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Basic principles of statistical theory of dusty plasmas are formulated with regard for electron and ion
absorption by dust particles. Rigorous microscopic equations are introduced and employed to derive the
BBGKY hierarchy and kinetic equations. The charging processes are shown to induce a considerable modifi-
cation of both microscopic and kinetic equations for plasma particles and grains. In the approximation of
dominant influence of charging collisions, explicit kinetic equations are derived and applied to calculate
stationary distributions of grain velocities and charges.
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[. INTRODUCTION theory of dusty plasmas with regard for consistent treatment
of grain charging and particle collision®oth elastic and

Recently many attempts have been made to work out thimelastig has not yet been formulated. Recent progress in
kinetic theory of dusty plasmaésee, for example, Refs. this field has been achieved by deriving kinetic equations in
[1-8]). One of the main purposes of such theory is to determs of various approximations. For example, in RE8s7]
scribe self-consistently the grain charging dynamics assocthe main attention was paid to the effects of charging colli-
ated with the absorption of plasma particles. In order to daions(i.e., to the problem of charge and momentum transfer
this, it was proposefl1] to treat the grain charge as a new in course of plasma particle absorption by graitmwever,
variable that introduces the principal possibility to study thethe explicit form of the collision integrals describing the
grain charge distribution on equal footing with spatial andelastic Coulomb collisions was not specified. In H&f. the
velocity distributions. Such formalism was successfully ap-kinetic equation for grains was derived under the assumption
plied to investigate waves and fluctuations in dusty plasmathat the discreteness of both electron and ion components
[1,5—8 with due regard for the self-consistent dynamics ofcould be neglected. Such approximation excludes from con-
grain charging in terms of various approximate versions ofideration the bombardment forces and the effects of grain
kinetic equations for grains and plasma particles. diffusion in the charge and velocity spaces.

Another important point of the kinetic description of  The purpose of this paper is to propose a consistent ap-
dusty plasmas is to take into account the influence of elecproach to the derivation of kinetic equations for dusty plas-
tron and ion absorption by grains on the grain motion. It wasmas on the basis of the first principles of statistical mechan-
shown in Ref[9] that in spite of large difference between the ics. We start from the formulation of rigorous microscopic
masses of plasma particles and grains, such influence couidjuations(equations for microscopic phase densijtiésr
be rather essential, similarly to the case of Brownian particlelusty plasmas taking into account electron and ion absorp-
motion in gases. In particular, absorption of plasma particlesion and contact grain-grain collisions explicitlBec. ).
by grains results in the bombardment force acting on grainSuch equations differ from the traditional microscofidi-
that could make a reason for grain attraction at large dismontovich equations for ordinary plasmas which are conti-
tances. Being introduced in the equation for the grain densityuity equations in the six-dimensional phase space. In the
fluctuation evolution, these forces produce long-range graicase under consideration, absorption of plasma particles by
correlationg 5]. grains generates additional sources in the microscopic equa-

Obviously, in order to involve both effects caused bytions for both plasma particles and grains. The physical rea-
electron and ion absorptioicharge and momentum transfer son for such sources is evident: disappearance of plasma par-
from plasma particles to graipsnto a self-consistent de- ticles and abrupt changes of grain momenta and charges due
scription, appropriate collision integrals should be introducedo inelastic collisions.
in the kinetic equations along with the modified collision  The microscopic equations obtained are used to formulate
terms responsible for the elastic Coulomb collisions. the Bogolyubov-Born-Green-Kirkwood-Yvo(BBGKY) hi-

However, solving this important problem is complicated erarchy of equations for dusty plasm@&sc. Il)). The addi-
by the mutual influence of charging processes and Coulombonal sources entering the microscopic equations give rise to
collisions. Moreover, dusty plasmas are usually charactemew terms in the equations of the hierarchy. In the case of
ized by strong coupling between plasma particles and grainsystems consisting of grains on{gio plasma particlgsthe
that requires considerable improvement of the traditionahew hierarchy reduces to the relevant hierarchy for the hard-
perturbation approaches. That is why a rigorous kineticsphere ga$10].

1063-651X/2000/6@)/01640317)/$15.00 63016403-1 ©2000 The American Physical Society



SCHRAM, SITENKO, TRIGGER, AND ZAGORODNY PHYSICAL REVIEW B3 016403

Possible application of the results obtained to the deriva- J J J
tion of kinetic equations is discussed in Sec. IV. In terms of 5+VE+ m_Fo'E Ni(X,t)
various approximations, kinetic equations derived by other 7

authors can be reproduced, in particular, the equations pro- =— (X=X (1)) o(t—t;,). (6)
posed in Refs[6,7] for the case of dominant influence of
charging collisions. The obtained kinetic equations are apSincet;,, is the time ofith particle collision with some defi-
plied to calculate stationary distributions of grain velocitiesnite grain, we can use the following relation:
and chargesSec. V.

8(t—t;,) = 8(1ri, (1)~ (t)l—a)‘w
Il. EQUATIONS FOR MICROSCOPIC PHASE DENSITIES ' ' g at —t
IN DUSTY PLASMAS v

Let us consider a dusty plasma consisting of electrons, =5(|rig(t)—rg(t)|—a)
ions, and monodispersed finite-size dust partidig=ing X |e - (t)(Via(t)—Vg(t))L (7)
under the assumption that each grain absorbs all encountered AR

electrons and ions. . . . . wheree =r/r, ry(t) andvy(t) are the coordinate and veloc-
In the case under consideration, the microscopic phasgy of the grain with which theth particle collides.

den.sity (microscopi_c distribution f_unctidnassoci_ated with It is useful to note that for particles approaching the grain,
theith plasma particléelectron or iom can be written as we have

Nia’(xlt):5(X_Xirr(t))0(ti(r_t)' (1)

J

i) —rg(M]i=t. =€ (- Vi (1) —Vv4(t))|t=r. <O.
Here, X=(r,v), X, (t)=(ri,(t),Vi,(t)) is the phase trajec- r7t| 100 ot =00 -rggy Vi (D ~Ve Dy,
tory, t;,, is the time ofith particle collision with any grain, (8
the subscriptr labels plasma particle species<e,i), and

6(x) is the Heaviside step function, This means that(t;,) > w/2, whered(t) is the angle be-

tween the vectors;,(t) —rgy(t) andv;,(t) —vy(t).
1, x=0, With regard for Eqs.(2), (7), and (8) the equation for
0(x)= (2) N, (X,t) takes the form

0, x<O0.
The microscopic phase density describing the subsystem of (iJrViJr iF i} N (X,t)
plasma particles of speciesis given by gt or m, “ov] 'Y
< & dX’ 5(X — Xy(1)) 8 /
No(X, = 24 NigX,0 = 2, 60X Xio (D)0t~ - [ oo -xnai-r-a)
3 X[ (V=V")[N; (X,1)

whereN,, can be regarded as the number of particles existing,
until time t (unabsorbed particles

The above definition of microscopic distribution differs 9 9 1 9
from the traditional one by the presence of the Heaviside 5+Vﬁ+m_':"5} N;(X,1)

step functiond(t;,—t) describing plasma particle disappear-

ance at the time instants of their collisions with grains. o ,
According to Egs(1) and(2) the value ofN;,(X,t) at the =J da" 8(X" — Xy(1)8(|r—r'[—a)

. . .. (9>ml2)

instant of plasma patrticle collision could be treated as

X ’ -V’ i .
Niu’(xvtiu'): lim Niu’(xitiu'_s): lim 5(x_xi(r(tiu_8))! G- (V v )ng(X't) (9)
o0 o0 (4y Here, ¥ is the angle between—r" andv—V’,
i.e., we define this value as the limit b, (X,t) on the left. (X = Ay(1))=6(r —ry(1)) S(v—V4(1)) 6(q—dg(t)),

Combining the derivatives dfl;,(X,t) overt, r, andv, ) ) )
and taking into account that plasma particle trajectories ark€., We introduce an extended phase variabte(r,v,q)

governed by the equations of motion which includes the grain chargeas a new variabl¢l]. In
such extended phase space, the trajeciqyft) determines

dr; (1) dvi,(t) 1 the microscopic state of the grain. Integration ovEr in
qc Ve —qr = o Felie(D), (B Eqs.(9) with regard for the conditior> /2 is equivalent

g

to the treatment of the contact valdg,(X,t;,) in terms of
whereF(r,t)=e,E(r,t) is the Lorentz force generated by Eq. (4).
the microscopic electric fiel&(r,t), it is easy to show that Since only one grain can be at the phase pdirat the
N;,(X,t) satisfies the following equation: instantt;,, (i.e., theith plasma particle can collide only with
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one grain, the expressiod(X’ — X,(t)) in Egs.(9) can be (such division is individual for each grairand write the

replaced by the complete microscopic grain density grain phase trajectory as a sum of its relevant parts. For
example, for thaéth grain we have

Ng
Ng(Xt)= 2, 8= (1)) (10 (=Xt —10) 0(t;— )+ XD (1) ot —1,) Bt~ 1)
_ _ _ + X1 6(t— 1) B(t3—t) + - - - (12)
and thus, the equation for the complete microscopic phase
density of plasma particle®) can be written as Heretg is the evolution initiation timet; <t,<t; ... are the
p p 1 p times of the first, second, etc. collision of thé grain with
ST any other particle,
0 +Var + m. F, av] N,(X,t) n n n
XM= ri0,v"),qM), (13
_J dX’|erfr’(V_V’)| t
ri(t):rio"'j dt'vi(t’)
X 8([r—r'|—a)Ng(X" N, (X,1).  (11) to
The right-hand part of Eq11) with regard for the condition =i+ ftldtlv(o)(t,H Jtzdtfv(l)(t,)Jr ’
9> /2 can be interpreted as a microscopic flux of particles to ty
of specieso through the grain surface, i.e., the flux of par- (14)
ticles absorbed by the grain.
It should be noted that in view of the fact that grain tra- o dio
jectories have discontinuities of the first ordeetailed dis- vty =vio+ f dt’E(ri(t),t),

cussion of this point is given belgwthe microscopic phase

densityNg(&,t) at timet=t;, (such time instants correspond q [t

to the condition|r;,—r’|=a) in Eq. (11) should be treated vi(”)(t)=vi(”’l)(tn)+b\/i(”)+—'f dt'E(ri(t'),t"),
in the same sense &&,(X,t;,), i.e., Mg Jt,

Ng( X' ti,) = imNg(X' ti,—&). n>0, (15

e (0)_q|o,

The next problem is to derive the microscopic equation
for the grain phase density. Before doing this we have to (”)—qln Dy 5q(”), n>0, (16)
define such density for the times of grain collisions with
plasma particles or other grains. The point is that at the colrjg, Vi andq;, are initial phase coordinates of thié grain,
lision instant the grain trajector;(t) changes abruptly and 6v{" and 8q{" are the jumps of the grain velocity and
thus the microscopic distributiof10) becomes indefinite and charge due to thath collision of theith grain with other
nonintegrable. In order to get rid of nonintegrability we di- particles which depend on the species of the particle in-
vide the time axis into time segments between collisionssolved in thenth collision, namely

e, for a collision with a plasma particle,
sqM=1 1 o o 1
N E(q’ —q{" V) for a collision with another grain with the charg#, an
m, for a collision with a plasma particle
- T ) - V), | o prasma parte
m,+mq with the velocity v/,
oviM = (18)

(N=1)/4 \ s for a collision with another gram
- —r! _r| Vi t Vv y
it - [V () =D with the velocity v’

When deriving Eqs(17) and(18) we assumed the grain masses and sizes to be equal and the two-grain collisions result in the
equalization of their charges.
The function that reproducey(X— X;(t)) at any point whereS(X— X;(t)) is defined, can be written as

Neol(t)
Nig(X,0= 2 o= X{V(0)6(tn 1~ DO~ 1y), (19
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where N (t) is the number ofith grain collisions till timet. The representatiofiLl9) has the advantage that the function
Niq(X,t) becomes integrable in contrast to the expressionstar— Aj(t)).
Taking the derivatives olj(A,t) overt, r, v we can show that

g 4 1 _ 4 B %" (n-1) (n)
3tV e Foy N B0 = 0= Tt t0) = 3, a(t=t[ 8= D(t) = 5=t (20

where
Fo=Fy(r,q,0)=qE(r,t), XM(t)=x"" Dt +6x™, sxM=(0,6v",s59M).
Similarly to the case of plasma particles we can use the relation
S(t—ty)=a8(ri(t) —re(t)| =&, —r (ViD= V()]

wherer.(t) andv(t) are the coordinate and velocity of the parti¢@ectron, ion, or grainwith which theith grain is

involved intonth collision,a=a for grain-plasma collisions ana=2a for grain-grain collisions.
For t,— —, we obtain an equation fd;y(X,t) given by

aalFaNx—Zde'(s ' MIN
E‘FVE"'m_g gw ig( 1t)__a=e,i (|I’—I’ |_a){|er7r’(V_V )| ig(rvvqut)

- |e|»,rr(V_V/ - é\/0')|Nig(riv_ é\lowq_e(rlt)}Na'(X”t)
- f dX' 8([r—r'|—2a)|e._ . (v—V") [{Nig(r,v,q,t)Ng(r’,v',q’,t)
—Nig(r,v—20vg,q—89,t)Ng(r',v' + év4,q",1)}. (21

Here

M, ’ ’ ’ ’ ’
Vo=V, (V,V') == =(V=V'),  dVg=dvg(v,V') =& (& (V=V')), 60=69(q,0")=9q"—q. (22)
9

The equation for the complete microscopic density

N
Ng(X,t)=iZl Nig(X,t) (23)
is given by
aalF&Nx—E dx’ s ' ")ING(X, N, —V'
E+V5+m_g 9y g(Xt)= P2 ([r=r"|=a)[le—r (v=V)[Ng(X,) — & (V= v, — V")

X Ng(r,v— é\/g,q—emm(xzt)—f dx' 8(|r—r'|—2a)|e,_ (v—V')]
XANG(X)NG(AX",t)  —Ng(r,v—20vg,q—6q9,t)Ng(r’,v' +dvg,q’,t)}. (24

The last term in Eq(24) describes the contribution of elastic grain-grain contact collisions which in contrast to elastic
Coulomb collisions could not be taken into account by the terms with the microscopic force in the left-hand part of the
equation.

It should be noted that in view of the condition of the tyBg integration oveiX’ andX” in the right-hand part of Eq24)
is restricted to the domaifi= 7/2 whered is the angle between—r’ andv—v’ (or, v—Vv’'—év,).

Thus, we have derived rigorous microscopic equatidds and(24) which describe particle motion in microscopic electric
fields with regard for plasma particles absorption by grains and contact grain-grain collisions. These equations are valid for
arbitrary stages of the system evolution and take into account the discreteness of all the plasma components.

If we formally regardNgy(X,t) andN,(X,t) as conventionalnongeneralizedfunctions and assume thpet,|<q andv
— OV,=V(1+m,/mg) —(m,/mg)v'=v—(m,/mg)Vv’, then we can expand E4) in terms ofe, and (m,/my)v’. The result
is given by
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d Jd | d J J 1
ﬁ+V§+FQFgE]N9({Y’t):£ E[QNQ(X,t)]—INg(X,t) +&_vi E[DijNg(X,t)]—m—ngiNg(X,t)
q aNg(X’t) ’ ’ ’ ’
_m_Fchi(?— —j dx” 8(|r—r'|—2a)|g_ (V=V")|[Ng( X, t)Ng(X" 1)
9 q
—Ng(r,v—20Vv4,q—69,1)Ng(r',v' + dvq,q",1)], (25
where
el

Q=2 | dX'N,(X",Da(r—r'[~a)ler(v=v)],

=3 e, [ axN < 081 -a)le vV,

m

1 (o8 2
Dij=zg, §<m_g) fdX’vi’v{NU(X’,t)5(|r—r’|—a)|e,_,,(v—v’)|, (26)

Fo

3 m, [ XN, 00801 |- ale o v-vl

€y Iyt ’ ' ’
Far =2 2, [ dxvNOC a1 |- ale vy

(o8

Neglecting the last term in E¢25) associated with contact grain-grain collisions and assuming that the quabijtie®Q
and (1my)F¢, are small, we obtain

(9+(9+1Fa+1F(9+IaNXt—O 2
ﬁVEm—ggEEbE%g(,)—- (27

Here the velocity dependence of the bombardment fé¢cis also disregarded. With the accuracy up to this force,(Eg.
reproduces the equation derived in R&] under the assumption that the discreteness of plasma patrticles is unimportant.

It should be noted, however, that though the quantidgs Q andF., are really small, they can be important for the
description of grain dynamics. This becomes evident if one draws attention to the analogy between grains in plasmas and
Brownian particles in fluids. In the latter case, the difference of particle masses is also very large, however, the Brownian
particle motion cannot be described disregarding its diffusion in the velocity space. This makes the reason why equations of
the type(27) cannot be used for the consistent description of the grain subsystem.

Finally, we notice, that E¢27) can also be derived by combining the derivatives of the microscopic grain density defined
by Eq. (10) [i.e., disregarding the nonintegrability &f,(X,t) at the collision instandeoverr, v andg. Such derivation as
well as the expansion of E4) in terms ofe, and (m, /my)v with the accuracy up to the first order introduces a considerable
inaccuracy: the contribution of discrete changes of the grain phase trajectory is disregarded.(B@y tecpe valid, both the
function Ny(&,t) and its derivatives must be integrable for any time, as in the case of continuously cha{g)nandv;(t).

We can assume such continuity on the basis of physical reasons, but in this case the time- and phase-variable differentials
dt, dv, dq cannot be smaller than the relevant physically infinitesimal intervals during which many collisions with grains
occur and we can use smoothened trajectories instead of microscopic trajectories. This means(2datdsgs its micro-

scopic nature.

Ill. BBGKY HIERARCHY FOR DUSTY PLASMAS

Once we have the equations for the microscopic phase density, it is possible to derive the BBGKY hierarchy for the
distribution functions of the system under consideration. Before doing this we rewritg Byisand (24) in a unified form
using the notation for the microscopic phase density of all particle species given by

Nt = N (X,t)6(qg—e,), o=¢e,i, -
AL = Ng(X,1), o=g. 28

In terms of this notation the unified microscopic equation can be rewritten as
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2,9 a s fd?(’ XNt i
gt torm, T oav oo (LA )NG(X' 1) N (A1)

o’'=e,i,g

o' =e,i,g

- > j dX’{W(l) r—r’,v—=v" )N (X, )N (X' t)— W(Z) (r=r'v=v'—=6&V,, — V. )
XN (rV==8Vyer 0= 380, DN (r' V' + 6V ,,q",1)}, o=e,|,g. (29
Here, we introduce the Lorentz ford&‘é,xt associated with the external electromagnetic field, if present, and the notation

J 1 J
znr (/Y‘X’)_ﬂ rm

m, or |r—r | (9V

Wfrlo)-r(r,v) = ervé(r - ao’a”) 6(1?_ 77/2)( 509

8419~ O5g04rg)y  V=(T,V),
2) 0, o=e,i,
WL (V) =—6Vi(r—a,,) (= m2)6,y, aser=a,+a,, a,=
a, o=g,
(30
— 50.(a.q")= [e(,, o=e,i,
=090,(9.9 q9-q, o=9,

é\/O'O"E é\/0'0"(V!VI): 5o'gé\/o"(vavl)a b\/:ra" = 5\/, U,(V,V’): 5Ug50’gb\/g(vuv/)n

—m—(v v'), o'=e,| 0, o=¢e,,
Ny (V,V')= mg Sog
, , 1, o=g.
&-r(&-p(V=V")), o'=g,

The formal representation of ER9) can be further simplified in terms of phase variables supplemented with the compo-
nent that describes particle species.
For example, in terms of the variable

&=(X,0)=(r,v,q,0), fd)(—fdg N, (X, 1)=N(&,1),
o=e,i,g
Eq. (29) reduces to

{ +L(§)]N(§t fd§ {TW(E, €)= V(& E)INEDN(E )

—W(z)(f Aggr § +A§§r)N(§ A§§’ t)N(g +A g )}

(31
where
Ii(&)zvjr mF?,Xt&V W@ g &) =W @ —r' v—v'),
(32
Arer=A o (Nygr ,80yer) =(0,0Vygr 804y ,0),

5QO'0" = 50’95qo" ' Agg' A '(é\/ ) (o 5\/(,0! !O!O)-
Representatioli32) is the most convenient one for a formal transformation of microscopic equations, in particular, for the
derivation of the BBGKY hierarchy.

The first equation of this hierarchy is obtained by statistical averaging of3#gy. We have

- +£<§>] fi(&t)= —J dE{IWD(E,E) = V(& EN]F(EE D~ WED(E= Ay & + AL )26 Ager &' +AL, 1)}

(33
wheref,(&,t) andf,(¢,¢&',t) are the single particle and binary distribution functions defined as
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fl(gvt)E<N(§vt)>v f2(§1§,it):<N(§!t)N(§,it)>_5(§_§,)fl(§lt)! (34)

the angular brackets imply time averaging over the physically infinitesimal integyavhich introduces the level of the
kinetic description.
Combination of Eq(31) and a similar equation fox(¢',t), when averaged, results in

. . . .
i TLEOFLEN) —[V(£,E)+V(E,6)] fo(£€ ) +{IWR(EE)+WD(E, )] 5(£,E,1)

~WE(E— Ay ,§,+Aé§,)f2(§_A§§r ,§'+Aé§, ,t)_W(Z)(§’_Agrg,§+Aé,§)f2(§+Aé,§,§’_Agrg,t)}
=- f dE{[V(EE)+V(E &) +WD(EE) +WD(E,E)]F3(E,8 &0~ WO E= A &'+ A L)
XFg(E=Ager &8 + AL ) = WO(E = Ao &'+ AL (68 —Aprpr &+ AL D) (35)
Here
f3(§=§,1§,I!t):<N(§1t)N(§,1t)N(§”1t)>_5(6_5,)f2(§’1§,’1t)
—O(E—E&,E ) =& =& T(E",E1) —(E— &) a(E— € F1(E1). (36)

The distribution function of arbitrary multiplicity is governed by the equation

S S

g S s s
[WE Len-2 X V(EG.§) fslér. . &+ 2 2 WG (& Esit)
=1 iI=1j#i=1 i=1j#i=1
—WA(& A, G ADTS(Er . ETA LG TA L Esi)]

S
=i§l dési V(& Esi D) fsia(€r . s i) —[WD(E gy Dfsia(Er - Egiril)

~WA(E—Ajsi1ési1t Afsi ) fsia(ér o &~ Aiser - se1t Al gD T} (37)
|
which represents the entire BBGKY hierarchy. Here perturbation methods with the solution of the linearized evo-
lution equation being taken for the zero-order approximation.
AiSHEAg_gsﬂ, Ai’suEAéés g In the case of dusty plasmas with strong coupling between
I I +

plasma particles and grains such perturbation approach, how-
For systems with pure Coulomb interaction/&) =W ever, requires considerable improvement. A possible way of

=0), Eq.(37) reduces to the BBGKY hierarchy for ordinary appropriate modific_ation of the ﬂuctua‘_[ion app_rc_;ach _for t_he
plasmas. In the case of neutral particles interacting by mean s€ Of. dominant mﬂu_ence of charging collisions is dis-
of elastic collisions, the hierarchy for the hard-sphere gagussed in the next section.

[10] is recovered.

Thus, we have basic equations for the study of statistical
properties of dusty plasmas with regard for both elastic and
inelastic collisions and for grain charging dynamics. These
are the microscopic equatiofkl) and(24) and the BBGKY We have already mentioned that kinetic equations for
hierarchy (37) for the sequence of distribution functions. dusty plasmas can be introduced in two ways. The first pos-
They provide the natural basis for a rigorous derivation ofsibility is to calculate the binary distribution functions, which
kinetic equations for dusty plasmas. Depending on the probdetermine the collision terms, from the reduced BBGKY hi-
lem under consideration it is more convenient to apply eitheerarchy. In this approach the problem of the hierarchy clo-
microscopic equations, or the BBGKY hierarchy, as hassure arises that requires postulated relations between the dis-
been done in the theory of “ordinary” plasmas. In the lattertribution functions of different multiplicity. In the case of a
case the microscopic description is highly efficient for thedusty plasma with strong coupling between plasma particles
study of electromagnetic fluctuations and calculations of thend grains, the traditional assumption that influence of triple
collision integrals in terms of the fluctuation approach. Thecorrelations is negligible is obviously inapplicable. More-
reason for this high efficiency is that fluctuations in ordinaryover, the equation for the binary correlation function itself is
weakly coupled plasmas can be studied by means of simpleuch more complicated than in the case of ordinary plasmas.

IV. KINETIC EQUATIONS FOR DUSTY PLASMAS
IN THE APPROXIMATION OF DOMINANT
CHARGING COLLISIONS
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The second possibility to derive kinetic equations is assothat the collision terms in the fluctuation evolution equation
ciated with the so-called fluctuation approach. The basic ideaould be interpreted as the result of renormalization of the
of this approach is to calculate binary correlation functions inlinearized equation with respect to higher perturbation or-
terms of the correlation functions of microscopic phase denelers.
sities which can be found by averaging the products of rel- The application of the fluctuation approach to the deriva-
evant microscopic quantities governed by the fluctuatiortion of kinetic equations is especially simple in the case of
evolution equations. The advantage of the fluctuation apweakly coupled ordinary plasmas since, as we have men-
proach is that appropriate choice of the physically infinitesi-tioned above, the fluctuation evolution equations are reduced
mal time 7, associated with the level of statistical descrip-to the linearized Vlasov equations. However, this approxima-
tion makes it possible to linearize the fluctuation evolutiontion cannot be applied to dusty plasmas when the problem of
equations. Of course, the explicit form of such equationsharge grain dynamics is studied. Highly charged grains
depends on the time scales of the fluctuations under consigvhich absorb plasma particles induce strong correlations
eration. For example, in the case of weakly coupled plasmaahich cannot be described by perturbation methods. So, the
the evolution equation for fluctuations with the characteristicfirst step in the derivation of fluctuation evolution equations
time 7.0 < 7o (7¢or IS the mean free timeis the linearized is to find the lowest-order approximation for the collision
Vlasov equation. Forr.,> 7., however, the evolution integrals in order to introduce these integrals in the evolution
equations contain linearized Balescu-Lenard or Landau colequation. In this paper we do this using physical arguments.
lision terms. The physical reason is that for 7 the linear Let us consider in more detail the first equation of the
collisionless approximation is no longer valid. This meanshierarchy. In terms of notatio(80), it is given by

Jd J 1 Jd ~
Vo PR ()= f AX Ve (XX (X X )= 2 | AW, (r=1" v—v")
gt or m, 7 av o e o oig oo

X F gt (4, 1) =W (r—1" V=6V, =V — &V )

XF gt (FV= Nggr 0= 8gqr 1/ V+OV, 0 1)} (39
Introducing the binary correlation function
Goo (XX 1) =F 0 (XX ) —f (X0 (X ,1)
and the self-consistent electric field

a f (X1
(E(r))y=—— > | d¥'gq—~—=
I o=eig lr—r’|

we can rewrite Eq(38) in the form

. FOt (V1 (ot
ot Var m,,[ v <">](9v oY)

=— > | dx{w

, oo’
o’ =el,9g

(r=r" V=V (Xf (X ) =W, (r=1" V=6V, =V = &V )

[oxon

Xfo.(l',V— é\/a'a" 1q_6qu’ ,t)fgr(l",vr-i-é\/;_a_, 1q’vt)}_ 2 J dX’{V\/(Ulg,(r—r',v—v’)GM,(X,X’,t)

o' =e|i,g

_Vv(a'za)"(r_ r’ V= &/(r(r’ -V — &/(,m-')Gmr’(r!V_ b\/(r(r’ q— 5q(rrr’ ;r’vV, + &/;-U-f vq, ,t)}

+ > X'V, (X, X)G (X, X 1). (39)

o'=e,|,g

It is important for further calculation to understand the the self consistent field. Since these deviations are associated
physical meaning of the integral terms in the right-hand parwith particle discreteness, such terms can be treated as Cou-
of Eq. (39). The terms with the Coulomb operatdr,,. de-  lomb collision terms. Within the approximation of weakly
scribe the average change of the particle phase density peeupled plasmas these terms reduce to the Balescu-Lenard
unit time due to the deviations of the microscopic field fromcollision integrals.
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sible for the contact collision¢both elastic and inelasbic sir? Y rnin=
between the grainglastic collision$ or between the grains
and plasma particle§nelastic collisions The first term de-  \we see that in the case under consideration the asymptotics
scribes such collisions disregarding the direct interaction beof the binary distribution functiorf ,4(X,&",t) cannot be
tween the particles and the second term is given rise by theeduced to a product of one-particle distribution functions.
correlations effects. In the case of strong coupling betweefrhus, the plasma particles absorption by grains is one of the
plasma particles and grains, such correlations could be vempechanisms that produce strong correlations.
important. In particular, they result in a modification of the It seems that the asymptoti¢§l) cannot be substituted in
contact collision cross sections which are determined noEg. (38) since integration over’ should be performed for
only by the grain sizes but also by their charges. Such crods —r’|=a (i.e., over the grain surfageNevertheless, it is
sections naturally appear in course of simplification of Eq.sufficient to estimate the absorption terms in the equations
(39) within the approximation of the dominant influence of for plasma particles. The reason is that these terms are noth-
binary contact collisions. This approximation can be used a#g but fluxes of incoming plasma particles through the grain
the zero-order approximation in deriving the kinetic equa-surface. Since according to the above approximatiaip-
tions in terms of the fluctuation approach. The idea is tosorption of plasma particles by a grain is not directly influ-
present the binary distribution function as enced by another grgironly one grain is the absorption
center for particles in its vicinity, the integral flux should be
foox 0=t conserved and thus we can calculate these fluxes with the use
goRtmy ool of asymptoticg41). With the inhomogeneity of the distribu-
[0 (XX )—FO (XA 1)] (40  tionfunctions at distances of the order of the grain size being
i disregarded, we obtain
under the assumption that the second term is much smaller
than the first one. Heré®), (X, A" t) is the binary distribu- —f d¥'e . (v—v)FQxx 0 8(r—r'|-a)

tion function in the approximation of dominant contact col-

The terms with the kernel\%\/f,l;, and Wff(z, are respon- a2 ( 2e,q )
5 .

[r—r'] am,(v—v')?2

lisions, i.e., the main contribution to the binary correlations , , , ,

is determined by the contact collisions with grains. This pro- = | dv' | dq'o.4(q’,v=V')

vides a possibility to reduce the asymptotics of

fé%?(X,Xl,t)(O':e,l) to the form X |V_V’|fU(rIV’1q’;t)fU(Xit)i (44)
where

ff,‘g(x,X',t)|r,r,|>a:fg(x,t)fg(x’,t)e(a—agm),( )
41

2e,q 2e,q
1_m 02)0(1_”] vz). (45)

(o8 o

0,q(0,v)=ma’
where is the angle between—r’ andv—v’. Equation(41)

means that if a grain with velocity’ occurs at the point’, Similar estimates can be made for the case of grain-grain
such thaty < 97, there are no plasma particles with velocity collisions. Obviously, in this case the angleis not limited

v at the pointr, or, in other words, no plasma particle tra- and thus the asymptotics fdgy(X,X",t) has the standard
jectories have intersected the grain surface in the past. THEMM
elementary treatment on the basis of energy and angular mo- (0) ) ,

: : . . fad (X O rrsa= (D T4( X ,1). 46
mentum conservation yields an estimate #ff;, given by 9 Jir=rrj=a=To( LDT(AL (48)

However, it is useful to divide this asymptotics into two parts

2 _ —r! , r
ir? 97— 2 (1_2%(%0(61) o(r—r >>) PR 1) = Fo( X0 Tg(X 0L = i) + O(Iin— 9}
[r=r'|? my(v—V")? (47)
v associated with grain trajectories which do not touch the
xg(l_ 2e,(¢(a) = e(r=r ))) grain at the pointr’ [the first term in Eq.(47)] and with
m,(v—v’)? reflected graingthe second terim Such division separates

the contributions to the distribution functidn. (X, X" ,t) of
0<In=m7/2, (42)  reflected particles and particles that arrive at the poimith-
out collisions with the grain at the poimt. This makes it
possible to calculate the fluxes of approaching and reflected
particles. Of course, in the case of elastic collisions the radial
fluxes of bombarding and reflected particles at the grain sur-

where g is the electric potential in plasmas.
With the assumptions

p(a)= 9 face are equal. In view of the observation that the terms with
a Wfrlg, and Wffg, are related to the distributions before and
lo(|r=r'])|<|e(a)], (43  after collisions, respectively, we can calculate the incoming
and outcoming fluxes making use of the separate parts of the
Eq. (43) reduces to asymptoticg47). For example,
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- f dX e (V=) 3(|r—r'| = 2a) [ F{)( XX ;1) = F(r,v—8vg,q— 80q;r" V' + dvg,0'51) ]

dQ
=fﬁf dV’f dg’[n(v=v"){ogqe(q,q"v=v") fg(XD)fg(r,v',a’;t)
—0gg(q—80g,q" ,V— 6Vg) f4(r,v+ dvg,q— 8qg;t) f4(r,v,q"; 1)}, (48)

where

2 !
agg(q,q’;v)=477a2( 1- q—qz> 6( 1-
mgu

2qq’)_
mg?/’

n is the unit vector that specifies the direction of the spatial adfle
The terms responsible for the grain-plasma-particle collisions are given by

—f dX’[e,,r,(v—v’)5(|r—r’|—a)fé?,(;\,’,/’\,”,t)—er,,,(v—v’— é\/,,,)f;%),(r,v— N, gq—ey ' Vv L,q'it)]

zjdv’[og,g(q,v—v’)fg(X,t)fU,(r,v’,q’;t)|v—v’| —0,rg(0—€, V=V = 6V,/)
ng(r,V_ &/(r’ ,q_eo./;t)fo./(l',V,,q,;t)dV_V,_b\/(,.r|)]. (49)

Thus, with regard for Eqg40), (44), (48), and(49), Eq. (38) for the one-particle distribution functions of plasma particles and
grains can be written as

J J e J

_ 4 0 ypeffy — ’ ’ ! gyt ! r Nt

(?t+var + mU<E">o’!v]f”(X’t) Jdv f dq'o,4(q’ v—V")|v—V'|f (X, 1) fg(r,v',q" ) + 6, (50)
£+vi+i<EEﬁ)i fo(X)=— > | dV'[oyq(qv—V)|v—V'|f(X,t) =0, q(q—e, V=V —5V,)
ot ar mgy 97 gy| 9 er a'gld g\t o'gld o o

XV=V"= 6V, [fo(r,v—=5V, ,q—e, 1) ]f . (r, V' 1)

daQ
—J’EJ’ dv’f dq’[n(v—v")|[oge(a,q" ,v—V ) fa(X,1)fo(r,v',q’ 1)
_O-gg(q_5qgvq,;V_V,)fg(r!V_&/grq_5qglt)fg(ravl+&/glq’!t)]+(5|gv (51)
where

8l ,= 0815+ 618, (52

sIC=> f dX'V o (X, X)[(SN(X,1) N, (X ,1))— G (2,7, 1)], (53)

oo

51B=> fd;{’{wf}(j,(r—r',v—v')[<5N,,(X,t)5NU,(X’,t))—fog,(x,;c’,t)]—vv(jj,(r—r',v—v'—5VUU,—a\/' )

X[{NG(r,V=3Vggr ,q— 80y ot) NG (T,V+ OV ,q’,t))—GfTOU),(r,v— Nyt 0= 8Qger TV +Nger,q' 1)1}

(54
GO (XX 1) =~ (XD o (X 1) (o ([T =], V=V|) = D),
2
ao'o" 2 '
SI & (FL0)=— (1— a4 2)6’(r—awr), (55)
r Myayq U
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d fr (X't d f (Xt
(EMf=— > eal—f dX’—( )—j dX’q’——g( )e(ﬁ—ﬁgg(|r—r’|,|v—v’)),
oi=ei O Ir=r’| o fr=r’|
d f o (X',1) d fa(X' 1)
ESfy = — eg,—J dX T2 (9O q(|r—1'|, V=V’ ))—J dx'q — - . (56)
(E)=-3 ey g | aX T o(lr =1’ v=v’ T
In deriving Egs.(51)—(56), use has been made of the relation
foor (2,2 ) =12 (2,2 1)+ [(SNL(X,1) SN, (X)) = GO (X, X,1) ] = 8,00 S(X— X ) (A1),
|
Thus, we represented the collisions integrals as a sum of g [ ¢ J
two parts. Those explicitly expressed in terms of the contact  —-| = (Dyfg(v,a))+ Bvig(v,q) + - (ayvfq(v,q))
= . . o V| Vv Jq
collision cross sections ./ (r,v) describe the contribution
of inelastic plasma-grain collisionghe first terms in the al o
right-hand parts of Eq$50) and(51)] and the elastic contact + a9 E(Qf(V,Q))— Ifg(v,q)|=0, (59)

grain-grain collisiongthe second term in the right-hand part

of Eq. (51)]. The quantitiessl , give the contribution of the \where D” , B, Q, y and| are the Fokker-Planck kinetic

elastic(noncontacdt Coulomb collisions between particles of coefficients generated by charging collisions and given by

all species. With the accuracy up to the term responsible for ) "

the grain-grain contact collisions, Eq®0) and (51) repro- D/i=D _2 1 My d (Vv o

duce the kinetic equations of Ref§, 7). I=Djavi=2 5 my Vi v=V]og,
To be rigorous, Eqg50) and(51) still cannot be regarded

as kinetic equations since correlation functions X (q,v—=Vv")f (r,v'),

(N, (X, 1) SN, (X',t)) are not yet specified. However, un-

o 1%

der the approximation of dominant contact collisions, the m,, A% ,

terms !, could be treated as small quantities, and thus the B=pB(q,v)= —g | dv oz lv=V'log,

above correlation functions could be calculated within the g

fluctuation approach. This opens the possibility to derive the X(q,v—=v")f (r,v"),

relations for the collision termsl, and to introduce the

kinetic equations for dusty plasmas with regard for both elas- m, e, A ,

tic and inelastic collisions. A necessary step in such deriva- Y= 7(qu)=§ moq dv 2 V=V'[og,

tion is to study stationary distributions of grain velocities and ¢

charges in the zero-order approximation, i.e., éby=0. X(q,v—Vv")f (r,v"), (59

V. STATIONARY DISTRIBUTIONS OF GRAIN ei , , , ,

VELOCITIES AND CHARGES IN DUSTY PLASMAS QEQ(q,v)=; 7f dv'[v=V'[gs(q,v=V")f,(r,v"),
In the approximation of dominant charging collisions

(81,=0), Eq.(51) for the grain distribution function canbe | =|(q,0)=2, eoJ' AV [V—V' | oo (q,V—V) (1, V).

written as o

d q 4 0 The quantitiesD|(q,v) and Q(q,v) characterize the grain
E+VE+E<ES EY, fq(r,v,q,t) diffusion in the velocity and charge spaces, respectively,
B(q,v) andy(q,v) are the friction coefficients which deter-

mine the bombardment fordg,(q,v) = —my3(q,Vv)Vv associ-
=2 f dv'{og,(q,v—V")|[v=Vv'[f4(r,v,q,1) ated with charging collisions and the correction to this force
r=el SFy(q,v)=—mgy(q,v)v due to mutual effect of grain
— o= €y V=V = 8V,) V=V’ — 6V, charge and velocity distributionkjs the grain charging cur-
rent. When deriving the relation foB(qg,v) we omit the
Xfg(r,v—>=0vg,q—e,,t)}f,(r,v,1). (57)  terms of higher order inrf,,/my) associated with the tensor

, . i nature of the diffusion coefficient in velocity space.
Here, we neglect elastic Coulomb collisions and elastic con- \yjitp, regard for the fact thali (q,v)/Q(q,v)|—= ase
tact collisions between the grairiestimates for the condi- 0" and |(q,v)/Dy(q,v)|—2 as (m /'mg)ﬁo, the

tions of such approximation are given bejow asymptotic solution of Eq(58) can be written a§12]
Inasmuch as, and dv,, are small, we can expand the

right-hand part of Eq(57) in power series of these quanti- fg(\/,q):nonglQ*1(q,\/)e*W(q~v)ﬂv2

ties. With the accuracy up to the second order,(E@) in the . o) es

stationary isotropic and homogeneous case reduces to XDy Y(q,v)e V@) teoalv), (60)
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where

I(q",v)
Q(q' )’

W(q,v)=—f0qdq

!

Dy(a,v")
IW(q,v")
9q

v Jd
V(q.v)=fO dv’ (ﬁ(q,v’)+ ﬁ(qv(q,v’))

dQ(q,v")

+Q Y(q,v") 7

—qy(q,v")

(61)

oq(v)=q—q(v),

g(v) is the stationary charge of the grain moving with the
velocity v, given by the equation

PHYSICAL REVIEW B3 016403

o 1 (9DH(C],U)+(?V(Q,U)
Di(q,v)  dq aq
S 1 1 aQ(qu)  W(Gw) | dq(v)
)\_Z[Q(q,v) v * dv te dv |’

(63

Equations(60)—(63) give the asymptotically exact solution
of Eq. (58) for (mye,/m,q)— .

The further estimates require the knowledge of the ex-
plicit form of the kinetic coefficients. Assuming that plasma
particle distributions are Maxwellian, we find the stationary
grain distribution with accuracy up to the zeroth order in
(qm; /e.my) to be given by[12]

fo(v,a)= nogz*1D‘(1(q,v)e*mgv2/2Teﬁ(q>

I(a(v),v)=0, (62 X Q~Y(q,v)e (@90 /2aTey, (64)
Z is the normalization constant,and\ are small functions.
Substitution of Eq(60) into Eq. (58) leads to where
|
T ( )_ 2Ti(t+2) (65)
. t—z+ (q_qO)z 1+ t_Z/1+ 22, (1+t+2) |
do t+z| 7 1+Z
3 2 1+t+z 66
177, 1tz e (66)
|
and Z m: 1/2 T 1/2 n
1(go,0)=2\/27a%e?n; 1+——(—') (—e) ‘e?
q_qo . . (qO ) I ISi t me Ti Zini
Dy(q,v)=Dy 1+Tt+_2 +f)' =0, (68)
when recovering the well-known equation for dust particle
0(q.0)= Qg 1— q—do z(t+z—-Z) (t+2)(1+2,) charge obtained within the limiting orbit probe thed@a].
q: 0 Jo (t+2)(1+Z) v For typical values of plasma parameters in dusty plasma
67) experiments {+z>1) andZ;=1 we have
Tef=Te.
4 m Ti 2 eff e
D°_§V27T<m_g)(m_g amn;s, In such case the thermal variation of the grain charge
lg—qol|? is of the order ofaT, and |q—qo|z~do\eZ/aT,.
Te This means that for weak plasma coupling defined with the
QO=\/277(? e’a’n;s;, grain size €2/aT.<1), the effective temperature of the
: grain thermal motioT .4(q) =T reduces to
Nog IS the averaged grain number density. Here, we use the t+z
notation Ter=2Ti;—, (69
_ ez, T > T . & and
T aT,’  ZT T S‘_mi’ 9 e ey

The quantityqg is a stationary equilibrium grain charge that
is determined by the equation

D(q,v>=Do(1+§, Q(a,0)=Qo(t+2)(1+2)).

Thus, in this case we have
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n B 312 example[11], Chap. 8. With the accuracy up to the domi-
fo(v,q)= &e(qqo)ZIZaTe{_ e Mgv?/2Ters nant logarithmic termgin this approximation Eq(71) re-
g 2raT 27T o duces to the Landau collision tetrauch coefficients can be
eff (70) ~ reduced to
[ 2 2 2
This distribution describes the equilibrium Maxwellian ve- Dic(q V):‘_l 27 s nge”InA 1— v
locity distribution and the Gibbs grain charge distribution I3 2 Sis,  \T ss))
with the temperature$.; and T, respectively. In fact, the ) 5 5
electric energy of charge variations of the electric capagity Be(qv)= f V2mq D Ny€, nA 1- v
is equal to —qg)?/2a and thus, the charge distribution de- clqv)=3 my o< Som, ¢ 552)"
scribed by Eq(70) can be interpreted as equilibrium distri- "
bution with the effective temperatuf,;. Fort<1 andz S — E) (72)
<1, the effective temperatufB,; exceeds the electron tem- 7 o\m,

perature. e ) In Egs.(71) and(72) we again neglect the contribution of the
The resulting velocity distribution is described by the ef-yangyerse part of the diffusion coefficient which gives a cor-
fective telmperaturé'eﬁ. I_Even in the case of neutral grains (action to Bc(q,v) of higher order in tn,/my) and disre-
(z=0) this temperature is equal ta'2. The presence of the gard the grain-grain Coulomb collisions assuming the grain
factor 2 is associated with plasma particle absorption byjensity to be smal]ng<ni(Zi/Zg)z(Sg/S)l’z(Tg/Ti)]. We
grains. The charging collisions are inelastic and a part of thehall introduce the Coulomb logarithmsAp for each par-
kinetic energy of ions is transformed into additional kinetic ticle species. Usually these quantities are estimated Ag In
energy of grains. This makes the difference between the casein(k,,.,/kp), wherekp= r51=2(4we§nngU) 12 and Kmax
under consideration and the conventional Brownian motions the inverse distance of closest approach between colliding
where the velocity distribution is described by the temperaparticles, i.e.,
ture of the bombarding light particles. )
Equation (69) shows that the effective temperature of Koo~ myv™ 8T, =1 (73)
thermal grain motion could be anomalously high #est, or marle,ql  wle,q -
even negative for>t. Physically it can be explained by the
decrease of the friction coefficient with increasing grain
charge, i.e.,

(r_, is the Landau length, here and in what follows we ap-
proximatev by the mean velocityv)=8T/7m). How-
ever, in the case of plasma particle collisions with finite-size
7 7 grains this estimate could be invalid since fgr,<a the
azniSi(l— —) :ﬁo(l— —)_ Coulomb logarithm includes the contribution of collisions
t t with particles reaching the grain surface, i.e., charging colli-
sions.

2 m(r
B(q,v)zg\/z(m—g

INA,=In

2e,q
m_v‘a

(o8

2e,q
m_v4al’

o

The reason is that the difference between the ion fluxes bom- An appropriate modification of , is achieved by treating
barding the grain surface antiparallel and parallel to the grair“qA as a logarithmic factor apgearing in the momentum
motion decreases with the charge increase due to the peculighhgfer cross section for Coulomb collisions. In the case of
properties of the ionic charging cross-section whose charggpite size grains one obtains the following logarithmic fac-
dependent part is larger for ions moving with smaller relativeq,-
velocities(i.e., in the parallel direction The conditionz=t
corresponds to the zero value of the friction force. . Xmaxs . Xmino

The negative values of the effective temperatlgg, if sin 2 / sin 2 )
occur, mean that the system is thermodynamically unstable i
and the approximation of dominant charging collisions is no”/h€r€Xmax, @ndxmin, are the scattering angles related to the
longer valid, i.e., the Coulomb correctiods, to the colli- ~ Minimum and maximum impact paramet@g,, andbz,
sion terms should be involved into consideration. Since calpy the Rutherf(_)rd formula. F_ollowmﬁl4] we find Dpin, .
culating such corrections is a special problem, here we ref_rom the condition that _the distance of closest approach is
strict ourselves to the qualitative estimates supplementin§du@! toa and thus obtain
Egs. (57) and (58) by the Coulomb collision terms known
from the theory of ordinary plasmas. In particular, we use the Pmine=a\/ 1— (74)
Balescu-Lenard collision integral in the Fokker-Planck form
which in the case under considerati@sotropic spatially ho-  concerning the quantity,a,,, it is reasonable to put
mogeneous stationary distributjois given by brmax,=rp+a instead ofbma,=rp, since in the case of

PYEY-RRP finite size grains its screened potential is given by the
(&_tg) = (9_V(DHC(q,V)fg(V,q)HVﬁc(q,v)fg(q,v) , Derjaguin-Landau-Verwey-Overbeeck potential
-1
(77) <I)(r)=g 1+i e (r=a)rp
r o

whereDc(d,v) and Bc(q,v) are the Fokker-Planck coeffi-
cients associated with Coulomb elastic collisiagee, for rather than by the Debye potential.
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As a result we have

1 (rp+a)’+rd

InAj==1In
2 (ri+a)?
(rp+a)2+r?2
|nD—2Le, a>2r e,
A 1 (atrie)
NA.=x%
2 (rp+a)’+rf,
Inf, a<2rie.
MNe

In the case p>a, Eq. (75) is in agreement with the results
of Ref. [14] provided the surface grain potential is much

(79
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6.00

5.00

4.00

3.00

Teff/Ti

2.00

srvverira ey e evr el b ies gl

larger than the plasma potential. We see that ferrp the 1.00
ionic Coulomb logarithm can be a small quantity in contrast
to the case of ideal plasmas. 0.00
Comparing Egs(58) and (71) it is easy to see that in 0 10 10 1 10 102 10° 10* 10°
order to take elastic Coulomb collisions into account it is Z/t

sufficient to make the following replacements in the obtained

solutions
Dy(d,v)—Dy(a,v)=Dy(q,v) +Dyc(q,v),

B(d,v)—B(q,0)=B(9,0)+ Bc(d,v).

FIG. 1. The normalized grain effective temperatiligg/T; as a
function of the ion-grain coupling constalify=|z4e;|/aT; =2/t for
various values of the Debye length to grain size ratida in the
case of fully ionized plasma.

(76)

The new kinetic coefficients yield the effective tempera-

In the case of weak plasma couplingZ(aT,<1), we have ture for thermal grain motion given by

- z 7°
DH(q,U)zDO 1+f+t—z|nA| ,

2
Blaw=6o 1T +2 0.

(77

z 7

2 1+¥+ t—2' InAi)

Ter=T; s 2 , (79
1_E+2 t—z' InAi

i.e., elastic collisions can produce saturation of the grain

Thus the correction produced by the elastic collisions couldemperature. However, in the case of dominant influence of
be of the same order as that due to charging collisions. Theharging collisionT . can be still anomalously large. Depen-
condition for dominant influence of charging collisions is  dences off ¢ on the quantityz/t for various values of 5 /a

z z2
1—?>2t—2InAi,

are shown in Fig. 1. The predictions given by EZg) can be
used for a qualitative explanation of the experimentally ob-
served grain temperatures which are usually much higher
than the ion temperaturd,,>T; (see, for exampl¢15,16,

which can be realized for small values oft or for z/t Ti~0.1 eV, Tg~4-40 eV).

>r3/a?(r>r3la).

Finally, we point out that the results obtained can also be

To be rigorous, Eq(71) and thus Eq(77) are definitely modified for the case of a plasma with a neutral component.
valid in the case of weak coupling plasmas;&rp) since  One may introduce an additional collision term along with
this is the condition of the derivation of the Balescu-Lenardthe term(71). Since the collision integral describing elastic
(or Landau collision term. However, one might expect that collisions of neutrals with grains also can be represented in
actually the domain of validity of Eq€71) and(77) is not  the Fokker-Planck forntit follows from the Bol'tzman col-
too strongly restricted by such condition. This assumption idision integra) the presence of neutrals results in new addi-

in agreement with the direct calculations of the friction co-tjong toﬁu and B, namely[12]

efficient (Coulomb collision frequengyin terms of the bi-

nary collision cross-sections. Moreover, it was shown in Ref. . z 72 nnf mp\ Y3 T, 2
[12] that in the case of strong grain-plasma coupling the D(q’v):D0(1+f+t_2 '”Ai+ﬁ(m) (?) )
influence of the Coulomb collisions is also small and the o '

kinetic equation again reduces to the Vlasov equation. This _ z 7 of M\ Y3 T\ Y2
means that fluctuation evolution equations whose solutions B(q,v)=ﬁo< 1=c 2z nAi+2- —) T
determine the explicit form of the Balescu-Lenard collision e : (79
term are similar to those for the case of weakly coupled

plasmas and thus E¢71) is still valid. As a result the effective temperature is modified into
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FIG. 2. The normalized grain effective temperatligg/T; as a function of the neutral to ion density ratig /n; for various values of
I'ig=z/t andrp/a in the case of partially ionized plasmi@) —rp/a=2; (b) —rp/a=5; (c) —rq/a=10;(d) —rp/a=50].

m, 112 T, 3/2
n;\ m T,

7 ZZ n 1/2-|— 172\ -
(1‘t '”“Zn(m.) (T) )

ZZ

z N,
1+ + > INAj+—

Terr=2T, (80)

According to Eq.(80) the effective temperature increases tion of gas pressurgl5,16.

with decreasing neutral densififigs. 2a)—2(d)]. The influ- The results obtained show that stationary distributions of
ence of neutral density changes on the effective temperatu@ain velocities and charges are described by effective tem-
would be especially important at-1z/t+2(z%/t?)In A;=<0  peratures other than those of the plasma subsystem. These
(the curves 5—7 on Figs.)2In this case a decrease of the effective temperatures are determined by the competitive
neutral gas pressure can produce anomalous growlhof —Mechanics of collisions: grain-neutral collisions and elastic
This conclusion is in qualitative agreement with the experi-Coulomb collisions result in the equalization of the effective
mental observation of dusty crystals melting under the reductemperature to the temperature of neutrals or ions, respec-
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tively, while charging collisions can produce anomalouslaxation could be of the order of the time during which the

temperature growth. That could be one of the main mechadrain mass is changed considerably. This means that consis-
nisms of grain heating. tent description of grain dynamics requires allowance for the

grain mass changes.
Appropriate kinetic equations for grains formulated on the
VI. SUMMARY AND DISCUSSION basis of physical argumentsn these equations the grain
mass is treated as a new independent variable similar to the

tions of dusty plasmas are formulated with regard for elecgrain chargghave already been proposed by one of the au-

tron and ion absorption by grains. Abrupt changes of grainthors (S'A'T')_ n _Refs. [18'19:|'.Th? problem (.)f the grain
momentum and charge due to inelastic collisions betweef'35S dynamics is not so cruual, if bound pairs of electrons
the grains and plasma particles as well as due to elastic co‘?—nd lons escape frorln the r?raln sm;rface,dula.,flf netral ggsh
lisions between the grains, are taken into account explicitly'€9eneration occurs. In such case the model of a system wit

: : : fixed grain massused in the present papdooks quite rea-
The derived equationfEgs. (11) and (24)] generalize the . i
Klimontovich equation for ordinary plasmas to the case 0fsonable. We understand that in order to properly describe the

dusty plasmas. These equations differ from the conventiondiect Of neutral gas regeneration on the grain dynamics it is
Klimontovich equations by the presence of “microscopic” necessary to supplement the microscopic and kmeu; equa-
collision terms which describe contact elastic and inelastidionS for graingEgs.(24), (51), and(57)] with terms which

collisions and generate the microscopic bombardment 1‘orcEake INto account grain momentum change due. to evapora-
tion of neutrals from the grain. Nevertheless, it might be

and the Langevin forces that give rise to the grain diffusion . ! .
in the charge and velocity spaces. Within the approximatior?XpECted that this effect does not lead to considerable quali-

of continuous description of the plasma subsystdiscrete- tative changes of the reSl_JltS obtained i_n the present paper, at

ness of electrons and ions is disregaidéde equations de- least under the assumption that the distribution of regener-

rived in Ref.[8] are recovered ated neutrals at the instant of evaporation is isotropic. The
The microscopic equations thus obtained are employeﬁuam'tat've description of the grain mass dynamics and neu-

used to derive the BBGKY hierarchy of equations for dustytral regeneration effects will be a matter of further studies.

plasmas. Such hierarchig. (37)] generalizes th known hi- . Th_e next prqblem which is still open is to generalize the
erarchies for ordinary plasmasee, for example, Ref11]) kinetic description of dusty plasmas to the case of grains of
and for hard-sphere ga&0]. ' ' different sizegpolydispersed grain subsystgn$uch gener-

Various approaches to the derivation of kinetic equation?”z.atio_n could be performed in terms of the same approach
for dusty plasmas on the basis of the derived microscopi@S in this paper, but the algebra and final relations in this case
equations and the BBGKY hierarchy are discussed. The a ecome extremel_y lengthy. In the present state the theory
ymptotics of the binary distribution functions describing the prpgoosed '; apphcgble to the de;cnpfhzn of du_sty plaﬁc,mas
contact collision effects is applied to find the explicit form of With monodispersed grains. In spite of this restriction, how-

kinetic equations in the approximation of dominant chargingever’ the results obtained could be useful for the theoretical

collisions[Egs. (50, (51) at 8l ,=0]. The possibility to cal- tr'eatment of dusty plasma ocqurring in experiments with spe-
culate the corrections to the collision terms due to the CougIally prepared equal-_5|ze_ grains. L N
lomb particle scattering is also discussed. The obtained ki- The further generallzgtpn Is also pOSSIble_In the d|rect|_on
netic equations are in good agreement with the equationgf. more accurate description of plasma pariicles interaction
proposed in Refg6,7] with grains. In this paper we restrict ourselves to the assump-
T tion that any grain absorbs all encountered electrons and ions

éi.e., accommodation coefficients are equal to )otieat

Rigorous evolution equations for microscopic distribu-

The Fokker-Planck approximation for the collision terms

in the case of dominant charging collisions is found and use N C

to calculate stationary distributions of grain velocities andmeans an es_sentlal |dea||_za_t|on. Moreover, secondary e'?C'

charges. Such distributions are shown to be described by t onic_emission and rad|at.|v.e processes assouqted with

effective temperatures differing from those of the plasmaC arge particle contact collisions W'.th grains are |gr_10re_d.
bviously these phenomena could influence grain kinetics

subsystem. The mechanism of anomalous grain heatin . .
[15,16 by charging collisions is predicted. nd _c_hargmg dynamlcs_. However, we can expect that the
'I"o conclude. it should be noted that within the modelcondltlons could be realized under which the above assump-
under consideration many problems of dusty plasma kineticlons are reasqnfib(enetalllc dust particles with the accom-
modation coefficients close to one, low electron and ion tem-

still remain open. First of all, this concerns the problems of . .
grain mass dynamics and neutral gas regeneration. Ob erature, etg. The proppsed_ approag:h ”?a"es it possible to
gxtend the results obtained in this direction.

ously, absorption of electrons and ions by grains should lea
to grain mass growth, unless absorbed plasma particles leave
the grain in the form of neutral atoms, or molecules, which
appear due to surface recombination. If plasma particle ab- This work was partially supported by the Netherlands Or-
sorption results in grain mass changbsund pairs of elec- ganization of Scientific Resear¢NWO), the State Fund of
trons and ions do not escape from the grain sujfadbe  Fundamental Research of Ukraiferant No. 96-61Y. One
problem how to describe the grain kinetics with regard forof the authors(A.G.Z.) acknowledges the support of the
this effect is especially important since, as it has been showNWO for enabling his visit to Eindhoven University of
recently[17], the characteristic time of grain subsystem re-Technology.
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