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Statistical theory of dusty plasmas: Microscopic equations
and Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy
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Basic principles of statistical theory of dusty plasmas are formulated with regard for electron and ion
absorption by dust particles. Rigorous microscopic equations are introduced and employed to derive the
BBGKY hierarchy and kinetic equations. The charging processes are shown to induce a considerable modifi-
cation of both microscopic and kinetic equations for plasma particles and grains. In the approximation of
dominant influence of charging collisions, explicit kinetic equations are derived and applied to calculate
stationary distributions of grain velocities and charges.
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I. INTRODUCTION

Recently many attempts have been made to work out
kinetic theory of dusty plasmas~see, for example, Refs
@1–8#!. One of the main purposes of such theory is to d
scribe self-consistently the grain charging dynamics ass
ated with the absorption of plasma particles. In order to
this, it was proposed@1# to treat the grain charge as a ne
variable that introduces the principal possibility to study t
grain charge distribution on equal footing with spatial a
velocity distributions. Such formalism was successfully a
plied to investigate waves and fluctuations in dusty plasm
@1,5–8# with due regard for the self-consistent dynamics
grain charging in terms of various approximate versions
kinetic equations for grains and plasma particles.

Another important point of the kinetic description o
dusty plasmas is to take into account the influence of e
tron and ion absorption by grains on the grain motion. It w
shown in Ref.@9# that in spite of large difference between th
masses of plasma particles and grains, such influence c
be rather essential, similarly to the case of Brownian part
motion in gases. In particular, absorption of plasma partic
by grains results in the bombardment force acting on gra
that could make a reason for grain attraction at large
tances. Being introduced in the equation for the grain den
fluctuation evolution, these forces produce long-range g
correlations@5#.

Obviously, in order to involve both effects caused
electron and ion absorption~charge and momentum transf
from plasma particles to grains! into a self-consistent de
scription, appropriate collision integrals should be introduc
in the kinetic equations along with the modified collisio
terms responsible for the elastic Coulomb collisions.

However, solving this important problem is complicat
by the mutual influence of charging processes and Coulo
collisions. Moreover, dusty plasmas are usually charac
ized by strong coupling between plasma particles and gr
that requires considerable improvement of the traditio
perturbation approaches. That is why a rigorous kine
1063-651X/2000/63~1!/016403~17!/$15.00 63 0164
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theory of dusty plasmas with regard for consistent treatm
of grain charging and particle collisions~both elastic and
inelastic! has not yet been formulated. Recent progress
this field has been achieved by deriving kinetic equations
terms of various approximations. For example, in Refs.@6,7#
the main attention was paid to the effects of charging co
sions~i.e., to the problem of charge and momentum trans
in course of plasma particle absorption by grains!, however,
the explicit form of the collision integrals describing th
elastic Coulomb collisions was not specified. In Ref.@8# the
kinetic equation for grains was derived under the assump
that the discreteness of both electron and ion compon
could be neglected. Such approximation excludes from c
sideration the bombardment forces and the effects of g
diffusion in the charge and velocity spaces.

The purpose of this paper is to propose a consistent
proach to the derivation of kinetic equations for dusty pla
mas on the basis of the first principles of statistical mech
ics. We start from the formulation of rigorous microscop
equations~equations for microscopic phase densities! for
dusty plasmas taking into account electron and ion abs
tion and contact grain-grain collisions explicitly~Sec. II!.
Such equations differ from the traditional microscopic~Kli-
montovich! equations for ordinary plasmas which are con
nuity equations in the six-dimensional phase space. In
case under consideration, absorption of plasma particles
grains generates additional sources in the microscopic e
tions for both plasma particles and grains. The physical r
son for such sources is evident: disappearance of plasma
ticles and abrupt changes of grain momenta and charges
to inelastic collisions.

The microscopic equations obtained are used to formu
the Bogolyubov-Born-Green-Kirkwood-Yvon~BBGKY! hi-
erarchy of equations for dusty plasmas~Sec. III!. The addi-
tional sources entering the microscopic equations give ris
new terms in the equations of the hierarchy. In the case
systems consisting of grains only~no plasma particles!, the
new hierarchy reduces to the relevant hierarchy for the ha
sphere gas@10#.
©2000 The American Physical Society03-1
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Possible application of the results obtained to the der
tion of kinetic equations is discussed in Sec. IV. In terms
various approximations, kinetic equations derived by ot
authors can be reproduced, in particular, the equations
posed in Refs.@6,7# for the case of dominant influence o
charging collisions. The obtained kinetic equations are
plied to calculate stationary distributions of grain velociti
and charges~Sec. V!.

II. EQUATIONS FOR MICROSCOPIC PHASE DENSITIES
IN DUSTY PLASMAS

Let us consider a dusty plasma consisting of electro
ions, and monodispersed finite-size dust particles~grains!
under the assumption that each grain absorbs all encoun
electrons and ions.

In the case under consideration, the microscopic ph
density ~microscopic distribution function! associated with
the i th plasma particle~electron or ion! can be written as

Nis~X,t !5d„X2Xis~ t !…u~ t is2t !. ~1!

Here,X[(r ,v), Xis(t)[„r is(t),vis(t)… is the phase trajec
tory, t is is the time ofi th particle collision with any grain,
the subscripts labels plasma particle species (s5e,i ), and
u(x) is the Heaviside step function,

u~x!5H 1, x>0,

0, x,0.
~2!

The microscopic phase density describing the subsystem
plasma particles of speciess is given by

Ns~X,t !5(
i 51

Ns

Nis~X,t !5(
i 51

Ns

d„X2Xis~ t !…u~ t is2t !,

~3!

whereNs can be regarded as the number of particles exis
until time t ~unabsorbed particles!.

The above definition of microscopic distribution diffe
from the traditional one by the presence of the Heavis
step functionu(t is2t) describing plasma particle disappea
ance at the time instants of their collisions with grains.

According to Eqs.~1! and~2! the value ofNis(X,t) at the
instant of plasma particle collision could be treated as

Nis~X,t is!5 lim
«→0

Nis~X,t is2«!5 lim
«→0

d„X2Xis~ t is2«!…,

~4!

i.e., we define this value as the limit ofNs(X,t) on the left.
Combining the derivatives ofNis(X,t) over t, r , andv,

and taking into account that plasma particle trajectories
governed by the equations of motion

dr is~ t !

dt
5vis~ t !;

dvis~ t !

dt
5

1

ms
Fs„r is~ t !,t…, ~5!

whereFs(r ,t)5esE(r ,t) is the Lorentz force generated b
the microscopic electric fieldE(r ,t), it is easy to show tha
Nis(X,t) satisfies the following equation:
01640
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H ]

]t
1v

]

]r
1

1

ms
Fs

]

]vJ Nis~X,t !

52d„X2Xis~ t !…d~ t2t is!. ~6!

Sincet is is the time ofi th particle collision with some defi-
nite grain, we can use the following relation:

d~ t2t is!5d„ur is~ t !2rg~ t !u2a…U]ur is~ t !2rg~ t !u
]t U

t5t is

5d„ur is~ t !2rg~ t !u2a…

3uer is(t)2rg(t)„vis~ t !2vg~ t !…u, ~7!

whereer5r /r , rg(t) andvg(t) are the coordinate and veloc
ity of the grain with which thei th particle collides.

It is useful to note that for particles approaching the gra
we have

]

]t
ur is~ t !2rg~ t !u t5t is

5er is(t)2rg(t)
„vis~ t !2vg~ t !…u t5t is

,0.

~8!

This means thatq(t is).p/2, whereq(t) is the angle be-
tween the vectorsr is(t)2rg(t) andvis(t)2vg(t).

With regard for Eqs.~2!, ~7!, and ~8! the equation for
Nis(X,t) takes the form

H ]

]t
1v

]

]r
1

1

ms
Fs

]

]vJ Nis~X,t !

52E dX8d„X82Xg~ t !…d~ ur2r 8u2a!

3uer2r8~v2v8!uNis~X,t !

or

H ]

]t
1v

]

]r
1

1

ms
Fs

]

]vJ Nis~X,t !

5E
(q.p/2)

dX8d„X82Xg~ t !…d~ ur2r 8u2a!

3er2r8~v2v8!Nis~X,t !. ~9!

Here,q is the angle betweenr2r 8 andv2v8,

d„X2Xg~ t !…[d„r2rg~ t !…d„v2vg~ t !…d„q2qg~ t !…,

i.e., we introduce an extended phase variableX[(r ,v,q)
which includes the grain chargeq as a new variable@1#. In
such extended phase space, the trajectoryXg(t) determines
the microscopic state of the grain. Integration overX8 in
Eqs. ~9! with regard for the conditionq.p/2 is equivalent
to the treatment of the contact valueNis(X,t is) in terms of
Eq. ~4!.

Since only one grain can be at the phase pointX at the
instantt is ~i.e., thei th plasma particle can collide only with
3-2
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one grain!, the expressiond„X82Xg(t)… in Eqs. ~9! can be
replaced by the complete microscopic grain density

Ng~X,t !5 (
k51

Ng

d„X2Xk~ t !… ~10!

and thus, the equation for the complete microscopic ph
density of plasma particles~3! can be written as

H ]

]t
1v

]

]r
1

1

ms
Fs

]

]vJ Ns~X,t !

52E dX8uer2r8~v2v8!u

3d~ ur2r 8u2a!Ng~X8,t !Ns~X,t !. ~11!

The right-hand part of Eq.~11! with regard for the condition
q.p/2 can be interpreted as a microscopic flux of partic
of speciess through the grain surface, i.e., the flux of pa
ticles absorbed by the grain.

It should be noted that in view of the fact that grain tr
jectories have discontinuities of the first order~detailed dis-
cussion of this point is given below!, the microscopic phase
densityNg(X,t) at timet5t is ~such time instants correspon
to the conditionur is2r 8u5a) in Eq. ~11! should be treated
in the same sense asNs(X,t is), i.e.,

Ng~X8,t is!5 lim
«→0

Ng~X8,t is2«!.

The next problem is to derive the microscopic equat
for the grain phase density. Before doing this we have
define such density for the times of grain collisions w
plasma particles or other grains. The point is that at the
lision instant the grain trajectoryXk(t) changes abruptly and
thus the microscopic distribution~10! becomes indefinite and
nonintegrable. In order to get rid of nonintegrability we d
vide the time axis into time segments between collisio
01640
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~such division is individual for each grain! and write the
grain phase trajectory as a sum of its relevant parts.
example, for thei th grain we have

Xi~ t !5X i
(0)~ t !u~ t2t0!u~ t12t !1X i

(1)~ t !u~ t2t1!u~ t22t !

1X i
(2)~ t !u~ t2t2!u~ t32t !1•••. ~12!

Heret0 is the evolution initiation time,t1,t2,t3 . . . are the
times of the first, second, etc. collision of thei th grain with
any other particle,

X i
(n)~ t ![„r i~ t !,vi

(n)~ t !,qi
(n)
…, ~13!

r i~ t !5r i01E
t0

t

dt8vi~ t8!

5r i01E
t0

t1
dt8v(0)~ t8!1E

t1

t2
dt8v(1)~ t8!1•••,

~14!

vi
(0)~ t !5vi01

qi0

mg
E

t0

t

dt8E„r i~ t !,t… ,

vi
(n)~ t !5vi

(n21)~ tn!1dvi
(n)1

qi

mg
E

tn

t

dt8E„r i~ t8!,t8…,

n.0, ~15!

qi
(0)5qi0 ,

qi
(n)5qi

(n21)1dqi
(n) , n.0, ~16!

r i0 , vi0 andqi0 are initial phase coordinates of thei th grain,
dvi

(n) and dqi
(n) are the jumps of the grain velocity an

charge due to thenth collision of the i th grain with other
particles which depend on the species of the particle
volved in thenth collision, namely
lt in the
dqi
(n)5H es for a collision with a plasma particle,

1

2
~q82qi

(n21)! for a collision with another grain with the chargeq8,
~17!

dvi
(n)5H 2

ms

ms1mg
„vi

(n21)~ tn!2vs8 …,
for a collision with a plasma particle
with the velocity vs8

,

2er i (tn)2r8„er i (tn)2r8@vi
(n21)~ tn!2v8#…,

for a collision with another grain
with the velocity v8

.

~18!

When deriving Eqs.~17! and~18! we assumed the grain masses and sizes to be equal and the two-grain collisions resu
equalization of their charges.

The function that reproducesd„X2Xi(t)… at any point whered„X2Xi(t)… is defined, can be written as

Nig~X,t !5 (
n50

Ncol(t)

d„X2X i
(n)~ t !…u~ tn112t !u~ t2tn!, ~19!
3-3
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whereNcol(t) is the number ofi th grain collisions till timet. The representation~19! has the advantage that the functio
Nig(X,t) becomes integrable in contrast to the expression ford„X2Xi(t)….

Taking the derivatives ofNig(X,t) over t, r , v we can show that

H ]

]t
1v

]

]r
1

1

mg
Fg

]

]vJ Nig~X,t !5d„X2Xi~ t !…d~ t2t0!2 (
n51

Ncol

d~ t2tn!@d„X2X i
(n21)~ tn!…2d„X2X i

(n)~ tn!…#, ~20!

where

Fg5Fg~r ,q,t !5qE~r ,t !, X i
(n)~ tn!5X i

(n21)~ tn!1dX i
(n) , dX i

(n)[~0,dvi
(n) ,dq(n)!.

Similarly to the case of plasma particles we can use the relation

d~ t2tn!5d„ur i~ t !2r c~ t !u2ã…uer i (t)2rc(t)„vi~ t !2vc~ t !…u,

where r c(t) and vc(t) are the coordinate and velocity of the particle~electron, ion, or grain! with which the i th grain is
involved intonth collision, ã5a for grain-plasma collisions andã52a for grain-grain collisions.

For t0→2`, we obtain an equation forNig(X,t) given by

H ]

]t
1v

]

]r
1

1

mg
Fg

]

]vJ Nig~X,t !52 (
s5e,i

E dX8d~ ur2r 8u2a!$uer2r8~v2v8!uNig~r ,v,q,t !

2uer2r8~v2v82dvs!uNig~r ,v2dvs ,q2es ,t !%Ns~X8,t !

2E dX8d~ ur2r 8u22a!uer2r8~v2v8!u$Nig~r ,v,q,t !Ng~r 8,v8,q8,t !

2Nig~r ,v2dvg ,q2dq,t !Ng~r 8,v81dvg ,q8,t !%. ~21!

Here

dvs[dvs~v,v8!52
ms

mg
~v2v8!, dvg[dvg~v,v8!5er2r8„er2r8~v2v8!…, dq[dq~q,q8!5q82q. ~22!

The equation for the complete microscopic density

Ng~X,t !5(
i 51

N

Nig~X,t ! ~23!

is given by

H ]

]t
1v

]

]r
1

1

mg
Fg

]

]vJ Ng~X,t !52 (
s5e,i

E dX8d~ ur2r 8u2a!@ uer2r8~v2v8!uNg~X,t !2uer2r8~v2dvs2v8!u

3Ng~r ,v2dvs ,q2es!#Ns~X8,t !2E dX8d~ ur2r 8u22a!uer2r8~v2v8!u

3$Ng~X,t !Ng~X8,t ! 2Ng~r ,v2dvg ,q2dq,t !Ng~r 8,v81dvg ,q8,t !%. ~24!

The last term in Eq.~24! describes the contribution of elastic grain-grain contact collisions which in contrast to e
Coulomb collisions could not be taken into account by the terms with the microscopic force in the left-hand part
equation.

It should be noted that in view of the condition of the type~8!, integration overX8 andX8 in the right-hand part of Eq.~24!
is restricted to the domainq>p/2 whereq is the angle betweenr2r 8 andv2v8 ~or, v2v82dvs).

Thus, we have derived rigorous microscopic equations~11! and~24! which describe particle motion in microscopic electr
fields with regard for plasma particles absorption by grains and contact grain-grain collisions. These equations are
arbitrary stages of the system evolution and take into account the discreteness of all the plasma components.

If we formally regardNg(X,t) and Ns(X,t) as conventional~nongeneralized! functions and assume thatuesu!q and v
2dvs5v(11ms /mg)2(ms /mg)v8.v2(ms /mg)v8, then we can expand Eq.~24! in terms ofes and (ms /mg)v8. The result
is given by
016403-4
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H ]

]t
1v

]

]r
1

1

mg
Fg

]

]vJ Ng~X,t !5
]

]q H ]

]q
@QNg~X,t !#2INg~X,t !J 1

]

]v i
H ]

]v j
@Di j Ng~X,t !#2

1

mg
FbiNg~X,t !

2
q

mg
Fchi

]Ng~X,t !

]q J 2E dX8d~ ur2r 8u22a!uer2r8~v2v8!u@Ng~X,t !Ng~X8,t !

2Ng~r ,v2dvg ,q2dq,t !Ng~r 8,v81dvg ,q8,t !#, ~25!

where

Q5(
s

es
2

2 E dX8Ns~X8,t !d~ ur2r 8u2a!uer2r8~v2v8!u,

I 5(
s

esE dX8Ns~X8,t !d~ ur2r 8u2a!uer2r8~v2v8!u,

Di j 5(
s

1

2S ms

mg
D 2E dX8v i8v j8Ns~X8,t !d~ ur2r 8u2a!uer2r8~v2v8!u, ~26!

Fb5(
s

msE dX8v8Ns~X8,t !d~ ur2r 8u2a!uer2r8~v2v8!u,

Fch52(
s

es

q
msE dX8v8Ns~X8,t !d~ ur2r 8u2a!uer2r8~v2v8!u.

Neglecting the last term in Eq.~25! associated with contact grain-grain collisions and assuming that the quantitiesDi j , Q
and (1/mg)Fch are small, we obtain

H ]

]t
1v

]

]r
1

1

mg
Fg

]

]v
1

1

mg
Fb

]

]v
1I

]

]qJ Ng~X,t !50. ~27!

Here the velocity dependence of the bombardment forceFb is also disregarded. With the accuracy up to this force, Eq.~27!
reproduces the equation derived in Ref.@8# under the assumption that the discreteness of plasma particles is unimporta

It should be noted, however, that though the quantitiesDi j , Q and Fch are really small, they can be important for th
description of grain dynamics. This becomes evident if one draws attention to the analogy between grains in plas
Brownian particles in fluids. In the latter case, the difference of particle masses is also very large, however, the B
particle motion cannot be described disregarding its diffusion in the velocity space. This makes the reason why equ
the type~27! cannot be used for the consistent description of the grain subsystem.

Finally, we notice, that Eq.~27! can also be derived by combining the derivatives of the microscopic grain density de
by Eq. ~10! @i.e., disregarding the nonintegrability ofNg(X,t) at the collision instance# over r , v andq. Such derivation as
well as the expansion of Eq.~24! in terms ofes and (ms /mg)v with the accuracy up to the first order introduces a considera
inaccuracy: the contribution of discrete changes of the grain phase trajectory is disregarded. For Eq.~27! to be valid, both the
functionNg(X,t) and its derivatives must be integrable for any time, as in the case of continuously changingqi(t) andvi(t).
We can assume such continuity on the basis of physical reasons, but in this case the time- and phase-variable di
dt, dv, dq cannot be smaller than the relevant physically infinitesimal intervals during which many collisions with g
occur and we can use smoothened trajectories instead of microscopic trajectories. This means that Eq.~24! loses its micro-
scopic nature.

III. BBGKY HIERARCHY FOR DUSTY PLASMAS

Once we have the equations for the microscopic phase density, it is possible to derive the BBGKY hierarchy
distribution functions of the system under consideration. Before doing this we rewrite Eqs.~11! and ~24! in a unified form
using the notation for the microscopic phase density of all particle species given by

Ns~X,t !5H Ns~X,t !d~q2es!, s5e,i ,

Ng~X,t !, s5g.
~28!

In terms of this notation the unified microscopic equation can be rewritten as
016403-5
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H ]

]t
1v

]

]r
1

1

ms
Fs

ext ]

]v
2 (

s85e,i ,g
E dX8V̂ss8~X,X8!Ns~X8,t !J Ns~X,t !

52 (
s85e,i ,g

E dX8$Wss8
(1)

~r2r 8,v2v8!Ns~X,t !Ns8~X8,t !2Wss8
(2)

~r2r 8,v2v82dvss82dvss8
8 !

3Ns~r ,v2dvss8 ,q2dqs8 ,t !Ns8~r 8,v81dvss8
8 ,q8,t !%, s5e,i ,g. ~29!

Here, we introduce the Lorentz forceFs
ext associated with the external electromagnetic field, if present, and the notation

V̂ss8~X,X8!5
qq8

ms

]

]r

1

ur2r 8u

]

]v
,

Wss8
(1)

~r ,v!52ervd~r 2ass8!u~q2p/2!~dsg1ds8g2dsgds8g!, q5~r ,v̂!,

Wss8
(2)

~r ,v!52ervd~r 2ass8!u~q2p/2!dsg , ass85as1as8 , as5H 0, s5e,i ,

a, s5g,
~30!

dqs[dqs~q,q8!5H es , s5e,i ,

q82q, s5g,

dvss8[dvss8~v,v8!5dsgdvs8~v,v8!, dvss8
8 [dvss8

8 ~v,v8!5dsgds8gdvg~v,v8!,

dvs8~v,v8!5H 2
ms8
mg

~v2v8!, s85e,i

er2r8„er2r8~v2v8!…, s85g,

dsg5H 0, s5e,i ,

1, s5g.

The formal representation of Eq.~29! can be further simplified in terms of phase variables supplemented with the co
nent that describes particle species.

For example, in terms of the variable

j[~X,s![~r ,v,q,s!, (
s5e,i ,g

E dX[E dj, Ns~X,t ![N~j,t !,

Eq. ~29! reduces to

H ]

]t
1L̂~j!J N~j,t !52E dj8$@W(1)~j,j8!2V̂~j,j8!#N~j,t !N~j8,t !

2W(2)~j2Djj8 ,j81Djj8
8 !N~j2Djj8 ,t !N~j81Djj8

8 ,t !%, ~31!

where

L̂~j![v
]

]r
1

1

ms
Fs

ext ]

]v
, W(1),(2)~j,j8![Wss8

(1),(2)
~r2r 8,v2v8!,

~32!

Djj8[Dss8~dvss8 ,dqss8!5~0,dvss8 ,dqss8 ,0!, dqss85dsgdqs8 , Djj8
8 [Dss8

8 ~dvss8
8 !5~0,dvss8

8 ,0,0!.

Representation~32! is the most convenient one for a formal transformation of microscopic equations, in particular, f
derivation of the BBGKY hierarchy.

The first equation of this hierarchy is obtained by statistical averaging of Eq.~31!. We have

H ]

]t
1L̂~j!J f 1~j,t !52E dj8$@W(1)~j,j8!2V̂~j,j8!# f 2~j,j8,t !2W(2)~j2Djj8 ,j81Djj8

8 ! f 2~j2Djj8 ,j81Djj8
8 ,t !%,

~33!

where f 1(j,t) and f 2(j,j8,t) are the single particle and binary distribution functions defined as
016403-6
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f 1~j,t ![^N~j,t !&, f 2~j,j8,t !5^N~j,t !N~j8,t !&2d~j2j8! f 1~j,t !, ~34!

the angular brackets imply time averaging over the physically infinitesimal intervaltph which introduces the level of the
kinetic description.

Combination of Eq.~31! and a similar equation forN(j8,t), when averaged, results in

H ]

]t
1L̂~j!1L̂~j8!2@V̂~j,j8!1V̂~j8,j!#J f 2~j,j8,t !1$@W(1)~j,j8!1W(1)~j8,j!# f 2~j,j8,t !

2W(2)~j2Djj8 ,j81Djj8
8 ! f 2~j2Djj8 ,j81Djj8

8 ,t !2W(2)~j82Dj8j ,j1Dj8j
8 ! f 2~j1Dj8j

8 ,j82Dj8j ,t !%

52E dj9$@V̂~j,j9!1V̂~j8,j9!1W(1)~j,j9!1W(1)~j8,j9!# f 3~j,j8,j9,t !2W(2)~j2Djj9 ,j91Djj9
8 !

3 f 3~j2Djj9 ,j8,j91Djj9
8 ,t !2W(2)~j82Dj8j9 ,j91Dj8j9

8 ! f 3~j,j82Dj8j9 ,j91Dj8j9
8 ,t !%. ~35!

Here

f 3~j,j8,j9,t !5^N~j,t !N~j8,t !N~j9,t !&2d~j2j8! f 2~j8,j9,t !

2d~j2j9! f 2~j,j8;t !2d~j82j9! f 2~j9,j,t !2d~j2j8!d~j2j9! f 1~j,t !. ~36!

The distribution function of arbitrary multiplicity is governed by the equation

H ]

]t
1(

i 51

S

L̂~j i !2(
i 51

S

(
j Þ i 51

S

V̂~j i ,j j !J f S~j1 . . . jS ;t !1(
i 51

S

(
j Þ i 51

S

@W(1)~j i ,j j ! f S~j1 . . . jS ;t !

2W(2)~j i2D i j ,j j1D i j8 ! f S~j1 . . . j i2D i j . . . ,j j1D i j8 . . . ,jS ;t !#

5(
i 51

S E djS11$V̂~j i ,jS11! f S11~j1 . . . jS11 ;t !2@W(1)~j i ,jS11! f S11~j1 . . . jS11 ;t !

2W(2)~j i2D iS11 ,jS111D iS118 ! f S11~j1 . . . j i2D iS11 . . . jS111D iS118 ;t !#%, ~37!
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which represents the entire BBGKY hierarchy. Here

D iS11[Dj ijS11
, D iS118 [Dj ijS11

8 .

For systems with pure Coulomb interaction (W(1)5W(2)

50), Eq.~37! reduces to the BBGKY hierarchy for ordinar
plasmas. In the case of neutral particles interacting by me
of elastic collisions, the hierarchy for the hard-sphere
@10# is recovered.

Thus, we have basic equations for the study of statist
properties of dusty plasmas with regard for both elastic
inelastic collisions and for grain charging dynamics. The
are the microscopic equations~11! and~24! and the BBGKY
hierarchy ~37! for the sequence of distribution function
They provide the natural basis for a rigorous derivation
kinetic equations for dusty plasmas. Depending on the pr
lem under consideration it is more convenient to apply eit
microscopic equations, or the BBGKY hierarchy, as h
been done in the theory of ‘‘ordinary’’ plasmas. In the latt
case the microscopic description is highly efficient for t
study of electromagnetic fluctuations and calculations of
collision integrals in terms of the fluctuation approach. T
reason for this high efficiency is that fluctuations in ordina
weakly coupled plasmas can be studied by means of sim
01640
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al
d
e

f
b-
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s
r

e
e

le

perturbation methods with the solution of the linearized e
lution equation being taken for the zero-order approximati
In the case of dusty plasmas with strong coupling betw
plasma particles and grains such perturbation approach, h
ever, requires considerable improvement. A possible way
appropriate modification of the fluctuation approach for t
case of dominant influence of charging collisions is d
cussed in the next section.

IV. KINETIC EQUATIONS FOR DUSTY PLASMAS
IN THE APPROXIMATION OF DOMINANT

CHARGING COLLISIONS

We have already mentioned that kinetic equations
dusty plasmas can be introduced in two ways. The first p
sibility is to calculate the binary distribution functions, whic
determine the collision terms, from the reduced BBGKY h
erarchy. In this approach the problem of the hierarchy c
sure arises that requires postulated relations between the
tribution functions of different multiplicity. In the case of
dusty plasma with strong coupling between plasma partic
and grains, the traditional assumption that influence of tri
correlations is negligible is obviously inapplicable. Mor
over, the equation for the binary correlation function itself
much more complicated than in the case of ordinary plasm
3-7



so
de
i

en
re
io
ap
si

ip-
on
n
s

m
ti

co

n

on
the
or-

a-
of
en-
ced
a-
of

ins
ons
the

ns
n
ion
nts.
he

SCHRAM, SITENKO, TRIGGER, AND ZAGORODNY PHYSICAL REVIEW E63 016403
The second possibility to derive kinetic equations is as
ciated with the so-called fluctuation approach. The basic i
of this approach is to calculate binary correlation functions
terms of the correlation functions of microscopic phase d
sities which can be found by averaging the products of
evant microscopic quantities governed by the fluctuat
evolution equations. The advantage of the fluctuation
proach is that appropriate choice of the physically infinite
mal time tph associated with the level of statistical descr
tion makes it possible to linearize the fluctuation evoluti
equations. Of course, the explicit form of such equatio
depends on the time scales of the fluctuations under con
eration. For example, in the case of weakly coupled plas
the evolution equation for fluctuations with the characteris
time tcor!tcol (tcol is the mean free time! is the linearized
Vlasov equation. Fortcor.tcol , however, the evolution
equations contain linearized Balescu-Lenard or Landau
lision terms. The physical reason is that fort.tcol the linear
collisionless approximation is no longer valid. This mea
he
a

p
m

01640
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that the collision terms in the fluctuation evolution equati
could be interpreted as the result of renormalization of
linearized equation with respect to higher perturbation
ders.

The application of the fluctuation approach to the deriv
tion of kinetic equations is especially simple in the case
weakly coupled ordinary plasmas since, as we have m
tioned above, the fluctuation evolution equations are redu
to the linearized Vlasov equations. However, this approxim
tion cannot be applied to dusty plasmas when the problem
charge grain dynamics is studied. Highly charged gra
which absorb plasma particles induce strong correlati
which cannot be described by perturbation methods. So,
first step in the derivation of fluctuation evolution equatio
is to find the lowest-order approximation for the collisio
integrals in order to introduce these integrals in the evolut
equation. In this paper we do this using physical argume

Let us consider in more detail the first equation of t
hierarchy. In terms of notation~30!, it is given by
H ]

]t
1v

]

]r
1

1

ms
Fs

ext ]

]vJ f s~X,t !5 (
s85e,i ,g

E dX8V̂ss8~X,X8! f ss8~X,X8,t !2 (
s85e,i ,g

E dX8$Wss8
(1)

~r2r 8,v2v8!

3 f ss8~X,X8,t !2Wss8
(2)

~r2r 8,v2dvss82v82dvss8
8 !

3 f ss8~r ,v2dvss8 ,q2dqss8 ,r 8,v1dvss8
8 ,q8,t !%. ~38!

Introducing the binary correlation function

Gss8~X,X8,t !5 f ss8~X,X8,t !2 f s~X,t ! f s8~X8,t !

and the self-consistent electric field

^E~r ,t !&52
]

]r (
s5e,i ,g

E dX8q8
f s~X8,t !

ur2r 8u
,

we can rewrite Eq.~38! in the form

H ]

]t
1v

]

]r
1

1

ms
@Fs

ext1^Fs&#
]

]vJ f s~X,t !

52 (
s85e,i ,g

E dX8$Wss8
(1)

~r2r 8,v2v8! f s~X,t ! f s8~X8,t !2Wss8
(2)

~r2r 8,v2dvss82v82dvss8
8 !

3 f s~r ,v2dvss8 ,q2dqss8 ,t ! f s8~r 8,v81dvss8
8 ,q8,t !%2 (

s85e,i ,g
E dX8$Wss8

(1)
~r2r 8,v2v8!Gss8~X,X8,t !

2Wss8
(2)

~r2r 8,v2dvss82v82dvss8
8 !Gss8~r ,v2dvss8 ,q2dqss8 ;r 8,v81dvss8

8 ,q8;t !%

1 (
s85e,i ,g

E dX8V̂ss8~X,X8!Gss8~X,X8,t !. ~39!
iated
Cou-
ly
nard
It is important for further calculation to understand t
physical meaning of the integral terms in the right-hand p
of Eq. ~39!. The terms with the Coulomb operatorV̂ss8 de-
scribe the average change of the particle phase density
unit time due to the deviations of the microscopic field fro
rt

er

the self consistent field. Since these deviations are assoc
with particle discreteness, such terms can be treated as
lomb collision terms. Within the approximation of weak
coupled plasmas these terms reduce to the Balescu-Le
collision integrals.
3-8
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The terms with the kernelsWss8
(1) and Wss8

(2) are respon-
sible for the contact collisions~both elastic and inelastic!
between the grains~elastic collisions! or between the grains
and plasma particles~inelastic collisions!. The first term de-
scribes such collisions disregarding the direct interaction
tween the particles and the second term is given rise by
correlations effects. In the case of strong coupling betw
plasma particles and grains, such correlations could be
important. In particular, they result in a modification of th
contact collision cross sections which are determined
only by the grain sizes but also by their charges. Such c
sections naturally appear in course of simplification of E
~39! within the approximation of the dominant influence
binary contact collisions. This approximation can be used
the zero-order approximation in deriving the kinetic equ
tions in terms of the fluctuation approach. The idea is
present the binary distribution function as

f ss8~X,X8,t !5 f ss8
(0)

~X,X8,t !

1@ f ss8~X,X8,t !2 f ss8
(0)

~X,X8,t !# ~40!

under the assumption that the second term is much sm
than the first one. Here,f ss8

(0) (X,X8,t) is the binary distribu-
tion function in the approximation of dominant contact co
lisions, i.e., the main contribution to the binary correlatio
is determined by the contact collisions with grains. This p
vides a possibility to reduce the asymptotics
f gs

(0)(X,X8,t)(s5e,i ) to the form

f sg
(0)~X,X8,t ! ur2r8u@a5 f s~X,t ! f g~X8,t !u~q2qmin

s !,
~41!

whereq is the angle betweenr2r 8 andv2v8. Equation~41!
means that if a grain with velocityv8 occurs at the pointr 8,
such thatq,qmin

s there are no plasma particles with veloci
v at the pointr , or, in other words, no plasma particle tr
jectories have intersected the grain surface in the past.
elementary treatment on the basis of energy and angular
mentum conservation yields an estimate forqmin

s given by

sin2 qmin
s 5

a2

ur2r 8u2
X12

2es~w~a!2w~r2r 8!!

ms~v2v8!2
C

3uS 12
2es~w~a!2w~r2r 8!!

ms~v2v8!2 D ,

0<qmin
s <p/2, ~42!

wherew is the electric potential in plasmas.
With the assumptions

w~a!.
q

a
,

uw~ ur2r 8u!u!uw~a!u, ~43!

Eq. ~43! reduces to
01640
e-
e
n
ry

ot
ss
.

s
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o

ler

-
f

he
o-

sin2 qmin
s 5

a2

ur2r 8u2
S 12

2esq

ams~v2v8!2D .

We see that in the case under consideration the asympt
of the binary distribution functionf sg(X,X8,t) cannot be
reduced to a product of one-particle distribution function
Thus, the plasma particles absorption by grains is one of
mechanisms that produce strong correlations.

It seems that the asymptotics~41! cannot be substituted in
Eq. ~38! since integration overr 8 should be performed for
ur2r 8u5a ~i.e., over the grain surface!. Nevertheless, it is
sufficient to estimate the absorption terms in the equati
for plasma particles. The reason is that these terms are n
ing but fluxes of incoming plasma particles through the gr
surface. Since according to the above approximation~ab-
sorption of plasma particles by a grain is not directly infl
enced by another grain! only one grain is the absorptio
center for particles in its vicinity, the integral flux should b
conserved and thus we can calculate these fluxes with the
of asymptotics~41!. With the inhomogeneity of the distribu
tion functions at distances of the order of the grain size be
disregarded, we obtain

2E dX8er2r8~v2v8! f sg
(0)~X,X8,t !d~ ur2r 8u2a!

.E dv8E dq8ssg~q8,v2v8!

3uv2v8u f s~r ,v8,q8;t ! f s~X,t !, ~44!

where

ssg~q,v !5pa2S 12
2esq

msv2D uS 12
2esq

msv2D . ~45!

Similar estimates can be made for the case of grain-g
collisions. Obviously, in this case the angleq is not limited
and thus the asymptotics forf gg(X,X8,t) has the standard
form

f gg
(0)~X,X8,t ! ur2r8u@a5 f g~X,t ! f g~X8,t !. ~46!

However, it is useful to divide this asymptotics into two pa

f gg
(0)~X,X8,t !5 f g~X,t ! f g~X8,t !$u~q2qmin!1u~qmin2q!%

~47!

associated with grain trajectories which do not touch
grain at the pointr 8 @the first term in Eq.~47!# and with
reflected grains~the second term!. Such division separate
the contributions to the distribution functionf ss(X,X8,t) of
reflected particles and particles that arrive at the pointr with-
out collisions with the grain at the pointr 8. This makes it
possible to calculate the fluxes of approaching and reflec
particles. Of course, in the case of elastic collisions the ra
fluxes of bombarding and reflected particles at the grain s
face are equal. In view of the observation that the terms w
Wss8

(1) and Wss8
(2) are related to the distributions before an

after collisions, respectively, we can calculate the incom
and outcoming fluxes making use of the separate parts o
asymptotics~47!. For example,
3-9
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2E dX8er2r8~v2v8!d~ ur2r 8u22a!@ f gg
(0)~X,X8;t !2 f gg

(0)~r ,v2dvg ,q2dqg ;r 8,v81dvg ,q8;t !#

.E dV

2p E dv8E dq8un~v2v8!u$sgg~q,q8;v2v8! f g~X,t ! f g~r ,v8,q8;t !

2sgg~q2dqg ,q8,v2dvg! f g~r ,v1dvg ,q2dqg ;t ! f g~r ,v,q8;t !%, ~48!

where

sgg~q,q8;v !54pa2S 12
2qq8

mgv2D uS 12
2qq8

mgv2D ;

n is the unit vector that specifies the direction of the spatial angledV.
The terms responsible for the grain-plasma-particle collisions are given by

2E dX8@er2r8~v2v8!d~ ur2r 8u2a! f gs8
(0)

~X,X8,t !2er2r8~v2v82dvs8! f gs8
(0)

~r ,v2dvs8 ,q2es8 ;r 8,v8,q8;t !#

.E dv8@ss8g~q,v2v8! f g~X,t ! f s8~r ,v8,q8;t !uv2v8u 2ss8g~q2es8 ,v2v82dvs8!

3 f g~r ,v2dvs8 ,q2es8 ;t ! f s8~r ,v8,q8;t !~ uv2v82dvs8u!#. ~49!

Thus, with regard for Eqs.~40!, ~44!, ~48!, and~49!, Eq. ~38! for the one-particle distribution functions of plasma particles a
grains can be written as

H ]

]t
1v

]

]r
1

es

ms
^Es

eff&
]

]vJ f s~X,t !52E dv8E dq8ssg~q8,v2v8!uv2v8u f s~X,t ! f g~r ,v8,q8,t !1dI s , ~50!

H ]

]t
1v

]

]r
1

q

mg
^Eg

eff&
]

]vJ f g~X,t !52 (
s5e,i

E dv8@ss8g~q,v2v8!uv2v8u f g~X,t !2ss8g~q2es ,v2v82dvs8!

3uv2v82dvs8u f g~r ,v2dvs8 ,q2es8 ,t !# f s8~r ,v8,t !

2E dV

2p E dv8E dq8un~v2v8!u@sgg~q,q8,v2v8! f g~X,t ! f g~r ,v8,q8,t !

2sgg~q2dqg ,q8;v2v8! f g~r ,v2dvg ,q2dqg ,t ! f g~r ,v81dvg ,q8,t !#1dI g , ~51!

where

dI s5dI s
C1dI s

B , ~52!

dI s
C5(

s8
E dX8V̂ss8~X,X8!@^dNs~X,t !dNs8~X8,t !&2Gss8

(0)
~X,X8,t !#, ~53!

dI s
B5(

s8
E dX8$Wss8

(1)
~r2r 8,v2v8!@^dNs~X,t !dNs8~X8,t !&2Gss8

(0)
~X,X8,t !#2Wss8

(2)
~r2r 8,v2v82dvss82dvss8

8 !

3@^dNs~r ,v2dvss8 ,q2dqss8 ,t !dNs8~r ,v1dvss8 ,q8,t !&2Gss8
(0)

~r ,v2dvss8 ,q2dqss8 ;r 8,v81dvss8 ,q8,t !#%,

~54!

Gss8
(0)

~X,X8,t !52 f s~X,t ! f s8~X8,t !u„qss8~ ur2r 8u,uv2v8u!2q…,

sin2 qss8~r ,v !5
ass8

2

r 2 S 12
2qq8

msass8v
2D u~r 2ass8!, ~55!
016403-10
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^Es
eff&52 (

s85e,i

es8

]

]rE dX8
f s8~X8,t !

ur2r 8u
2E dX8q8

]

]r

f g~X8,t !

ur2r 8u
u„q2qsg~ ur2r 8u,uv2v8!…,

^Eg
eff&52(

s8
es8

]

]rE dX8
f s8~X8,t !

ur2r 8u
u„q2qsg~ ur2r 8u,uv2v8u!…2E dX8q8

]

]r

f g~X8,t !

ur2r 8u
. ~56!

In deriving Eqs.~51!–~56!, use has been made of the relation

f ss8~X,X8,t !5 f ss8
(0)

~X,X8,t !1@^dNs~X,t !dNs8~X8,t !&2Gss8
(0)

~X,X,t !#2dss8d~X2X8! f s~X,t !.
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Thus, we represented the collisions integrals as a sum
two parts. Those explicitly expressed in terms of the con
collision cross sectionssss8(r ,v) describe the contribution
of inelastic plasma-grain collisions@the first terms in the
right-hand parts of Eqs.~50! and~51!# and the elastic contac
grain-grain collisions@the second term in the right-hand pa
of Eq. ~51!#. The quantitiesdI s give the contribution of the
elastic~noncontact! Coulomb collisions between particles o
all species. With the accuracy up to the term responsible
the grain-grain contact collisions, Eqs.~50! and ~51! repro-
duce the kinetic equations of Refs.@6,7#.

To be rigorous, Eqs.~50! and~51! still cannot be regarded
as kinetic equations since correlation functio
^dNs(X,t)dNs8(X8,t)& are not yet specified. However, un
der the approximation of dominant contact collisions, t
termsdI s could be treated as small quantities, and thus
above correlation functions could be calculated within
fluctuation approach. This opens the possibility to derive
relations for the collision termsdI s and to introduce the
kinetic equations for dusty plasmas with regard for both e
tic and inelastic collisions. A necessary step in such der
tion is to study stationary distributions of grain velocities a
charges in the zero-order approximation, i.e., fordI s50.

V. STATIONARY DISTRIBUTIONS OF GRAIN
VELOCITIES AND CHARGES IN DUSTY PLASMAS

In the approximation of dominant charging collision
(dI s50), Eq.~51! for the grain distribution function can b
written as

H ]

]t
1v

]

]r
1

q

m
^Eg

eff&
]

]vJ f g~r ,v,q,t !

52 (
s5e,i

E dv8$sgs~q,v2v8!uv2v8u f g~r ,v,q,t !

2sgs~q2es ,v2v82dvs!uv2v82dvsu

3 f g~r ,v2dvg ,q2es ,t !% f s~r ,v,t !. ~57!

Here, we neglect elastic Coulomb collisions and elastic c
tact collisions between the grains~estimates for the condi
tions of such approximation are given below!.

Inasmuch ases and dvs are small, we can expand th
right-hand part of Eq.~57! in power series of these quant
ties. With the accuracy up to the second order, Eq.~57! in the
stationary isotropic and homogeneous case reduces
01640
of
ct

or

e
e
e
e

-
-

-

to

]

]v F ]

]v
„D i f g~v,q!…1bvf g~v,q!1

]

]q
„qgvf g~v,q!…G

1
]

]q F ]

]q
„Q f~v,q!…2I f g~v,q!G50, ~58!

where D i , b, Q, g and I are the Fokker-Planck kinetic
coefficients generated by charging collisions and given b

D i[D i~q,v!5(
s

1

2 S ms

mg
D 2E dv8

~v•v8!2

v2
uv2v8usgs

3~q,v2v8! f s~r ,v8!,

b[b~q,v !52(
s

ms

mg
E dv8

v•v8

v2
uv2v8usgs

3~q,v2v8! f s~r ,v8!,

g[g~q,v !5(
s

ms

mg

es

q E dv8
v•v8

v2
uv2v8usgs

3~q,v2v8! f s~r ,v8!, ~59!

Q[Q~q,v !5(
s

es
2

2 E dv8uv2v8usgs~q,v2v8! f s~r ,v8!,

I[I ~q,v !5(
s

esE dv8uv2v8usgs~q,v2v8! f s~r ,v8!.

The quantitiesD i(q,v) and Q(q,v) characterize the grain
diffusion in the velocity and charge spaces, respective
b(q,v) andg(q,v) are the friction coefficients which deter
mine the bombardment forceFb(q,v)52mgb(q,v)v associ-
ated with charging collisions and the correction to this for
dFb(q,v)52mgg(q,v)v due to mutual effect of grain
charge and velocity distributions,I is the grain charging cur-
rent. When deriving the relation forb(q,v) we omit the
terms of higher order in (ms /mg) associated with the tenso
nature of the diffusion coefficient in velocity space.

With regard for the fact thatuI (q,v)/Q(q,v)u→` as es
→0 and ub(q,v)/D i(q,v)u→` as (ms /mg)→0, the
asymptotic solution of Eq.~58! can be written as@12#

f g~v,q!5n0gZ21Q21~q,v!e2W(q,v)1lv2

3D i
21~q,v!e2V(q,v)1«dq(v), ~60!
3-11
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where

W~q,v !52E
0

q

dq
I ~q8,v !

Q~q8,v !
,

V~q,v !5E
0

v
dv8

v8

D i~q,v8!
H b~q,v8!1

]

]q
„qg~q,v8!…

2qg~q,v8!F]W~q,v8!

]q
1Q21~q,v8!

]Q~q,v8!

]q G J ,

~61!

dq~v !5q2q~v !,

q(v) is the stationary charge of the grain moving with t
velocity v, given by the equation

I „q~v !,v…50, ~62!

Z is the normalization constant,« andl are small functions.
Substitution of Eq.~60! into Eq. ~58! leads to
th

at

01640
«5
1

D i~q,v !

]D i~q,v !

]q
1

]V~q,v !

]q
,

l5
1

2v H 1

Q~q,v !

]Q~q,v !

]v
1

]W~q,v !

]v
1«

]q~v !

]v J .

~63!

Equations~60!–~63! give the asymptotically exact solutio
of Eq. ~58! for (mges /msq)→`.

The further estimates require the knowledge of the
plicit form of the kinetic coefficients. Assuming that plasm
particle distributions are Maxwellian, we find the stationa
grain distribution with accuracy up to the zeroth order
(qmi /eemg) to be given by@12#

f g~v,q!5n0gZ21D i
21~q,v !e2mgv2/2Teff(q)

3Q21~q,v !e2(q2q0)2/2aT̃eff, ~64!

where
Teff~q!5
2Ti~ t1z!

t2z1
~q2q0!

q0
zF11

t2z

t1zS 11
2Zi

11Zi
~11t1z! D G , ~65!

T̃eff5
2

11Zi

11t1z

t1z
Te , ~66!
le

ma

rge

the
e

and

D i~q,v !.D0F11
q2q0

q0

z

t1zG S 11
z

t D ,

Q~q,v !5Q0F12
q2q0

q0

z~ t1z2Zi !

~ t1z!~11Zi !
G~ t1z!~11Zi !,

~67!

D05
4

3
A2pS mi

mg
D S Ti

mg
Da2niSi ,

Q05A2pS Te

Ti
Dei

2a2niSi ,

n0g is the averaged grain number density. Here, we use
notation

z5
ee

2Zg

aTe
, t5

Ti

ZiTe
, Si

25
Ti

mi
, Zg5

q0

ee
, Zi5Uei

ee
U.

The quantityq0 is a stationary equilibrium grain charge th
is determined by the equation
e

I ~q0,0!52A2pa2ei
2niSiF11

z

t
2S mi

me
D 1/2S Te

Ti
D 1/2 ne

Zini
e2zG

50, ~68!

when recovering the well-known equation for dust partic
charge obtained within the limiting orbit probe theory@13#.

For typical values of plasma parameters in dusty plas
experiments (t1z.1) andZi51 we have

T̃eff.Te .

In such case the thermal variation of the grain cha
uq2q0u2 is of the order ofaTe and uq2q0uz;q0Aee

2/aTe.
This means that for weak plasma coupling defined with
grain size (ee

2/aTe!1), the effective temperature of th
grain thermal motionTeff(q)[Teff reduces to

Teff.2Ti

t1z

t2z
~69!

and

D~q,v!.D0S 11
z

t D , Q~q,v !.Q0~ t1z!~11Zi !.

Thus, in this case we have
3-12
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f g~v,q!5
n0g

A2paT̃eff

e2(q2q0)2/2aT̃effS mg

2pTeff
D 3/2

e2mgv2/2Teff.

~70!

This distribution describes the equilibrium Maxwellian v
locity distribution and the Gibbs grain charge distributi
with the temperaturesTeff andT̃eff , respectively. In fact, the
electric energy of charge variations of the electric capacita
is equal to (q2q0)2/2a and thus, the charge distribution d
scribed by Eq.~70! can be interpreted as equilibrium distr
bution with the effective temperatureT̃eff . For t,1 andz

,1, the effective temperatureT̃eff exceeds the electron tem
perature.

The resulting velocity distribution is described by the e
fective temperatureTeff . Even in the case of neutral grain
(z50) this temperature is equal to 2Ti . The presence of the
factor 2 is associated with plasma particle absorption
grains. The charging collisions are inelastic and a part of
kinetic energy of ions is transformed into additional kine
energy of grains. This makes the difference between the
under consideration and the conventional Brownian mot
where the velocity distribution is described by the tempe
ture of the bombarding light particles.

Equation ~69! shows that the effective temperature
thermal grain motion could be anomalously high forz→t, or
even negative forz.t. Physically it can be explained by th
decrease of the friction coefficient with increasing gra
charge, i.e.,

b~q,v !.
2

3
A2pS ms

mg
Da2niSi S 12

z

t D5b0S 12
z

t D .

The reason is that the difference between the ion fluxes b
barding the grain surface antiparallel and parallel to the g
motion decreases with the charge increase due to the pec
properties of the ionic charging cross-section whose cha
dependent part is larger for ions moving with smaller relat
velocities~i.e., in the parallel direction!. The conditionz5t
corresponds to the zero value of the friction force.

The negative values of the effective temperatureTeff , if
occur, mean that the system is thermodynamically unsta
and the approximation of dominant charging collisions is
longer valid, i.e., the Coulomb correctionsdI s to the colli-
sion terms should be involved into consideration. Since c
culating such corrections is a special problem, here we
strict ourselves to the qualitative estimates supplemen
Eqs. ~57! and ~58! by the Coulomb collision terms know
from the theory of ordinary plasmas. In particular, we use
Balescu-Lenard collision integral in the Fokker-Planck fo
which in the case under consideration~isotropic spatially ho-
mogeneous stationary distribution! is given by

S ] f g

]t D C

5
]

]v
•F ]

]v
„D iC~q,v! f g~v,q!…1vbC~q,v! f g~q,v !G ,

~71!

whereD iC(q,v) andbC(q,v) are the Fokker-Planck coeffi
cients associated with Coulomb elastic collisions~see, for
01640
y
e

se
n
-

-
in
liar
e-
e

le
o

l-
e-
g

e

example,@11#, Chap. 8!. With the accuracy up to the domi
nant logarithmic terms@in this approximation Eq.~71! re-
duces to the Landau collision term# such coefficients can be
reduced to

D iC~q,v!.
4

3

A2pq2

mg
2 (

s5e,i

nses
2

Ss
ln LsS 12

v2

5Ss
2 D ,

bC~q,v!.
4

3

A2pq2

mg
(

s5e,i

nses
2

Ss
3ms

ln LsS 12
v2

5Ss
2 D ,

Ss5S Ts

ms
D 1/2

. ~72!

In Eqs.~71! and~72! we again neglect the contribution of th
transverse part of the diffusion coefficient which gives a c
rection tobC(q,v) of higher order in (ms /mg) and disre-
gard the grain-grain Coulomb collisions assuming the gr
density to be small@ng,ni(Zi /Zg)2(Sg /Si)

1/2(Tg /Ti)#. We
shall introduce the Coulomb logarithms lnLs for each par-
ticle species. Usually these quantities are estimated as lLs

5ln(kmax/kD), wherekD5r D
215((4pes

2ns /Ts)1/2 andkmax
is the inverse distance of closest approach between collid
particles, i.e.,

kmaxs;
msv2

uesqu
;

8Ts

puesqu
5r Ls

21 ~73!

(r Ls is the Landau length, here and in what follows we a
proximatev by the mean velocitŷ v&5A8T/pm). How-
ever, in the case of plasma particle collisions with finite-s
grains this estimate could be invalid since forr Ls,a the
Coulomb logarithm includes the contribution of collision
with particles reaching the grain surface, i.e., charging co
sions.

An appropriate modification ofLs is achieved by treating
ln Ls as a logarithmic factor appearing in the momentu
transfer cross section for Coulomb collisions. In the case
finite size grains one obtains the following logarithmic fa
tor:

ln Ls5 lnS sin
xmaxs

2 Y sin
xmins

2 D ,

wherexmaxs andxmins are the scattering angles related to t
minimum and maximum impact parametersbmins andbmaxs
by the Rutherford formula. Following@14# we find bmins

from the condition that the distance of closest approach
equal toa and thus obtain

bmins5aA12
2esq

msv2a
uS 12

2esq

msv2aD . ~74!

Concerning the quantitybmaxs , it is reasonable to pu
bmaxs5r D1a instead ofbmaxs5r D , since in the case o
finite size grains its screened potential is given by
Derjaguin-Landau-Verwey-Overbeeck potential

F~r !5
q

r S 11
a

r D
D 21

e2(r 2a)/r D

rather than by the Debye potential.
3-13
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As a result we have

ln L i5
1

2
ln

~r D1a!21r Li
2

~r Li1a!2
,

ln Le5
1

2 5 ln
~r D1a!21r Le

2

~a1r Le!
2

, a.2r Le ,

ln
~r D1a!21r Le

2

r Le
2

, a,2r Le .

~75!

In the caser D@a, Eq. ~75! is in agreement with the result
of Ref. @14# provided the surface grain potential is mu
larger than the plasma potential. We see that forr Li@r D the
ionic Coulomb logarithm can be a small quantity in contr
to the case of ideal plasmas.

Comparing Eqs.~58! and ~71! it is easy to see that in
order to take elastic Coulomb collisions into account it
sufficient to make the following replacements in the obtain
solutions

D i~q,v !→D̃ i~q,v !5D i~q,v !1D iC~q,v !,

b~q,v !→b̃~q,v !5b~q,v !1bC~q,v !. ~76!

In the case of weak plasma coupling (ee
2/aTe!1), we have

D̃ i~q,v !.D0S 11
z

t
1

z2

t2 ln L i D ,

b̃~q,v !.b0S 12
z

t
12

z2

t2 ln L i D , ~77!

Thus the correction produced by the elastic collisions co
be of the same order as that due to charging collisions.
condition for dominant influence of charging collisions is

U12
z

tU.2
z2

t2 ln L i ,

which can be realized for small values ofz/t or for z/t
@r D

2 /a2(r Li@r D
2 /a).

To be rigorous, Eq.~71! and thus Eq.~77! are definitely
valid in the case of weak coupling plasmas (r Li!r D) since
this is the condition of the derivation of the Balescu-Lena
~or Landau! collision term. However, one might expect th
actually the domain of validity of Eqs.~71! and ~77! is not
too strongly restricted by such condition. This assumption
in agreement with the direct calculations of the friction c
efficient ~Coulomb collision frequency! in terms of the bi-
nary collision cross-sections. Moreover, it was shown in R
@12# that in the case of strong grain-plasma coupling
influence of the Coulomb collisions is also small and t
kinetic equation again reduces to the Vlasov equation. T
means that fluctuation evolution equations whose soluti
determine the explicit form of the Balescu-Lenard collisi
term are similar to those for the case of weakly coup
plasmas and thus Eq.~71! is still valid.
01640
t

d

d
e
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-
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e
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The new kinetic coefficients yield the effective temper
ture for thermal grain motion given by

Teff5Ti

2S 11
z

t
1

z2

t2 ln L i D
12

z

t
12

z2

t2 ln L i

, ~78!

i.e., elastic collisions can produce saturation of the gr
temperature. However, in the case of dominant influence
charging collisionTeff can be still anomalously large. Depen
dences ofTeff on the quantityz/t for various values ofr D /a
are shown in Fig. 1. The predictions given by Eq.~78! can be
used for a qualitative explanation of the experimentally o
served grain temperatures which are usually much hig
than the ion temperature,Tg@Ti ~see, for example@15,16#,
Ti;0.1 eV, Tg;4 –40 eV).

Finally, we point out that the results obtained can also
modified for the case of a plasma with a neutral compone
One may introduce an additional collision term along w
the term~71!. Since the collision integral describing elast
collisions of neutrals with grains also can be represented
the Fokker-Planck form~it follows from the Bol’tzman col-
lision integral! the presence of neutrals results in new ad
tions to D̃ i and b̃, namely@12#

D̃ i~q,v !5D0S 11
z

t
1

z2

t2 ln L i1
nn

ni
S mn

mi
D 1/2S Tn

Ti
D 3/2D ,

b̃~q,v !5b0S 12
z

t
12

z2

t2 ln L i12
nn

ni
S mn

mi
D 1/2S Tn

Ti
D 1/2D .

~79!

As a result the effective temperature is modified into

FIG. 1. The normalized grain effective temperatureTeff /Ti as a
function of the ion-grain coupling constantG ig5uzgei u/aTi5z/t for
various values of the Debye length to grain size ratior D /a in the
case of fully ionized plasma.
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Teff52Ti

S 11
z

t
1

z2

t2 ln L i1
nn

ni
S mn

mi
D 1/2S Tn

Ti
D 3/2D

S 12
z

t
12

z2

t2 ln L i12
nn

ni
S mn

mi
D 1/2S Tn

Ti
D 1/2D . ~80!

FIG. 2. The normalized grain effective temperatureTeff /Ti as a function of the neutral to ion density rationm /ni for various values of
G ig5z/t and r D /a in the case of partially ionized plasma@~a! 2r D /a52; ~b! 2r D /a55; ~c! 2r d /a510; ~d! 2r D /a550#.
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According to Eq.~80! the effective temperature increas
with decreasing neutral density@Figs. 2~a!–2~d!#. The influ-
ence of neutral density changes on the effective tempera
would be especially important at 12z/t12(z2/t2)ln Li&0
~the curves 5–7 on Figs. 2!. In this case a decrease of th
neutral gas pressure can produce anomalous growth ofTeff .
This conclusion is in qualitative agreement with the expe
mental observation of dusty crystals melting under the red
01640
re

-
c-

tion of gas pressure@15,16#.
The results obtained show that stationary distributions

grain velocities and charges are described by effective t
peratures other than those of the plasma subsystem. T
effective temperatures are determined by the competi
mechanics of collisions: grain-neutral collisions and elas
Coulomb collisions result in the equalization of the effecti
temperature to the temperature of neutrals or ions, res
3-15
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tively, while charging collisions can produce anomalo
temperature growth. That could be one of the main mec
nisms of grain heating.

VI. SUMMARY AND DISCUSSION

Rigorous evolution equations for microscopic distrib
tions of dusty plasmas are formulated with regard for el
tron and ion absorption by grains. Abrupt changes of gr
momentum and charge due to inelastic collisions betw
the grains and plasma particles as well as due to elastic
lisions between the grains, are taken into account explic
The derived equations@Eqs. ~11! and ~24!# generalize the
Klimontovich equation for ordinary plasmas to the case
dusty plasmas. These equations differ from the conventio
Klimontovich equations by the presence of ‘‘microscopic
collision terms which describe contact elastic and inela
collisions and generate the microscopic bombardment fo
and the Langevin forces that give rise to the grain diffus
in the charge and velocity spaces. Within the approximat
of continuous description of the plasma subsystem~discrete-
ness of electrons and ions is disregarded!, the equations de
rived in Ref.@8# are recovered.

The microscopic equations thus obtained are emplo
used to derive the BBGKY hierarchy of equations for du
plasmas. Such hierarchy@Eq. ~37!# generalizes th known hi
erarchies for ordinary plasmas~see, for example, Ref.@11#!
and for hard-sphere gas@10#.

Various approaches to the derivation of kinetic equatio
for dusty plasmas on the basis of the derived microsco
equations and the BBGKY hierarchy are discussed. The
ymptotics of the binary distribution functions describing t
contact collision effects is applied to find the explicit form
kinetic equations in the approximation of dominant charg
collisions@Eqs.~50!, ~51! at dI s50#. The possibility to cal-
culate the corrections to the collision terms due to the C
lomb particle scattering is also discussed. The obtained
netic equations are in good agreement with the equat
proposed in Refs.@6,7#.

The Fokker-Planck approximation for the collision term
in the case of dominant charging collisions is found and u
to calculate stationary distributions of grain velocities a
charges. Such distributions are shown to be described by
effective temperatures differing from those of the plas
subsystem. The mechanism of anomalous grain hea
@15,16# by charging collisions is predicted.

To conclude, it should be noted that within the mod
under consideration many problems of dusty plasma kine
still remain open. First of all, this concerns the problems
grain mass dynamics and neutral gas regeneration. O
ously, absorption of electrons and ions by grains should l
to grain mass growth, unless absorbed plasma particles l
the grain in the form of neutral atoms, or molecules, wh
appear due to surface recombination. If plasma particle
sorption results in grain mass changes~bound pairs of elec-
trons and ions do not escape from the grain surface! the
problem how to describe the grain kinetics with regard
this effect is especially important since, as it has been sh
recently@17#, the characteristic time of grain subsystem
01640
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laxation could be of the order of the time during which t
grain mass is changed considerably. This means that co
tent description of grain dynamics requires allowance for
grain mass changes.

Appropriate kinetic equations for grains formulated on t
basis of physical arguments~in these equations the grai
mass is treated as a new independent variable similar to
grain charge! have already been proposed by one of the
thors ~S.A.T.! in Refs. @18,19#. The problem of the grain
mass dynamics is not so crucial, if bound pairs of electro
and ions escape from the grain surface, i.e., if neutral
regeneration occurs. In such case the model of a system
fixed grain mass~used in the present paper! looks quite rea-
sonable. We understand that in order to properly describe
effect of neutral gas regeneration on the grain dynamics
necessary to supplement the microscopic and kinetic eq
tions for grains@Eqs.~24!, ~51!, and~57!# with terms which
take into account grain momentum change due to evap
tion of neutrals from the grain. Nevertheless, it might
expected that this effect does not lead to considerable qu
tative changes of the results obtained in the present pape
least under the assumption that the distribution of regen
ated neutrals at the instant of evaporation is isotropic. T
quantitative description of the grain mass dynamics and n
tral regeneration effects will be a matter of further studie

The next problem which is still open is to generalize t
kinetic description of dusty plasmas to the case of grains
different sizes~polydispersed grain subsystem!. Such gener-
alization could be performed in terms of the same appro
as in this paper, but the algebra and final relations in this c
become extremely lengthy. In the present state the the
proposed is applicable to the description of dusty plasm
with monodispersed grains. In spite of this restriction, ho
ever, the results obtained could be useful for the theoret
treatment of dusty plasma occurring in experiments with s
cially prepared equal-size grains.

The further generalization is also possible in the direct
of more accurate description of plasma particles interac
with grains. In this paper we restrict ourselves to the assu
tion that any grain absorbs all encountered electrons and
~i.e., accommodation coefficients are equal to one! that
means an essential idealization. Moreover, secondary e
tronic emission and radiative processes associated
charge particle contact collisions with grains are ignor
Obviously these phenomena could influence grain kine
and charging dynamics. However, we can expect that
conditions could be realized under which the above assu
tions are reasonable~metallic dust particles with the accom
modation coefficients close to one, low electron and ion te
perature, etc.!. The proposed approach makes it possible
extend the results obtained in this direction.
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