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Nonhydrodynamic aspects of electron transport near a boundary: The Milne problem
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The nonhydrodynamic behavior of electrons near a boundary is studied with the Milne problem of transport
theory. A system of electrons dilutely dispersed in a heat bath of atomic moderators is considered in the
positive one-dimensional spatial half-space with an absorbing boundary at the origin which mimics an elec-
trode. A flux of electrons is assumed to originate at an infinite distance from the boundary. The Fokker-Planck
equation for the electron distribution function in space and velocity is considered. The density and temperature
profiles are determined, and the departure from hydrodynamic behavior near the boundary is studied. Argon
and helium are chosen as the moderators, and results with different cross sections are obtained. The Fokker-
Planck equation is solved with an expansion in Legendre and Speed polynomials, and compared wherever
possible with results obtained with a Monte Carlo simulation. The behavior near the boundary is shown to be
strongly influenced by the Ramsauer-Townsend minimum in the electron-Ar momentum transfer cross section.
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I INTRODUCTION spacer <0 [1]. A current density of magnitudgdirected in

o the negativer direction exists in the medium, and it is as-
The present paper is directed toward a better understandymed that there are no other sinks or sources of particles

ing of nonequilibrium behavior in a boundary layer near ayithin the medium, but the plane at=0 is an absorbing
wall analogous to a plasma sheath. We consider a simplgoundary. The problem consists of determining the steady
model of the boundary layer which is based on the Milnespatial and velocity distribution of the minor species within
problem of kinetic theory{1-3], electron transporf4—7],  the half-space of interest and at the boundary. The main ob-
neutron transporf8—10], and/or radiative transfgl1-13.  jective is to determine the departure from hydrodynamic be-
Our main objective is to consider the departure from hydro-havior near the boundary. From the point of view of electron
dynamic behavior in the boundary layer, and the need for &ransport, the important aspect of the problem is the effect
kinetic theory description. This work overlaps recent paperghat occurs within several mean free paths of the boundary at
by Stefanov, Gospodinov, and Cercigndri4] and by r=0. Far from the boundary, in the positivedirection, hy-
Sazhin and Seriko{5]. drodynamic equations are valid; in the present work we use
In the study of electron transport in discharge devices, athe diffusion equation
important consideration is the nonequilibrium behavior of
electrons near an electrode. In realistic devices, this is the —  —dn™r)
region within a mean free path of a wall or electrode, and is =-D dr @
referred to as the sheafth6,17. A description of the non-

equilibrium behavior of electrons in such a situation requiregNhiCh relates the flui the diffusion coefficiendD, and the

the solution of some transport equation such as the BF’ItZgradient of the asymptotic density profii@ One finds that
mann and/or Fokker-Planck equations for all charge carrierghe extrapolation of the linear asymptotic dependence of the
and is coupled to the Poisson equation for the self-consisteRical density profile intersects thexis atr = —q, whereq
electric field. The nonequilibrium effects are expected to bgs the extrapolation length and is a measure of the departure
large near the boundary, and consequently a hydrodynamfgom hydrodynamic behavior. The calculation of the density
description of the electrons will fail. There have been numerand temperature profiles, together with the departure from
ous discussions of these effects in the literature, and the inEq. (1) and the extrapolation length, are the objectives of the
portance of such a study is now very clddi8,19. This  present paper. In previous papers, the Milne problem was
paper is a preliminary study of a simpler system which will considered with a hard sphere cross section for test-particle
provide the basis for a theoretical study of the sheath layermoderator collision$1] and also for Coulomb collisior2].

The Milne problem refers to the diffusion of a minor con- The application to Coulomb collisions was applied to geo-
stituent or test particle through a background species consigshysical problemg20] and to the escape of minor species
ered to be at equilibrium. The background species occupiefom an atmospherg21].
the half-space >0, whereas a vacuum exists in the half- The problem of electron diffusion in a model gas near an

absorbing boundary was studied with a Monte Carlo method
by Braglia and Lowkd5], and with a direct solution of the
*Permanent address: Institute of Thermophysics, NovosibirskBoltzmann equation by Lowke, Parker, and Hdll, Robson

630090, Russia. vasenkov@theory.chem.ubc.ca [6], and England and Skullerud’]. The main purpose of
"Email address: shizgal@theory.chem.ubc.ca; URL: http:/these studies is the construction of a model which would
www.chem.ubc.ca/personnel/faculty/shizgal/ explain the results obtained in a Townsend-Huxley experi-
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ment. Simple analytical formulas for the electron-atom elasn,(r) is the number density of the background medium, and
tic cross section were used by these previous authors so asttte linear Lorentz-Fokker-Planck collision operator for elas-
avoid many of the mathematical difficulties involved in the tic electron-atom collisions is defined pg8]

solution of the Boltzmann equation. The present paper em-

ploys realistic cross sections, and provides an accurate de- |, 1 4 KT o \1_
scription of boundary effects on electron transport in realistic ~ J[f]= — — —( a(v)vt 1+ - —) } f(r,v ,,u))
systems. We also show the inability of hydrodynamic theory M v® du mu du

to predict the electron energy distribution in the boundary o(v)v

layer correctly.
Here we present a solution of the Milne problem for elec-

trons in a heat bath of atoms. We choose He and Ar Ahere o(v) is the momentum transfer cross sectignis

moderators representative of a gas with and without aequal torrd? for a hard sphere modeM andm are the mass
Ramsauer-Townsend minimum in the electron-atom momen-

X . of molecule and electron, respectively, is the temperature
tum transfer cross section. Previous researchérs| em- b B b

- of background medium, and the distribution function of the
ployed power-law models for the electron-atom collision fre- o ,
quencies, so the influence of the Ramsauer-Townsengioderatorfi(vy) is assumed to be characterized by a Max-

minimum in the elastic cross section on the electron transpomellian distribution functiorﬂ" = (M/27kT;) 2 exp(—Muv?/
could not be studied. Owing to the small electron to atom2kT;). We introduce the scaling cross sectiog= 7d3, to
mass ratio, the collision operator in the Boltzmann equatiomewrite the Fokker-Planck equation in a dimensionless form.
is well approximated by a Lorentz-Fokker-Planck operatorWith the transformation to dimensionless spatial variable,
[22]. We consider a solution of this Boltzmann equation,

subject to appropriate spatial boundary conditions. The dis- ;

tribution function is expanded in Legendre polynomials for X=Ust ny(r’)dr’, (4)

the velocity orientation = cos#), and two different basis 0
sets are compared for the expansion of the distribution func- . . .
tion in speed §). Previous workg$1,2] considered Laguerre the Fokker-Planck equation can be written in the form
polynomials, the basis set traditionally chosen in kinetic

theory, and which is an expansion in the electron energy. af(X,p, )

However, it was demonstratg@3—25 that polynomials in pMT:‘][f(X’p"u)]’ ©
the electron speed, referred to as speed polynomials, provide

a much faster convergence than Laguerre polynomials. In thghere J=J3/(o.w,), f=f[ve/ny(r)osd®, p=vlve, and
present work, the formalism of previous papgs2] is  ,2_ kT /m. We seek solutions of this equation subject to

modified for the use of the speed polynomials and we demMge poyndary condition that no particles in the negative
onstrate, for a hard sphere cross section, the improved CORagion return to the medium, that is

vergence in the application to the Milne problem.
In Sec. Il, we provide a brief discussion of the Milne
problem and the method of solution with the modifications f(Op,u)=0, O0<u<1.
due to the use of the speed polynomials. Section Ill presents o ) ,
the results of the calculations for hard spheres as well as fot€ genert?l solution is written as tr;e sum of a spatial tran-
electron-He and electron-Ar momentum transfer cross secient partf™ and an asymptotic paft*, that is,
tions taken from the literature.

9 _
5 (M[(l—uz)ﬂ[f(r,v,ﬂ)]], 3

f=fr+fas (6)
Il. SOLUTION OF THE MILNE PROBLEM . . .
_ . . The transient solution dominates near tkee 0 boundary,
A. Direct solution of the Lorentz-Fokker-Planck equation and it is anticipated that it decays out in a distance of the

The formalism presented here follows the previous disorder of a few mean free paths. The asymptotic solution
cussions of the Milne problenil,2]. It is repeated here dominates at large distances where hydrodynamics is ex-
briefly for completeness, and to show the changes that arigeected to be valid. _ _ _
from the use of speed polynomials in place of the Laguerre |t was shown in previous papers that the transient solution
polynomials. For steady-state conditions, the Fokker-Plancié of the form
equation for the velocity distribution function of test elec-

tronsf_(r U, 1) IS

©

f"<x,p,u>=gl a9 R (p, 1), @

af(r,u,u) S
v =nu(NJ[F(ro,m)], (2)  whereg, andR,(p, ) are the spatial eigenvalues and eigen-

functions, respectively, given by

whereu = cos(), andf is the angle betweew and the posi-
tive r axis, as shown in the previous wofk]. In Eq. (2), JIR]=(pr)akRy- (8
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The eigenfunctions and eigenvalues are determined with the

expansion ofR, in the functionsy,,(p, «)

©

2, Dign(pm). (9

Re(p,u) = exp( p 2

which are products of spherical harmonics and speed
nomialsB,(x), that is,

(P, ) =NBn(p)Pi(1), (10

and N,= 277321 +1). The speed polynomialf23—25
are orthogonal with respect to the weight functiasgp)

=p?exp(—p?), that is,

f :pze’szn( P)Bn(p)dp= 8y - (11

PHYSICAL REVIEW E3 016401

Anl,n’l’: 77_3/2[ e_pzlﬂnl(p-M)J(p)‘ﬂn’l’(pvﬂ)dp,
(14)

Forl =0, the operator i in Eq. (3) does not contribute, and
we find that the matrix elements of the operatowimn Eq.

pol)@) are given by

Auoir= = g dor | € P Lo(0),B1( By, (I,
15)

whereB/ (p) is the derivative oB,(p). The recurrence re-
lation for B/,(p) can be easily obtained with E¢L2). For |
=1, the operator i in Eq. (3) makes a negligible contri-
bution because of the smatl/M factor. Consequently, the
major contribution is from the operator jm and,

They satisfy a three term recurrence relation of the form .
_n2
Anl,n’l’: - 5I,I’J;) e P [‘7(p)/o'sc]Bn(p)Bn’(p)p3dp-

PBa(P)=VBrBn+1(P) + @nBn(P) + VBn-1Bn-1(P),
(12) (16

where the coefficientst, and 8, are known[26,27. The It is useful to add the results for a hard sphéng cross

eigenvalue problem is then converted to the finite set of lin-section, and we find that

ear equations

N L VBn+1, N=n"+1
r—0B e bk,,=0, 13 (o dpr n=n’
2; E= Anin1r = 9kBninn )by (13 A(nTS?vw 5 — - 17
Osc| VBpre1, N=n'—-1
where N+ 1) and L+ 1) are the number of speed and Leg- 0, otherwise.

endre polynomials, respectively. The quantnﬁéﬁh are the
matrix elements of the collision operator in the speed basi§he quantitiesB,, ,/;» are the matrix elements of the drift
set, and are defined by term on the left hand side of E¢). These are given by

( VBoa(I+D)I[(21+1)(21+3)]¥2 n'=n+1, I'=1+1
VBar /(42=1)Y2 n'=n+1, 1'=1-1
an(l+ D21+ D(21+3)]Y% n'=n, I'=I+1
Buni={ anl/(41>=1)'% n’=n, 1I'=1-1 (9
Ba(l+ D21+ 1)(20+3)]%2, n'=n—1, I'=1+1
VBal(412=1)¥2 n'=n-1, I'=1-1
0 otherwise

\

Numerical diagonalization of the matrices in E3) gives
approximate eigenvalues and eigenfunctions to orider
=(N+1)(L+1). As discussed in Refl] and in Ref.[29],
the eigenvalueg,, which includes the zero eigenvalue, oc-
cur in positive and negative pairs so that the sum dwvir

Eq. (7) includes only nonzero negativ@, so that the tran-
sient solution is written as

(U2K—1

fU(x,p, )= gl (19)

€% R(p, ).
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The asymptotic solution is written in the form Consequently, the solution of ER1) is given by

8 p,p) == (/D) fM(p)a+x—pU(P)], (20

where the dimensionless flux and diffusion coefficient are

given byj :ﬂvo[nl(r)gscp andD=D/[v,/n,(r) o], re- and the diffusion coefficient is given by
spectively. The functiotd (p) satisfies the Chapman-Enskog
equation for diffusior{30], that is,

N\ZE

1
Anl,n’ldn’ =- ‘73(“05n,0+ \/E5n—1,o), (23

n'=0

1
D=~ (aolo+ VA:dy). (24
AnU(P)1=—pa, (21
and is solved with the expansion The general solution is written as in the previous paper
[1], and the Marshak boundary conditions are imposed as
% discussed there. The use of the speed polynomials in the
pU(p)= 2> dyihn(pop). (22)  present paper lead to a different result for the ma@jx .-
n’=0 defined by Eq(3.3 of that paper. Here we have that,
172, 1=I"
ol—1", even; I#I'
Gninrir = O (I+17421)02y 1 / 12
(-1) 2+ 1)(21'+1)] .
7 otherwise.
2T A=)+ + D{2 (1= 1)/2]1)2
|
B. Monte Carlo method The Monte Carlo simulation follows the electrons through

An alternative to the direct solution of the Boltzmann & Series of elastic collisions. The path length between colli-

equation is to use the Monte Carlo method. This method!ons is calculated by=—In(R)/n,o(v), whereR'is a ran-

enables one to numerically simulate an experiment instead S0M number. The energy exchange between electron and
solving the Boltzmann equation. In the Monte Carlo simula-atom is neglected. In other words, it is assumed that the ratio

tion, an ensemble of electrons with either a Maxwelliansor ©f the atomic mass to the electron mass is equal to infinity.
function speed distribution is incident on the gas medium of/V& demonstrate later that this procedure gives results in
finite extent in ther direction. The physical size of the me- 900d agreement with the direct solution of the Boltzmann
dium is chosen large enough so that the steady state electr§quation in Sec. Il A. The neglect of energy exchange in the
distribution is reached in a distance of about five mean eledlonte Carlo simulation is equivalent to settingM in Eq.

tron free paths from the left boundary. For a Maxwellian (3) to zero. The polar and azimuthal angles for an electron
source, the velocity components in cylindrical coordinates?ftér €ach collision are sampled according to an isotropic

(p,.p,) for each injected electron are sampled using thedngular distribution. The electrons that leave the simulation
r~Mz - . . . .
Boltzmann statistical distribution with probabiliti&¥, and domain are eliminated from consideration. The above proce-
. . ure is repeated until the steady state distribution of electrons
r d peated until the steady state distribut f elect
Wy, and are determined by the equations

is obtained. Further details of this technique were described
elsewherd31]. The stochastic Monte Carlo simulation could
— o P2q(n2 be the most accurate method for the simulation of electron
dw, =e"Prd(py), : v e ) .
r transport if sufficient computer time is available. In this
study, up to 18 electrons are used to calculate the spatial
2 electron density and temperature profiles.
=e Pzg 2 K . .. .
dW, =e Pzd(py). By monitoring the position and velocity of each electron,
one could determine the spatial and velocity distribution of

The probability W, for the azimuthal coordinateg, is electronsn(x,p). The electron density is then calculated as

sampled from the uniform distributiodW,=d(e/27r). In ~ 9'VeN by

the case of & function source, the radial and longitudinal

velocity coordinates of injected electrons are given gy

=0 andp,=1, ande is sampled from a uniform distribution; n(x) = Zini(x,p) 1 (25
that isdW,=d(¢/27). jo AX’
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TABLE I. Comparison of the convergence of eigenvalues with Laguerre and speed basis functions for

L=1 andy=10".
Laguerre Speed Laguerre Speed Laguerre Speed Laguerre Speed

N O Os O10 020

1 0.008404 0.008026

3 0.007864 0.007746

5 0.007799 0.01982 0.02461

7 0.007 777 0.01759 0.017 49

9 0.007 766 0.01732 0.01748
11  0.007 760 0.017 42 0.02493 0.03331
13  0.007 756 0.017 39 0.02474 0.02567
15 0.007 754 0.017 38 0.02466  0.02454
17  0.007 752 0.017 36 0.02462 0.02449
19 0.007 751 0.017 36 0.024 59
21  0.007 750 0.017 35 0.02458 0.03504 0.07145
23  0.007 750 0.017 35 0.024 56 0.03490 0.046 19
25 0.007 749 0.01734 0.02455 0.03484 0.03868
27  0.007 749 0.01734 0.02454 0.03480 0.03583
29  0.007 748 0.01734 0.02454 0.03477 0.03484
31 0.007 748 0.017 33 0.02453 0.03475 0.03465
33 0.007 748 0.017 33 0.02453 0.03474 0.03464
35 0.007 748 0.017 33 0.02452 0.03473
37 0.007 747 0.01733 0.02452 0.03472
39 0.007 747 0.017 33 0.02452 0.03471

where the initial flux electrons is found in the fornj;  problem for electrons. We showed, for a hard sphere cross
=3Njk, with N equal to the product of the number of elec- section, the accelerated convergence with speed polynomials
trons(injected into the gas medium per stgmd the number in comparison with the slower convergence with Laguerre
of steps. polynomials. Detailed results of the nonequilibrium behavior
The local electron temperature is determined as were then shown for electrons in Ar and He with realistic
momentum transfer cross sections.
1 Table | shows the convergence of the spatial eigenvalues
TX)/Ty(X)== > ni(x,p)[pi(x)—V(x)]Z/ > nix,p), [Eq. (13)] versus the number of polynomials used for a hard
39 [ sphere cross sectiojwe seto(v)=o0gJ]. The results are
(26)  shown forL =1, because the operatddefined by Eq(3) is
spherically symmetric. The spatial eigenvalues shown for
speed polynomials are converged to the significant figures
shown. It is clear that the speed polynomials show a much
more rapid convergence than the Laguerre polynomials. The
V(x)= EI ni(x,p)pi(x)/ Z n;i(x,p). (27 results for Laguerre polynomials are obtained as discussed in
Ref.[1], whereas the results with speed polynomials are cal-
The summation in Eq€25)—(27) is over all electrons in the culated with the formalism in Sec. Il. Tables Il and IIl show
spatial intervalAx centered a. a similar comparison for the convergence of the diffusion
coefficient and the extrapolation length, respectively. For

where

Ill. RESULTS AND DISCUSSION TABLE II. Convergence oD [Eq. (24)] with N for L=1 and

. L . . =10°.
The main objective of this paper was to determine the” @

range of validity of the hydrodynamic behavior for electrons

; . N Laguerre Speed
near a boundary. The solution of the Boltzmann equation
with the Lorentz-Fokker-Planck collision operator was con- 1 0.3600 0.3761
sidered. The traditional method of solution of the Boltzmann 3 0.3711
equation involves the expansion of the distribution function 5 0.3737
in Legendre polynomials in the velocity orientation and in 7 0.3747
Laguerre polynomials in the energy. This was the approach 9 0.3752

in previous paperEl,2]. In this paper, we introduced the use 11 0.3754
of speed polynomial§23—25 in the solution of the Milne
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TABLE lll. Convergence of extrapolation length witkh and L
for y=10°.

L\N 1 3 5 7 9 11

Laguerre
1 0.642 0660 0.664 0.665 0.666 0.666
3 0.680 0.698 0.702 0.703 0.704 0.704
5 0.682 0.700 0.705 0.706 0.707  0.707
7 0.682 0.701 0.705 0.707 0.708 0.708
9 0.682 0.701 0.705 0.707 0.708 0.708
11 0.682 0.701 0.706 0.707 0.708 0.709
13 0.682 0.701 0.706 0.707 0.708 0.709
15 0.682 0.701 0.706  0.707 0.708 0.709

Speed
1 0.667 FIG. 2. Temperature profile$(x)/T, vs x for hard spheres.
3 0.705 Solid lines represent the results of the direct solution of the Boltz-
5 0.708 mann equation. The atom to electron mass rati® equal to(curve
7 0.709 a) 1, (curve b) 10, and(curve c) =100. Circles show the Monte
9 0.710 Carlo simulation, with a Maxwellian source at infinity.

correctness of the assumptiémsed in the Monte Carlo al-
gorithm, Sec. 1l B that the energy exchange between elec-
these quantities, the convergence is greatly accelerated relﬁ.on and gas atom should be neg'ected for Wd mod-
tive to Laggerre polynomials. In Table II_I, the extrapolation erateT,. In Fig. 1 we present profiles obtained with the
length requires only one speed polynomial, whereas up to 1fjonte Carlo calculation at two different boundary conditions
are required for Laguerre polynomials. It is also interestingat infinity. The first profile(shown with the circleswas ob-

to notice that fewer Legendre polynomials are also requiregained by assuming a Maxwellian source at infinity, which is
in conjunction with speed polynomials. the same as in the direct solution of the Boltzmann equation

In Fig. 1, we show the density profilein units of i Sec. Il A. The agreement with the results obtained with the
(ny05)® for uniformn, ; see Eq(4.6) of Ref.[1]] for ahard  girect solution of the Boltzmann equation is very good. The
sphere cross section for increasing mass ratjoscurves  second profilgshown with the trianglésis for a & function
a—d) from the solution of the Boltzmann equation analo- soyrce at infinity and is in very good agreement with the
gous to the results reported earl[dd. For y=100 there is  results presented by LeCaifig2] (dashed curve The two
no change in the density profile. This conclusion supports thgrofiles for these different choices of distribution function at
infinity, Maxwellian (circles and & function (triangles, dif-
fer owing to the different diffusion coefficients in the two
cases. However, as can be seen in Fig. 1, the extrapolation
length is independent of this choice of distribution function
at infinity. We see that the use of different source functions
profoundly influences the results, as mentioned earlier by
Williams [33]. This is because there is no energy exchange
in atom-electron collisions fo equal to infinity.

In Fig. 2 we present temperature profiles obtained with
the Boltzmann equation for different values af Tempera-
ture profiles with Laguerre polynomials were calculated as in
previous study{34], while results with speed polynomials
were obtained using the expression

7

[3=3

1 : : : ' : T(X)/T1=[2/30(X) 1= @xe%{( B182) V2%,

+gY2 o 4 k o T+ o2+ —21phk
FIG. 1. Density profilesi(x) in units of (n,05)° vs x for hard Aiflaot aybigh [Br+ ag+n(x)"Jbo
spheres. Solid lines represent the results of the direct solution of the + 2/a0b('§1+ ,Bilzb'il)/(3)1/2n(x)}+ [2/3n(x)D]
Boltzmann equation for a Maxwellian source at infinity; the atom to
electron mass ratig is equal to(curvea) 1, (curveb) 5, (curvec)

10, (curved) =100; circles show a Monte Carlo simulation with a
Maxwellian source at infinity(curve €). Dashed line,o, from
LeCaine[32]. Triangles show a Monte Carlo simulation withda ~ Near the wall, the temperature of the electrong), differs
function source at infinity. from the temperature of the background gés, This result

§+n(x)‘2

X 2

(q+x)

—2D/n(x)]. (28
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100| T T T T T T T 0.8 LR | T T T TTITT L

10
i | 0.6 -

0.4 ~

0.1 Lol h Lo 1Tl 0.2//’_/’;;1’//_\_
0.01 0.10 1.00 I

T T T
LN

E(ev) | Il 1 II\IIII 1 1 IIIIIII 1 |
) 10 100 1000
FIG. 3. Momentum transfer cross sections. Data by Mozumder Ty(K)
[38] (dashed ling and results from Refl37] (solid line); helium 0 T
data are from Nesb¢B86)]. B

5

is consistent with the measurements obtained by BifBfdi
for diffusion cooling of electrons in gases. Also shown in

10
Fig. 2 are Monte Carlo results, shown as circles, which are in : 2
good agreement with the direct solution of the Boltzmann 8
equation. L :
The application to electron transport in He and Ar is
based on the momentum transfer cross sections for these 4
3
2

—_

log; o(8n)

gases shown in Fig. 3. The cross section for He is taken from 2 n
the calculations by Nosb¢86]. The solid curve in Fig. 3 is

the Ar cross section from Ref37], whereas the dashed - n=1 .
curve is the one from Mozumd¢s8]. We see that the cross

section for He has a weak dependence on energy, while the gl vt
cross sections in Ar exhibit large Ramsauer-Townsend 10 100 T,(K) 1000
minima.

The spatial eigenvalues that determine the nature of the FG. 4. Temperature variation of the eigenvalggof the Bolt-
transient solution near the boundary, K@), are shown in  zmann collision operatofA) He, y=7297.(B) Ar, y= 72818 solid
Figs. 4A) and 4B) for He and Ar, respectively. The value of |ines show calculations with =21 andN=11, while dashed lines
the scaling cross section, used to obtain the dimensionlesspresent calculations with=11 andN=11; os=1 A2.
form of the Fokker-Planck equation, is chosen equal td"1 A
It is important to note that the ordinate scale for Ar is loga-proaches asymptotically the linear hydrodynamic profile,
rithmic, and that there is a very rapid variation of the eigen-n®{(x) = —j(q+x)/D, obtained using Eq20). The extrapo-
values with temperature. A very pronounced deep minimumation lengthq is the intercept on the negativeaxis.
is found for the lower order eigenvalues, and it is shown later Figures %C) and D) illustrate the electron density pro-
how this behavior influences the nonequilibrium behaviorfiles in comparison with the asymptotic profile for electrons
near the boundary. By contrast, the variation of the eigenvalin Ar for two different Ar temperatures. As for helium we set
ues for He is much slower, and essentially linear except at, equal to 1 &. With increasing temperature, there are
the highest temperatures shown. some strong nonequilibrium effects arising from the

The electron density profile near the boundary is shown irRamsauer-Townsend minimum in the electron-Ar momen-
Figs. 5A) and §B) for electrons in He. These density pro- tum transfer cross section. At the lowest temperatre,
files are shown as function of dimensionless variabl€his  =10K, in Fig. 5C), the density profile exhibits a behavior
variable was determined with Ed4) assuming thatos.  similar to that obtained for helium. Presumably, only the low
= wd3 with d5=1 A%/ 7. We also calculate the density pro- energy portion of the momentum transfer cross section is
files using the hard sphere model. In this case the momentusampled, so that this behavior is characteristic of some effec-
transfer cross section from E() is equal torrd?, obtained  tive hard sphere cross section. With an increase in tempera-
from the requirement that the diffusion coefficient, obtainedture to 300 K[Fig. 5(D)], there is a profound change in the
using a hard sphere cross section, is equal to that obtainegbatial variation of the density profile in that the actual pro-
with the real cross section. Because the He cross section fide (solid curve$ does not approach the asymptotic behavior
weakly dependent on energy, the results with the real cros@ashed linesfor the range o shown. The reason for this
section(solid line) coincide with those obtained using the behavior is that the spatial eigenvalysge Fig. 4B)] de-
effective hard sphere cross section. The density profile aperease rapidly with increasing temperature. The transient so-
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FIG. 5. Electron-density pro-
— files n(x) (solid line) and n@3(x)
(dashed lingin units of (Nyos)°®
for electrons in helium(A) and
02 03 (B)] and argor{(C) and(D)] vs x.

X The temperaturel, is equal to
10 [(A) and(C)] 10 K [(B) and (D)]
ol 300 K, o=1A2 The helium
L cross section is from Nesbgs6]
8 and the argon cross sections are
7‘_ from (curve a) Mozumder [38]
L and (curve b) Ref.[37].
2°r
= 5 .
4_
3 —
2
1
0.0

lution decays very slowing with increasixgand persists for shown in Figs. 7 and 8 for He and Ar, respectivaldn/dx
many mean free paths; a result that was not anticipated. # unity in the hydrodynamic limit. As can be seen in Fig. 7,
comparison of Fig. &) with Fig. 5D) clearly shows the the nonequilibrium effects in this quantity persist for a frac-
effect of the Ramsauer-Townsend minimum in the crosgion of a mean-free-path for electrons in He. Figure 8 shows
section. a similar result for electrons in Ar, where the different curves
Figure @A) shows the electron temperature profiles fora—d are for increasing moderator temperature. The solid
electrons in He analogous to the results in Fig. 2. The eleceurve is for the cross section reported by Mozumpzs]
trons are uniformly cooled below the bath temperature owingvhereas the dashed curve is the cross section of [R&f.
to the nonequilibrium effects. The dashed curve, in Fig.Although the results persist for larger distances than for He,
6(A), shows the result using an equivalent hard sphere crosge do not find the very large nonequilibrium effects, as seen
section. By contrast, the results for Ar, shown in FigB  in the density profiles in Fig. 5.
exhibit both a cooling and heating, an effect arising from the We compare the results obtained using the Boltzmann
Ramsauer-Townsend minimum. The four sets of curves laequation with results of the Monte Carlo simulation for real
beleda—c in Figs. 6B) are for increasing moderator tem- cross sections in Figs. 9 and 10. The density profiles, calcu-
perature. The solid curve is for the cross section reported blated with the Boltzmann equation, are compared with the
Mozumder[38], whereas the dashed curve is the cross seddirect simulation results for electrons in Ar and He in Figs.
tion of Ref.[37]. Somewhat analogous cooling and heating9(A) and 9B), respectively. Lines and symbols, labeleday
effects for model cross sections were discussed by other aandb, represent the results with moderator temperature equal
thors[4]. We see from temperature profiles shown in Figs.to 100 and 300 K, respectively. The results obtained with the
6(A) and 6B) that the nonequilibrium effects for electrons in direct solution of the Boltzmann equation are represented by
Ar persist for larger distances from the boundary than foilines, while the Monte Carlo simulation results are shown by
electrons in He[This is a manifestation of the minima in the symbols. For argon, as moderator, a comparison is presented
eigenvalues shown in Fig(B).] However, these nonequilib- for two different elastic momentum transfer cross sections.
rium effects for the temperature profiles for electrons in ArThe solid line and filled symbols represent the results with
are essentially smaller than those found for the density prothe cross sections from R¢88], while the dashed lines and
files in Figs. %C) and §D). open symbols show the results with the cross sections from
A final measure of the nonequilibrium behavior in the Ref.[37]. As shown in Fig. 9, the curves calculated with the
boundary layer is the variation dbdn(x)/dx versusx  Boltzmann equation are in agreement with the Monte Carlo
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2.1 ; , . , .

._.
>
T
|

._.
n

Ddn(x)/dx

0.0 0.5 1.0 1.5

FIG. 8. Ddn/dx for electrons in argon v: solid and dashed
lines show results with cross section from R¢f8] and[37], re-
spectively; the argon temperatuifg is equal to(curve a) 10 K,
(curveb) 100 K, (curvec) 300 K, and(curved) 1000 K.

15 — T T
A
12 —
- 1 b
0.7 1 | 1 | 1 | 1 | 1 9 ]
0.0 0.3 0.6 0.9 1.2 1.5 = a
X = L i
FIG. 6. Temperature profileB(x)/T, vs x for electrons(A) He, 6 —
T,=300K; dashed lines show the results with effective hard sphere i ]
cross sectionsr=5.505 A2, while solid lines represent results with
cross section from Ref36] (B) Ar; solid and dashed lines show the 3 -
results with cross sections from Ref88] and[37], respectively; N N
the argon temperaturg,; is equal to(curvea) 10 K, (curveb) 100 0.0 0.2 0.4 0.6 0.8 1.0
K, (curvec) 300 K, and(curved) 1000 K. X
T | T I T | T | T
g
20~ B ‘i
I . / |
T T T 15 [ 4 _
20 - ~ T i
= ,
10— EEE"—
] ol
2 o
= iy
= 51 =) -
g . — I e |
IR U T R
| 0.0 0.2 0.4 . 0.6 0.8 1.0
FIG. 9. Density profiles obtained with the Boltzmann equation
are compared with Monte Carlo simulation results. Boltzmann

0.3 equation(solid lineg, Monte Carlo simulatioisymbols. (A), He;
the momentum transfer cross section is frgd6]. (B), Ar; solid
FIG. 7. Ddn/dx for electrons in helium v&. Cross section from lines and filled symbols show the results with cross section from
Nesbet[36]. The solid line, shows the effective hard sphere crossRef.[38], and dashed lines and open symbols represent results with
section,o=5.934 A2. The dashed line shows, =1000 K ando, cross section from Ref37]. The moderator temperatufg is equal
=1A2 to (curvea) 10 K and(curveb) 100 K.
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T,

T(x)IT,

FIG. 10. Temperature profiles obtained with the Boltzmann
equation are compared with the Monte Carlo simulation results

Designations and conditions are the same as in Fig. 9.
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designations as for density profiles. We see in FiggAl0
and 1QB) that reasonable agreement is obtained, but is not
as good as for the density distributions. This is acceptable as
the density is the zero moment of the distribution function,
whereas, the temperature is determined by the second mo-
ment for which there is a greater number of electrons with
energies in the high energy portion of the distribution
function.

IV. SUMMARY

A numerical solution of the Boltzmann equation with the
linear Lorentz-Fokker-Planck collision operator for the elec-
tron transport near the boundary is presented. The method of
solution involves the representation of the distribution func-
tion by transient and asymptotic portions, and their expan-
sion in basis functions. It was shown for a hard sphere cross
section that the convergence of the spatial eigenvalues of the
Boltzmann equation with the speed basis functions is consid-
erably faster in comparison to convergence with the Laguerre
basis functions. For electrons in Ar, it was also found that the
transient part of the solution can be important far from the
boundary over several mean free paths. This is attributed to
the Ramsauer-Townsend minimum in the momentum trans-
fer cross section. The transient solution decays relatively
quickly for electrons in He, for which the momentum trans-
fer cross section has a weak dependence on energy. The
results obtained with the direct solution of the Boltzmann
equation were compared with a Monte Carlo simulation, and
good agreement was obtained. The nonequilibrium effects
are large for electrons in Ar owing to the Ramsauer-
Townsend minimum in the momentum transfer cross section.
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