFm«z,.,. ®

The phase matrix in the CP can be expressed using the gen-
FIG. 1. Geometry of the scattering plane and the referenc&'@lized spherical functions7,9]. For notational simplicity,

planes related to the incident rag/{ 6, ¢'), and the scattered ray, 1N the following the quantities without a superindex are un-

(6, 4). The dark plane is the scattering planeis the angle be- derstood to be in the CP. Denoting=(u,¢) and s’

tween the meridian planes@ and the scattering plang/ is the ~ =(u',¢"), the addition theorem of GSF{®] is given by

angle between the meridian plang,¢) and the scattering plane.  (see Fig. 1

H | H ’
onto or from a local scattering plane, as shown in Fig. 1. The exp(imy) P, ,(cos@)exp(inx")
intrinsic property of scattering mechanism is described by [
the 4X4 scattering functionP(cos®), which involves =(—=1)™" > (—1)%P) (w)PL (n")
cos®=s-g". s=-1 ’ '
It is convenient to use a representation of the polarized . ,
light in which L («) is diagonal, rather than E@4). A cir- xexd —is(¢=¢")]. ©)

cular parameter representati¢8P) was first proposed by
Kuscer and Ribarid7]. Later, a more precise definition of
the CP, which matches with the initial definition of polarized
light in the SP representation by ChandrasekB§rwas pre-
sented by Hovenier and van der MgH. Hereafter we use
the definition of the CP in Ref9], which is given byl“P
=[15,lg,1_g,1 _5], wherelg=(1+V)/2,1_o=(1-V)/2, |,
=(Q+iU)/2, andl _,=(Q—iU)/2, or IP=TISP with

Using this addition theorem of GSF's, the variabjesy’,
and @ in Eq. (5) can be eliminated, and the components of
the phase matrix in the CP can be expressed using the angu-
lar parameters of the incident and scattered ray in fixed co-
ordinates. If we expand elements of the CP phase matrix in
the scattering plane?,,,,(cos®), by GSF's,

P 0 :iE | P! )
mn(COSO) = 72 PrmnPrmn(COSO),

0 1 1 0
111 0 O 1 then, using Eq(9), the 4X4 phase matrix in fixed coordi-
T=3 e (6)  nates can be written as
1 0 O 1
0 1 —i 0 Pmn(lf*-(ﬁ;:“,a¢’)

In the CP, a rotation of the reference plane through an angle
a around the light direction causég, to be multiplied by
exp(—ima). Notice thatly and | _, actually have the same ]
rotatiggTal 1property. For the phase matrix, the transf&tf Xexd —is(¢—¢")], (10)
=TP>"T " is given between two representations. N

In the CP, it is convenient to expand the phase mafix with |nd|cesr_n,_n=2,|0,— 0,—2 andl=sup(ml,|n[).
using generalized spherical functio@SF’s. The general- The coefﬂmentspmn _prowde an intrinsic description of .
ized spherical functions, which are related to irreducible repthe scattering mechanism. In most useful cases, the coeffi-

\ . | , - |
resentations of the rotation group on three nonzero Euler’§i€ntspm, have the propertief7,9] that (i) ppy, and pp,—p,

1 |
= 27 2 Prn 2 (~ P g(1)Pya(p)

angles, are defined as folloy8]. are real(ii) pryn=Prm=PLm_n. and(ii) py=[p5_o]* (the
For I=sup(m|,|n|) and x=cos¥, asterisk means complex conjugat&herefore, for each
=2, there are six independent real elemais pby, Ph_o

Pl ()= Al (1= )~ (™21 4 )~ (04 m2 Ph—», Rephol, IM[py]. For1=0 or 1, onlypy, and py_g

are nonzero. These numerical coefficients were calculated
using Mie theory for some examples by De Rooij and van
der Stap[18]. Thesep!,,, together withus and u,, are

I—n

XW[(l_M)I_m(1+M)I+m]: 7
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parameters that describe the nature of the scattering process
and are treated as known in our solution of the transport

equation.

Ill. DERIVATION

Having the above knowledge, we analytically solve Eg.

(3) in an infinite uniform isotropic medium. Using a proce-
dure similar to that discussed in Ref$4] and[15], we first

study the dynamics of the photon distribution in the light

direction space in the CH;(s,5,t), which is a vector of
four components, on a spherical surfacedof radius 1. The
kinetic equation fol-(s,s,t) can be obtained by integrating
Eq. (3) over whole space. The spatial independence gaf,

Ma, andP(s,s') retains translation invariance. Thus the in-

tegral of Eq.(3) obeys
IF(s,59,t)/ 9t + waF(s,5,t)

+us

F(sso,t)—f P(s,s')F(s',5,t)ds’

=195(s—5)) 5(t—0). (11)

E _2I+12 | | o
mno(t)—?i [ano]iexq—)\it), i=1,2,3,4,

(19
with the eigenvalues given by
)\!2(1/2)[ (Mgt Mo+ 15 _ o= 115_,)
+{(Hloo_nlzzinloollez)z
+ Re(Hzo)] 2}1/2]
+
16[ —1Im(I1,) ’ (16)

for i=1,2, and fori = 3,4, the sigr-before square brackets
in Eq. (16) is replaced by—. The constant coefficients
[B'mno]i can be analytically determined using standard linear
algebra from the initial condition, Eq14b). A detailed ex-
pression fm{B'mno]i is presented in Appendix A.
Equation(12) [or Eq.(13)], combined with Eqs(15) and
(16) and the coefﬁcientﬁB'nmo]i in Appendix A, provides an
exact CP solution in the light direction space. In the SP rep-

Since the integral of the gradient term over all space vantesentation, we have

ishes, as shown in Refl4], if we expandF(s,s,t) in

GSF's, itsl components should not be coupled to each other.

Themth component oF(s,s,,t), with the initial polarization

FSR(s,5,t) =T F(5,5,1)T. (17

It can be proved that all componentsB1(s,s,t) are real

form:

Frnrg(8%0,00= 20 Fro (0 2 (= 1)°Pry ()P (110)
xexd —is(¢—do)lexp—pt), (12

with m, np=2,0-0,—2, I=sup(m|,|n|]). Whensg, is set

distribution function in the SP representation, with the initial
polarized statéS"(©) is obtained by

Fal(ss.t)=[FS(s,5,0) 15707, (18)

Equation(17) serves as the exact Green’s function of polar-
ized light propagation in the light direction space. Since in an
infinite uniform medium this function is independent of the

along thez direction and the initial reference plane is set assource positiorr,, requirements for a Green’s function are

the x-o-zplane, Eq.(12) specializes to

Frong(S.2,0) =2 Fion (0)Pr o (1)eXp(—ingh)expl — uat).
T "o
(13

Substituting Eq(12) [or Eqg. (13)] into Eq. (11), using the
expression, Eq(10), of the phase matrix, and the orthogo-
nality relation of GSF’s, Eq(8), an analytically solvable
equation forF'mno(t) for eachl is obtained:

AP, (D/dt= 2 Tl o (0, (143
with TI}, = e[ Smn— P/ (21 +1)]. The initial condition
Fm(s,so,t=0)=5m,n05(s—so) and the orthogonality rela-
tion, Eq.(8), lead to

Finng (t=0)= 8 n,(21 + 1) /4, (14b)

The solution of Eq(14) can be expanded in terms of eigen-

states:

satisfied: especially, the Chapman-Kolmogorov condition is
obeyed: [ds FS(¢,s',t—t")FSH(s',st’ —tg) =FS(¢’,st
—tg). In fact, in an infinite uniform medium, this propagator
determines all time evolution of polarized light, including its
spatial distribution, because displacement is an integration of
velocity, cs(t), over time. The mth component[m
=1,Q,U,V] of the photon distribution function in the SP
representation| > (r,s,t), with the source located ap=0,

the initial directions,, and the initial polarizationS"(®), is
given by

t SP
|§Rr,s,t)=<5(r—cf s(t')dt')a(s(t)—s)> ,
0

m

(19

where (---)>” means themth component of the ensemble
average in the light direction space in the SP representation.
The first § function ensures that the displacementO is
given by a path integral. The secoddunction assures the
correct final value of the direction. Equati¢h9) is a for-
mally exact solution, but cannot be evaluated directly. We
make a Fourier transform for the firgtfunction in Eq.(19),

then make a cumulant expansiofil9], and obtain
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m ,S, m szI (277')3 q q &4 k| jk jl q]k qu
t t SP
X <JodtkJodtlT[Sjk(tk)Sll(tl)]>cj| ], (20)

where T denotes time-ordered multiplicatid20] and F31(s,5,t) is given by Eq.(18). In Eq. (20) the indexc denotes a
cumulant, which is defined in textbooks of statis{i2z4] and statistical physidsl9]. As for an arbitrary random variabks we
have(A).=(A), (A%).=(A?)—(A)A), and a general expression relati®y) and(A')., which is given by

i 1 (A1 1 [(A%)c)2 1 ((A”>c n
[ :.I — — — e — .o I _. _ i —_. e — i —_—- e
(A" |.il%m i ( ) i ( o1 i S(i—ii—2i, nip, ), (21
Hence, if(Al), i=1,2, ...k, have been calculatedA’)., i=1,2, ...k, can be recursively obtained and convergdl§].

The kth moment (the term without indexc) which, according to the cumulant expansion theorem, is related to
fdr rjk---rjllff(r,s,t). This moment can be evaluated using a standard time-dependent Green’s function approach, which is

given by
ftdt"‘ftdt TIs: (t.):--s; (t
0 k o 1 [jk( k) jl( 1)]

1 t ty to
[ — k) k=1)... 1)ESR k) ¢ (k)
Fip(s,so,t)Hfodtk . dte_q fo dtlf ds fdsf fds< FSRss¥ t—ts);

XSRS, %Dt —ty )i D PRSP s 1, —ty) SRS 5,1, - 0) 19RO

SP

m

+(perm.)] , (22

where the abbreviation “perm” means &l —1 terms ob-  with m=1,Q,U,V anda, 8=Xx,y,z. In Eq.(23), (R,)' rep-

tained by permutation ofj;}, i=1,... k, from the first resents the position of the average center of the distribution,

term. o and[ D3]z is related to the half-width of the spread of the
In Eq. (22), FSAsV,s" "V t;—t;_y) is given by Eq.17). istribution, which is given by

Since Eq(22) is obtained using a Green’s function approach

without making any approximation and E@.7) is an exact

expression of the angular Green'’s function, E2p) provides

an exact formula for th&th moment. If we are able to ex-

actly evaluate Eq(22) up tokth order, through Eq21), we

can obtain the exact cumulants of the distribution up to the{Ra>§f’ in Eq. (23 and(RaRﬁﬁf in Eq. (24) can be evalu-

kth order. ated using, separately, the first order and the second order of

Eq. (22):

(D5 les=[(RaRe)m —(RaIM(ReIM 2. (29)

IV. GAUSSIAN APPROXIMATION
OF THE DISTRIBUTION

Terminating Eq(20) at second order of the cumulant and R \SP— ftdt’ v sP
settings in Cartesian coordinates, integration owein Eq. (Raym=C 0 Sa(t)
(20) can be analytically performed, which leads to the fol- m
lowing Gaussian approximation expression of the polarized
photon distribution. When the initiad, is set alongz, it is

t
fdt’f ds'FSf(s,s',t—t")s),
given by 0

. C
Fols2,t)

FSfs2,t) 1 1 B XFSR(s',2,t7) 15RO (25
Iﬁ’lp(rlslt): (n;_,ﬂ_)3/2 [detDap‘ll/zeX%_Z[(Dﬁ]P) 1]3,3

X (= (R = (Re)aD |, 23 and
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2

(RiRg)mr=c ftdt'ftdt"T[s (t')sp(t")] SP=7,—C
A/m 0 0 “ A m Fmp(s,i,t)
|

where (t.c.) means that the second term is obtained by ex-

t !
fclt’ft dt”f ds’f ds’ FSP(s,8 t—t')s,FS7s ' t' —t")s;FSR(’, 2,t7) | SAO)
0 0

+(t.c.)] , (26)

m

changing the indices: and 3 in the first term. As discussed (RoRg)m = FSP(S ) E 2 (Uaj,Up,
at end of last section, Eq§25) and (26) provide exact ex-
pressions for evaluation of the first and the second moments.
In evaluation of Eqs(25) and(26), it is convenient to use +U 4, Ui )T HRR; )T SRO)} , 3D
the components af in a spherical harmonic basis: m

S=[51,50,5_1] where(R; R; ) is defined in the CP as

— . i — . —i t ’
=[-2"Y?singe*'?® cosh,+2 Y?singe”'*], (27 <Rj2le>mnOECZJ dt,f‘ dt,,f dslfds,,

0 0
and first calculate the corresponding quantities in the CP.
Hence we write Eq(25) as b e
anz Frn (58 ,t—t")s]

(Ra)m = Fsp(% 2 U THR)TISTOL, (28)

m X2 Fogn, (8.8t 1)) Py (8'2."),
with @=x,y,z and j=1,0,—1, the indices of the spherical 32)
harmonic basisU is a matrix for the transform from a
spherical harmonic basis to a Cartesian basjs; U ,;S;, wherej; andj, are spherical components, 1,-0].
given by In the evaluation of Eqs(30) and(32), a recurrence rela-
i - tion of GSP’s is used, which is directly derived from angular
-27% o 27t momentum theory10]. Defining s;=u;e'’?, with j=1,0,
U= 2—1/2i 0 2—1/2i . (29) -1, we have
0 1 0

P, n(cos8)= 1,2, (I,1,m,0]l +h,m)
(R) in Eq. (28) is defined in the CP as n
. x(1,1n, =j[1+h,nxj)P N (cosh),
(Rj)mnochodt’f ds’; Frn(sS,t=t")sjFmn (s'.2,t"),
(30

j,h=+1,0-1, (33

with y-,=71i and yo=1, and(l4,l,,m;,m,|L,M) are the

whereF,(s;,5:,t,—t7) is the exact angular Green’s func- Clebsch-Gordan coefficients in angular momentum theory

tion in the CP, Eq(12). Similarly, Eq.(26) is written as [10], given by

1/2 1/2 1/2 -

| (I=m)(I—-m+1) (I+m)(l—-m+1) (I+m)(l+m+1)
{ (21-1)2l 21(1+1) (21+2)(21+3)
_ , (I—m)(1+m)|¥? m? ]2 (I+m+1)(1-m+1)]*2
(I=h,2m,=j[l,m=j)= {W [(1+1) B (I+1)(21+3) '
(I+m)(I +m+1)]*2 (I=m)(I +m+1)]*2 (I=m)(l—m+1)]*¥2
(21—1)2l _{ 21(1+1) { (21+2)(21+3)

(34

with the row index(from above j=1,0,—1 and the column indeffrom left) h=1,0,— 1. These recurrence relations of GSF's
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were provided in Ref{8] with some misprints. Substituting Eg&l2) and (13) into Eq. (30), and using Eq(33) and the
orthogonality relation of GSF's, Ed8), integrations oveds’ anddt’ in Eq. (30) can be analytically performed. When the
final directions= (46, ¢), we have

<R1>mno CE Pmn —J(COSG)e_i(”O_j)¢yj

2(l-h)+1

x> S A

DI h
n h 4ar

(D =h,10,0[1,n)(1=h, 100, = [1.no— ), (35)

with n=2,0-0,—2,h=+1,0-1 and

xp(—)\'j_ht)—exq—)\!t)
T T-h
)\I_)\j

D'na,hn,no(t)=§jl [Bnnli[Brn]; exp—uat), 1,j=1,2,3,4. (36)

Similarly, integrations in Eq(32) can also be analytically performed. We have

(Ri,Rj Ymn,=C 22 Pinng—i,—j,(COsO)e (07127 Il o B> > e

np np hy hy

X Elh2:n ()1 =h3,1.n5,0/1,n){I —hz,1ng—j1,—joll,no—j1—j2)

mn n n
X (I=hy—hy,1n1,0/l =hy,n){I —h,—hy,1ng, — 4|l —hy,no— 1), (37)

with ny, n,=2,0~0,—-2, hy,h,=+1,0,-1, and

Ih h I=h I—=h,—h
mﬁz %11 ()= E[anz] |:annf]i[Bn i

1Mo

exp(— N} "2 M) —exp(— ) exp(— )\'_hzt) —exp(—\lt)
T exp(— uat). (38

X — o
()\; ho )\I P hl)()\| | P hl) ()\I o )\If Fz hl)()\:_)\J

Up to now, algebraic analytical expressions for the first(—H'oot)/47-r in the scalar case. Notice that the associated
cumulant(the average center of the distributjand the sec- Legendre function PM(w)=@)"T(I+m)/(l
ond cumulantthe half-width of spreadhave been derived. _m)|]1/2p' +(w); our formula reduces to that given in Ref.
Equationg36) and(38) involve the related scattering param- [14] in the scalar case.
eters: us and Il , [defined after Eq(14)], through\! in

Eq. (16) and [By,qJi in Appendix A, and the absorption | 1 rpiBTION FUNGTION ACCURATE UP TO AN

parameteru,. Thus they determine the time evolution dy- ARBITRARY HIGH-ORDER CUMULANT
namics. The final light directios appears as an argument of ) o
the generalized spherical harmonics in E€5) and (37). In order to calculate the polarized photon distribution

Substituting Eqs(18), (35), and (37) into Egs. (28), (31), function with_accuracy up to an arbitrary high order, _it is
and then Eq(24), the first and second cumulants in the spmore _convenlent .to set a.‘” spat!al and angular vectors in the
representation are obtained as functions ahdt. The dis- spherical har.monlcs basis, similar to £87), and to evalu-
tribution function of polarized light is then expressed by Eq.2!€ Ed.(22) via the CP:

(23), with Eq. (28) for the average center position and Eq.

(24) for the width of the spread. Equati¢@3) produces the Jtd ---Jtd T sP

mth Stokes component of polarized light at positigrwith o b t TLs;, (-5, (t)]

light directions, as a function of time, initialed byry=0,

=2, and polarized state>*®) in an infinite uniform me- 1

dium. ZW[T”GGK.---JLUTI SROT,
It is easy to reduce the above solution to the scalar m ’
polarized case by considering only thg component. Be- (39)

cause(1,1,0,01,00=0 in Eq.(34), Egs.(35) and(37) can be
greatly simplified. Also, Eq(15) is reduced to (P+1)exp  with j4,...,j,=21,0,—1 andG(jy,...,j1,t) given by
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G(jk,...,jl,t):{fotdtkjotkdtk1---Jot2dtlf ds(k)J’ ds<k—1>---fds<1>

X F(s,s(k),t—tk)s}:)F(s‘”,s(k‘l),tk—tk_l)s}‘k‘jll)- : ~F(s‘2>,s(1),t2—tl)sﬁ)F(s(l),so ,t;—0)+perm.,

(40)

where F (81,8171 t,—t;_,) is given by Eq.(12). Using the GSF recurrence relation, H§3), and the orthogonality
relation of GSF’s, Eq(8), the integrals oveds®- --ds") in Eq. (40) can be analytically performed. We obtain, when the initial
S is alongz and the finals= (0, ¢), that

k k
3 P g oo -2 o] [,

=1

DRI 2(1-=f_jh)+1

Nk ny  hy hy am

(G 1D ] =

k g
I,hy ..., h
menlli nllno(t)’:;lE[l <I_f21 hk7f+l!1rnkfg+llo

g-1
= fZl hkf+1ankg+1>

9 k—g g-1 k—g+1
X<|_Zl hk—f+1,1,no—f§=:l Jtr—ik-g+1 |_Zl Ne—f+1,No— Zl jf>]+perm, (41)

with n{=2,0-0,—2 andh;=1,0,—1, f=1,2, ... K, with

4 4
Lhy..ohy _ B y I =he 1 rpl S
Hy 8, (8)=exp( ”at)ik;l:l ilzzl[ank]'kﬂ[Bnknkfl]'k [Byn, Ii,

‘ e 2 | I—hy ==K e i
X Odtk 0dtk,l--- . dtlexp[—)\ikﬂ(t—tk)]exq—)\ik (tk—tk,l)]---exp[—)\il L (t,—0)].

(42

Note that all ensemble averages have been performed. Equan increase of collision events or time, the distribution ap-
tion (42) involves integrals of exponential functions, which proaches accuracy in detail since the higher cumulants be-
can be analytically performed. An explicit expression forcome relatively small compared to the appropriate power of
evaluating integrals in Eq42) is presented in the Appendix the second cumulant. If we examine the spatial displacement
B. Equation(42) involves all related scattering and absorp- after each collision event as an independent random variable
tion parameters and determines the time evolution dynamicar;, the total displacement EAr; (i=1,... N), with N
The final direction of light,s, appears as an argument of the number collision events, which can be estimated by
GSF's in Eq.(41). Substituting Eq.(42) into Eq. (41),  t/ug. If we defineY=(N) Y22 Ar;, the central limit theo-
through Eq.(39), which transfers to the SP representationrem claims that ifN is a large number, thetY")./(Y?),
and introduces the initial polarized condition, and using a~N1~"2 n=3. Therefore, the sum d{ variables will have
standard cumulant procedure, the cumulants as functions @ essentially Gaussian distribution. At early times, the pho-
angles and timet up to an arbitrarykth order in the SP  ton’s spread is narrow: hence, in many applications the de-
representation can be recursively obtained. The final positiogailed shape is less important than the correct position and
r appears in Eq(20), and its components can be expresseccorrect narrow width of the beam, because of the finite reso-
on a spherical harmonics basis, similar to E27). Then, |ution of detection devices. In case a more accurate distribu-
performing a numerical three-dimensional inverse Fourietion at early times is needed, Sec. IV provides formulas for
transform overq, an approximate distribution function analytically calculating the higher cumulants up to an arbi-
I>F(r,s,t) in the SP representation, accurate ufitio cumu- trary kth order. Then, performing a numerical three-
lant, can be calculated. dimensional Fourier transform, the distribution function ac-
curate up to thekth order cumulant approximation can be
obtained.
In summary, we present an analytical solution of the time-

In Sec. lll, we derived an explicit expression of the po-dependent polarized radiative transport equation in an infi-
larized photon distribution function, which guarantees thenite uniform isotropic medium. The Green'’s function for the
exact average central positidthe first cumulantand the angular part is exact. Using a cumulant expansion, we can
exact width of spreatthe second cumulantMoreover, with  analytically calculate the spatial cumulants up to an arbitrary

VI. DISCUSSION
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high order. By terminating at the second order, we have de-

rived an explicit expression of the polarized light distribution > [Blmno]i = Omny» (A2)
function. This expression is quantitatively accurate up to the '
second OrdderhCU?lJI:caanahDDVOXiTation- Namelya the Cené?ﬂhe unique solution o[B'mnO]i then can be obtained. For
sl and e Plllh o by 2o S ok 0Sen a1 companes 4By, | const o
limit theorem claims that after enough collision events, allVECOr in the space of the direct productiofm. Combining

cumulants higher than second approach small values, and tll?éqs'(Al) and (A2) in i X m space, we obtain the following

Gaussian spatial distribution calculated approaches accuragglatr'x equation:

in detail. Our results are given in terms of a distribution with AB=C. (A3)
coefficients that can be calculated algebraically, with moder- .

ate effort at the second cumulant level and additional efforf® IS @ 16<16 matrix:

to induce the third- and higher-order cumulants. This analyti- Ao =" 5 —N'8 8. +6 Ad

cal solution provides a background distribution function for xn o= Hlmadi =01y St Ol (A4)
further study of optical tomography using polarized light. B and C are 16<1 column vectors:Banz[B'nno]j and

Cixm= Omn,. HereA andC are given, whileB is unknown.
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This work was supported in part by NASA, DOE, €quations. The solution is given by

USAMRMC, and the New York State Science and Technol- Bixm=Aixm/de(A), (A5)
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APPENDIX A with A, is obtained by replacing the X m)th column in
the determinant oA by the column vectoC.
In this appendix we calcula[eB'mno]i in Eq. (15). Substi-

tuting Eq.(15) into Eq.(14), we obtain a set of linear homo-

geneous equations APPENDIX B

In this appendix, we derive an analytical expression for

2 [lenn—?\!5m,n][B:1no]i=0, (A1) Eq. (42) to kth order. By defining
n k— k—g+1,

. . . ng)\i[l72f:ghk—f+1]_)\i[|72f:? hk—f+1], 9=1,... k
where eigenvalued; (i=1,2,3,4) are given by Eq(16). g+l 9 (B1)
These equations, however, are not linearly independent.

Adding the initial condition, Eq(14b), given by Eqg. (42) can be written as
4 4 .
Ihy....h _ | I—h -3 he_ty | K
Hmn':< ..... nino(t)_exq_’uat)ilﬁzl:l Wi12:1 [ank]ik-#l[Bnknkk—l]ik‘”[Bﬂlnof st l]ilexq_)\ik-#lt)l:( ', (B2
|
with @ e(bl"'bz)t ebzt 1
F'9(t)= + , (B4b
® by(b;+by) bib,  (bi+by)b, (B4D)
t ty ty
F<k)(t):J dtkebktkj dtk,lebkfﬂkfl---J’ dt, eP1's,
0 0 0
(B3) g(b1tby+ba)t g(batb3)t
|:(3)(t):
bi(by+by)(by+by+bs)  biby(by+bs)
It is easy to directly calculate EqB3) for a few low k gbst 1
. + .
orders: (b1+b2)bzbs  (by+b,+b3) (b, +bg)bg
(B4o)
byt
FA(t)= er_ i (B4a) In each step of integration, the difficulty is in determining the
by by constant term. In the following we prove that this term is
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given by (—1)4[by(bg+br_q) -(be+be_1+--+by)]. 1 t ,
Equation(B3) can be written aé ' ' FO) = oo ebktF(k_l)(t)—J dt’ ek DU Rt |
k 0
t , (B6)
F<k>(t)=f dt’ e FR1(t1), (B5)
0
Using integration by parts to E¢gB5), we obtain Recursively applying EqB6), we obtain
|
“ ebkt 1) e(bk+bk—1)t 2
FR(t)=—FkD(t)— ————Fk2(¢
T VO A
. e(bk+bk,1+---+bk,f)t i1
+o4 (-1 F oot
S N (e e e A
e(bk+bk,1+---+b1)t_1
Feep(—1)k L (B7)

by(by+by_y1)- (bt by_g+---+by)"

Equation(B7) provides a formula to recursively evaluate E40) up to kth order. Also, Eq.(B7) produces the above-
mentioned constant term. An explicit expression of &f) can then be written as

4 4

Lhi....hy — _ 9 I=he 1Rl Seeikegeiy
Mo gD =8XR(— ), 20 o 2 (B iy (B By (B I,
k k—
(—1)%exd {_gby—+1t]
Xexp(—\| t , B8
ot Tk+1 )g§=:0 HL'(:lL}g) (B8)
with b, ,=0, and
g j
L}g)zz. bi, j<g, or L](g): Z bs, j>g, (B9)
=j f=g+1
whereby is defined in Eq(B1).
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