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Time-dependent electron-ion collision frequency at arbitrary laser intensity-temperature ratio
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In superintense laser beams collisional absorption exhibits a large amplitude modulation over a laser cycle.
In this paper formulas for the time-dependent electron-ion collision frequencynei(t) are presented. On the
basis of a ballistic interaction model we deduce an expression fornei(t) which holds for an arbitrary isotropic
distribution function and arbitrary anharmonic oscillatory electron motion@Eq. ~4!#. For a Maxwellian we
present compact formulas for the various ratiosvos(t)/v th . It is shown that the strong time dependence over
one laser cycle leads to the generation of intense odd harmonics. The cycle-averaged collision frequencynei(t)
is compared with expressions derived from the more complex dielectric model. It is shown that the correct
choice of cutoffs as a consequence of dynmical screening is essential.
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I. INTRODUCTION

The electron-ion collision frequency is essential in co
sional absorption of laser light and in transport phenome
such as thermal diffusion and collisional ion heating by el
trons. At low laser intensitiesI the oscillatory velocityvos

5uvosu is much smaller than the thermal speedv th

5(kTe /me)
1/2, vos!v th . As a consequence,nei depends on

the electron temperatureTe , but not on the laser fieldE, and
is constant over a laser cycle. At high laser intensities~e.g.,
I *1018 W cm22) v̂os@v th may hold,v̂os oscillation ampli-
tude, and hencenei becomes strongly time dependent ov
one cycle, nei5nei(t). For this strong field case cycle
averaged expressionsn̄ei have been presented in the liter
ture @1–5#, but no explicit formulas for the instantaneou
valuenei(t) exist so far. Its knowledge is indispensable f
various applications. With the present paper we close
gap in the ideal plasma domain for Coulomb logarith
ln L*1 and for laser frequenciesv5” vp , vp plasma fre-
quency.

Most of the authors based the calculation ofn̄ei on the
dielectric theory although this is unnecessary as long as
lective plasma effects occuring atv.vp are ignored as in
Ref. @1,2#. Instead, a much simpler ballistic model is us
here to obtain analytical expressions fornei(t) in a very im-
mediate way for an arbitrary isotropic electron distributi
function and for arbitrarily unharmonic oscillatory motion
all ratios vos /v th . The exact evaluation of the dielectr
model for zero electron temperature@4# shows that out of
resonance (v5” vp) this theory merely provides a sel
consistent cutoff of the bare Coulomb potential, a fact wh
will also come out as a by-product from our ballistic mod
On the other hand, since the exact evaluation of the dielec
model for arbitrary valuesvos /v th is cumbersome—in fact
such an analysis is still missing—all authors using this mo
@13,5,6# limit themselves to presenting asymptotic appro
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mations in the form of standard Coulomb logarithms.
With the help ofnei(t) we show the appearance of ha

monics and estimate their strength in one situation. Fina
in the discussion, for completeness we determinen̄ei from
our expressions fornei(t) and compare them with those o
the dielectric theory. We shall discover a significant discre
ancy which, however, disappears when dynamical scree
is taken into account.

II. TIME-DEPENDENT MOMENTUM LOSS

Throughout the paper limitation is made to isotropic d
tribution functionsf (x,ve ,t)5 f (ve ,t) and the plasma is as
sumed to be locally homogeneous. An individual electron
velocity v(t)5vos(t)1ve loses momentumDp in direction
of v(t) in one collision with an ion of chargeZ owing to a
deflection by the angleq. The differential Coulomb cross
sectionsV and the collision parameterb' for perpendicular
deflection are given by~see textbooks!
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The Coulomb logarithm lnL5ln(bmax/b') is discussed later
Here it is treated as a constant. The momentum loss per
time is ṗ5sni uvuDp,

ṗ52menei~v !v52
K

v3
v; K5

Z2e4ni

4p«0
2me

ln L. ~2!

By the first equality the collision frequencynei(v) of the loss
of momentump5mev is defined. To obtain the ensembl
averaged momentum loss^ṗ& averaging has to be done o
v/v3 over the thermal velocitiesve . For an isotropic distri-
bution function f (ve) the velocity v consists of all vector
sums as sketched in Fig. 1. The quantityṗ is parallel tov,
whereaŝ ṗ& points alongvos . With the anglesa and x as
indicated in the figure holds

K v

v3L 5
vos

vos
K cosa

v2 L 52 K ]

]vos

1

v L 52
]

]vos
K 1

v L . ~3!

Hence, determininĝṗ& is perfectly analoguous to calcula
ing the gravitational force of a spherical mass distribution
a point mass at distanceR from its center. We obtain

^ṗ&5menei~ t !vos52K
]

]vos
E

0

`E
0

p2pve
2 sinx

v
f ~ve!dxdve

5K
vos

vos
3 E0

vos
4pve

2f ~ve!dve .

Formally, without making recurrence to the analogy of t
gravitational potential, the last step follows fro
vosve sinx52]v/]x. The time-dependent collision fre
quencynei(t) results as

nei~ t !5
K

mevos
3 ~ t !

E
0

vos
4pve

2f ~ve!dve . ~4!

This is our basic expression fornei(t), valid for any f (ve)
and arbitraryvos(t). In particular, if for a dilute plasma in
thermal equilibriumf (ve) is a Maxwellian

FIG. 1. Isotropic electron distributionf (ve). The resultant ve-
locities v5vos1ve consist of all types of vectorsv i ,v i8 indicated
in the figure for two oscillation velocitiesvos(t) andvos(t8). The

momentum lossesṗ form the anglesa with vos ; the average loss

^ ṗ& is directed alongvos .
01640
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f M~ve!5S b

p D 3/2

e2bve
2
; b5

me

2kTe

and when settingw5b1/2v, wos5b1/2vos5vos /A2v th , nei
becomes

nei~ t !5
K

mevos
3 ~ t !

4

p1/2E0

wos
w2e2w2

dw. ~5!

For vos!v th and exp(2wos
2 ).1, nei reduces to the time-

independent expressionnS

nS5
K

mevos
3

4

p1/2E0

wos
w2dw5

1

3
A2

p

K

mev th
3

;

~6!

v th5S kTe

me
D 1/2

,

in agreement with Ref.@1#. We notice thatnei(t) from Eq.
~4! behaves regular for all ratiosvos /v th . For vos@v th ,

nei~ t !5
K

mevos
3 ~ t !

. ~7!

The collision frequency from Eq.~5! normalized to Silin’s
expressionnS for vanishingvos /v th from Eq.~6! is plotted in
Fig. 2.

Expansion of Eq.~5! in terms ofwos by successive partia
integration may be useful in practice forvos /v th&A2,

nei~ t !5
1

3
A2

p

K

mev th
3

expS 2
vos

2

2v th
2 D H 11

1

5 S vos

v th
D 2

1
1

537 S vos

v th
D 4

1
1

53739 S vos

v th
D 6

1•••J , ~8!

FIG. 2. The collision frequencynei of Eq. ~5! normalized to
Silin’s formulanS ~solid line!, upper and lower boundsH2 andH4/p

~dashed! and best fitH3/2 from Eq. ~10! ~dotted line!.
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although it converges for arbitrarily large valuesvos /v th . At
vos5v th the bracket amounts to 11 0.23. The major correc
tion relative tonei from Eq. ~6! is due to the exponentia
factor exp(2vos

2 /2vth
2 )5exp(20.5)50.6. Because of the un

certainty of the Coulomb logarithm due to dynamical scre
ing it is reasonable to use the simplified formula

nei~ t !5
1

3
A2

p

K

mev th
3

expS 2
vos

2

2v th
2 D , ~9!

for vos&v th . An upper and a lower bound for the integral
Eq. ~5!, indicated byH2 andH4/p , can be given in terms o
elementary functions~see, for example, Ref.@6#!,

H25
p1/2

2
2F 1

wos1~wos
2 12!1/2

1wosGe2wos
2

,

H4/p5
p1/2

2
2F 1

wos1S wos
2 1

4

p D 1/21wosGe2wos
2

.

They are shown in Fig. 2. The accuracy becomes accept
for wos.1/A2 ~deviation less than 8%!. A better fit to the
integral is given byH3/2 where the number 2 in the denom
nator of H2 is replaced by the value 3/2. It satisfiesH4/p
,H3/2,H2 and oscillates around the integral. It exhibits
maximum error of only 4% in the whole domainwos>0.5
and starts becomming acceptable already forwos.0.5/A2
~see Fig. 2!. Hence, forvos /v th.0.5 ~i.e., wos>0.5/A2! the
time-dependent collision frequency is well approximated

nei~ t !5
2

p1/2

K

mevos
3 ~ t !

3H p1/2

2
2F 1

wos1S wos
2 1

3

2D 1/21wosGe2wos
2 J .

~10!

This is simpler than Eq.~5! since the integral is removed. Fo
vos /v th,0.5 Eq.~6! can be used.

A. Unharmonic electron motion

In all treatments in Refs.@1–4# vos(x,t) was identified
with a harmonic oscillatory motion of a single electron. A
outlined in the foregoing paragraph, due to the statist
interactions with the ions a friction term, i.e., an addition
ensemble-averaged force, of the formmeneivos appears
which enters in the equation of motion and has to comp
with the inertial termmedvos /dt. No problem arises as lon
as the friction term is small, which is equivalent to the a
sumption nei(t)!v. In the case, however, wherenei(t)
*v the electron drift motion must be determined se
consistently from the first moment of a suitable kinetic eq
tion, generally of Vlasov-Boltzmann type,
01640
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duos

dt
1menei8 uos52e~E1uos3B!, ~11!

whereuos5^v&. This raises the question of the validity o
the foregoing derivation of the friction force. The only re
striction we made onvos was that it must be the same for a
electrons. At first glance this is generally not guarante
whennei exceeds the field frequencyv. Here, however, we
have limited ourselves to cases with lnL*1. This means that
the majority of electron-ion collisions are small angle defle
tions. As a consequence the individual electron driftsvos
remain close to their statistical ensemble^vos&5^v& for a
sufficiently long time and hence, the identifications

vos5uos , nei8 ~ t !5nei~ t !

are justified for all values ofnei ~provided lnL*1).
At v̂os /v th.1 the friction term shows a strong time de

pendence. Hence, the motion induced by a harmonic dr
in Eq. ~11! becomes unharmonic and, in concomitan
higher harmonics appear in the current densityje , in E and
in B. The unharmonicity is expected to be particularly stro
in the dense plasma whenTe is low andvos,max largely ex-
ceedsv th . To evaluate its strength we choose solid st
density (ni.631022 cm22), Z55 andTe.100 eV are cho-
sen. It is further assumed thatE is such thatvos,max approxi-
mately equalsv th . Then nei(t) from Eq. ~9! can be used:
431015<nei(t)<1016 s21. For a Nd laser,nei@v holds. As
a consequence the inertial term in Eq.~11! can be omitted
and

vos~ t !52
e

menei~ t !
Ê cosvt, ~vos3B.0!

is obtained in this collision-dominated case~dc behavior!.
This is a transcendental equation of the form

wose
2wos

2
5F cosvt; F52

3ApeÊv th
2

2K
. ~12!

Since wos(t1p/v)52wos(t) it follows that wos contains
odd harmonics only,

wos~ t !5w1 cosvt1w3 cos 3vt1w5 cos 5vt1•••.

Expanding the exponential in Eq.~12!,

wosS 12wos
2 1

1

2
wos

4 2
1

3!
wos

6 1
1

4!
wos

8 7••• D5F cosvt,

and keeping in mind that we have to renormalize, i.e.,
sum of terms showing a cosvt dependence must add up toF
and the sum of all higher harmonics must vanish. One
tains for

cosvt: 12
3

4
1

10

32
2

35

384
50.472,
6-3
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cos 3vt: 2
1

4
1

5

32
2

21

384
520.148,

if all contributions fromwos
8 and higher powers ofw are

neglected. Thus, the ratiouw3u/uw1u is as large as 0.31. As
consequence, the skin depth in the overdense plasma i
creased and deviates for one more reason from a pure e
nential decay~another reason is skin layer absorption!.

B. Dynamic screening and cutoffs

The bare Coulomb cross section for momentum tran
diverges proportional to lnb. Therefore, in the expression o
Dp one has to introduce an upper cutoffb5bmax. This fact
reveals that an important piece of physics is missing. In f
a proper treatment would yield the cutoff self-consistently.
the published literature there exist essentially two kinds
in principle, more complete derivations: the classical Vlas
treatment~for example, Refs.@1,3#, Catto and Speziale@2#;
all for vp!v) and a quantum treatment forvp!v with
Volkov states and von Neumann equation@5#, Volkov states
and standard time-dependent perturbation theory~Shima and
Yatom @2#! and, recently, a quantum kinetic approach ba
on the Kadanoff-Baym equation has been presented@7#. To
make the Vlasov treatment feasible the straight orbit
proximation is introduced. In the quantum treatment this
sumption is equivalent to the use of Volkov states. In b
cases this simplification needs a lower cutoffb5bmin ~often
erroneously called ‘‘parameter of closest approach!
whereas no divergence appears for largeb values. In the test
particle model used here no divergence arises forb→0 ei-
ther, if large angle deflections are included.

There seems to be universal agreement only onbmax for

v̂os!v th andvp@v in which casebmax is identified with the
thermal Debye lengthlD5v th /vp . In the underense
plasma,vp!v, screening is considered unimportant andlD
is substituted bylv5v th /v. Silin @1#, Shima and Yatom@2#,
Catto and Speziale@2#, and Deckeret al. @3# make use oflv

in the Coulomb logarithm also for arbitrarily largev̂os /v th in
contrast to Refs.@5# and @7#. To clarify the situation on
physical grounds one can make use of the so-called oscil
model @8#. At zero temperature,Te50, the small deflection
d(t) from the straight orbitx5v0t, an electron undergoes i
a collision with an ion, obeys the oscillator equation

]2

]t2
d1vp

2d52
e

me
Ec~ t !, ~13!

whereEc is the bare Coulomb field. In passing nearby an
the electron starts oscillating at the plasma frequencyvp
owing to the attraction. Summing the oscillation energ
over all impact parameters one arrives at the energy irrev
ibly extracted from one beam electron per unit time, i.e.,
nei(t) in the dielectric approximation for monoenergetic dr
motion of the electrons. The restoring force2mevp

2d stands
for the self-consistent shielding of the ion by the surround
01640
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electrons. It removes the logarithmic divergence. When s
pressing it one is led back to the ballistic model for nea
straight orbits. In fact, from

]2

]t2
d52

e

me
Ec~ve ,t !

the cross sectionsV of Eq. ~1! follows, on the basis of which
nei(t) was calculated, however without the restriction
small angle deflections. The oscillator model correspond
the situationv̂os

2 /v th
2 @1 and vp

2@v2. Comparing the mo-
mentum transferDp obtained from the oscillator model with
the expression forDp in this paper, agreement is found
bmax5v0 /vp is set. The same cutoff was deduced in an alt
native way by de Ferrariis and Arista and Peter and Mey
ter-Vehn when studying the energy loss of a charged part
moving atv0@v th @9#, in agreement also with Refs.@7# and
@10# in the asymptotic limit. Since with decreasing rat
vos /v th there is a continuous transition inbmax from vos /vp
to lD we propose

bmax~ t !5
@vos

2 ~ t !1v th
2 #1/2

vp
, ~14!

which shows the correct asymptotic behavior on both
tremes ofvos , i.e., vos→0 andvos→`. The velocity aver-
aging is thereby done onv25(vos1ve)

2 since it is standard
to identify bmin with the averaged reduced de Broglie wav
lengthlB5\/me^v& as soon aslB is larger than 2b' . Thus
L5bmax/bmin depends quadratically onv. The justification
of such a procedure is found in Ref.@9#, de Ferrariis. For the
rest we follow the common practice to substitute lnL in all
integrals overve by its averagê ln L& and, since this aver-
age is not easily calculated, it is substituted by ln^L& and, for
simplicity, indicated by lnL.

At this point we want to make a remark onbmin . Time
and againbmin is identified with the ‘‘closest approach’’ o
the colliding electron, especially whenbmin is to be identified
with b' . This makes no sense since the closest apprac
b50, corresponding to ax5p deflection. Sometimes a
weaker statement is used which says thatb' discriminates
straight orbits from bent ones. Again, this is a weak arg
ment. The real justification is as follows~Ref. @4#, p. 215!: If
a collision parameterb5b0 is introduced to discern betwee
straight and bent orbits and the momentum loss forb,b0 is
calculated exactly forv fixed the resulting Coulomb loga
rithm is

ln L5 ln
b0

b'

1 ln
bmax

b0
5 ln

bmax

b'

.

The beauty is that the somehow arbitrary parameterb0 can-
cels as long asbmax@b' holds. The quantityb' appearing in
L is not more than a useful symbol to write the Rutherfo
cross section in a concise way.

On the basis of the oscillator model a physical interpre
tion of the cutoffbmax5v0 /vp can be given that is very ap
pealing. From Jackson’s treatment of Coulomb collisio
6-4
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@11# we learn that the interaction lasts for a timet52b/v.
Collisions with b.v0 /vp do not contribute. Insertingb
5v/vp in the interaction time formula shows that

t int<
2

vp
5

tp

p
, tp52p/vp ,

i.e., only those interactions do irreversible work which u
dergo not more than one third of a plasma oscillation dur
collision. For timest int<tp /p most of the electrons do no
appreciably change their velocity during a collision as lo
asv,vp holds, i.e., the plasma is overdense. An alternat
interpretation of this behavior is as follows. A harmonic sy
tem oscillating at frequencyv0, whether classical or quan
tum mechanical, can, in the weak coupling limit, only
excited by a frequencyv0. For t.t int the frequency spec
trum of the driver does almost no component contain av
5v0. This tells us that in the underdense situation withvp
!v and vos /v th@1 the correct cutoff is expected to b
bmax5vos/v since d oscillates atv rather thanvp . There
exists an exact solution of Eq.~13! for v05vos(t) instead of
v05const in terms of modified Bessel functions folded w
an Anger function@4#. For vos /vbmin@1 andvp&v/5 the
leading term is justbmax5vos/v, in agreement also with
Refs. @5# and @2#, Shima and Yatom. As a consequence,
Eq. ~14! vp has to be replaced by max(v,vp).

Later the cycle-averaged value of the Coulomb logarit
ln L will be needed which traditionally~ and in our case also
for comparison with existing expressions! is identified with
ln L̄. With bmin5lB we obtain

ln L̄5 ln
me~ v̂os

2 /21v th
2 !

\max~v,vp!
, lB.2b' . ~15!

For bmin5b' the velocity dependence isv3. Owing to the
slow change of the logarithm it is acceptable to use again
averaging factor 1/2, hence

ln L̄5 ln
4p«0me~ v̂os

2 /21v th
2 !3/2

Ze2 max~v,vp!
, lB<2b' . ~16!

C. Cycle-averaged collision frequencyn̄ei

In the published literature expressions forn̄ei with har-
monic vos(t) only are available. It may be interesting to s
whether the simple ballistic model is able to reproduce f
mulas forn̄ei obtained from the dielectric theory. To this ai
correct averaging over one field period must be done. M
tiplying Eq. ~11! with vos yields

d

dt

me

2
vos

2 1meneivos
2 52evosE.

In the steady state case cycle averaging leads to

meneivos
2 52evosE.
01640
-
g

e
-

e

-

l-

The term on the right-hand side represents the true en
absorption per cycle. The reversible fraction of absorb
power contained in2evosE vanishes after time averaging. A
meaningful definition ofnei is achieved by setting

meneivos
2 5menei vos

2 52n̄eiĒkin .

It guarantees the correct determination of energy absorp
from the corresponding averaged quantities and, forv̂os

!v th where nei does not vary with time,n̄ei5nei results.
Hence

n̄ei5
neivos

2

vos
2

5
K

2Ēkin

1

vos~ t !
E

0

vos
4pve

2f ~ve!dve. ~17!

Again, this expression holds for arbitraryf (ve) and arbitrary
vos(t). For f (ve)5 f M(ve) it becomes

nei52S b

p D 1/2 K

Ēkin

1

wos
E

0

wos
w2e2w2

dw. ~18!

This formula is accessible to a numerical evaluation on
especially if one keeps in mind that fornei(t).v wos is no
longer sinusoidal. In an underdense plasma, however,
nearly harmonic in general. Ifvos(t)5 v̂osucosvtu is set one
obtains in the rangev̂os,v th from Eq.~17! for a Maxwellian
distribution

n̄ei5
1

3
A2

p

Z2e4ni

4p«0
2me

2v th
3 H 12

9

40
S v̂os

v th
D 2

1
15

448
S v̂os

v th
D 4

2
35

9216
S v̂os

v th
D 6

6•••J ln L.

It shows that the Spitzer-Braginskii collision frequency E
~6! which was derived for vanishing drift velocity is still
not too bad approximation forv̂os5v th , i.e., ŵos51/A2
~19% error!. Now n̄ei in the opposite caseŵos.1 is deter-
mined. One may start from Eq.~18! and expand it in Taylor
series

n̄ei5S b

p D 1/2 K̄

Ēkin

v

2pE0

2p/v

dt

3H (
n>1

~21!nS 1

2n11
21D wos

2n

n! J .

In the published literature forn̄ei only expressions with har
monicwos(t) exist. Therefore, in order to compare, again u
must be made of a harmonic time dependence,wos(t)
5ŵos cosvt. The integrals can be done analytically~see, for
example, Ref.@12#!:
6-5
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nei54
b3/2

p1/2

K̄

me
(
n>1

~21!n11
2n

2n11

~2n!!

22n~n! !3
ŵos

2n22 .

~19!

This expression is valid for arbitrary ratiosv̂os /v th . For van-
ishing v̂os the sum reduces to the constant term 1/3 fromn
51 and hence reproducing again Spitzer’s result Eq.~6!. For
ŵos@1 it is not very practical because the series conver
slowly. Instead, in the domainŵos.1 a best fit to the serie
~19! in terms of a functionA ln(v̂os/2v th1C)/( v̂os /v th)3 is
made, with the constantsA,C to be adjusted. In Figs. 3~a!
and 4~a! the sum from Eq.~19! times the normalized averag
Coulomb logarithm lnL̄/ln Lth , L th5v th /vp , is evaluated
in the interval 0< v̂os /v th<6. Abovev̂os /v th.1.5 the fitted
curve agrees best with the series for the parameters A5 2.7
and C5 0.35 in the case of the thermal Coulomb logarith

FIG. 3. ~a! Normalized time-averaged collision frequenc

n̄ei /nS . Solid: Sum of Eq.~19! times 3; dashed: present fit, first lin
of Eq. ~20!; static shielding according to Eq.~21!; dotted: its modi-
fication by the dynamically shielded upper cutoffbmax from Eq.

~14!. The Coulomb logarithm is lnLos53. ~b! N5( n̄ei /nS) v̂os
3 /

vos
3 , with n̄ei /nS from ~a!.
01640
s

ln Lth53 @Fig. 3~a!#. For lnLth510 the best fit is A5 1.8, C
5 0.45 @Fig. 4~a!#. In order to notify the deviations at larg
valuesv̂os /v th we plot in Figs. 3~b! and 4~b! the curves from
~a! times (v̂os /v th)3 for ln Lth53 and lnLth510. Since they
are also satisfactory we are led to the simple approximati
for n̄ei as follows:

ln L th53: n̄ei52A2

p

Z2e4ni

4p«0
2me

2v̂os
3

32.7 lnS v̂os

2v th
10.35D ln L th , ~20!

ln L th510: n̄ei52A2

p

Z2e4ni

4p«0
2me

2v̂os
3

31.8 lnS v̂os

2v th
10.45D ln L th .

FIG. 4. ~a!, ~b! n̄ei /nS and N5( n̄ei /nS) v̂os
3 /vos

3 , as in Fig. 3,
except using the second line of Eq.~20! and lnLth510.
6-6
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In the published literature asymptotic expressions with st
shielding are given as follows@3,1#,

n̄ei5
Z2e4ni

p2«0
2me

2v̂os
3 S ln

v̂os

2v th
11D ln L th ,

~21!

L th5
lD

max~b' ,lB/2!
; v̂os.2v th .

In Figs. 3 and 4 the corresponding graphs are shown
ln Lth53 and 10~dashed lines!. In Fig. 3 the discrepancy
between the two expressions amounts to a factor of almo
at high ratios v̂os /v th . If however the thermal Coulomb
logarithm lnLth is substituted by the dynamically screen
ln L̄th1ln(11v̂os

2 /2vth
2 ) the agreement with the fit in the firs

line of Eq.~20! becomes almost perfect~dotted lines in Figs.
3,4!.

The fit used in this paper differs from the asymptotic fo
ln(v̂os/2vth)11 of Eq.~21!, used also by Silin@1#, Shima and
Yatom@2#, Catto and Speziale@2# and Deckeret al. @3#. Both
fits have their advantages. Equation~21! perfectly repro-
duces Eq.~19! for v̂os /v th@1, however, only after the cor
rection presented here. Figures 3 and 4 show that applic
ity of Eq. ~21! corrected is guaranteed forv̂os /v th.3. For
most applicationsnei is needed at ratiosv̂os /v th ranging
typically from 1 to 5. The fit chosen here does not reprodu
exactly the practically insignificant asymptotic limit; how
ever, it agrees better in the intermediate regime as Fig
and 4 show.

From their 2D numerical simulations Deckeret al. @3#

find an enhancement ofn̄ei for v̂os /v th@1 ~see their Fig. 5!
which they attribute to ‘‘correlated collisions.’’ Such a co
relation is certainly present, however, in our opinion~i! no
distinction exists between oscillation amplitudesx0.lD and
x0,lD and~ii ! the increase inn̄ei can entirely be explained
by using the correct cutoffs from Eqs.~15! and~16!, leading
to correction factorsf c511 ln(v̂os

2 /2vth
2 11)/lnLth and f c51

1 3
2 ln(v̂os

2 /2v th
2 11)/lnLth . So, for v̂os /v th56.8 they find an

enhancement by a factor of 1.33. The correspondingf c fac-
tors range from 2.1 to 1.3 for lnLth varying from 3 to 10~we
do not know their actualL th values!. For v̂os /v th511.5, n̄ei
is increased by 1.8; ourf c factors vary from 3.1 to 1.4 for
3< ln Lth<10. The authors of the present paper believe t
most of the difference between simulation and Eq.~21! has
its origin in the dynamic shielding.

III. DISCUSSION

The ballistic model combined with the rigorous solutio
of the oscillator model forv05const andv0 sinusoidal@4# is
able to yield reliable time-dependent collision frequenc
for Coulomb logarithms lnL*1. When cycle-averaged, ex
pressions are obtained which agree with generally belie
formulas, however, only after correcting them by appropri
cutoffs, partly known from the literature, whose physical
terpretation is given in this paper. Generally only asympto
01640
ic

or

t 2

il-

e

3

t

s

d
e

c

formulas are deduced from the more general theories ow
to their complexity, and no limits are given from what p
rametersv̂os /v th on they become acceptable~e.g., Refs.
@1–3#!. As a by-product of the present paper in one ca
~Ref. @3#! such limits can immediately be deduced from Fig
3,4.

There is a general remarque to be made. In the stan
procedure of inverse bremsstrahlung absorption a Fourier
pansion in space and time is undertaken which means th
peaked function is approximated by periodic elements. I
evident that this is not adequate. Fourier representation o
removes the differential operators by translating them i
algebraic relations, but then one is left with a sum of m
tiple fast oscillating integrals of time-consuming evaluati
and difficult interpretation. Finally, it has to be mentione
that the treatment of collisions in nonideal plasmas~density
effects, negative Coulomb logarithms, large angle and m
tiple scattering! is not yet in an advanced stage, howev
promising progress has been made@7,13#.

IV. SUMMARY

We have used a ballistic model to calculate inve
bremsstrahlung absorption for any laser intensi
temperature ratio. Formulas for the time-dependent collis
frequencynei(t) are presented. Forvos(t) periodic and an
arbitrary electron distribution functionf (ve) or a Maxwell-
ian, f 5 f M , respectively, we obtain

nei~ t !5
K

mevos
3 ~ t !

E
0

vos(t)

4pve
2f ~ve!dve ,

K5
Z2e4ni

4p«0
2me

ln L, f 5 f M , vos /v th,0.7:

nei~ t !5
1

3
A2

p

K

mev th
3

expS 2
vos

2

2v th
2 D ,

f 5 f M , vos /v th>0.7:

nei~ t !5
2

p1/2

K

mevos
3 ~ t !

3H p1/2

2
2F 1

wos1S wos
2 1

3

2D 1/21wosGe2wos
2 J .

From cycle averaging the following expressions are dedu
for n̄ei :

n̄ei5
K̄

2Ēkin

1

vos~ t !E0

vos(t)

4pve
2f ~ve!dve,

vos5 v̂osucosvtu, v5” vp ; f 5 f M :
6-7
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n̄ei54
b3/2

p1/2

K̄

me
(
n>1

~21!n11
2n

2n11

~2n!!

22n~n! !3
ŵos

2n22 .

2& v̂os&10: Eqs.~20! and ~21! may be used.

v̂os<1.5v th :

n̄ei5
1

3
A2

p

Z2e4ni

4p«0
2me

2v th
3 H 12

9

40
S v̂os

v th
D 2

1
15

448
S v̂os

v th
D 4J ln L.

The time-dependent collision frequencies, Eqs.~4!,~19!, de-
duced from a ballistic model are valid for arbitrary oscill
-

s

n

01640
tory motions and arbitrary isotropic distribution functionsf
in the domain of ideal plasmas (lnL*1). There is agreemen
betweenn̄ei,ballistic and n̄ei,dielectric. Dynamic screening is es
sential. Corresponding formulas fornei(t) and n̄ei in non-
ideal quantum plasmas have been obtained recently@7#.
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