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Time-dependent electron-ion collision frequency at arbitrary laser intensity-temperature ratio
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In superintense laser beams collisional absorption exhibits a large amplitude modulation over a laser cycle.
In this paper formulas for the time-dependent electron-ion collision frequep€t) are presented. On the
basis of a ballistic interaction model we deduce an expression,ftr) which holds for an arbitrary isotropic
distribution function and arbitrary anharmonic oscillatory electron mof®q. (4)]. For a Maxwellian we
present compact formulas for the various ratigg(t)/vy, . It is shown that the strong time dependence over
one laser cycle leads to the generation of intense odd harmonics. The cycle-averaged collision freg(tgncy
is compared with expressions derived from the more complex dielectric model. It is shown that the correct
choice of cutoffs as a consequence of dynmical screening is essential.
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[. INTRODUCTION mations in the form of standard Coulomb logarithms.
With the help ofv,;(t) we show the appearance of har-

The electron-ion collision frequency is essential in colli- monics and estimate their strength in one situation. Finally,
sional absorption of laser light and in transport phenomenan the discussion, for completeness we determigefrom
such as thermal diffusion and collisional ion heating by elec-our expressions forg(t) and compare them with those of
trons. At low laser intensities the oscillatory velocityv,s  the dielectric theory. We shall discover a significant discrep-
=|v,d is much smaller than the thermal speeq, ancy which, however, disappears when dynamical screening
=(kTe/me) 2 vos<vyn. As a consequence,; depends on is taken into account.
the electron temperatuiie,, but not on the laser fiel, and
is constant over a laser cycle. At high laser intensiteg.,
1 =10 W cm™2) 0,0y, may hold,v s oscillation ampli-
tude, and hence,; becomes strongly time dependent over Throughout the paper limitation is made to isotropic dis-
one cycle, vei=ve(t). For this strong field case cycle- tribution functionsf(x,ve,t)=f(ve,t) and the plasma is as-
averaged expressiongi have been presented in the litera- sume_d to be locally homogeneous. An mdw@ual-elec.tron of
ture [1-5], but no explicit formulas for the instantaneous VE!OCItY v(1) =vo(t) + v, loses momenturdp in direction
value v (t) exist so far. Its knowledge is indispensable for ©f ¥(t) in one collision with an ion of chargé owing to a
various applications. With the present paper we close thideflection by the anglé). The differential Coulomb cross
gap in the ideal plasma domain for Coulomb Iogarithmssecuon_‘fﬂ and t_he collision parametd;, for perpendicular
InA=1 and for laser frequencies+ w,, w, plasma fre- deflection are given bysee textbooks

II. TIME-DEPENDENT MOMENTUM LOSS

quency.
Most of the authors based the calculationiqf on the bf ze z _
dielectric theory although this is unnecessary as long as col- 0= 4° bL:47-ra m.2 :7E[e\/] [A];
lective plasma effects occuring at=w, are ignored as in 4 sin“E oTe
Ref. [1,2]. Instead, a much simpler ballistic model is used
here to obtain analytical expressions fg(t) in a very im- @
mediate way for an arbitrary isotropic electron distribution 9 by
function and for arbitrarily unharmonic oscillatory motion at tanE: b
all ratios vys/vy,. The exact evaluation of the dielectric
model for zero electron temperatufé] shows that out of Over the total cross section= b2 . results
resonance ¢# wp) this theory merely provides a self- max
consistent cutoff of the bare Coulomb potential, a fact which
will also come out as a by-product from our ballistic model. b? (7= (1—cos®)sind
On the other hand, since the exact evaluation of the dielectric ~ AP= Mev~ — T dde
model for arbitrary values,¢/vy, is cumbersome—in fact, 4kt
such an analysis is still missing—all authors using this model 2
[13,5,4 limit themselves to presenting asymptotic approxi-
bsz dsing b? D
=47mgv =47mey—In—or.
*On leave from Dipartimento di Fisica, Universith Pisa, and d=¢ sinﬁ b,
INFM-UdR di Pisa, Piazza Torricelli 2, I-56100 Pisa, Italy 2
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FIG. 1. Isotropic electron distribution(ve). The resultant ve-
locitiesv =v s+ v, consist of all types of vectors; ,v; indicated
in the figure for two oscillation velocities,s(t) andv4(t'). The
momentum lossep form the anglesy with v,; the average loss

(p) is directed along .

UOS/ Vth

Here it is treated as a constant. The momentum loss per unit FIG. 2. The collision frequencys,; of Eg. (5) normalized to

The Coulomb logarithm Ih=In(b,,,,/b,) is discussed later.

Silin’s formulavg (solid line), upper and lower bounds, andH .

time is p=onj|v|Ap, \ .
(dashed and best fitH,,, from Eq. (10) (dotted ling.
. K Z%e*n,
p=—Merei(v)v=——v; K=—F—InA. (2
v Amegmg

3/2 p ) Mg
fM(Ue):(;) e e, 18: 2kTe
By the first equality the collision frequenay;(v) of the loss

: _ pl _ pl —
of momentump=m.v is defined. To obtain the ensemble- 2Nd When settingv=4 2, Wos= B 05=Vos/\201n, vei

. . becomes
averaged momentum logp) averaging has to be done on
v/v® over the thermal velocities,. For an isotropic distri- K 4 [Wee ,
bution functionf(v,) the velocityv consists of all vector vei(t) = —3_1/2f w2e " dw. (5)
sums as sketched in Fig. 1. The quanptys parallel tov, Mevog(t) 75J0

yvhgareas(@) point_s alongv,s. With the anglesx andxy as  gqr Vos<uy and expEwi)=1, ve; reduces to the time-
indicated in the figure holds independent expressian;

%)= 222 - <O7 1>— ’ <1> 3 K 4 (Wos 1 /2 K
U3 Uos 1_)2 ﬁUOSU ﬁvos ’ VS:—3—1/2 o WZdW:g\/:—S,

MgV o5 T T Mgy,
Hence, determinin@b) is perfectly analoguous to calculat- KT\ 12 ©®)
ing the gravitational force of a spherical mass distribution on Vih= <_e) ,
a point mass at distande from its center. We obtain Me

g (= (=2mvisiny in agreement with Refl1]. We notice thatv,(t) from Eq.
fo fo ff(ve)d)(dve (4) behaves regular for all ratias,s/v . FOrvosSvin,
0s

<p> =MeVei(Dvos=—K

Jdu
Ugs | Vos 14 (t):— (7)
=KU—3 4702f (ve)dvg. e mev (1)
0s

heThe collision frequency from Eq5) normalized to Silin’s
expressiorvg for vanishingv ,s/vy, from Eq.(6) is plotted in
Fig. 2.

Expansion of Eq(5) in terms ofw,¢ by successive partial
integration may be useful in practice fops/vn=<12,

Formally, without making recurrence to the analogy of t
gravitational potential, the last step follows from
VoleSiNY=—dvldy. The time-dependent collision fre-
guencyvg(t) results as

K Uos
vei(t)=—J 47Tvgf(ve)dve. (4) 1 /2 K vgs 1[vos\2
mevgs(t) 0 Vei(t)= § ;m—vf*hex - 2Ut2h 1+ g U_th
(5
This is our basic expression for,;(t), valid for anyf(v.) 1 4 1 6
and arbitraryv ,4(t). In particular, if for a dilute plasma in —_ U_OS) - v_"s) 4. ] (8)
thermal equilibriumf (v,) is a Maxwellian SXT v/  SXTX9\ vy
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although it converges for arbitrarily large valueg /vy, . At duys ,
Uos= U1 the bracket amounts to-+ 0.23. The major correc- Me ¢+ MeVeillos= ~ €(E+UosX B), (11)
tion relative tove; from Eq. (6) is due to the exponential

2 02y _ _
factor expt-v,d2vyp) =exp(-0.5)=0.6. Because of the un- yherey, .= (v). This raises the question of the validity of
certainty of the Coulomb logarithm due to dynamical screenthe foregoing derivation of the friction force. The only re-

ing it is reasonable to use the simplified formula striction we made ow s was that it must be the same for all
5 electrons. At first glance this is generally not guaranteed
po(t)= }\/z K exg — Uos ) whenv,; exceeds the field frequeney. Here, however, we
°l 3V med, ’ have limited ourselves to cases withAre1. This means that
the majority of electron-ion collisions are small angle deflec-
for vos=vy,. An upper and a lower bound for the integral in tions. As a consequence the individual electron drifts
Eq. (5), indicated byH, andH,,,,, can be given in terms of remain close to their statistical ensemigte,s) =(v) for a

thzh

elementary functiongsee, for example, Ref6)), sufficiently long time and hence, the identifications
2 1 w2 Uos™ Ups: Véi(t) =vei(t)
Hy=—/——| —————F5——-tWys|e "os
2 1/2 0s !
2 | wos+(Wost2) are justified for all values of,; (provided InA=1).
At 0os/vyn>1 the friction term shows a strong time de-
771/2 1 ) . . . .
H, — _ T | e W pendence. Hence, the motion induced by a harmonic driver
am 2 4\ 172" Tos ' in Eg. (11) becomes unharmonic and, in concomitance,

Wos+(W§s+ P higher harmonics appear in the current dengityin E and

in B. The unharmonicity is expected to be particularly strong
They are shown in Fig. 2. The accuracy becomes acceptabi@ the dense plasma wheh, is low anduv o max largely ex-

for wos>1/\/2 (deviation less than 8¥%A better fit to the Cceedsvy,. To evaluate its strength we choose solid state
integral is given byHs, where the number 2 in the denomi- density (;=6X10°* cm™?), Z=5 andT.=100 eV are cho-
nator of H, is replaced by the value 3/2. It satisfies,, ~ Se€n. Itis further assumed thitis such thav os max approxi-
<Hs,<H, and oscillates around the integral. It exhibits amately equaley,. Then vg(t) from Eq. (9) can be used:
maximum error of only 4% in the whole domaim,c=0.5 4X10"°<we(t)<10's . Fora Nd laserye>w holds. As
and starts becomming acceptable alreadyvige>0.542 @ consequence the inertial term in E@l) can be omitted
(see Fig. 2 Hence, for,./vy>0.5 (i.e., wy,=0.542) the ~ and

time-dependent collision frequency is well approximated by
vo(t)=— ————Ecoswt, (v,XB=0
2 K OS( ) meVei(t) ( 0s )
veil)=—, — 5+
7 Mev (1) is obtained in this collision-dominated cagdc behavio).

This is a transcendental equation of the form

2
X - 72 T Wos e os A
_ 3ymebuf;
2K '

Wose*‘”cz)sz F coswt; F= (12

(10)
Since Wy(t+ 7/ w) = —wy(t) it follows that w,g contains
This is simpler than Eq5) since the integral is removed. For odd harmonics only,
Vos/vp<<0.5 EQq.(6) can be used.

Wys(t) =Wy cOSwt+ Wz oS 3wt +Wwg cOS Swt+ - - -.

A. Unharmonic electron motion

In all treatments in Refs[1-4] v,4(X,t) was identified Expanding the exponential in E¢12),

with a harmonic oscillatory motion of a single electron. As 1 1 1

outlined in the foregoing paragraph, due to the statistical | 1—-w2+ ~wi.——wé.+ —wi.F ... |=F cosowt,
interactions with the ions a friction term, i.e., an additional 2 3! 4!

ensemble-averaged force, of the form.v.v,s appears o o

which enters in the equation of motion and has to compet@&nd keeping in mind that we have to renormalize, i.e., the
with the inertial termmedv</dt. No problem arises as long Sum of terms showing a cesg dependence must add upFo

as the friction term is small, which is equivalent to the as-and the sum of all higher harmonics must vanish. One ob-
sumption v.(t)<w. In the case, however, where,(t)  tains for

=w the electron drift motion must be determined self-

consistently from the first moment of a suitable kinetic equa- 3 10 35

tion, generally of Vlasov-Boltzmann type, coswt: 11— 4 - 32 384 0.472,
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1 5 21 electrons. It removes the logarithmic divergence. When sup-
cosdwt:  — 7+ 35 384 —0.148, pressing it one is led back to the ballistic model for nearly
straight orbits. In fact, from
if all contributions fromw2, and higher powers ofv are 0_25__ iE ¢
neglected. Thus, the ratjev|/|w;| is as large as 0.31. As a 20 me o(Ve.t)
consequence, the skin depth in the overdense plasma is in-
creased and deviates for one more reason from a pure expge cross section, of Eq. (1) follows, on the basis of which

nential decay@nother reason is skin layer absorpjion vei(t) was calculated, however without the restriction to
small angle deflections. The oscillator model corresponds to
B. Dynamic screening and cutoffs the situationv3/v3>1 and w§> w?. Comparing the mo-

) mentum transfeA p obtained from the oscillator model with
The bare Coulomb cross section for momentum transfe{he expression for\p in this paper, agreement is found if

diverges proportional to Ib. Therefore, in the expression of bmax=vo/w, is set. The same cutoff was deduced in an alter-

Ap one has to introduce an upper Cutbfbyay. This fact  pative way by de Ferrariis and Arista and Peter and Meyer-
reveals that an important piece of physics is missing. In fact_\/enn when studying the energy loss of a charged particle
a proper treatment would yield the cutoff self-consistently. '”moving atvo> v, [9], in agreement also with ReffzZ] and

the published literature there exist essentially two kinds Of[lO] in the asymptotic limit. Since with decreasing ratio

in principle, more complete derivations: the classical Vlasovvoslvth there is a CONtiNUOUS transition Bgy from v/,

treatment(for example, Refs[1,3], Catto and Spezialf2]; {0 A\p We propose

all for w,<w) and a quantum treatment fas,<w with
Volkov states and von Neumann equat|&f, Volkov states [vz (t)+v2 142

and standard time-dependent perturbation th€é8hyma and bmadt)= u, (14
Yatom[2]) and, recently, a quantum kinetic approach based @p

on the Kadanoff-Baym equation has been presefitgdTo which shows the correct asymptotic behavior on both ex-

make the Vlasov treatment feasible the straight orbit APt omes of ie .0 andp..—so. The velocity aver-
proximation is introduced. In the quantum treatment this as- Uos, 18- Uos Vos™ ™" y

L - 5 o
sumption is equivalent to the use of Volkov states. In both?g'.gg 'f. thgreby ?r??r? (sz—(vosgved) sw&cg 'tés st?ndard
cases this simplification needs a lower cutoff b, (often IO ! tehn)\lfy_ ﬁ”}i” Wi N averag; _rel uce the éog |_t|5_‘hwave-
erroneously called “parameter of closest approgch” erlg s="/m(v) as soon a 8 IS larger than B, . 1hus
whereas no divergence appears for laogalues. In the test A =brmax/bmin depends quadratically om. The justification

particle model used here no divergence arisesbfor0 ei- of such a procedure is found in R¢®], de Ferrariis. For the
ther, if large angle deflections are included rest we follow the common practice to substitute\lin all

There seems to be universal agreement onlogg, for integrals OVEW e by its average_{ InA) qnd, since this aver-
~ . . o i ) age is not easily calculated, it is substituted byAi and, for
Vos<Uth andwp> w in which caseb ., is identified with the

simplicity, indicated by In\.
thermal Debye lengthhp=ve/wy. In the underense A4 hig phoint we want to make a remark dm,;,. Time
_plasma,_wp<w, screening is (_:pn5|derec_i unimportant arl and againb,,, is identified with the “closest approach” of
is substituted by ,= v,/ w. Silin[1], Shima and Yatorf2],

. the colliding electron, especially whéx,, is to be identified
Catto and Spezialg2], and Deckeet al.[3] make use of,, with b, . This makes no sense since the closest apprach is

in the Coulomb logarithm also for arbitrarily larggs/vy, in b=0, corresponding to a=m deflection. Sometimes a
contrast to Refs[5] and [7]. To clarify the situation on weaker statement is used which says thatdiscriminates
physical grounds one can make use of the so-called oscillatgrtraight orbits from bent ones. Again, this is a weak argu-
model[8]. At zero temperaturel,=0, the small deflection ment. The real justification is as followRef.[4], p. 215: If

4(t) from the straight orbik=wv,t, an electron undergoes in 3 collision parameteb= by, is introduced to discern between

a collision with an ion, obeys the oscillator equation straight and bent orbits and the momentum lossbfaib, is
2 calculated exactly fov fixed the resulting Coulomb loga-
e UM
2o rithm is
?54' wpﬁ— meEC(t), (13)
b b b
INA=In—2+In -T2 | -2

b, " by b,
whereE; is the bare Coulomb field. In passing nearby an ion
the electron starts oscillating at the plasma frequeagy The beauty is that the somehow arbitrary paramiegecan-
owing to the attraction. Summing the oscillation energiescels as long ab,,,>b, holds. The quantityy, appearing in
over all impact parameters one arrives at the energy irreversk is not more than a useful symbol to write the Rutherford
ibly extracted from one beam electron per unit time, i.e., tocross section in a concise way.
vei(t) in the dielectric approximation for monoenergetic drift  On the basis of the oscillator model a physical interpreta-
motion of the electrons. The restoring foreemewgﬁ stands  tion of the cutoffby,—=vo/w, can be given that is very ap-
for the self-consistent shielding of the ion by the surroundingpealing. From Jackson’s treatment of Coulomb collisions
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[11] we learn that the interaction lasts for a time 2b/v. The term on the right-hand side represents the true energy
Collisions with b>v,/w, do not contribute. Insertind absorption per cycle. The reversible fraction of absorbed
=v/w, in the interaction time formula shows that power contained in-ev ,sE vanishes after time averaging. A
meaningful definition ofv,; is achieved by setting
2 7
P
Tim$—:—, Tp:277'/(1)p, > — [
wp T MeVe 5= MeVei Ugs™ 2VeiEin -

i.e., only those interactions do irreversible work which un-\¢ garantees the correct determination of energy absorption
dergo not more than one third of a plasma oscillation durmq;rom the corresponding averaged quantities and. i
collision. For timesr;, < 7,/7 most of the electrons do not P 9 ged 9 » U064

appreciably change their velocity during a collision as long<Vin Where ve; does not vary with timeye;= ve; resuits.

asw<w), holds, i.e., the plasma is overdense. An alternative 1€nce

interpretation of this behavior is as follows. A harmonic sys-

tem oscillating at frequency,, whether classical or quan- o Veivgs K 1

tum mechanical, can, in the weak coupling limit, only be Vei=— = —

excited by a frequencw,. For 7> 7,,,; the frequency spec- v2 2E i Vos(t)
int 0s

trum of the driver does almost no component contaitw at

= wo. This tells us that in the underdense situation witfi  Again, this expression holds for arbitraf{v ) and arbitrary

<o and v,s/vy>1 the correct cutoff is expected to be y (t). Forf(ve)=fy(ve) it becomes

bmax=vos/®@ since & oscillates atw rather thanw,. There

f OS477'v§f(ve)dve. (17
0

exists an exact solution of E¢L3) for vy=v,4(t) instead of B2 K 1 (w
vo=const in terms of modified Bessel functions folded with V_ei= 2(_) — [ "Ww2e"dw. (18)
an Anger function4]. For v,s/ wbpmin>1 andw,<w/5 the T  Ein WosJo

leading term is justb,=ves/w, iN agreement also with

Refs.[5] and[2], Shima and Yatom. As a consequence, inThis formula is accessible to a numerical evaluation only,
Eq. (14) w, has to be replaced by maxy). especially if one keeps in mind that fog;(t)>w Wy is NO
_Later the cycle-averaged value of the Coulomb logarithmonger sinusoidal. In an underdense plasma, however, it is
In A will be needed which traditionallyand in our case also nearly harmonic in general. tf,(t) =04 coset| is set one

for comparison with existing expressigris identified with obtains in the rangé,.<v, from Eq.(17) for a Maxwellian

|nK W|th bmin:)\B we Obtain distribution
n2 2 ~ ~
In /Tzlnw Ae>2b, . (15) — 1\/5 Zze4ni 9 Uos 2 15 Uos 4
Amaxo,o,) 1 BT P3N T ameZmiod |- 40\ vy) 448l vy
For b,n=b, the velocity dependence is®. Owing to the 35 [5..\°
slow change of the logarithm it is acceptable to use again the ~ 9216 v—os ... rInA.
th

averaging factor 1/2, hence

Arregmy(0242+v2)%? It shows that the Spitzer-Braginskii collision frequency Eq.
InA=In 07\ "o th , \g<2b,. (16 (6) which was derived for vanishing drift velocity is still a
Z& max v, wp) not too bad approximation fob,=v, i.e., Wos=1/\2
(19% erroj. Now v, in the opposite case,s>1 is deter-
C. Cycle-averaged collision frequencyp,; mined. One may start from E¢L8) and expand it in Taylor
_ series
In the published literature expressions fay; with har-
monicuv¢(t) only are available. It may be interesting to see 12 i —
whether the simple ballistic model is able to reproduce for- jm:(ﬁ) A dt
mulas forv,; obtained from the dielectric theory. To this aim 7 Eyin 270
correct averaging over one field period must be done. Mul- 1 w2n
tiplying Eqg. (11) with v yields % —_1)n _1]=°s
o8 n;( Vi9gnrz Y |
dm
dat 76ng+ meVeivgs: —evsE.

In the published literature fo?ei only expressions with har-
monicw,4(t) exist. Therefore, in order to compare, again use

In the steady state case cycle averaging leads to must be made of a harmonic time dependenwgt)
5 =W, Coswt. The integrals can be done analyticalbee, for
MeVeilos= — €V osE. example, Ref[12]):
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Vei/VS
1

dynamic shielding

static shielding
08 r

0.6
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02|
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0 1 2 3 4 5 6
(b) Dos/ Ve

FIG. 3. (@ Normalized time-averaged collision frequency

PHYSICAL REVIEW E53 016406

1.2
Teif vs : dynamic shielding
static shielding
08 r
06 |
04 |
02 |
0 L
0 1 2 3 4 h 6
(a) Dos/ Uth
20 T T T T T
N
15 |
10 | dynamic shielding "
5 L
O I
0 1 2 3 4 5 6
(b) Bos/Uth

FIG. 4. (a), (b) vei/vs andN=(vei/vs)03Jv3s, as in Fig. 3,

veilvs. Solid: Sum of Eq(19) times 3; dashed: present fit, first line €xcept using the second line of EO) and InAy,=10.

of Eq. (20); static shielding according to ER1); dotted: its modi-

fication by the dynamically shielded upper cutdif ., from Eq.
(14). The Coulomb logarithm is IAy=3. (b) N=(ve/vgvd
v3,, with v/ vg from (a).

32
— K 2n 2n)!
PRI R M B L)

~2n—2
77_1/2 Me n=1

2n+1 p2n(p )3W°S
(19

This expression is valid for arbitrary ratiog/v,,. For van-

In Ay,=3 [Fig. 3@]. For InA,=10 the best fit is A= 1.8, C
= 0.45[Fig. 4(@)]. In order to notify the deviations at large

valuesu os/vy, We plot in Figs. 8b) and 4b) the curves from

(a) times @ s/v ) for In Ay,=3 and InAy,=10. Since they
are also satisfactory we are led to the simple approximations

for ve; as follows:

— 2 Z%%n,
InAth:3: Vei:2 ;ﬁ

ishing v,s the sum reduces to the constant term 1/3 fiom dmegngu s

=1 and hence reproducing again Spitzer's result(&g.For R

Wos>1 it is not very practical because the series converges ><2.7In( Uos +0.35/INAy,  (20)
slowly. Instead, in the domaiw,s>1 a best fit to the series Uth

(19) in terms of a functiomA IN(Ved 201+ C)/ (0 os/v1n)® IS

made, with the constan®,C to be adjusted. In Figs.(8 B 5 728,

and 4a) the sum from_Eq(19) times the normalized average INAy=10: vg;=2 \/> _ 213

Coulomb logarithm In\/In Ay, Agw=vin/w,, is evaluated T A1re MG s

in the interval G<vos/v,<6. Abovev ,s/vy,=1.5 the fitted ~

curve agrees best with the series for the parameters A7 %1.8 In( Vos +0.45/InA.p .
and C= 0.35 in the case of the thermal Coulomb logarithm 2v¢n .
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In the published literature asymptotic expressions with statidormulas are deduced from the more general theories owing
shielding are given as follows3,1], to their complexity, and no limits are given from what pa-
rametersv,s/vy, On they become acceptable.g., Refs.
[1-3]). As a by-product of the present paper in one case

2,4
— Ze™n; (I Uos

Vei™ Wzsgmzas 20 +1]In A, (Ref.[3]) such limits can immediately be deduced from Figs.
eros 3,4.
N (1) There is a general remarque to be made. In the standard
Ap=— P . 5 <o procedure of inverse bremsstrahlung absorption a Fourier ex-
th b A /2) ’ 0s th - . . . . .
maxb, ,Ag pansion in space and time is undertaken which means that a

. ) peaked function is approximated by periodic elements. It is

In Figs. 3 and 4 the corresponding graphs are shown fogyident that this is not adequate. Fourier representation only
In Ap=3 and 10(dashed lines In Fig. 3 the discrepancy removes the differential operators by translating them into
between the two expressions amounts to a factor of almost Zgepraic relations, but then one is left with a sum of mul-
at high ratiosv,s/vy,. If however the thermal Coulomb tiple fast oscillating integrals of time-consuming evaluation
logarithm InAy, is substituted by the dynamically screenedand difficult interpretation. Finally, it has to be mentioned
In Ath+|n(1+5542vt2h) the agreement with the fit in the first that the treatment of collisions in nonideal plasnidensity
line of Eq.(20) becomes almost perfetdotted lines in Figs. effects, negative Coulomb logarithms, large angle and mul-
3,4). tiple scattering is not yet in an advanced stage, however,

The fit used in this paper differs from the asymptotic form Promising progress has been madel3].

IN(0os/2vy) +1 of Eq.(21), used also by Silifi1], Shima and
Yatom[2], Catto and Spezial] and Deckeet al.[3]. Both IV. SUMMARY

fits have their advantages. Equatié®i) perfectly repro- We have used a ballistic model to calculate inverse

duces Eq(19) for vos/vin>1, however, only after the cor- premsstrahlung  absorption  for any laser intensity-

rection presented here. Figures 3 and 4 show that applicabifmperature ratio. Formulas for the time-dependent collision

ity of Eq. (21) corrected is guaranteed fog,s/v,=3. For  frequencyv,(t) are presented. Far,(t) periodic and an

most applicationsv,; is needed at ratios ,s/vy, ranging — arbitrary electron distribution functiof(v.) or a Maxwell-

typically from 1 to 5. The fit chosen here does not reproducéan, f=fy,, respectively, we obtain

exactly the practically insignificant asymptotic limit; how-

ever, it agrees better in the intermediate regime as Figs. 3 K Vos(t)

and 4 show. vei(t) = J
From their 2D numerical simulations Decket al. [3]

find an enhancement of,; for v,s/v,>1 (see their Fig. 5 -

which they attribute to “correlated collisions.” Such a cor- K — Zee'n; nA f

relation is certainly present, however, in our opini@hno 4meim, ’

distinction exists between oscillation amplitudgs>\p and

Xo<Ap and(ii) the increase inv.; can entirely be explained 1 2 K 02

by using the correct cutoffs from Eg&l5) and(16), leading ,,ei(t):_\ﬁ exp( _ o ) ,

3V Tmeg, 2vf,

to correction factord =1+ In(v2/2v3+1)/In Ay, and f.=1
f=fu, vos/vin=0.7:

47Tvgf(ve)dve,

mev (1) Jo

:fM y UOS/Uth<O'7:

+ 2 In(2d2v3,+1)/In Ay, So, forv,s/vy,= 6.8 they find an
enhancement by a factor of 1.33. The correspondinfac-
tors range from 2.1 to 1.3 for Iy, varying from 3 to 1Qwe

do not know their actual , values. For o ,s/v=11.5, ve; 2 K
is increased by 1.8; ouf, factors vary from 3.1 to 1.4 for veilt) = 77_1/2 mev34(t)
3=<In Ay,=<10. The authors of the present paper believe that o
most of the difference between simulation and Exl) has 2 1 )
its origin in the dynamic shielding. X > 3 72+ Wos | € Yos
Wost W(Z)s'f‘z
Ill. DISCUSSION

The ballistic model combined with the rigorous solution From cycle averaging the following expressions are deduced
of the oscillator model fovy=const andvy sinusoidal4]is  for v;:
able to yield reliable time-dependent collision frequencies
for Coulomb logarithms Ih=1. When cycle-averaged, ex- _ K 1
pressions are obtained which agree with generally believed VeiT o= 4 ®
formulas, however, only after correcting them by appropriate 2Ein Vos
cutoffs, partly known from the literature, whose physical in- .
terpretation is given in this paper. Generally only asymptotic Uos=Uog COSOE|, w# wp;, f=fy:

vos(t) 2
f 4rvgf(ve)dug,
0
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. B2 K on  (2n)! . tory motions and arbitrary isotropic distribution functiohs
vei=4 (—1)n+t w2n—2 in the domain of ideal plasmas (X=1). There is agreement

2n+1 22n[1)3 °8 — : S
27(nt) betweenvg; pajistic aNd Vei dielectric: DYNamic screening is es-

2=<0,.=10: Egs.(20) and (21) may be used. sential. Corresponding formulas for,(t) and?ei in non-
ideal quantum plasmas have been obtained recgrily

71_1/2 me =1

l}os$l-5)th:
_ _1\F Z%"n, L0 Dos 2+ 15 (04| — ACKNOWLEDGMENTS
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