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Nonhydrodynamic aspects of electron transport near a boundary: The Milne problem
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The nonhydrodynamic behavior of electrons near a boundary is studied with the Milne problem of transport
theory. A system of electrons dilutely dispersed in a heat bath of atomic moderators is considered in the
positive one-dimensional spatial half-space with an absorbing boundary at the origin which mimics an elec-
trode. A flux of electrons is assumed to originate at an infinite distance from the boundary. The Fokker-Planck
equation for the electron distribution function in space and velocity is considered. The density and temperature
profiles are determined, and the departure from hydrodynamic behavior near the boundary is studied. Argon
and helium are chosen as the moderators, and results with different cross sections are obtained. The Fokker-
Planck equation is solved with an expansion in Legendre and Speed polynomials, and compared wherever
possible with results obtained with a Monte Carlo simulation. The behavior near the boundary is shown to be
strongly influenced by the Ramsauer-Townsend minimum in the electron-Ar momentum transfer cross section.
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I. INTRODUCTION

The present paper is directed toward a better underst
ing of nonequilibrium behavior in a boundary layer nea
wall analogous to a plasma sheath. We consider a sim
model of the boundary layer which is based on the Mi
problem of kinetic theory@1–3#, electron transport@4–7#,
neutron transport@8–10#, and/or radiative transfer@11–13#.
Our main objective is to consider the departure from hyd
dynamic behavior in the boundary layer, and the need fo
kinetic theory description. This work overlaps recent pap
by Stefanov, Gospodinov, and Cercignani@14# and by
Sazhin and Serikov@15#.

In the study of electron transport in discharge devices
important consideration is the nonequilibrium behavior
electrons near an electrode. In realistic devices, this is
region within a mean free path of a wall or electrode, and
referred to as the sheath@16,17#. A description of the non-
equilibrium behavior of electrons in such a situation requi
the solution of some transport equation such as the Bo
mann and/or Fokker-Planck equations for all charge carri
and is coupled to the Poisson equation for the self-consis
electric field. The nonequilibrium effects are expected to
large near the boundary, and consequently a hydrodyna
description of the electrons will fail. There have been num
ous discussions of these effects in the literature, and the
portance of such a study is now very clear@18,19#. This
paper is a preliminary study of a simpler system which w
provide the basis for a theoretical study of the sheath lay

The Milne problem refers to the diffusion of a minor co
stituent or test particle through a background species con
ered to be at equilibrium. The background species occu
the half-spacer .0, whereas a vacuum exists in the ha
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spacer<0 @1#. A current density of magnitudej̄ directed in
the negativer direction exists in the medium, and it is a
sumed that there are no other sinks or sources of parti
within the medium, but the plane atr 50 is an absorbing
boundary. The problem consists of determining the ste
spatial and velocity distribution of the minor species with
the half-space of interest and at the boundary. The main
jective is to determine the departure from hydrodynamic
havior near the boundary. From the point of view of electr
transport, the important aspect of the problem is the eff
that occurs within several mean free paths of the boundar
r 50. Far from the boundary, in the positiver direction, hy-
drodynamic equations are valid; in the present work we
the diffusion equation

j̄ 52D̄
dn̄as~r !

dr
~1!

which relates the fluxj̄ , the diffusion coefficientD̄, and the
gradient of the asymptotic density profile,n̄as. One finds that
the extrapolation of the linear asymptotic dependence of
actual density profile intersects ther axis atr 52q, whereq
is the extrapolation length and is a measure of the depar
from hydrodynamic behavior. The calculation of the dens
and temperature profiles, together with the departure fr
Eq. ~1! and the extrapolation length, are the objectives of
present paper. In previous papers, the Milne problem w
considered with a hard sphere cross section for test-par
moderator collisions@1# and also for Coulomb collisions@2#.
The application to Coulomb collisions was applied to ge
physical problems@20# and to the escape of minor speci
from an atmosphere@21#.

The problem of electron diffusion in a model gas near
absorbing boundary was studied with a Monte Carlo meth
by Braglia and Lowke@5#, and with a direct solution of the
Boltzmann equation by Lowke, Parker, and Hall@4#, Robson
@6#, and England and Skullerud@7#. The main purpose of
these studies is the construction of a model which wo
explain the results obtained in a Townsend-Huxley exp

k,
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ment. Simple analytical formulas for the electron-atom el
tic cross section were used by these previous authors so
avoid many of the mathematical difficulties involved in th
solution of the Boltzmann equation. The present paper
ploys realistic cross sections, and provides an accurate
scription of boundary effects on electron transport in realis
systems. We also show the inability of hydrodynamic the
to predict the electron energy distribution in the bound
layer correctly.

Here we present a solution of the Milne problem for ele
trons in a heat bath of atoms. We choose He and Ar
moderators representative of a gas with and withou
Ramsauer-Townsend minimum in the electron-atom mom
tum transfer cross section. Previous researchers@4–7# em-
ployed power-law models for the electron-atom collision f
quencies, so the influence of the Ramsauer-Towns
minimum in the elastic cross section on the electron trans
could not be studied. Owing to the small electron to at
mass ratio, the collision operator in the Boltzmann equat
is well approximated by a Lorentz-Fokker-Planck opera
@22#. We consider a solution of this Boltzmann equatio
subject to appropriate spatial boundary conditions. The
tribution function is expanded in Legendre polynomials
the velocity orientation (m5cosu), and two different basis
sets are compared for the expansion of the distribution fu
tion in speed (v). Previous works@1,2# considered Laguerre
polynomials, the basis set traditionally chosen in kine
theory, and which is an expansion in the electron ene
However, it was demonstrated@23–25# that polynomials in
the electron speed, referred to as speed polynomials, pro
a much faster convergence than Laguerre polynomials. In
present work, the formalism of previous papers@1,2# is
modified for the use of the speed polynomials and we de
onstrate, for a hard sphere cross section, the improved
vergence in the application to the Milne problem.

In Sec. II, we provide a brief discussion of the Miln
problem and the method of solution with the modificatio
due to the use of the speed polynomials. Section III pres
the results of the calculations for hard spheres as well as
electron-He and electron-Ar momentum transfer cross s
tions taken from the literature.

II. SOLUTION OF THE MILNE PROBLEM

A. Direct solution of the Lorentz-Fokker-Planck equation

The formalism presented here follows the previous d
cussions of the Milne problem@1,2#. It is repeated here
briefly for completeness, and to show the changes that a
from the use of speed polynomials in place of the Lague
polynomials. For steady-state conditions, the Fokker-Pla
equation for the velocity distribution function of test ele
trons f̄ (r ,v,m) is

vm
] f̄ ~r ,v,m!

]r
5n1~r !J̄@ f̄ ~r ,v,m!#, ~2!

wherem5cos(u), andu is the angle betweenv and the posi-
tive r axis, as shown in the previous work@1#. In Eq. ~2!,
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n1(r ) is the number density of the background medium, a
the linear Lorentz-Fokker-Planck collision operator for ela
tic electron-atom collisions is defined by@28#

J̄@ f̄ #5
m

M

1

v2

]

]v H Fs~v !v4S 11
kT1

mv
]

]v D G f̄ ~r ,v,m!J
1

s~v !v
2

]

]m H ~12m2!
]

]m
@ f̄ ~r ,v,m!#J , ~3!

where s(v) is the momentum transfer cross section~it is
equal topd2 for a hard sphere model!, M andm are the mass
of molecule and electron, respectively,T1 is the temperature
of background medium, and the distribution function of t
moderatorf̄ 1

M(v18) is assumed to be characterized by a Ma

wellian distribution functionf̄ 1
M5(M /2pkT1)3/2exp(2Mv1

2/
2kT1). We introduce the scaling cross sectionssc5pd0

2, to
rewrite the Fokker-Planck equation in a dimensionless fo
With the transformation to dimensionless spatial variable

x5sscE
0

r

n1~r 8!dr8, ~4!

the Fokker-Planck equation can be written in the form

pm
] f ~x,p,m!

]x
5J@ f ~x,p,m!#, ~5!

where J5 J̄/(sscv0), f 5 f̄ @v0 /n1(r )ssc#
3, p5v/v0 , and

v0
252kT1 /m. We seek solutions of this equation subject

the boundary condition that no particles in the negativex
region return to the medium, that is,

f ~0,p,m!50, 0,m,1.

The general solution is written as the sum of a spatial tr
sient partf tr and an asymptotic partf as, that is,

f 5 f tr1 f as. ~6!

The transient solution dominates near thex50 boundary,
and it is anticipated that it decays out in a distance of
order of a few mean free paths. The asymptotic solut
dominates at large distances where hydrodynamics is
pected to be valid.

It was shown in previous papers that the transient solu
is of the form

f tr~x,p,m!5 (
k51

`

ake
gkxRk~p,m!, ~7!

wheregk andRk(p,m) are the spatial eigenvalues and eige
functions, respectively, given by

J@Rk#5~pm!gkRk . ~8!
1-2
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The eigenfunctions and eigenvalues are determined with
expansion ofRk in the functionscnl(p,m)

Rk~p,m!5
exp~2p2!

p3/2 (
n50

`

(
l 50

`

bnl
k cnl~p,m!. ~9!

which are products of spherical harmonics and speed p
nomialsBn(x), that is,

cnl~p,m!5NlBn~p!Pl~m!, ~10!

and Nl5
1
2 Ap1/2(2l 11). The speed polynomials@23–25#

are orthogonal with respect to the weight functionw(p)
5p2 exp(2p2), that is,

E
0

`

p2e2p2
Bn~p!Bm~p!dp5dn,m . ~11!

They satisfy a three term recurrence relation of the form

pBn~p!5AbnBn11~p!1anBn~p!1Abn21Bn21~p!,
~12!

where the coefficientsan and bn are known@26,27#. The
eigenvalue problem is then converted to the finite set of
ear equations

(
n850

N

(
l 850

L

~Anl,n8 l 82gkBnl,n8 l 8!bn8 l 8
k

50, ~13!

where (N11) and (L11) are the number of speed and Le
endre polynomials, respectively. The quantitiesAn,n8

( l ) are the
matrix elements of the collision operator in the speed ba
set, and are defined by
c-
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Anl,n8 l 85p23/2E e2p2
cnl~p,m!J~p!cn8 l 8~p,m!dp,

~14!

For l 50, the operator inm in Eq. ~3! does not contribute, and
we find that the matrix elements of the operator inv in Eq.
~3! are given by

An0,n8 l 852
m

2M
d0,l 8E

0

`

e2p2
@s~p!/ssc#Bn8~p!Bn8

8 ~p!p3dp,

~15!

whereBn8(p) is the derivative ofBn(p). The recurrence re-
lation for Bn8(p) can be easily obtained with Eq.~12!. For l
>1, the operator inv in Eq. ~3! makes a negligible contri-
bution because of the smallm/M factor. Consequently, the
major contribution is from the operator inm and,

Anl,n8 l 852d l ,l 8E
0

`

e2p2
@s~p!/ssc#Bn~p!Bn8~p!p3dp.

~16!

It is useful to add the results for a hard sphere~hs! cross
section, and we find that

Anl,n8 l 8
~hs!

5d l ,l 8

s

ssc5
Abn811, n5n811

an8 , n5n8

Abn811, n5n821

0, otherwise.

~17!

The quantitiesBnl,n8 l 8 are the matrix elements of the dri
term on the left hand side of Eq.~2!. These are given by
Bnl,n8 l 855
Abn11~ l 11!/@~2l 11!~2l 13!#1/2, n85n11, l 85 l 11

Abn11l /~4l 221!1/2, n85n11, l 85 l 21

an~ l 11!/@~2l 11!~2l 13!#1/2, n85n, l 85 l 11

anl /~4l 221!1/2, n85n, l 85 l 21

Abn~ l 11!/@~2l 11!~2l 13!#1/2, n85n21, l 85 l 11

Abnl ~4l 221!1/2, n85n21, l 85 l 21

0 otherwise

~18!
Numerical diagonalization of the matrices in Eq.~13! gives

approximate eigenvalues and eigenfunctions to orderK

5(N11)(L11). As discussed in Ref.@1# and in Ref.@29#,

the eigenvaluesgk , which includes the zero eigenvalue, o

cur in positive and negative pairs so that the sum overk in
Eq. ~7! includes only nonzero negativegk so that the tran-
sient solution is written as

f tr~x,p,m!5 (
k51

~1/2!K21

ake
gkxRk~p,m!. ~19!
1-3
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The asymptotic solution is written in the form

f as~x,p,m!52~ j /D ! f M~p!@q1x2mU~p!#, ~20!

where the dimensionless flux and diffusion coefficient

given by j 5 j̄ /v0@n1(r )ssc#
3 andD5D̄/@v0 /n1(r )ssc#, re-

spectively. The functionU(p) satisfies the Chapman-Ensko
equation for diffusion@30#, that is,

J@mU~p!#52pm, ~21!

and is solved with the expansion

mU~p!5 (
n850

`

dn8cn81~p,m!. ~22!
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Consequently, the solution of Eq.~21! is given by

(
n850

`

An1,n81dn852
1

)
~a0dn,01Ab1dn21,0!, ~23!

and the diffusion coefficient is given by

D5
1

)
~a0d01Ab1d1!. ~24!

The general solution is written as in the previous pa
@1#, and the Marshak boundary conditions are imposed
discussed there. The use of the speed polynomials in
present paper lead to a different result for the matrixGnl,n8 l 8
defined by Eq.~3.3! of that paper. Here we have that,
Gnl,n8 l 85dn,n85
1/2, l 5 l 8

0,l 2 l 8, even; lÞ l 8

~21!~ l 1 l 811!/2l ! l 8! @~2l 11!~2l 811!#1/2

2l 1 l 8~ l 2 l 8!~ l 1 l 811!$~ l /2!! @~ l 821!/2#! %2
otherwise.
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B. Monte Carlo method

An alternative to the direct solution of the Boltzman
equation is to use the Monte Carlo method. This meth
enables one to numerically simulate an experiment instea
solving the Boltzmann equation. In the Monte Carlo simu
tion, an ensemble of electrons with either a Maxwellian od
function speed distribution is incident on the gas medium
finite extent in ther direction. The physical size of the me
dium is chosen large enough so that the steady state ele
distribution is reached in a distance of about five mean e
tron free paths from the left boundary. For a Maxwelli
source, the velocity components in cylindrical coordina
(pr ,pz) for each injected electron are sampled using
Boltzmann statistical distribution with probabilitiesWpr

and

Wpz
, and are determined by the equations

dWpr
5e2pr

2
d~pr

2!,

dWpz
5e2pz

2
d~pz

2!.

The probability Ww for the azimuthal coordinate,w, is
sampled from the uniform distributiondWw5d(w/2p). In
the case of ad function source, the radial and longitudin
velocity coordinates of injected electrons are given bypr
50 andpz51, andw is sampled from a uniform distribution
that isdWw5d(w/2p).
d
of
-

f

ron
c-

s
e

The Monte Carlo simulation follows the electrons throu
a series of elastic collisions. The path length between co
sions is calculated byl 52 ln(R)/n1s(v), whereR is a ran-
dom number. The energy exchange between electron
atom is neglected. In other words, it is assumed that the r
of the atomic mass to the electron mass is equal to infin
We demonstrate later that this procedure gives results
good agreement with the direct solution of the Boltzma
equation in Sec. II A. The neglect of energy exchange in
Monte Carlo simulation is equivalent to settingm/M in Eq.
~3! to zero. The polar and azimuthal angles for an elect
after each collision are sampled according to an isotro
angular distribution. The electrons that leave the simulat
domain are eliminated from consideration. The above pro
dure is repeated until the steady state distribution of electr
is obtained. Further details of this technique were descri
elsewhere@31#. The stochastic Monte Carlo simulation cou
be the most accurate method for the simulation of elect
transport if sufficient computer time is available. In th
study, up to 109 electrons are used to calculate the spa
electron density and temperature profiles.

By monitoring the position and velocity of each electro
one could determine the spatial and velocity distribution
electrons,n(x,p). The electron density is then calculated
given by

n~x!5
( ini~x,p!

j 0

1

Dx
, ~25!
1-4
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TABLE I. Comparison of the convergence of eigenvalues with Laguerre and speed basis functio
L51 andg5105.

Laguerre Speed Laguerre Speed Laguerre Speed Laguerre Sp
N g1 g5 g10 g20

1 0.008 404 0.008 026
3 0.007 864 0.007 746
5 0.007 799 0.019 82 0.024 61
7 0.007 777 0.017 59 0.017 49
9 0.007 766 0.017 32 0.017 48

11 0.007 760 0.017 42 0.024 93 0.033 31
13 0.007 756 0.017 39 0.024 74 0.025 67
15 0.007 754 0.017 38 0.024 66 0.024 54
17 0.007 752 0.017 36 0.024 62 0.024 49
19 0.007 751 0.017 36 0.024 59
21 0.007 750 0.017 35 0.024 58 0.035 04 0.071 4
23 0.007 750 0.017 35 0.024 56 0.034 90 0.046 1
25 0.007 749 0.017 34 0.024 55 0.034 84 0.038 6
27 0.007 749 0.017 34 0.024 54 0.034 80 0.035 8
29 0.007 748 0.017 34 0.024 54 0.034 77 0.034 8
31 0.007 748 0.017 33 0.024 53 0.034 75 0.034 6
33 0.007 748 0.017 33 0.024 53 0.034 74 0.034 6
35 0.007 748 0.017 33 0.024 52 0.034 73
37 0.007 747 0.017 33 0.024 52 0.034 72
39 0.007 747 0.017 33 0.024 52 0.034 71
c-

th
ns
io
n
n
ion
in
ac
e

oss
ials

rre
ior
tic

lues
rd

for
res

uch
The
d in
al-

w
on
or
where the initial flux electrons is found in the form;j 0

5(k
N j k , with N equal to the product of the number of ele

trons~injected into the gas medium per step! and the number
of steps.

The local electron temperature is determined as

T~x!/T1~x!5
1

3 (
i

ni~x,p!@pi~x!2V~x!#2Y (
i

ni~x,p!,

~26!

where

V~x!5(
i

ni~x,p!pi~x!Y (
i

ni~x,p!. ~27!

The summation in Eqs.~25!–~27! is over all electrons in the
spatial intervalDx centered atx.

III. RESULTS AND DISCUSSION

The main objective of this paper was to determine
range of validity of the hydrodynamic behavior for electro
near a boundary. The solution of the Boltzmann equat
with the Lorentz-Fokker-Planck collision operator was co
sidered. The traditional method of solution of the Boltzma
equation involves the expansion of the distribution funct
in Legendre polynomials in the velocity orientation and
Laguerre polynomials in the energy. This was the appro
in previous papers@1,2#. In this paper, we introduced the us
of speed polynomials@23–25# in the solution of the Milne
01640
e

n
-
n

h

problem for electrons. We showed, for a hard sphere cr
section, the accelerated convergence with speed polynom
in comparison with the slower convergence with Lague
polynomials. Detailed results of the nonequilibrium behav
were then shown for electrons in Ar and He with realis
momentum transfer cross sections.

Table I shows the convergence of the spatial eigenva
@Eq. ~13!# versus the number of polynomials used for a ha
sphere cross section@we set s(v)5ssc#. The results are
shown forL51, because the operatorJ defined by Eq.~3! is
spherically symmetric. The spatial eigenvalues shown
speed polynomials are converged to the significant figu
shown. It is clear that the speed polynomials show a m
more rapid convergence than the Laguerre polynomials.
results for Laguerre polynomials are obtained as discusse
Ref. @1#, whereas the results with speed polynomials are c
culated with the formalism in Sec. II. Tables II and III sho
a similar comparison for the convergence of the diffusi
coefficient and the extrapolation length, respectively. F

TABLE II. Convergence ofD @Eq. ~24!# with N for L51 and
g5105.

N Laguerre Speed

1 0.3600 0.3761
3 0.3711
5 0.3737
7 0.3747
9 0.3752
11 0.3754
1-5
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these quantities, the convergence is greatly accelerated
tive to Laguerre polynomials. In Table III, the extrapolatio
length requires only one speed polynomial, whereas up to
are required for Laguerre polynomials. It is also interest
to notice that fewer Legendre polynomials are also requ
in conjunction with speed polynomials.

In Fig. 1, we show the density profiles@in units of
(n1ssc)

3 for uniform n1 ; see Eq.~4.6! of Ref. @1## for a hard
sphere cross section for increasing mass ratios,g ~curves
a–d) from the solution of the Boltzmann equation ana
gous to the results reported earlier@1#. For g>100 there is
no change in the density profile. This conclusion supports

FIG. 1. Density profilesn(x) in units of (n1ssc)
3 vs x for hard

spheres. Solid lines represent the results of the direct solution o
Boltzmann equation for a Maxwellian source at infinity; the atom
electron mass ratiog is equal to~curvea! 1, ~curveb! 5, ~curvec!
10, ~curved! >100; circles show a Monte Carlo simulation with
Maxwellian source at infinity~curve e!. Dashed line,`, from
LeCaine@32#. Triangles show a Monte Carlo simulation with ad
function source at infinity.

TABLE III. Convergence of extrapolation length withN andL
for g5105.

L\N 1 3 5 7 9 11

Laguerre
1 0.642 0.660 0.664 0.665 0.666 0.666
3 0.680 0.698 0.702 0.703 0.704 0.704
5 0.682 0.700 0.705 0.706 0.707 0.707
7 0.682 0.701 0.705 0.707 0.708 0.708
9 0.682 0.701 0.705 0.707 0.708 0.708
11 0.682 0.701 0.706 0.707 0.708 0.709
13 0.682 0.701 0.706 0.707 0.708 0.709
15 0.682 0.701 0.706 0.707 0.708 0.709

Speed
1 0.667
3 0.705
5 0.708
7 0.709
9 0.710
01640
la-

1
g
d

e

correctness of the assumption~used in the Monte Carlo al
gorithm, Sec. II B! that the energy exchange between ele
tron and gas atom should be neglected for highg and mod-
erate T1 . In Fig. 1 we present profiles obtained with th
Monte Carlo calculation at two different boundary conditio
at infinity. The first profile~shown with the circles! was ob-
tained by assuming a Maxwellian source at infinity, which
the same as in the direct solution of the Boltzmann equa
in Sec. II A. The agreement with the results obtained with
direct solution of the Boltzmann equation is very good. T
second profile~shown with the triangles! is for a d function
source at infinity and is in very good agreement with t
results presented by LeCaine@32# ~dashed curve!. The two
profiles for these different choices of distribution function
infinity, Maxwellian ~circles! andd function ~triangles!, dif-
fer owing to the different diffusion coefficients in the tw
cases. However, as can be seen in Fig. 1, the extrapola
length is independent of this choice of distribution functi
at infinity. We see that the use of different source functio
profoundly influences the results, as mentioned earlier
Williams @33#. This is because there is no energy exchan
in atom-electron collisions forg equal to infinity.

In Fig. 2 we present temperature profiles obtained w
the Boltzmann equation for different values ofg. Tempera-
ture profiles with Laguerre polynomials were calculated as
previous study@34#, while results with speed polynomial
were obtained using the expression

T~x!/T15@2/3n~x!#(kake
gkx$~b1b2!1/2b20

k

1b1
1/2~a01a1!b10

k 1@b11a0
21n~x!22#b00

k

12/a0b01
k 1b1

1/2b11
k !/~3!1/2n~x!%1@2/3n~x!D#

3H ~q1x!F3

2
1n~x!22G22D/n~x!J . ~28!

Near the wall, the temperature of the electrons,T(x), differs
from the temperature of the background gas,T1 . This result

he

FIG. 2. Temperature profilesT(x)/T1 vs x for hard spheres.
Solid lines represent the results of the direct solution of the Bo
mann equation. The atom to electron mass ratiog is equal to~curve
a! 1, ~curve b! 10, and~curve c! >100. Circles show the Monte
Carlo simulation, with a Maxwellian source at infinity.
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is consistent with the measurements obtained by Biondi@35#
for diffusion cooling of electrons in gases. Also shown
Fig. 2 are Monte Carlo results, shown as circles, which ar
good agreement with the direct solution of the Boltzma
equation.

The application to electron transport in He and Ar
based on the momentum transfer cross sections for t
gases shown in Fig. 3. The cross section for He is taken f
the calculations by Nosbet@36#. The solid curve in Fig. 3 is
the Ar cross section from Ref.@37#, whereas the dashe
curve is the one from Mozumder@38#. We see that the cros
section for He has a weak dependence on energy, while
cross sections in Ar exhibit large Ramsauer-Townse
minima.

The spatial eigenvalues that determine the nature of
transient solution near the boundary, Eq.~7!, are shown in
Figs. 4~A! and 4~B! for He and Ar, respectively. The value o
the scaling cross section, used to obtain the dimension
form of the Fokker-Planck equation, is chosen equal to 12.
It is important to note that the ordinate scale for Ar is log
rithmic, and that there is a very rapid variation of the eige
values with temperature. A very pronounced deep minim
is found for the lower order eigenvalues, and it is shown la
how this behavior influences the nonequilibrium behav
near the boundary. By contrast, the variation of the eigen
ues for He is much slower, and essentially linear excep
the highest temperatures shown.

The electron density profile near the boundary is shown
Figs. 5~A! and 5~B! for electrons in He. These density pro
files are shown as function of dimensionless variablex. This
variable was determined with Eq.~4! assuming thatssc

5pd0
2 with d0

251 Å2/p. We also calculate the density pro
files using the hard sphere model. In this case the momen
transfer cross section from Eq.~3! is equal topd2, obtained
from the requirement that the diffusion coefficient, obtain
using a hard sphere cross section, is equal to that obta
with the real cross section. Because the He cross sectio
weakly dependent on energy, the results with the real c
section ~solid line! coincide with those obtained using th
effective hard sphere cross section. The density profile

FIG. 3. Momentum transfer cross sections. Data by Mozum
@38# ~dashed line! and results from Ref.@37# ~solid line!; helium
data are from Nesbet@36#.
01640
in
n

se
m

he
d

e

ss

-
-

r
r
l-
at

n

m

d
ed
is

ss

p-

proaches asymptotically the linear hydrodynamic profi
nas(x)52 j (q1x)/D, obtained using Eq.~20!. The extrapo-
lation lengthq is the intercept on the negativex axis.

Figures 5~C! and 5~D! illustrate the electron density pro
files in comparison with the asymptotic profile for electro
in Ar for two different Ar temperatures. As for helium we s
ssc equal to 1 Å2. With increasing temperature, there a
some strong nonequilibrium effects arising from t
Ramsauer-Townsend minimum in the electron-Ar mom
tum transfer cross section. At the lowest temperatureT
510 K, in Fig. 5~C!, the density profile exhibits a behavio
similar to that obtained for helium. Presumably, only the lo
energy portion of the momentum transfer cross section
sampled, so that this behavior is characteristic of some ef
tive hard sphere cross section. With an increase in temp
ture to 300 K@Fig. 5~D!#, there is a profound change in th
spatial variation of the density profile in that the actual p
file ~solid curves! does not approach the asymptotic behav
~dashed lines! for the range ofx shown. The reason for this
behavior is that the spatial eigenvalues@see Fig. 4~B!# de-
crease rapidly with increasing temperature. The transient

r

FIG. 4. Temperature variation of the eigenvaluesgn of the Bolt-
zmann collision operator.~A! He,g57297.~B! Ar, g572818 solid
lines show calculations withL521 andN511, while dashed lines
represent calculations withL511 andN511; ssc51 Å2.
1-7
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FIG. 5. Electron-density pro-
files n(x) ~solid line! and nas(x)
~dashed line! in units of (n1ssc)

3

for electrons in helium@~A! and
~B!# and argon@~C! and~D!# vs x.
The temperatureT1 is equal to
@~A! and ~C!# 10 K @~B! and ~D!#
300 K, ssc51 Å2. The helium
cross section is from Nesbet@36#
and the argon cross sections a
from ~curve a! Mozumder @38#
and ~curveb! Ref. @37#.
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lution decays very slowing with increasingx and persists for
many mean free paths; a result that was not anticipated
comparison of Fig. 5~C! with Fig. 5~D! clearly shows the
effect of the Ramsauer-Townsend minimum in the cr
section.

Figure 6~A! shows the electron temperature profiles
electrons in He analogous to the results in Fig. 2. The e
trons are uniformly cooled below the bath temperature ow
to the nonequilibrium effects. The dashed curve, in F
6~A!, shows the result using an equivalent hard sphere c
section. By contrast, the results for Ar, shown in Fig. 6~B!,
exhibit both a cooling and heating, an effect arising from
Ramsauer-Townsend minimum. The four sets of curves
beleda–c in Figs. 6~B! are for increasing moderator tem
perature. The solid curve is for the cross section reported
Mozumder@38#, whereas the dashed curve is the cross s
tion of Ref. @37#. Somewhat analogous cooling and heati
effects for model cross sections were discussed by other
thors @4#. We see from temperature profiles shown in Fi
6~A! and 6~B! that the nonequilibrium effects for electrons
Ar persist for larger distances from the boundary than
electrons in He.@This is a manifestation of the minima in th
eigenvalues shown in Fig. 4~B!.# However, these nonequilib
rium effects for the temperature profiles for electrons in
are essentially smaller than those found for the density p
files in Figs. 5~C! and 5~D!.

A final measure of the nonequilibrium behavior in th
boundary layer is the variation ofDdn(x)/dx versus x
01640
A
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r
c-
g
.
ss

e
a-

y
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u-
.

r

r
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shown in Figs. 7 and 8 for He and Ar, respectively.Ddn/dx
is unity in the hydrodynamic limit. As can be seen in Fig.
the nonequilibrium effects in this quantity persist for a fra
tion of a mean-free-path for electrons in He. Figure 8 sho
a similar result for electrons in Ar, where the different curv
a–d are for increasing moderator temperature. The so
curve is for the cross section reported by Mozumder@38#
whereas the dashed curve is the cross section of Ref.@37#.
Although the results persist for larger distances than for
we do not find the very large nonequilibrium effects, as se
in the density profiles in Fig. 5.

We compare the results obtained using the Boltzma
equation with results of the Monte Carlo simulation for re
cross sections in Figs. 9 and 10. The density profiles, ca
lated with the Boltzmann equation, are compared with
direct simulation results for electrons in Ar and He in Fig
9~A! and 9~B!, respectively. Lines and symbols, labeled bya
andb, represent the results with moderator temperature eq
to 100 and 300 K, respectively. The results obtained with
direct solution of the Boltzmann equation are represented
lines, while the Monte Carlo simulation results are shown
symbols. For argon, as moderator, a comparison is prese
for two different elastic momentum transfer cross sectio
The solid line and filled symbols represent the results w
the cross sections from Ref.@38#, while the dashed lines an
open symbols show the results with the cross sections f
Ref. @37#. As shown in Fig. 9, the curves calculated with th
Boltzmann equation are in agreement with the Monte Ca
1-8
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FIG. 6. Temperature profilesT(x)/T1 vs x for electrons.~A! He,
T15300 K; dashed lines show the results with effective hard sph
cross sections,s55.505 Å2, while solid lines represent results wit
cross section from Ref.@36# ~B! Ar; solid and dashed lines show th
results with cross sections from Refs.@38# and @37#, respectively;
the argon temperatureT1 is equal to~curvea! 10 K, ~curveb! 100
K, ~curvec! 300 K, and~curved! 1000 K.

FIG. 7. Ddn/dx for electrons in helium vsx. Cross section from
Nesbet@36#. The solid line, shows the effective hard sphere cr
section,s55.934 Å2. The dashed line showsT151000 K andssc

51 Å2.
01640
re

s

FIG. 8. Ddn/dx for electrons in argon vsx: solid and dashed
lines show results with cross section from Refs.@38# and @37#, re-
spectively; the argon temperatureT1 is equal to~curve a! 10 K,
~curveb! 100 K, ~curvec! 300 K, and~curved! 1000 K.

FIG. 9. Density profiles obtained with the Boltzmann equati
are compared with Monte Carlo simulation results. Boltzma
equation~solid lines!, Monte Carlo simulation~symbols!. ~A!, He;
the momentum transfer cross section is from@36#. ~B!, Ar; solid
lines and filled symbols show the results with cross section fr
Ref. @38#, and dashed lines and open symbols represent results
cross section from Ref.@37#. The moderator temperatureT1 is equal
to ~curvea! 10 K and~curveb! 100 K.
1-9
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calculations. A comparison was also made between temp
ture profiles calculated with the Boltzmann equation and
tained from the Monte Carlo simulation. To show the te
perature profiles in Figs. 10~A! and 10~B! we use the same

FIG. 10. Temperature profiles obtained with the Boltzma
equation are compared with the Monte Carlo simulation resu
Designations and conditions are the same as in Fig. 9.
s

-

01640
ra-
-

-

designations as for density profiles. We see in Figs. 10~A!
and 10~B! that reasonable agreement is obtained, but is
as good as for the density distributions. This is acceptabl
the density is the zero moment of the distribution functio
whereas, the temperature is determined by the second
ment for which there is a greater number of electrons w
energies in the high energy portion of the distributi
function.

IV. SUMMARY

A numerical solution of the Boltzmann equation with th
linear Lorentz-Fokker-Planck collision operator for the ele
tron transport near the boundary is presented. The metho
solution involves the representation of the distribution fun
tion by transient and asymptotic portions, and their exp
sion in basis functions. It was shown for a hard sphere cr
section that the convergence of the spatial eigenvalues o
Boltzmann equation with the speed basis functions is con
erably faster in comparison to convergence with the Lague
basis functions. For electrons in Ar, it was also found that
transient part of the solution can be important far from t
boundary over several mean free paths. This is attribute
the Ramsauer-Townsend minimum in the momentum tra
fer cross section. The transient solution decays relativ
quickly for electrons in He, for which the momentum tran
fer cross section has a weak dependence on energy.
results obtained with the direct solution of the Boltzma
equation were compared with a Monte Carlo simulation, a
good agreement was obtained. The nonequilibrium effe
are large for electrons in Ar owing to the Ramsau
Townsend minimum in the momentum transfer cross sect
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