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Stable vortex solitons in the two-dimensional Ginzburg-Landau equation
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In the framework of the complex cubic-quintic Ginzburg-Landau equation, we perform a systematic analysis
of two-dimensional axisymmetric doughnut-shaped localized pulses with the inner phase field in the form of a
rotating spiral. We put forward a qualitative argument which suggests that, on the contrary to the known
fundamental azimuthal instability of spinning doughnut-shaped solitons in the cubic-quintic NLS equation,
their GL counterparts may be stable. This is confirmed by massive direct simulations, and, in a more rigorous
way, by calculating the growth rate of the dominant perturbation eigenmode. It is shown that very robust spiral
solitons with~at least! the values of the vorticityS50, 1, and 2 can be easily generated from a large variety
of initial pulses having the same values of intrinsic vorticityS. In a large domain of the parameter space, it is
found that all the stable solitons coexist, each one being a strong attractor inside its own class of localized
two-dimensional pulses distinguished by their vorticity. In a smaller region of the parameter space, stable
solitons withS51 and 2 coexist, while the one withS50 is absent. Stable breathers, i.e., both nonspiraling
and spiraling solitons demonstrating persistent quasiperiodic internal vibrations, are found too.

DOI: 10.1103/PhysRevE.63.016605 PACS number~s!: 42.65.Tg, 47.32.Cc
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I. INTRODUCTION

Ginzburg-Landau~GL! equations constitute a class
universal models describing pattern formation in a great
riety of nonlinear dissipative systems@1#. Among the pat-
terns, localized pulses are especially interesting. While
theory of pulses in various one-dimensional~1D! models of
the GL type was well elaborated@1–8#, much less is known
about two-dimensional~2D! localized patterns~‘‘bright soli-
tons’’!. In order to make the pulses stable, it is first of
necessary to stabilize the zero background~trivial solution to
the equation!, which can be done within the framework o
the cubic-quintic ~CQ! GL equation@2–4#, or a model lin-
early coupling a cubic GL equation to a linear dissipat
one @5#.

Although the CQ GL equation was originally introduce
by Sergeev and Petviashvili@2# in a 2D form, exactly in
order to generate 2D localized pulses in the form of ‘‘spi
solitons,’’ much more work has been done to investigate
‘‘solitons’’ of this type, but rather spiral waves extending
infinity @9,10#. In particular, the stability of delocalized spira
vortices in a model of a superflow, and interactions of vo
ces in a two-component GL system have been investigate
Refs. @11# and @12#. On the other hand, nonspiralinglocal-
ized2D patterns were recently studied in other models, e
a complex Swift-Hohenberg equation@13#.

The objective of this work is to develop a consiste
analysis of spiral solitons, i.e., localized 2D objects within-
ternal vorticity, which is characterized by an integer-valu
‘‘spin’’ S, within the framework of the complex CQ GL
equation. A crucially important issue to be considered is
soliton’s stability at different values ofS. Note that, in the
dissipationless limit, the GL equation goes over into an eq
tion of the nonlinear Schro¨dinger~NLS! type. Accordingly, a
spiral soliton turns into a 2D soliton with an internal vortici
~ring vortex, or ‘‘spinning soliton’’!. However, a principal
difference is that the GL equation may only have a few i
1063-651X/2000/63~1!/016605~6!/$15.00 63 0166
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lated solitary-pulse solutions~normally, two, if one of them
is expected to be stable, the second pulse playing the ro
an unstableseparatrix@5#!, while its NLS counterpart, even
if it is not integrable~which is definitely the case in the 2D
situation!, has a continuous family of soliton solutions, th
may be parametrized by their energy. In the case when al
dissipative parameters of the GL model are small, i.e., it m
be considered as a perturbation of its NLS counterpart,
lated pulses that survive as solutions to the GL equation
selected from the continuous family of the NLS solitons by
condition of the balance between the gain and losses@5#.

The continuous family of theS51 soliton solutions to the
two-dimensional CQ NLS equation was investigated in de
numerically in Ref.@14#. On the basis of simulations re
ported in Ref.@14#, it had been concluded that the spinnin
solitons were stable, provided that their energy was la
enough. However, we have recently found@15# that, in fact,
these spinning solitons, as well as their counterparts in
form of ‘‘spinning light bullets’’ in the three-dimensiona
CQ NLS model@16#, are subject to an azimuthal instability
which leads to their breakup into a set of fragments wh
are flying in tangential directions, each being a stablenon-
spinningsoliton~the number of the fragments depends on
original spin and initial energy of the spinning soliton!.
Nonetheless, it has also been found that, in the case of l
energies, when the soliton is a ring with small inner a
large outer diameters~see, for example, Fig. 7 below!, the
instability is growing very slowly, thus explaining the ro
bustness of the ring vortices reported in Ref.@14#. Moreover,
this may also explain observation of an effectivelystable
spatial vortex soliton in a non-Kerr 3D optical medium r
ported in a recent experimental work@17#. It is also relevant
to mention that, in contrast to this, 2D spinning solitons a
very strongly unstable in a model with saturable nonlinea
~from which the CQ nonlinearity can be formally obtained
a truncated expansion! @18#.

In the work @15#, we have also performed an analytic
©2000 The American Physical Society05-1
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consideration of a particular mode of the instability of t
spinning solitons in two- and three-dimensional CQ N
equations, which is relevant just for the above-mention
broad vortex rings with large energy. This particular ins
bility mode is the spontaneous off-center displacement of
soliton’s inner ‘‘bubble.’’ It has been concluded that th
mode gives rise to an instability of the solitons withS51
and 2, although it is not necessarily the fastest growing
stable mode. In direct simulations, this mode does not u
ally dominate the instability development; nevertheless
can be observed in some cases~actually, in a 3D rather than
2D situation! @15#.

Following the same line of arguments, one may exp
that, on the contrary to the conservative NLS equation, in
GL model the vortex ring may be stable. Indeed, in the lim
when the external size of the ring diverges, the vortex r
turns into a usual delocalized rotating spiral wave@10#. It is
known that, generally, the latter wave in dissipative syste
has a finite~nonzero! stability marginagainst the spontane
ous off-center shift of its inner bubble. On the other hand
the same limit the vortex ring in the NLS equation turns in
a usual delocalized ‘‘optical vortex’’~2D dark soliton! @19#,
which is, obviously, onlyneutrally stableagainst the spon
taneous shift of the inner bubble. Therefore, the interac
of the inner bubble with the outer rim of the large-size b
finite NLS soliton may destabilize the whole ring, turning t
neutral shift mode into an unstable one, which is indeed
case in the CQ NLS equation@15#; however, the above
mentioned stability margin of the inner bubble against
shift inside the GL spiral wave may help to stabilize afinite-
size spiral vortex too in the GL equation. Our simulation
will show that it is indeed relatively easy to find a spir
soliton which is fairly stable against all the perturbation
including azimuthal ones which are fatal for the NLS vort
ring.

The rest of the paper is arranged as follows. The
model is presented in detail in Sec. II, and in Sec. III w
report results of extensive numerical simulations, separa
for nonspiraling and spiraling solitons, with special empha
on the test of the stability against azimuthal perturbatio
Conclusions are formulated in Sec. IV.

II. MODEL

We consider the~211!-dimensional CQ complex GL
equation in a general form,

iAz1 id•A1~1/22 ib!~Axx1Ayy!

1~12 i«!uAu2A2~n2 im!uAu4A50. ~1!

The equation is written in the ‘‘optical’’ notation, assumin
evolution along the propagation coordinatez of a beam with
the 2D cross section in the plane (x,y). In fact, bulk ~3D!
optical media is the most appropriate system for experim
tal generation of vortex rings, see, e.g., Ref.@20#. In that
case,A(x,y;z) is the local amplitude of the electromagne
wave, the diffraction and cubic-self-focusing coefficients a
normalized to be 1,« is the cubic gain,d and m are the
linear and quintic loss parameters~as a matter of fact, the
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latter one accounts for the nonlinear gain saturation in opt
media!, and n is the quintic self-defocusing coefficien
Lastly, b is an effective diffusion coefficient~in optical me-
dia, diffusion takes place if light creates free charge carrie
which may take place, e.g., in semiconductor waveguide!.

The ‘‘spiral solitons’’ are axisymmetric solutions to Eq
~1! of the form A(z,x,y)5U(z,r )exp(iSu), where r and u
are polar coordinates in the (x,y) plane, andS is the above-
mentioned integer ‘‘spin’’~topological charge of the vortex!.
The complex amplitudeU(z,r ) obeys an equation

iU z1 id•U1~1/22 ib!~Urr 1r 21Ur2S2r 22U !

1~12 i«!uUu2U2~n2 im!uUu4U50, ~2!

which is supplemented by boundary conditions stating t
U;r S at r→0, and U(r ) decays exponentially atr→`.
Note that the localized solution can be interpreted as aspiral
soliton because the functionU(r ) is complex, U(r )
[uU(r )uexp„iF(r )…, hence equal-phase curvesSu1F(r )
5const are spirals, rather than straight linesSu5const, as in
the case of the CQ NLS equation, whereU(r ) is real@14,21#.

Our first purpose is to find stationary localized solutio
to Eq.~2! which must be stable within the framework of th
equation, i.e., they must beattractors, similarly to stable
solitons in various forms of the 1D GL equation@4–7#. As
the stability of the spiral solitons against the most danger
azimuthal perturbations is not comprised by Eq.~2!, it will
be considered below separately.

It is relevant to mention that a stationary solution for
spiral soliton was sought for numerically already in the fi
work @2# in which the CQ GL model was introduced. How
ever, a particular version of the model considered in t
early work was very degenerate~with a single cubic nondis-
sipative term in the equation!, and stability of the spiral soli-
ton was not really studied.

III. NUMERICAL ANALYSIS

In order to find the solutions, we have performed nume
cal simulations of Eq.~2! at many different values of param
eters and using various initial configurationsU(z50,r ).
First, we will display typical examples of the formation o
stable nonspinning and spinning~spiral! solitons, and then
results of a very large number of simulations will be su
marized in the form of a diagram showing regions of ex
tence and nonexistence of different solitons in an appropr
parameter plane. Typical examples of stable breathers,
nonspinning and spinning, showing persistent quasiperio
internal vibrations will be displayed too.

Before proceeding to the presentation of results, it is r
evant to note that a positive quintic self-defocusing coe
cient,n.0, is necessary to prevent the wave collapse in
NLS counterpart of the GL equation~1!. However, it is not
ruled out that stable GL spiral solitons are possible w
n50, or even ifn takes small negative values, as the c
lapse might be prevented by the dissipative terms. Moreo
it is also possible that spiral solitons may exist with the o
posite sign in front of the cubic self-focusing term in Eq.~1!.
Following the analogy with 1D models, we expect that t
5-2
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STABLE VORTEX SOLITONS IN THE TWO- . . . PHYSICAL REVIEW E 63 016605
solitary pulse would have a much larger internal phasechirp
in the latter case, which is, obviously, very important just
the spiral solitons. However, these issues are left beyond
scope of the present work.

A. Zero-spin solitons

At first, we consider zero-spin~non-spiral! 2D stationary
solutions withS50 ~in the CQ NLS equation, such solution
were recently studied in detail in Ref.@22#!. Our simulations
have demonstrated that quite arbitrary initial pulses ea
self-trap into~are attractedby! a stationary solution, which
is similar to a ‘‘plain pulse’’ numerically found in Ref.@7# in
the 1D model. As a typical example, the formation of a s
tionary pulse from a very broad input atb50.5, d50.5,
n50.1, m51, and«52.5 is displayed by Fig. 1~a!, while
Fig. 1~b! shows the evolution of the same input for a sligh
larger nonlinear gain,«52.6. One can see that in the latt
case a stationary pulse is not formed; instead, the struc
expands indefinitely, generating an advancing front sim
to a 1D structure investigated in detail in Ref.@7#. A transi-
tion, with the increase of the cubic gain, from solitons
spatially uniform continuous waves~cw! extending to infin-
ity is a natural feature, that can be easily explained in 1D
means of the perturbation theory@3,4#. Thus, for the above-
mentioned set of parameters, a critical value of the gai«
separating the localized and cw states is between 2.5 and

As it was mentioned in the Introduction, the formation
a stationary pulse is a result of the balance between the
and losses. Figure 1 and many other simulations not sh
here demonstrate that the balance is sensitive to the siz
the gain and loss coefficients. In particular, the formation
a stable pulse or cw~the two outcomes shown in Fig. 1! is

FIG. 1. ~a! Formation of the nonspinning (S50) two-
dimensional soliton atb50.5, d50.5, n50.1, m51, and«52.5.
~b! Formation of a continuous wave for the same parameters a
the panel~a! but with a different nonlinear gain,«52.6. The initial
field is real, U(r ;z50)50.8 for r<10, and U(r ;z50)
50.8 exp@2(r210)2/9# for r .10.
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not the only possible result. At some values of the para
eters, breathers, i.e., localized pulses with persistent inte
vibrations, similar to those discovered in various 1D G
models@6#, were found too. An example of the breather wi
a huge amplitude of the intensity oscillations is presented
Fig. 2. At quasiperiodically repeating values ofz correspond-
ing to the minimum intensity, the pulse is found to be ve
broad and flat.

B. Spinning solitons

We were able to find stable localized solutions to Eq.~2!
in a systematic way for spinning~spiral! solitons withS51
and S52 ~we did not consider higher values of the spin!.
Typical examples of the formation of spiral solitons for the
two cases are shown in Fig. 3. In particular, in the ca
S52, this resembles formation of the ‘‘composite pulse
which was found to be stable in the 1D GL model studied
Ref. @7#. However, a direct analog of the ‘‘composite pulse
in the present~211!D model has never been found.

The spinning solitons, as well as the nonspinning on
considered above, are found to be strong attractors, as

in

FIG. 2. Quasiperiodic evolution of the squared amplitude~inten-
sity! of a nonspinning vibrating soliton atb50.05, d50.05, n
52, m50.2, and «50.3. The initial field is U(r ;z50)
5(0.88/A2)exp@2(r/6)2#.

FIG. 3. Formation of spinning solitons from real initial fiel
configurations:~a! S51 and ~b! S52. The parameters areb
50.5, d50.5, n50.1, m51, and«52.5. The initial field distribu-
tions are:~a! U(r ;z50)50.2r exp@2(r/7)2#, and ~b! U(r ;z50)
50.02r 2 exp@2(r/12)2#.
5-3
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can be generated from a large variety of inputs. Anot
important finding is that stable solitons with all the thr
values of the vorticity considered here,S50,1,2,coexistin a
large domain of the parameter space, see details below~we
will also display a smaller region of the parameter space
which stable solitons withS51 and S52 coexist, while
zero-spin solitons were not found!. In other words, each soli
ton is a strong attractor inside its own class of pulses, dis
guished by the value of the spin, which plays the role o
topological invariant.

An important characteristic of solitons is theirintegral
power, which is defined in the usual way, a
I 52p*2`

1`uU(r )u2rdr . The power has been found to tak
very different values for the coexisting solitons with diffe
ent values of the spin. This is illustrated by Fig. 4~a!, where
the power is shown as a function of the nonlinear quintic l
parameterm. Similar relations between powers of soliton
with different values of the spin were also found in the tw
and three-dimensional CQ NLS equations@21#.

To proceed from the typical examples displayed above
the presentation of systematic results, in Fig. 4~b! we display
the existence domains for both spinning and nonspinn
solitons in the parameter plane («,m). In the black region,
there exist both spinning and nonspinning stable solito
whereas in the lower white striponly spinningsolitons have
been found to form. In the gray region, solitons do not fo
at all. Lastly, in the upper white region, initial pulses ha
been found to expand indefinitely, generating the abo
mentioned fronts.

Typical radial profiles of the solitons withS50, 1, and 2
are displayed in Fig. 5. One can see from this figure that
inner radius of the spinning solitons quite naturally increa
with the spin.

In other regions of the parameter space we have fo
apparently stablespinning breatherswith S51 and S52,
which demonstrate persistent quasiperiodic internal vib
tions. Figure 6 presents an example of a spinning brea
with S51. Note that the quasiperiodic oscillations are ve
similar to those observed for the nonspinning case~see Fig.
2!. We mention that the nonspiraling (S50) and spiraling

FIG. 4. ~a! The integral powerI versus quintic lossm for a fixed
cubic gain«52. The other parameters areb50.5, d50.5, andn
50.1. The circles, squares, and triangles correspond to, res
tively, nonspinning solitons, spinning solitons withS51, and spin-
ning ones withS52. ~b! The existence domain in the paramet
plane («,m) for both spinning and nonspinning stable solitons. T
other parameters are:b50.5, d50.5, andn50.1.
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(S51,2) breathers coexist with each other at the same va
of the parameters, whereas the stationary~nonvibrating! soli-
tons do not form for those parameter values.

C. Azimuthal stability

As it was explained above, the comparison with the sp
ning solitons in the CQ NLS model strongly suggests t
overall stability of the solitons is determined by azimuth
perturbations breaking the axial symmetry of the solutio
Recall that the reduced equation~2! employed above canno
include azimuthal perturbations. Therefore, in order to t
this kind of the stability, we have simulated the full equati
~1! directly in the Cartesian coordinates. Doing this, we ha
found that both nonspinning and spiral solitons found abo
from Eq. ~2! are remarkablystableagainst azimuthal pertur
bations, in accordance with the qualitative arguments p
sented in the Introduction. The stable existence of the s
tons was verified, simulating their propagation over a hu
distance, up toz54000.

Although large-scale simulations of the full underlyin
equation are quite sufficient to predict observation of sta
solitons in experiments, this does not provide for a ma
ematically complete evidence of the solitons’ stability. A d
rect way to prove the true stability is to consider the eige
value problem produced by the linearization of the evolut
equation around the corresponding stationary solutions.
have performed this analysis too, aiming to compute
largest growth rates~eigenvalues! of the azimuthal perturba
tion eigenmodes for different values of the perturbation

c-

FIG. 5. Radial profiles of the spinning and nonspinning solito
at b50.5, d50.5, n50.1, m51, and«52.5.

FIG. 6. Quasiperiodic evolution of the squared amplitude~inten-
sity! of a vibrating spinning soliton withS51 for the same values
of the parameters as in Fig. 2. The initial field isU(r ;z50)
5(0.25/A2)r exp@2(r/9)2#.
5-4
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STABLE VORTEX SOLITONS IN THE TWO- . . . PHYSICAL REVIEW E 63 016605
dexn ~which is independent from the spinSof the stationary
solution in question!. The numerical procedure we have us
in order to obtain the growth rate of the dominant pertur
tion eigenmode is described in detail in Refs.@18# and@23–
25#.

In all the caseswhen the direct simulations produced a
parently stable stationary solitons, we have found that
largest growth rate of the perturbation eigenmodes ha
negativereal part, thus corroborating the stability of the co
responding stationary solitons. For example, the real part
the largest growth rate of the perturbation eigenmodes for
spiral soliton withS51 whose formation is shown in Fig
3~a! are Rel520.0005,20.185 and20.221 for the pertur-
bation indicesn51, 2, and 3, respectively. The fact that th
real part of the largest growth rate is clearly negative, rat
than being equal to zero, is a consequence of the dissipa
nature of the GL equation, as it was explained in the Int
duction.

Lastly, to assess the range in the space of the initial c
figurations for which the stable solitons are attractors,
have additionally performed a large number of direct sim
lations with initial pulses in the form of Gaussians with i
trinsic vorticity. In all the cases in which the existence
stable spiral solitons was known, the initial Gaussians r
idly developed into them, keeping the initial value of th
spin. To illustrate this, in Figs. 7~a! and 7~b! we display
gray-scale plots representing the amplitude and phase o
initial Gaussian beam, which was taken as

A~x,y;z50!51.6 exp@2~x21y2!/25#•exp~ iu!

~i.e., it hasS51), whereas in Figs. 7~c! and 7~d! the ampli-
tude and phase of the established doughnut-shaped so
are shown atz5150.

FIG. 7. Gray-scale plots of the input Gaussian field with t
vorticity S51: ~a! amplitude and~b! phase. The output field atz
5150: ~c! amplitude and~d! phase. The parameters areb50.5, d
50.5, n50.1, m51, and«52.5.
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The same initial intensity distribution, but withS52, i.e.,

A~x,y;z50!51.6 exp@2~x21y2!/25#•exp~2iu!,

easily generates a stable spiral soliton withS52, as it is seen
in Fig. 8. Naturally, theS52 soliton has an essentially large
size of its inner ‘‘bubble,’’ cf. Fig. 5. The output displayed i
Fig. 8 was taken atz5200, although, in fact, the formation
of the soliton completed itself at the propagation distan
z;50.

Lastly, we note that the phase plots corresponding to
established solitons displayed in Figs. 7~d! and 8~d! clearly
show a spiral structure, justifying the application of the te
‘‘spiral solitons’’ to the 2D solitary-wave patterns consider
in this work.

IV. CONCLUSIONS

In the framework of the complex cubic-quintic Ginzburg
Landau equation of a general form, we have develope
systematic analysis of two-dimensional axisymmet
doughnut-shaped localized pulses with the inner phase
in the form of rotating spirals. We have put forward a qua
tative argument which suggests that, on the contrary to
known azimuthal instability of spinning doughnut-shap
solitons in the cubic-quintic NLS equation, their GL cou
terparts may be stable. This is confirmed by many dir
numerical simulations, the results of which have been su
marized in the form of a diagram showing regions of ex
tence and nonexistence of the spiraling and nonspiraling s
tons in an appropriate parameter plane. Robustness of
solitons with the values of the intrinsic spin 0, 1, and
strongly suggested by direct simulations, was rigorously c

FIG. 8. The same as in Fig. 6, but for the vorticityS52. The
output field was taken atz5200.
5-5
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firmed by computation of the largest growth rate for eige
modes of azimuthal perturbations. For solitons found to
stable in direct simulations, the largest growth rate was
ways found to have a negative real part. In addition, we h
shown that very robust spiral solitons with~at least! S50, 1,
and 2 can be easily generated from rather arbitrary local
inputs having the same internal vorticity. Moreover, in
large domain of the parameter space, both nonspinning
spinning solitons have been found to coexist, each one b
a strong attractor inside its own class of pulses distinguis
by the integer value of the vorticity. In a small region of th
parameter space, the stable solitons withS51 and S52
have been found to coexist, while nonspiraling ones~with
S50) are absent. In addition to that, in regions of the p
rameter space where stable solitons do not form, appare
stable breathers, both nonspiraling and spiraling, have b
found to coexist with each other.
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A challenging problem is the interaction between spi
solitons with equal or different vorticities~interactions be-
tween spirals extending to infinity have been already stud
in detail by means of analytical and numerical metho
@10#!. If the solitons are far separated, and their vorticities
equal or opposite, the interaction can be described ana
cally in terms of an effective potential, using techniq
elaborated in Ref.@26#. However, in the most interestin
case when the solitons are essentially overlapped and, he
they interact strongly, direct simulations are necessary.
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