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Stable vortex solitons in the two-dimensional Ginzburg-Landau equation

L.-C. Crasovar},B. A. Malomed? and D. Mihalach&
IDepartment of Theoretical Physics, Institute of Atomic Physics, P.O. Box MG-6, Bucharest, Romania
2Department of Interdisciplinary Sciences, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
(Received 19 June 2000; revised manuscript received 27 September 2000; published 20 December 2000

In the framework of the complex cubic-quintic Ginzburg-Landau equation, we perform a systematic analysis
of two-dimensional axisymmetric doughnut-shaped localized pulses with the inner phase field in the form of a
rotating spiral. We put forward a qualitative argument which suggests that, on the contrary to the known
fundamental azimuthal instability of spinning doughnut-shaped solitons in the cubic-quintic NLS equation,
their GL counterparts may be stable. This is confirmed by massive direct simulations, and, in a more rigorous
way, by calculating the growth rate of the dominant perturbation eigenmode. It is shown that very robust spiral
solitons with(at least the values of the vorticitys=0, 1, and 2 can be easily generated from a large variety
of initial pulses having the same values of intrinsic vortickyin a large domain of the parameter space, it is
found that all the stable solitons coexist, each one being a strong attractor inside its own class of localized
two-dimensional pulses distinguished by their vorticity. In a smaller region of the parameter space, stable
solitons withS=1 and 2 coexist, while the one with=0 is absent. Stable breathers, i.e., both nonspiraling
and spiraling solitons demonstrating persistent quasiperiodic internal vibrations, are found too.
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[. INTRODUCTION lated solitary-pulse solution@ormally, two, if one of them
is expected to be stable, the second pulse playing the role of

Ginzburg-Landau(GL) equations constitute a class of an unstableseparatrix[5]), while its NLS counterpart, even
universal models describing pattern formation in a great va#f it is not integrable(which is definitely the case in the 2D
riety of nonlinear dissipative systeni&]. Among the pat- situation), has a continuous family of soliton solutions, that
terns, localized pulses are especially interesting. While thenay be parametrized by their energy. In the case when all the
theory of pulses in various one-dimensioaD) models of  dissipative parameters of the GL model are small, i.e., it may
the GL type was well elaboratgd—8], much less is known be considered as a perturbation of its NLS counterpart, iso-
about two-dimensiongRD) localized patterng bright soli- lated pulses that survive as solutions to the GL equation are
tons”). In order to make the pulses stable, it is first of all selected from the continuous family of the NLS solitons by a
necessary to stabilize the zero backgro(nigial solution to  condition of the balance between the gain and lo§Sgs
the equatiop which can be done within the framework of ~ The continuous family of th&=1 soliton solutions to the
the cubic-quintic (CQ) GL equation[2—4], or a model lin-  two-dimensional CQ NLS equation was investigated in detail
early coupling a cubic GL equation to a linear dissipativenumerically in Ref.[14]. On the basis of simulations re-
one[5]. ported in Ref[14], it had been concluded that the spinning

Although the CQ GL equation was originally introduced solitons were stable, provided that their energy was large
by Sergeev and Petviashvil2] in a 2D form, exactly in enough. However, we have recently fourid] that, in fact,
order to generate 2D localized pulses in the form of “spiralthese spinning solitons, as well as their counterparts in the
solitons,” much more work has been done to investigate noform of “spinning light bullets” in the three-dimensional
“solitons” of this type, but rather spiral waves extending to CQ NLS model[16], are subject to an azimuthal instability,
infinity [9,10]. In particular, the stability of delocalized spiral which leads to their breakup into a set of fragments which
vortices in a model of a superflow, and interactions of vorti-are flying in tangential directions, each being a staide-
ces in a two-component GL system have been investigated ispinningsoliton (the number of the fragments depends on the

Refs.[11] and[12]. On the other hand, nonspiralingcal-  original spin and initial energy of the spinning solijon
ized2D patterns were recently studied in other models, e.g.Nonetheless, it has also been found that, in the case of large
a complex Swift-Hohenberg equati¢ph3]. energies, when the soliton is a ring with small inner and

The objective of this work is to develop a consistentlarge outer diameterésee, for example, Fig. 7 belgwthe
analysis of spiral solitons, i.e., localized 2D objects with  instability is growing very slowly, thus explaining the ro-
ternal vorticity, which is characterized by an integer-valued bustness of the ring vortices reported in R&#]. Moreover,
“spin” S within the framework of the complex CQ GL this may also explain observation of an effectivaiable
equation. A crucially important issue to be considered is thespatial vortex soliton in a non-Kerr 3D optical medium re-
soliton’s stability at different values db. Note that, in the ported in a recent experimental wdrk7]. It is also relevant
dissipationless limit, the GL equation goes over into an equato mention that, in contrast to this, 2D spinning solitons are
tion of the nonlinear Schainger(NLS) type. Accordingly, a  very strongly unstable in a model with saturable nonlinearity
spiral soliton turns into a 2D soliton with an internal vorticity (from which the CQ nonlinearity can be formally obtained as
(ring vortex, or “spinning soliton’). However, a principal a truncated expansipfl8].
difference is that the GL equation may only have a few iso- In the work[15], we have also performed an analytical
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consideration of a particular mode of the instability of thelatter one accounts for the nonlinear gain saturation in optical
spinning solitons in two- and three-dimensional CQ NLSmediag, and v is the quintic self-defocusing coefficient.
equations, which is relevant just for the above-mentioned.astly, 8 is an effective diffusion coefficier(in optical me-
broad vortex rings with large energy. This particular insta-dia, diffusion takes place if light creates free charge carriers,
bility mode is the spontaneous off-center displacement of thevhich may take place, e.g., in semiconductor waveguides
soliton’s inner “bubble.” It has been concluded that this The “spiral solitons” are axisymmetric solutions to Eq.
mode gives rise to an instability of the solitons wil+ 1 (1) of the form A(z,x,y)=U(z,r)exp(SH), wherer and ¢
and 2, although it is not necessarily the fastest growing unare polar coordinates in the,f/) plane, andSis the above-
stable mode. In direct simulations, this mode does not usumentioned integer “spin’{topological charge of the vortgx
ally dominate the instability development; nevertheless, ifThe complex amplitud& (z,r) obeys an equation
can be observed in some casgastually, in a 3D rather than
2D situation) [15]. iUz+ i6-U+(1/2— iﬁ)(urr + rilUr_SZrizu)

Following the same line of arguments, one may expect . 2 . a0y
that, on thegcontrary to the conserg\]/ative NLS equatign, ir?the T(1-ie)| VU= (v—im|U[*U=0, @

GL model the vortex ring may be stable. Indeed, in the limit, i, js supplemented by boundary conditions stating that
when the external size of the ring diverges, the vortex ring;__,s 4t r 0 and U(r) decays exponentially at—o.

turns into a usual delocalized rotating _spir_al \.N@_e]' Itis Note that the localized solution can be interpreted api&l
known that, generally, the latter wave in dissipative SYstemgjiton because the functionJ(r) is complex, U(r)

has a finite(nonzerg stability marginagainst the spontane- —|U(r)|expli ®(r)), hence equal-phase curv&®+d(r)

ous off-center shift of its inner bubble. On the other hand, in_ . /ot ore spirals, rather than straight li®#s= const, as in

the same limit the vortex ring in the NLS equation turns into : :
, . . the case of the CQ NLS equation, whétér) is real[14,21].
a usual delocalized “optical vortex(2D dark soliton [19)], Our first purpose is to find stationary localized solutions

which is, obviously, onlyneutrally stableagainst the spon- to Eq.(2) which must be stable within the framework of this
taneous shift of the inner bubble. Therefore, the interactioréquation i.e., they must battractors similarly to stable

of the inner bubble with the outer rim of the large-size butSolitons in various forms of the 1D GL equatipa—7]. As

f'n'tf I\:Li_?tcmtog m_a¥ destab|l|tzi|the wholehfmhgz tqrrélngdtr;(he the stability of the spiral solitons against the most dangerous
neutral shitt mode Into an unstable oné, which IS indee zimuthal perturbations is not comprised by E2j, it will

case in the CQ NLS equatiofl5]; however, the above- be considered below separately
mentioned stability margin of the inner bubble against the It is relevant to mention that a stationary solution for a

S.h'ft |n§|de the GL Sp'fa' wave may he[p to stab|l|_z(arate_- spiral soliton was sought for numerically already in the first
size spiral vortex too in the GL equation. Our simulations work [2] in which the CQ GL model was introduced. How-
will show that it is indeed relatively easy to find a spiral ever, a particular version of the model considered in that
soliton which is fairly stable against all the perturbations,early’ work was very degeneratwith a single cubic nondis-
including azimuthal ones which are fatal for the NLS Vortexsipative term in the equationand stability of the spiral soli-

ring. I :
The rest of the paper is arranged as follows. The GLton was not really studied.

model is presented in detail in Sec. Il, and in Sec. Ill we
report results of extensive numerical simulations, separately IIl. NUMERICAL ANALYSIS

for nonspiraling and spiraling solitons, with special emphasis | order to find the solutions, we have performed numeri-

Conclusions are formulated in Sec. IV. eters and using various initial configurations(z=0,).
First, we will display typical examples of the formation of
Il. MODEL stable nonspinning and spinnirigpira) solitons, and then

results of a very large number of simulations will be sum-
marized in the form of a diagram showing regions of exis-
tence and nonexistence of different solitons in an appropriate
iA,+18- At (112—1 ) (AgtAyy) parameter plane. Typiqal examp!es of stgble breath.ers,. bqth

nonspinning and spinning, showing persistent quasiperiodic

+(1—ie)|APA—(v—iu)|A|*A=0. (1) internal vibrations will be displayed too.
Before proceeding to the presentation of results, it is rel-

The equation is written in the “optical” notation, assuming evant to note that a positive quintic self-defocusing coeffi-
evolution along the propagation coordinatef a beam with  cient, »>0, is necessary to prevent the wave collapse in the
the 2D cross section in the plang,y). In fact, bulk (3D) NLS counterpart of the GL equatidd). However, it is not
optical media is the most appropriate system for experimenruled out that stable GL spiral solitons are possible with
tal generation of vortex rings, see, e.g., R&0]. In that v=0, or even ifv takes small negative values, as the col-
caseA(x,Y;z) is the local amplitude of the electromagnetic lapse might be prevented by the dissipative terms. Moreover,
wave, the diffraction and cubic-self-focusing coefficients areit is also possible that spiral solitons may exist with the op-
normalized to be 1¢ is the cubic gain,§ and u are the  posite sign in front of the cubic self-focusing term in Ef).
linear and quintic loss parametef@s a matter of fact, the Following the analogy with 1D models, we expect that the

We consider the(2+1)-dimensional CQ complex GL
equation in a general form,
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(b) FIG. 2. Quasiperiodic evolution of the squared amplittideen-
sity) of a nonspinning vibrating soliton g8=0.05, §=0.05, v
2 =2, p=0.2, and £¢=0.3. The initial field is U(r;z=0)
U] 1 100 =(0.88A72)exd —(r/6)].
% 20 not the only possible result. At some values of the param-
25 1 eters, breathers, i.e., localized pulses with persistent internal
r 50 0 vibrations, similar to those discovered in various 1D GL

models[ 6], were found too. An example of the breather with

FIG. 1. (8 Formation of the nonspinning SE0) two- a_huge amplitu_de pf t_he intensity_oscillations is presented in
dimensional soliton aB=0.5, 5=0.5, »=0.1, u=1, ands =2.5. _F|g. 2. At qugs_menodmalIy.repeatmg valgeszuforrespond-
(b) Formation of a continuous wave for the same parameters as if'd t0 the minimum intensity, the pulse is found to be very
the panela) but with a different nonlinear gaim,=2.6. The initial  Proad and flat.
field is real, U(r;z=0)=0.8 for r<10, and U(r;z=0)
=0.8 ex—(r—10)?/9] for r>10. B. Spinning solitons

] ) ) We were able to find stable localized solutions to &j.
solitary pulse would have a much larger internal phetsiep i, 5 systematic way for spinningpira) solitons withS=1
in the latter case, which is, obviously, very important just for 5,4 5= 2 (we did not consider higher values of the Spin

the spiral solitons. However, these issues are left beyond they hica| examples of the formation of spiral solitons for these

scope of the present work. two cases are shown in Fig. 3. In particular, in the case
S=2, this resembles formation of the “composite pulse,”
A. Zero-spin solitons which was found to be stable in the 1D GL model studied in
Ref.[7]. However, a direct analog of the “composite pulse”
in the present2+1)D model has never been found.
The spinning solitons, as well as the nonspinning ones
fonsidered above, are found to be strong attractors, as they

At first, we consider zero-spitnon-spiral 2D stationary
solutions withS= 0 (in the CQ NLS equation, such solutions
were recently studied in detail in R¢R2]). Our simulations
have demonstrated that quite arbitrary initial pulses easil
self-trap into(are attractedby) a stationary solution, which
is similar to a “plain pulse” numerically found in Ref7] in @)
the 1D model. As a typical example, the formation of a sta- 2
tionary pulse from a very broad input #=0.5, §=0.5,
v=0.1, u=1, ande=2.5 is displayed by Fig. (&), while 1000
Fig. 1(b) shows the evolution of the same input for a slightly Oo
larger nonlinear gaing =2.6. One can see that in the latter 10
case a stationary pulse is not formed; instead, the structure r 200
expands indefinitely, generating an advancing front similar
to a 1D structure investigated in detail in REF]. A transi- (b)
tion, with the increase of the cubic gain, from solitons to 2
spatially uniform continuous wavesw) extending to infin- U] 1
ity is a natural feature, that can be easily explained in 1D by 200
means of the perturbation thedr§,4]. Thus, for the above- 0
mentioned set of parameters, a critical value of the gain 25
separating the localized and cw states is between 2.5 and 2.6. r 50 0

As it was mentioned in the Introduction, the formation of
a stationary pulse is a result of the balance between the gain FiG. 3. Formation of spinning solitons from real initial field
and losses. Figure 1 and many other simulations not showgbnfigurations:(a) S=1 and (b) S=2. The parameters arg
here demonstrate that the balance is sensitive to the size efo.5, §=0.5, v=0.1, x=1, ande =2.5. The initial field distribu-
the gain and loss coefficients. In particular, the formation oftions are:(a) U(r;z=0)=0.2r exd —(r/7)?], and (b) U(r;z=0)

a stable pulse or cythe two outcomes shown in Fig) is  =0.022 exd —(r/12)?].
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FIG. 5. Radial profiles of the spinning and nonspinning solitons

FIG. 4. (a) The integral power versus quintic losg for a fixed ~ at8=0.5,6=0.5,»=0.1, u=1, ande=2.5.
cubic gaine=2. The other parameters aB=0.5, §=0.5, andv
=0.1. The circles, squares, and triangles correspond to, respe¢S=1,2) breathers coexist with each other at the same values
tively, nonspinning solitons, spinning solitons wi+ 1, and spin-  of the parameters, whereas the statior(agnvibrating soli-

ning ones withS=2. (b) The existence domain in the parameter tons do not form for those parameter values.
plane ,u) for both spinning and nonspinning stable solitons. The

other parameters ar@=0.5, §=0.5, andv=0.1. C. Azimuthal stability

can be generated from a large variety of inputs. Another Ag it was explained above, the comparison with the spin-
important finding is that stable solitons with all the threening solitons in the CQ NLS model strongly suggests that
values of the vorticity considered he@®=0,1,2,coexistin a  gyerall stability of the solitons is determined by azimuthal
large domain of the parameter space, see details bel®v perturbations breaking the axial symmetry of the solutions.
will also display a smaller region of the parameter space, ifRecall that the reduced equatié® employed above cannot
which stable solitons witt5=1 and S=2 coexist, while include azimuthal perturbations. Therefore, in order to test
zero-spin solitons were not foupdn other words, each soli-  thjs kind of the stability, we have simulated the full equation
ton is a strong attractor inside its own class of pulses, distin¢y) directly in the Cartesian coordinates. Doing this, we have
guished by the value of the spin, which plays the role of &ound that both nonspinning and spiral solitons found above
topological invariant from Eq.(2) are remarkablstableagainst azimuthal pertur-
An important characteristic of solitons is theiitegral  pations, in accordance with the qualitative arguments pre-
power which is defined in the usual way, as sented in the Introduction. The stable existence of the soli-
| =27 7|U(r)|?rdr. The power has been found to take tons was verified, simulating their propagation over a huge
very different values for the coexisting solitons with differ- distance, up t@=4000.
ent values of the spin. This is illustrated by Figa} where Although large-scale simulations of the full underlying
the power is shown as a function of the nonlinear quintic lossquation are quite sufficient to predict observation of stable
parameteru. Similar relations between powers of solitons solitons in experiments, this does not provide for a math-
with different values of the spin were also found in the two-ematically complete evidence of the solitons’ stability. A di-
and three-dimensional CQ NLS equatid@d]. rect way to prove the true stability is to consider the eigen-
To proceed from the typical examples displayed above t@alue problem produced by the linearization of the evolution
the presentation of systematic results, in Fida)4ve display  equation around the corresponding stationary solutions. We
the existence domains for both spinning and nonspinninghave performed this analysis too, aiming to compute the
solitons in the parameter plane,{). In the black region, largest growth rategeigenvaluesof the azimuthal perturba-
there exist both spinning and nonspinning stable solitonsiion eigenmodes for different values of the perturbation in-
whereas in the lower white stripnly spinningsolitons have
been found to form. In the gray region, solitons do not form 9000
at all. Lastly, in the upper white region, initial pulses have
been found to expand indefinitely, generating the above-
mentioned fronts.
Typical radial profiles of the solitons witB=0, 1, and 2
are displayed in Fig. 5. One can see from this figure that the
inner radius of the spinning solitons quite naturally increases
with the spin. . ‘ .
In other regions of the parameter space we have found 0 500 1000 1500 2000
apparently stablespinning breathersvith S=1 and S=2,
which demonstrate persistent quasiperiodic internal vibra-
tions. Figure 6 presents an example of a spinning breather FIG. 6. Quasiperiodic evolution of the squared amplit(idéen-
with S=1. Note that the quasiperiodic oscillations are verysity) of a vibrating spinning soliton witis=1 for the same values
similar to those observed for the nonspinning cé&e®e Fig. of the parameters as in Fig. 2. The initial field is(r;z=0)
2). We mention that the nonspiralings€0) and spiraling = (0.254/2)r exd —(r/9)?].

6000

3000}

normalized intensity

propagation distance
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FIG. 7. Gray-scale plots of the input Gaussian field with the
vorticity S=1: (a) amplitude andb) phase. The output field at
=150: (c) amplitude andd) phase. The parameters ag8e=0.5, § X X
=0.5,v=0.1, u=1, ande=2.5.

-10 -5 0 5 10 -10 -5 0 5 10

FIG. 8. The same as in Fig. 6, but for the vorticBy2. The

dexn (which is independent from the sp8of the stationary output field was taken at=200.

solution in question The numerical procedure we have used
in order to obtain the growth rate of the dominant perturba-
tion eigenmode is described in detail in RdfE8] and[23—
25].

In all the casesvhen the direct simulations produced ap- easily generates a stable spiral soliton v@th2, as it is seen
parently stable stationary solitons, we have found that the, Fig. 8. Naturally, theS=2 soliton has an essentially larger
largest growth rate of the perturbation eigenmodes has gge of its inner “bubble,” cf. Fig. 5. The output displayed in
negativereal part, thus corroborating the stability of the cor- Fig. 8 was taken az=200, although, in fact, the formation

responding stationary solitons. For example, the real parts Qf¢ the soliton completed itself at the propagation distance
the largest growth rate of the perturbation eigenmodes for the__ g

spiral soliton withS=1 whose formation is shown in Fig. Lastly, we note that the phase plots corresponding to the
3(a) are Re\ = —0.0005,—0.185 and- 0.221 for the pertur-  gqtaplished solitons displayed in Figgd7and 8d) clearly

bation indicesn=1, 2, and 3, respectively. The fact that the gho\ a spiral structure, justifying the application of the term
real part of the largest growth rate is clearly negative, rathergyirg) solitons” to the 2D solitary-wave patterns considered
than being equal to zero, is a consequence of the dissipatiVg this work.

nature of the GL equation, as it was explained in the Intro-
duction.
Lastly, to assess the range in the space of the initial con- IV. CONCLUSIONS
figurations for which the stable solitons are attractors, we |n the framework of the complex cubic-quintic Ginzburg—
have additionally performed a large number of direct simu- andau equation of a general form, we have developed a
lations with initial pulses in the form of Gaussians with in- systematic analysis of two-dimensional axisymmetric
trinsic vorticity. In all the cases in which the existence of doughnut-shaped localized pulses with the inner phase field
stable spiral solitons was known, the initial Gaussians rapin the form of rotating spirals. We have put forward a quali-
idly developed into them, keeping the initial value of the tative argument which suggests that, on the contrary to the
spin. To illustrate this, in Figs. (@ and qb) we display known azimuthal instability of spinning doughnut-shaped
gray-scale plots representing the amplitude and phase of thgitons in the cubic-quintic NLS equation, their GL coun-
initial Gaussian beam, which was taken as terparts may be stable. This is confirmed by many direct
: numerical simulations, the results of which have been sum-

A(x,y;2=0)=1.6 exjf— (x*+y*)/25]- expi 6) marized in the form of a diagram showing regions of exis-

tence and nonexistence of the spiraling and nonspiraling soli-

The same initial intensity distribution, but with=2, i.e.,

A(x,y;z=0)=1.6 exp) — (x>+y?)/25] - exp(2i §),

(i.e., it hasS=1), whereas in Figs.(Z) and 7d) the ampli- tons in an appropriate parameter plane. Robustness of the
tude and phase of the established doughnut-shaped solit@olitons with the values of the intrinsic spin 0, 1, and 2,
are shown az=150. strongly suggested by direct simulations, was rigorously con-
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firmed by computation of the largest growth rate for eigen- A challenging problem is the interaction between spiral
modes of azimuthal perturbations. For solitons found to besolitons with equal or different vorticitieénteractions be-
stable in direct simulations, the largest growth rate was altween spirals extending to infinity have been already studied
ways found to have a negative real part. In addition, we havén detail by means of analytical and numerical methods
shown that very robust spiral solitons witht least S=0, 1,  [10]). If the solitons are far separated, and their vorticities are
and 2 can be eaS”y generated from rather arbitrary |0calizeéqua| or Opposite, the interaction can be described ana|yti_
inputs having the same internal vorticity. Moreover, in acally in terms of an effective potential, using technique
large domain of the parameter space, both nonspinning anglaborated in Ref[26]. However, in the most interesting
spinning solitons have been found to coexist, each one beingase when the solitons are essentially overlapped and, hence,

a strong attractor inside its own class of pulses distinguisheghey interact strongly, direct simulations are necessary.
by the integer value of the vorticity. In a small region of the

parameter space, the stable solitons with1 and S=2

have been found to coexist, while nonspiraling ofegh

S=0) are absent. In addition to that, in regions of the pa- ACKNOWLEDGMENTS

rameter space where stable solitons do not form, apparently

stable breathers, both nonspiraling and spiraling, have been We appreciate valuable discussions with L. M. Pismen, N.
found to coexist with each other. N. Akhmediev, and J. M. Soto-Crespo.
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