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Anomalous scaling of a passive scalar in the presence of strong anisotropy
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Field theoretic renormalization group and the operator product expansion are applied to a model of a passive
scalar quantityé(t,x), advected by the Gaussian strongly anisotropic velocity field with the covariance
o« 5(t—t")|x—x'|*. Inertial-range anomalous scaling behavior is established, and explicit asymptotic expres-
sions for the structure functiors,(r)=([ 6(t,x+r)— 6(t,x)]") are obtained. They are represented by super-
positions of power laws; the corresponding anomalous exponents, which depend explicitly on the anisotropy
parameters, are calculated to the first ordes in any space dimensianh In the limit of vanishing anisotropy,
the exponents are associated with tensor composite operators built of the scalar gradients, and exhibit a kind of
hierarchy related to the degree of anisotropy: the less is the rank, the less is the dimension and, consequently,
the more important is the contribution to the inertial-range behavior. The leading terms of théoelden
structure functions are given by the scdlegcton operators. For the finite anisotropy, the exponents cannot be
associated with individual operatofghich are essentially “mixed” in renormalizatipnbut the aforemen-
tioned hierarchy survives for all the cases studied. The second-order structure fucisostudied in more
detail using the renormalization group and zero-mode techniques; the corresponding exponents and amplitudes
are calculated within the perturbation theorieginl/d, and in the anisotropy parameters. If the anisotropy of
the velocity is strong enough, the skewness faﬁ@/@’z increasesgoing down towards the depth of the
inertial range; the higher-order odd ratios increase even if the anisotropy is weak.
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[. INTRODUCTION number of recent works confirms this picture for teeen
correlation functions, thus giving some quantitative support
Recently, much effort has been invested to understantb the aforementioned hypothesis on the restored local isot-
inertial-range anomalous scaling of a passive scalar. Both thepy of the inertial-range turbulence for the velocity and pas-
natural and numerical experiments suggest that the violatiosive fields[15,17—22. More precisely, the exponents de-
of the classical Kolmogorov—Obukhov thedr,2] is even  scribing the inertial-range scaling exhibit universality and
more strongly pronounced for a passively advected scaldrnierarchy related to the degree of anisotropy, and the leading
field than for the velocity field itself; see, e.d3-5] and  contribution to an even function is given by the exponent
literature cited therein. At the same time, the problem offrom the isotropic shel[15,16,18—20,2R Nevertheless, the
passive advection appears to be easier tractable theoreticalBnisotropy survives in the inertial range and reveals itself in
The most remarkable progress has been achieved for the sodd correlation functions, in disagreement with what was
called Kraichnan’s rapid-change modél: for the first time, expected on the basis of the cascade ideas. The so-called
the anomalous exponents have been calculated on the baskewness factor decreases down the scales much slower than
of a microscopic model and within regular expansions inexpected 3,4,10,11, while the higher-order odd dimension-
formal small parameters; see, e.fj7—13 and references less ratios(hyperskewness, ejcincrease, thus signalling of
therein. persistent small-scale anisotropy5,17,19. The effect
Within the “zero-mode approach,” developed|[ii—11], = seems rather universal, being observed for the sEdfdand
nontrivial anomalous exponents are related to the zero modesctor [19] fields, advected by the Gaussian rapid-change
(unforced solutionsof the closed exact equations satisfied velocity, and for the scalar advected by the two-dimensional
by the equal-time correlations. Within the approach based ohlavier-Stokes velocity fielf17].
the field theoretic renormalization grodRG) and operator In the present paper, we study the anomalous scaling be-
product expansiofOPE), the anomalous scaling emerges ashavior of a passive scalar advected by the time-decorrelated
a consequence of the existence in the model of compositetrongly anisotropic Gaussian velocity field. In contradistinc-
operators witmegativecritical dimensions, which determine tion with the studies of4,10,11,1%, where the velocity was
the anomalous exponer|ts2—-1§. isotropic and the large-scale anisotropy was introduced by
Another important question recently addressed is the efthe imposed linear mean gradient, the uniaxial anisotropy in
fects of large-scale anisotropy on inertial-range statistics obur model persists for all scales, leading to nonuniversality
passively advected fieldg10,11,15-20 and the velocity of the anomalous exponents through their dependence on the
field itself[21,22. According to the classical Kolmogorov— anisotropy parameters.
Obukhov theory, the anisotropy introduced at large scales by The aim of our paper is twofold.
the forcing (boundary conditions, geometry of an obstacle, First, we obtain explicit inertial-range expressions for the
etc) dies out when the energy is transferred down to thestructure functions and correlation functions of the scalar
smaller scales owing to the cascade mechari$]. A  gradients and calculate the corresponding anomalous expo-
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nents to the first order of the expansion. Vi0=voA0+f, V=d,+v;0;, (1)

It was argued on phenomenological ground$28] that
the anomalous exponents in the Gaussian model can depeffhere 9,=d/ot, d,=a/dx;, v is the molecular diffusivity
on more details of the velocity statistics than the exposent coefficient,A is the Laplace operatov(x) is the transverse
In the case at hand, the exponents become nonunlvers(ftljwmg to the incompressibilityvelocity field, andf=f(x)

through the dependence on the parameters describing the §8-5 Gayssian scalar noise with zero mean and correlator
isotropy of the velocity field. Owing to the anisotropy of the

velocity statistics, the composite operators of different ranks PN\ — St 47 T
mix strongly in renormalization, and the corresponding (FOf(x))=a(t=t")C(r /), r=[x=x'|. @
matices which are neither diagonal nor ianguarcon-  Here / 1 an integral scale related to the scalar noise and
trast with the case of large-scale anisotrppy the language C(r/ /) is a function f|n.|te as’—ce. With no loss Of. gener-
of the zero-mode technique this means that §@d) de-  &lity, we takeC(0)=1 in what follows. The velocity(x)
compositions of the correlation functiofsmployed, e.g., in obeys a Gaussian distribution with zero mean and correlator
Refs.[20]) do not lead to the diagonalization of the differ-
ential operators in the corresponding exact equations. , S(t—t")
In spite of the mixing and nonuniversality, the hierarchy ~ (vi(X)vj(X )>:D0WJ dk Tjj (k)
obeyed by the exponents for the vanishing anisotropy sur- .
vives when the anisotropy becomes strong. Furthermore, the X (K2+m?) 9272 exd ik(x—x")].
leading exponents of the even structure functions appear less
sensitive to the anisotropy than the subleading ones. These ()
facts are the main qualitative results of the paper. . . ) )
Another scope of the paper is to give the detailed accouri the isotropic case, the tensor quantity(k) in Eq. (3) is
of the RG approach and to compare the results obtainet®ken to be the ordinary transverse projectdr; (k)
within both the RG and zero-mode techniques on the ex= Pi;(k)= & —kik; /k? k=|k|, D¢>0 is an amplitude fac-
ample of the second-order structure function. tor, 1/m is another integral scale, anlds the dimensionality
The paper is organized as follows. In Sec. Il, we give theof the x space; 8<e<2 is a parameter with the reéol-
precise formulation of the model and outline briefly the gen-mogoroy value e =4/3. The relations
eral strategy of the RG approach. In Sec. Ill, we give the
field theoretic formulation of the model and derive the exact Dolvo=go=A® (4)
equations for the response function and pair correlator. In
Sec. IV, we perform the ultraviol¢JV) renormalization of  define the coupling constam, (i.e., the formal expansion
the model and derive the corresponding RG equations witparameter in the ordinary perturbation thecayd the char-
exactly known RG functions £ functions and anomalous acteristic UV momentum scal&. In what follows, we shall
dimensions These equations possess an infrai®] stable  not distinguish the two IR scales, setting=1//"
fixed point, which establishes the existence of IR scaling The issue of interest is, in particular, the behavior of the
with exactly known critical dimensions of the basic fields equal-time structure functions
and parameters of the model. In Sec. V, we discuss the so-
lution of the RG equations for various correlation functions Sa(r)={[6(t,x)— 6(t,x")IV) (5)
and determine the dependence of the latter on the UV scale.
In Sec. VI, we discuss the renormalization of various com-n the inertial range, specified by the inequalities\ &r

posite operators. In particular, we derive the one-loop resultc1/m=/". In the isotropic case, the odd functioSs,.

for the critical dimensions. of the tensor operators, con-anish, while forS,, dimensionality considerations give
structed of the scalar gradients. In Sec. VII, we show that

these dimensions play the part of the anomalous exponents, Son(r) =1 "r2"Ryn(Ar,mr), (6)

and present explicit inertial-range expressions for the struc-

ture functions and correlations of the scalar gradients. In Se‘\"ﬂ/hereRz are some functions of dimensionless parameters
. . . n .

VIil, we give the detailed comparison of the RG and zero-|, yrinciple, they can be calculated within the ordinary per-

mode techniques on the example of the second-order stiugqrhation theory(i.e., as series i), but this is not useful

ture function, compare the representation obtained using R, g1\,dying inertial-range behavior: the coefficients are sin-

and OPE with the ordinary perturbation theory, and calculatg, o+ in the limitsAr— o and/ormr—0. which compensate

the amplitude factors in the corresponding power laws. The, o smaliness ofg, (assumed in ordinary perturbation

results obtained are reviewed in Sec. IX. theory, and in order to find correct IR behavior we have to
sum the entire series. The desired summation can be accom-
plished using the field theoretic renormalization graR6)

and operator product expansi@@PE); see Refs[13-15.

The RG analysis consists of two main stages. On the first
The advection of a passive scalar figdfx)=6(t,x) in  stage, the multiplicative renormalizability of the model is
the rapid-change model is described by the stochastic equdemonstrated and the differential RG equations for its corre-
tion lation functions are obtained. The asymptotic behavior of the

II. DEFINITION OF THE MODEL. ANOMALOUS
SCALING AND “DANGEROUS”
COMPOSITE OPERATORS
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functions like Eq.(5) for Ar>1 and any fixednr is given = The expressioif9) agrees with the results obtained earlier in
by IR stable fixed points of the RG equations and has th¢8,9] using the zero-mode techniques; tBés?) contribu-
form tion to A, is obtained in13].
In the theory of turbulence, the singulardependence of
Son(r)=vo "r2(Ar) " "™Ry(mr), Ar>1,  (7)  correlation functions with the exponents nonlinearniris
referred to as anomalous scaling, ang themselves are
with certain, as yet unknown, “scaling function®,,(mr).  termed the anomalous exponents; see, El¢2]. The above
In the theory of critical phenomeng24,25, the quantity discussion shows that the anomalous expon@ntthe sense
A[S;n]=—2n+ v, is termed the “critical dimension,”and of the turbulence theojyare not simply related to the
the exponenty,,, the difference between the critical dimen- anomalous or critical dimensiorig1 the sense of the theory
sionA[S,,] and the “canonical dimension*2n, is called of phase transitionsof the structure functions themselves;
the “anomalous dimension.” In the case at hand, the lattethey are determined by the critical dimensions of certain
has an extremely simple formy,=ne. Whatever be the composite operators entering into the corresponding OPE.
functions R,(mr), the representatioi7) implies the exis- The OPE and the concept of dangerous operators in the
tence of a scalindscale invariancein the IR region (r stochastic hydrodynamics were introduced and investigated
>1, mr fixed) with definite critical dimensions of all “IR in detail in[28]; see alsd26,27. For the Kraichnan model,
relevant” parametersA[S,,]=—2n+ne, A,=—1, A, the relationship between the anomalous exponents and di-
=1 and fixed “irrelevant” parameters, andA . This means mensions of composite operators was anticipatdd+#9,12
that the structure function$5) scale asS,,—\2[5nlS, — within certain phenomenological formulation of the OPE, the
upon the substitutionn— \*mm, r—\%rr. In general, the so-called “additive fusion rules,” typical to the models with
exponentA[S,,] is replaced by the critical dimension of the multifractal behavior{29]. A similar picture has been dis-
corresponding correlation function. This dimension is calcucussed 30,31 in connection with the Burgers turbulence
lated as a series in, so that the exponent plays the part and growth phenomena.

analogous to that played by the parameter4—d in the In a number of papers, e.gi4,10,11,13 the artificial
RG theory of critical phenomena, whitéis an analog of the  stirring force in Eq(1) was replaced by the terniny), where
correlation length/’=r . ; see[24,25. h is a constant vector that determines the distinguished di-

On the second stage, the smalt behavior of the func- rection and therefore introduces large-scale anisotropy. The
tions R,,(mr) is studied within the general representationanisotropy gives rise to nonvanishing odd functic®g ;.
(7) using the OPE. It shows that, in the limitr—0, the The critical dimensions of all composite operators remain
functionsR,,(mr) have the asymptotic forms unchanged, but the irreducible tensor operators acquire non-
zero mean values and their contributions appear on the right
hand side of Eq(8); see[15]. This is easily understood in
Ron(mr) =2, Ce(mr)(mr)*IF, (8 the language of the zero-mode approach: the nivisel the
- term (hv) do not affect the differential operators in the equa-
tions satisfied by the equal-time correlation functions; the

whereCp are coefficients regular imr. In general, the sum- zero modes(homogeneous solutiongoincide in the two
mation is implied over all possible renormalized composite 9

: cases, but in the latter case the modes with nontrivial angular
operatorsF allowed by the symmetrymore precisely, see dependence should be taken into account
Sec. VII); A[F] being their critical dimensions. Without loss P ’

of generality, it can be assumed that the expansion is made | The direct calculation to the ord@(z) has shown that
g Y, b ffe leading exponent associated with a given rank contribu-

irreducible tensors; in the isotropic case only scalar operatorfOn to Eq. (1) decreases monotonically with the rafis]

have nonvanishing mean values and contribute to the rlgr]ﬁence, the leading term of the inertial-range behavior of an

hand side of Eq(8). ; o ) h
The peculiarity of the models describing turbulence is the:vEN structure function is determined by the same exponent

existence of the so-called “dangerous” composite operator%lo)’ while the exponents related to the tensor operators de-

with negativecritical dimensiond 13—15,26,27. Their con- ermine only subleading corrections. A similar hierarchy has

tributions into the OPE give rise to a singular behavior of thebeen established recently in RELS] (see alsd19) for the

scaling functions fomr—0, and the leading term is given magnetic field advected passively by the rapid-change veloc-

) e . ; ity in the presence of a constant background field, aj@2h
py the operator with m'”'ma“[F]- The leading cqntrlbu- within the context of the Navier—Stokes turbulence.
tions to S,, are determined by scalar gradients,

Below we shall take the velocity statistics to be aniso-
— X 3 n
=(9109;6)" and have the form tropic also at small scales. We replace the ordinary trans-
verse projector in Eq(3) with the general transverse struc-

~ P - Nen(2—¢) A S "
San(r) =Dy ' (mr)=n, ©) ture that possesses the uniaxial anisotropy:

\évng:]eb?e critical dimensiona,, of the operatord-, are Tij(k)Za(l,/f)Pij(k)+b(l//)ﬁi(k)ﬁ,-(k). (11)

5 Here the unit vecton determines the distinguished direction

An=—2n(n—1)z/(d+2)+0(e7) (n?=1), ni(k)=P;;(k)n;, and ¢ is the angle between the
=-2n(n—1)e/d+0O(1/d?). (100 vectorsk andn, so that k) =k cosy [note that k)= 0].
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The scalar functions can be decomposed into the Gegenbaueisented as functional averages with the weightSeRp, so
polynomials (the d-dimensional generalization of the Leg- that the generating functionals of toteG(A)] and con-
endre polynomials, see R¢B9]): nected W(A)] Green functions of the problem are given by
the functional integral

a( w)=|=§10 aPy(cosy), b ¢)=|=20 biP2 (cosy)
12 G(A)=expW(A) = f DO exgS(®)+AD]  (16)

(we shall see later that odd polynomials do not affect the

scaling behavigr The positivity of the correlatoid) leads to  jith arbitrary source® =A% ,A?, A" in the linear form
the conditions

a($)>0, a(y)+b(y)sirf y>0. 19 Ae= J dX[A”(x) 8" (x) +A(x) 6(x) + Al(X)vi(x)].
In practical calculations, we shall mostly confine ourselves

with the special case The model(15) corresponds to a standard Feynman dia-

grammatic technique with the triple vertex 6’(vd)60
=0'Vjv;0 with vertex factor(in the momentum-frequency

Then the inequalitie§13) reduce top, ;> — 1. We shall see representation

that this case represents nicely all the main features of the

general mode(11). Vi=—ik;, (17
We note that the quantiti€d 1), (14) possess the symme-

try n——n. The anisotropy makes it possible to introduce

mixed correlatovf)xcns(t—t")C'(r//) with some func-

tion C'(r//) analogous tdC(r//’) from Eq. (2). This vio-

lates the evenness im and gives rise to nonvanishing odd

functionsS,,,, ;. However, this leads to no serious alterations

in the RG analysis; we shall discuss this case in Sec. VII, and (060")0=(0"0)5 =(—iw+wk?) "1,

for now we assumévf)=0. (18
In a number of papers, e.432-36, the RG techniques . 2, 2 a1 Lo

were applied to the anisotropically driven Navier—Stokes (06)0=C(k)(@ ™+ vok™) ™%, (6"6")0=0,

equation, including passive advection and magnetic turbu-

lence, with the expressidid4) entering into the stirring force whereC(k) is the Fourier transform of the functidd(r//)

correlator. The detailed account can be found in R27],  from Eq.(2) and the bare propagatorv),=(vv) is given by

where some errors of the previous treatments are also coEq. (3) with the transverse projector from Eq4.1) or (14).

rected. However, these studies have up to now been limited The pair correlation functioné®®) of the multicompo-

to the first stage, i.e., investigation of the existence and stanent field ®={6’,0,v} satisfy standard Dyson equation,

bility of the fixed points and calculation of the critical di- which in the component notation reduces to the system of

mensions of basic quantities. Calculation of the anomalousvo equations, cf[1]

exponents in those models remains an open problem.

Tij(K)=(1+py co ¢)P;; (k) + poni(k)n; (k). (14)

wherek is the momentum flowing into the vertex via the
field 6. The bare propagators in the momentum-frequency
representation have the form

Gfl((u,k)z—iw-l—vokz—E,,,ﬁ(w,k), (193
IIl. FIELD THEORETIC FORMULATION AND THE
DYSON-WYLD EQUATIONS
. . . . D(w,k)=|G(w,K)|[![C(K)+Zy g (w,k)], (19D
The stochastic problertil)—(3) is equivalent to the field
theoretic model of the set of three fields={6’,6,v} with

action functional whereG(w,k)=(6060") andD(w,k)=(606) are the exact re-
sponse function and pair correlator, respectively, apd,,
S(P)=0'D,0'[2+ 0’[—&t—(vﬂ)+vOA]a—va’lv/Z 2,4 are self-energy operators represented by the corre-

(15) sponding 1-irreducible diagrams; all the other functi@ns;
in the model(15) vanish identically.

The first four terms in Eq.15) represent the Martin—Siggia— The feature characteristic of the models like ELH) is
Rose-type action for the stochastic probl€ty (2) at fixedv ~ that all the skeleton multiloop diagrams entering into the
(see, e.g.[24,25)), and the last term represents the Gaussiarself-energy operator ,,, 244 contain effectively closed
averaging ovev. HereD 4, andD, are the correlator@®) and  circuits of retarded propagato(®6’) (it is crucial here that
(3), respectively, the required integrations oxer(t,x) and  the propagatofvv), in Eq. (3) is proportional to thes func-
summations over the vector indices are implied. tion in time) and therefore vanish.

The formulation(15) means that statistical averages of Therefore the self-energy operators in Et) are given
random quantities in stochastic probléfi—(3) can be rep- by the one-loop approximation exactly and have the form
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Tij(q)
20’9(w7k) = e SR Dok k / / 2+m2)d/2+5/2 G(wl7ql)1 (203)
_ Lo Tij (q) "o
Buoek) = <= =Dk [ 52 [ G D) (20b

whereq’=k—q. The solid lines in the diagrams denote the (note thats;S;;=0). For 0<e <2, Eqgs.(22)—(24) allow for
exact propagator$dd’) and (66), the ends with a slash the limit m—0: the possible IR divergence of the integrals at
correspond to the field’, and the ends without a slash cor- q=0 is suppressed by the vanishing of the expressions in the
respond tav; the dashed lines denote the bare propag&er square brackets. For the isotropic cdise., after the substi-
the vertices correspond to the factar). tution T;;— Pj;) EQ. (23) coincides(up to the notatiopwith

The integrations ovew' in the right hand sides of Egs. the weII known equation for the equal-time pair correlator in
(200 give the equaltime response functio5(q) the model[6].
=(1/27)fdw’ G(w’,q) and the equal-time pair correlator ~ Equation(21) will be used in the next section for the
D(q)=(1/27)fdw’'D(w’,q); note that both the self-energy exact calculation of the RG functions; solution of Eg3)
operators are in fact independent®fThe only contribution ~ will be discussed in Sec. VIl in detail.
to G(q) comes from the bare propagato#6’), from Eq.
(18), which in thet representation is discontinuous at coin-

cident times. Since the correlat@), which enters into the V. RENORMALIZATION, RG FUNCTIONS, AND RG

. . L ; EQUATIONS
one-loop diagram foi% 4 ,, is symmetric int andt’, the
response function must be definedatt’ by half the sum of The analysis of the UV divergences is based on the analy-
the limits. This is equivalent to the conventioG(q) sis of canonical dimensions. Dynamical models of the type
=(1/27) fdo'(—ie’+v49%) 1=1/2 and gives Eqg. (15), in contrast to static models, have two scales, so that
the canonical dimension of some quantfy(a field or a
Dokik; dq Tij(a) parameter in the action functionas described by two num-
2y plwk)=— 2 f a2 2azren 2D bers, the momentum dimensidfl and the frequency dimen-
(2m)? (g*+m?)¥2te ! quericy

_ _ _ siond?. They are determined so th[alF]~[L]*d§[T]*doF”,
The integration of Eq(19b) over the frequency givesa  whereL is the length scale and is the time scale. The
closed equation for the equal-time correlator. Using®4)  dimensions are found from the obvious normalization condi-

it can be written in the form tions df=—d=1, d?=d?=0, d<=d=0, d*=—-d¢=1
q T and from the requirement that each term of the action func-
q ij(d tional be dimensionlesgvith respect to the momentum and
2 — + . f ) . .
2vok™D (k) =C(k) + Dokikj (27)9 (g% +m?)d2tel2 frequency dimensions separatelyrhen, based orui'é and
, ¢, one can introduce the total canonical dimensihn
X[D(g")=D(k)]. (22) =dk+2d¢ (in the free theoryg,xA), which plays in the

theory of renormalization of dynamical models the same role
s the conventionalmomentum dimension does in static
problems.

The dimensions for the modé€l5) are given in Table |,
including the parameters which will be introduced later on.
From Table | it follows that the model is logarithmithe

Equation(22) can also be rewritten as a partial differential
equation for the pair correlator in the coordinate representa
tion, D(r)=(6(t,x) 6(t,x+r)) (we use the same notatid@n
for the coordinate function and its Fourier transfgridoting
that the integral in Eq(22) involves convolutions of the
functions D(k) and DoT;;(q)/(g?+m?) %272 and replac-
ing the momenta by the corresponding derivativiés,— d,

and so on. we obtain: TABLE I. Canonical dimensions of the fields and parameters in

the model(26).

2vpd?D(r)+C(r//)+D¢S;j(r)#,;D(r)=0, (23

F 0 o' v v, vg Mu, A do 0 a, a
where the “effective eddy diffusivity” is given by o o d -1 -2 1 . 0
dq T, (@) g -12 12 1 1 0 0 0
— ] _ : _
0= Gm (el ORiaN] @9 e 1ol 1 0 1 e O
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coupling constany, is dimensionlegsat e=0, so that the Here aq is a new dimensionless unrenormalized parameter.
UV divergences have the form of the polesciiin the Green  The stability of the system implies the positivity of the total
functions. viscous contributionvok?®+ aro(nk)?, which leads to the
The total canonical dimension of an arbitrary inequality «g>—1. Its real(“physical”) value is zero, but
1-irreducible Green functiod'=(®---d),_; is given by this fact does not hinder the use of the RG techniques, in
the relation which it is first assumed to be arbitrary, and the equality
ap=0 is imposed as the initial condition in solving the equa-
dr=dk+2d¢=d+2-Ngdg, (25  tions for invariant variable¢see Sec. Y. Below we shall see
that the zero value ofyy corresponds to certain nonzero
value of its renormalized analog, which can be found explic-
itly.
For the action26), the nontrivial bare propagators in Eq.
(18) are replaced with

whereNg={N, ,N4,N,} are the numbers of corresponding
fields entering into the functiol', and the summation over
all types of the fields is implied. The total dimensidp is
the formal index of the UV divergence. Superficial UV di-
vergences, whose removal requires counterterms, can be
present only in those functions for which dr is a non-
negative integer.
Analysis of the divergences should be based on the fol- (66)0= C(k)
lowing auxiliary considerations. 0 | —iw+ vok?+ agro(nk)?|?”
(i) From the explicit form of the vertex and bare propa-
gators in the mode(15) it follows that Ny —Ny=2N, for After the extension, the model has become multiplica-
any l-irreducible Green function, wheMy=0 is the total tively renormalizable: inclusion of the counterterms is repro-
number of bare propagato(g6), entering into the function duced by the inclusion of two independent renormalization
(obviously, no diagrams witltN,<O can be construct¢d constantsZ; , as coefficients in front of the counterterms.
Therefore, the differencdl, —N, is an even non-negative This leads to the renormalized action of the form
integer for any nonvanishing function.
(i) If for some reason a number of external momentaSg(®)=0'D ,0'/12+ 6'[ — d;— (V) + vZ1A + avZ,(nd)?]6
occurs as an overall factor in all the diagrams of a given _1
Green function, the real index of divergendg is smaller —VvD,"vI2, (28)
than dr by the corresponding numbéthe Green function
requires counterterms only @ is a non-negative integer
In the model(15), the derivatived at the vertexd’ (vd) 6 can
be moved onto the field" by virtue of the transversality of vo=vZ,, Qo=0u‘Zy, ao=aZ,. (29)
the fieldv. Therefore, in any 1l-irreducible diagram it is al-
ways possible to move the derivative onto any of the externaljere 4 is the reference mass in the minimal subtraction
“tails” 6 or 9’, which decreases the real index of diver- (MS) Scheme' which we a|WayS use in what fo”ovws,g'
gence:dr=dr—N,—N, . The fieldsd, ¢’ enter into the and « are renormalized counterparts of the corresponding
counterterms only in the form of derivative®, 96’. bare parameters, and the renormalization constahts
From the dimensions in Table | we findk=d+2—N,  =Z(g,a;p;,,e,d) depend only on the dimensionless pa-
+Ny—(d+1)Ny and dp=(d+2)(1-Ny)—N,. It then rameters. The correlatd8) in Eq.(28) is expressed in renor-
follows that for anyd, superficial divergences can exist only malized variables using Eq&29). The comparison of Egs.
in the 1-irreducible functiong¢’6---6), ; with N,,=1  (26), (28), and(29) leads to the relations
and arbitrary value oN,, for which dr=2, d{=0. How-
ever, all the functions witN,>N, vanish(see aboveand 2,=2,, Z,-2,Z,, Z4~Z,'. (30
obviously do not require counterterms. We are left with the
only superficially divergent functiofé’ ), _; ; the corre- The last relation in Eq(30) results from the absence of
sponding counterterms must contain two symholand in renormalization of the contribution witlb,, so thatD,
the isotropic case reduce to the only structafd 6. In the ~ =Jovo=0gu°’v; see Eq(4). No renormalization of the fields,
presence of anisotropy, it is necessary to also introduce ne@hisotropy parameters and the “massY is required, i.e.,
counterterm of the form®’(nd)?6, which is absent in the Ze=1 for all ®, and so on.
unrenormalized action functionél5). Therefore, the model The relation S(P,e))=Sg(P,e,u) (where e
(15) in its original formulation is not multiplicatively renor- ={v0,9o,ao} is the complete set of bare parameters, and
malizable, and in order to use the standard RG techniques #{»,0,«} is the set of their renormalized counterpafisr
is necessary to extend the model by adding the new contrihe generating functionaV(A) in Eq. (16) yields W(A, &)
bution to the unrenormalized action: =Wg(A,e,u). We useD,, to denote the differential opera-
tion ud, at fixede, and operate on both sides of this equa-
S(®)=0'D 40" 12+ 0'[ — ;— (V) + voA + agre(nd)?] 0 tion with it. This gives the basic RG differential equation

(00")o=(0"0)} =(—iw+ vok?+ agre(nk)?) L,

(27)

or, equivalently, to the multiplicative renormalization of the
parameters/y, go, andag in the action functional(26):

—vD, 'v/2. (26) DraWr(A,e,1)=0. (3D)
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Here Dy is the operatiorD,, expressed in the renormalized &.” We substitute Eqs(29), (30) into Egs.(34), (35 and

variables
DRGED,U,_FBQ&QJ’_ﬁaﬁa_ YVDV ) (32)

where we have writtefD,=xd, for any variablex, and the

RG functions(the 8 functions and the anomalous dimension

v) are defined as
7e(9,0)=D,InZ¢ (333

for any renormalization constadi: and

By(9,0)=D,9=0(—e—vy)=09(—e+7,)=0(—e+ 1),
(33h)

Bu(9,0)=D,a=—ay,=a(y1—y,). (330

The relation betweeg, andy, in Eq. (33b) results from the
definitions and the last relation in E(BO).

Now let us turn to the calculation of the renormalization
constant¥, ,in the MS scheme. They are determined by the

requirement that the Green functidd=(6'6), when ex-

pressed in renormalized variables, be UV finite, i.e., have no

poles ing. It satisfies the Dyson equation of the form

G Hw,k)=—iw+vek?+ agro(nk)2—2 y y(w,k), (34
which is obtained from Eq19a with the obvious substitu-
tion vok?— vok?+ agro(nk)?; the self-energy operat® , ,
is given by the same expressi(@i). With T;; from Eq.(14)
the integration in Eq(21) yields

pX (k)——m[(d—l)(d+2)k2+ (d+1)k?
00T 2d(d+2) P1
+pok?=2p1(nk)?+(d*=2)pp(nk)®],  (39)
where we have written
dq 1 I'(e/l2)m™®
J(m)zf = .
(2m)? (q*+m?) Y22 (47) 92T (dI2+ £12)
(36)
In deriving Egs.(35), (36), we used the relations
qid; S
| dat@ 232 data),
q
(37)
4i9;qi9p  Sijoipt 5ip5|j+5i|5pjf
J 0 T~ BT f da o)

The renormalization constanfs , are found from the re-

chooseZ, , to cancel the pole ig in the integrald(m). This
gives

gCqy

Z,=1- m[(d— 1)(d+2)+p(d+1)+p,],

(38)
Zom1- o O [ h b ol 2)]
2 2d(d+2)as- P17 P2 '
where we have written Cq=S;/(27% and Sy

=279T(d/2) is the surface area of the unit sphere in
d-dimensional space.

For the anomalous dimension yl(g)zﬁﬂln Z;
=BydyInZ; from the relations(33b) and (38) one obtains
(note thatZ, is independent o)

_ —&Dy Inz,

= 9% (4= 1)(d+2)+ py(d+ 1)+ py)
_Zd(d+2) P1 P2l

(39
and for y,(g,@) =D, In Zy=(Bydy+ B.d.)In Z, one has

[(_8+ 71)D9+ ‘yl)Da]m Zz _ _SDg In 22
1+D,InZ, - 1+D,InZ,

'}/2(9,0’):

gCy

= 2d(d—+2)a[_2pl+p2(d2_2)]

(40

[note that Oy+D,)In Z,=0]. The cancellation of the poles

in £ in Egs.(39), (40) is a consequence of the UV finiteness
of the anomalous dimensiong ; their independence af is

a property of the MS scheme. Note also that the expressions
(38)—(40) are exact, i.e., have no corrections of orgémand
higher; this is a consequence of the fact that the one-loop
approximation(21) for the self-energy operator is exact.

The fixed points of the RG equations are determined from
the requirement that all the beta functions of the model van-
ish. In our model the coordinates. ,«, of the fixed points
are found from the equations

Bg(g* 1@y )= B0y ) =0,

with the beta functions from Eq$§33). The type of the fixed
point is determined by the eigenvalues of the matflx
={Q=3dBi g}, whereg; denotes the full set of the beta
functions andy, is the full set of charges. The IR asymptotic
behavior is governed by the IR stable fixed points, i.e., those
for which all the eigenvalues are positive. From the explicit
expressiong39), (40) it then follows that the RG equations

(41

quirement that the functio®’ §) expressed in renormalized ©f the model have the only IR stable fixed point with the
variables be finite fors—0. This requirement determines coordinates

Z,, up to an UV finite contribution; the latter is fixed by the
choice of a renormalization scheme. In the MS scheme all

renormalization constants have the form “1only poles in

c— 2d(d+2)e
9+ M= (d=1)(d+ 2)+ po(d+ 1)+ p,’
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—2py+py(d®—2) sides of it satisfy the RG equation, and because (E6). at
ay = (A—1)(d+2) Fpy(d+ 1)ty (42 ,ur:.1' coincides with Eq{(29) owing to the normalization
P1 P2 conditions.

For this point, both the eigenvalues of the mafiixare equal In general, the largeur behavior of the invariant vari-
to &; the valuesy* =y5=y*=¢ are also found exactly ables is governed by the IR stable fixed poigt-g, , «
from Egs. (33) [here and below,y:=ye(g, ,a,)]. The % for ur—o. However, in multicharge problems one

fixed point(42) is degenerate in the sense that its coordinate@as to take into account Fhat even when the IR point exists,
depend continuously on the anisotropy parametes For- not every phase trajectofy.e., solution of Eq(46)] reaches

mally, p;, can be treated as the additional coupling Con_it in the limit ur—oo. It may first pass outside the natural

. . ~ . region of stability(in our caseg>0, a>—1) or go to in-
stants. The corresponding beta functighs="D,,p, , vanish g v 9 « )org

denticall ing to the fact th ; lized finity within this region. Fortunately, in our case the con-
Identically owing to the fact thap, , are not renormalized. stantsZp entering into Eq(46) are known exactly from Egs.

Therefore the equation§; ;=0 give no additional con-(3g) "anq it is readily checked that the RG flow indeed
straints on the values of the parameters: at the fixed  o5ches the fixed point2) for any initial conditionsgy
point. >0, ap>—1, including the physical case,=0. Further-
more, the largeur behavior of the invariant viscosit; is
V. SOLUTION OF THE RG EQUATIONS. INVARIANT also found explicitly from Eq(46) and the last relation in
VARIABLES Eq. (30): v=Dgr¢/g—Dor¢/g, (we recall thatDy=gov).
The solution of the RG equations is discussed in RefsThen forur—o and any fixednr we obtain
[24-2§ in detail; below we confine ourselves to only the
information we need. =D n2=e)gn A
Consider the solution of the RG equation on the example San(1 ) =Dt Oy Lan(Dor 2 mn), - (47)
of the even different-time structure functions
where
Son(r, ) ={[0(t,x)— O(t" X' )]?™), r=x—x', r=t—t’.
43 Ean(Dorr 8, mr)=Ron(1Dorr ¥ mr,g, ,a,), (48)

It satisfies the RG equatioPreS,,=0 with the operator andA=—2+ 1y} =—2+¢ is the critical dimension of time.

Dre from Eq. (32) [this fact does not follow automatically . . .

. o . The dependence of the scaling functigy on its arguments
fmm Irzgﬁé?rgailiirz]gc;lv ngr)igtj)ressflflgﬁnl;?llsoi\gnlglits egbg;iderationsis not determined by the RG equatio@1) itself. For the
give ' y equal-time structure functiofb), the first argument of,, in

the representatio¥8) is absent:

Son(r, 1) =1 "r2 "Ry (uf, 7v/r?,mr,g, @), (44)
Son(r)=Dg "1 g £50(mn), (49
whereR,, is a function of completely dimensionless argu-
ments(the dependence ot &, p;, and the angle between where the definition of,, is obvious from Eq.(48). It is
the vectorsr andn is also implied. From the RG equation noteworthy that Eqs(47)—(49) prove the independence of
the identical representation follows, the structure functions in the IR rangargeur and anymr)
o o L of the viscosity coefficient or, equivalently of the UV scale:
Son(r,7)=(v) ""r?"Ry(1,7v/r%,mr,g,), (45  the parameterg, andv, enter into Eq(47) only in the form
of the combinatiorD ,=gqvq. A similar property was estab-
lished in Ref.[37] for the stirred Navier—Stokes equation

where the invariant variableg=€(,ur,e) satisfy the equa- i ,
— and is related to the second Kolmogorov hypothesis; see also

tion Dree=0 and the normalization conditioress=e at ur the discussion 27,28,

=1 (we recall thate={»,g,a,m} denotes the full set of " jot ys turn to the general case. l&fr,7) be some
renormalized parametgrsThe identitym=m is a conse- myltiplicatively renormalized quantitysay, a correlation
quence of the absence B, in the operatoDgrg OWiNg 0 fynction involving composite operators.e., F = ZF r with
the fact thatm is not renormalized. Equatio5) is valid  certain renormalization constadit . It satisfies the RG equa-

because both sides of it satisfy the RG equation and coinCidgyn of the form[ Dgg+ ye]Fr="0 with ¢ from Eq. (33.
for ur=1 owing to the normalization of the invariant vari- pimensionality considerations give

ables. The relation between the bare and invariant variables
has the form ”
FR(r,T):VdFr_dFRF(MryTV/rzymrig!a)r (50)

vo=vZ,(9), Go=0r °Zy(Q), ao=aZ,(g.a). (46)
wheredy anddg are the frequency and total canonical di-

Equation(46) determines implicitly the invariant variables as mensions of- (see Sec. IYandRg is a function of dimen-
functions of the bare parameters; it is valid because botlionless arguments. The analog of E4p) has the form
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F(r,7)=Z¢(g,a)Fg Critical dimensions of the sé&={F,} are given by the
. . o eigenvalues of the matriAr. The “basis” operators that
=Z:(g9,a)(v)%r 9 Re(1,7v/r?,mr,g, ). possess definite critical dimensions have the form
(51)

o _ . Fo25=2> U, 4F5, (55)

In the largewr limit, one hasZg(g,a)=const(Ar) ™ ’F; see, B

e.g.,[38]. The UV scale appears in this relation from E4).

Then in the IR range/Ar ~ ur large,mr arbitrary) Eq. (51)  where the matriXJg={U .4} is such that\f=UrArUtis

takes on the form diagonal.

Y In general, counterterms to a given operdtoare deter-
F(r,T):constA’VEDgFr*A[FlgF(DOTrAt,mr)_ (52) mined by all possible 1-irreducible Green functions with one

operator F and arbitrary number of primary fields

Here =(F(X)®(xq) ...DP(X2))1_ir- The total canonical dimen-
sion (formal index of UV divergencefor such function is

A[F]=Ap=df—Adg+yE, A=—2+e (53 given by
is the critical dimension of the functioR and the scaling dr=de— Ngdg (56)
function & is related toRg as in Eq.(47). For nontrivial yf |

the functionF in the IR range retains the dependence/on \jth the summation over all types of fields entering into the

or, equivalently, onv,. function. For superficially divergent diagrant; is a non-
negative integer, cf. Sec. IV.
VI. RENORMALIZATION AND CRITICAL DIMENSIONS Let us consider operators of the foréff(x) with the ca-
OF COMPOSITE OPERATORS nonical dimensiord= — N, entering into the structure func-

tions (5). From Table | in Sec. IV and Eq56) we obtain
dr=—N+N,—N,—(d+1)N,, and from the analysis of
the diagrams it follows that the total number of the fields
entering into the functiol’ can never exceed the number of
the fieldsé in the operato®" itself, i.e.,N,<N [cf. item (i)
Since the arguments of the fields coincide, correlatio n Sec. IV]. Therefore, the divergence can only exist in the

functions with such operators contain additional UV diver- unctlg_nsh V;’r']th TV:N*I‘)’_:(?’ and grgnrary_\(/)alu: ON:N*”t
gences, which are removed by additional renormalizatiorfOr whic € forma 'n“ ex \,{anls egr— - However, a
procedure; see, e.d.24,25. For the renormalized correla- east one oN, external “tails” of the field 6 is attached to

tion functions standard RG equations are obtained, whici Vertexé’(vd)é (it is impossible to construct a nontrivial,
describe IR scaling of certain “basis” operatdfswith defi- superficially divergent diagram of the desired type with all

nite critical dimensiona\r=A[F]. Due to the renormaliza- t_he ?Xtema' tails attached to the verué)_g at Ieas_,t one de-

tion, A[F] does not coincide in general with the naive sum'vVativé J appears as an extra factor in the diagram, and,

of critical dimensions of the fields and derivatives enteringconsequently, the real index of divergertieis necessarily

into F. As a rule, composite operators mix in renormaliza-n€gative. _

tion, i.e., an UV finite renormalized operateR has the form This means that the opgrgte'?‘ Jequires no counterterms

FR=F+ counterterms, where the contribution of the coun-at all, i.e., itis in fact UV finite,6"=Z[ §"]" with Z=1. It

terterms is a linear combination df itself and, possibly, then follows that the critical dimension @f'(x) is simply

other unrenormalized operators which “admix” % in  9iven by the expressiof3) with no correction fromyg and

renormalization. is therefore reduced to the sum of the critical dimensions of
Let F={F,} be a closed set, all of whose monomials mix the factors:

only with each other in renormalization. The renormalization N

matrix Ze={Z,,} and the matrix of anomalous dimensions A[67]=NA[6]=N(—1+&/2). (57)

Ye={7vap} for this set are given by

Any local (unless stated to be otherwjsmonomial or
polynomial constructed of primary fields and their deriva-
tives at a single spacetime poixt=(t,x) is termed a com-
posite operator. Examples aréV(x), [4;0(x)d;6(x)]N,
3;0(x)d;0(x), 0" (x)V 6(x) and so on.

Since the structure functior(§) or (43) are linear combina-
tions of pair correlators involving the operatdt¥, Eq. (57)
shows that they indeed satisfy the RG equation of the form
(31), discussed in Sec. V. We stress that the relatioh was

and the corresponding matrix of critical dimensioAs not cleara priori; in particular, it is violated if the velocity
={A,g} is given by Eq.(53), in which df anddg are un- field becomes nonsolenoidgl4].

derstood as the diagonal matrices of canonical dimensions of In the following, an important role will be also played by
the operators in questiofwith the diagonal elements equal the tensor composite operatods 6- - - 6(J;63;6)" con-

to sums of corresponding dimensions of all fields and derivastructed solely of the scalar gradients. It is convenient to deal
tives constituting=) and yf£ = ye(9, ,a,) is the matrix(54)  with the scalar operators obtained by contracting the tensors
at the fixed poini42). with the appropriate number of the vectars

FCF% ZogFS. ve=ZF'D,Zk, (54)
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FIN,p]=[(nd)0]°(9;00;0)", N=2n+p. (58

Their canonical dimensions depend only on the total number

of the fieldsé and have the fornd=0, dg=—N.
In this case, from Table | and Eq56) we obtaindp
=N,—N,—(d+1)N, , with the necessary conditiol,

PHYSICAL REVIEW E 63 016309

(61)

1

Here the solid lines denote thare propagatoK 66’ ), from
Eq. (27), the ends with a slash correspond to the fi¢ldand
the ends without a slash correspond &pthe dashed line

<N, which follows from the structure of the diagrams. It is denotes the bare propagai@®; the vertices correspond to
also clear from the analysis of the diagrams that the countethe factor(17).

terms to these operators can involve the figdd®’ only in

The first term is the “tree” approximation, and the black

the form of derivativesg6, 96’, so that the real index of circle with two attached lines in the diagram denotes

divergence has the formd;=dr—Ny,—Ny=—-N,—(d

the variational  derivative V(x;x;,X,)=8°F[N,p]/

+2)N,, . It then follows that superficial divergences can ex-96(X1) 36(x,). It is convenient to represent it in the form

ist only in the Green functions wittN,=N, =0 and any

Ny=<N, and that the corresponding operator counterterms re-y(

duce to the forn[N’,p’] with N’<N. Therefore, the op-

erators(58) can mix only with each other in renormalization,

and the corresponding infinite renormalization matrix
FIN.pI= 2 Zingy e prFRINY DT (59)
N’,p'

is in fact block-triangular, i.eZpy gy (n7,pr7=0 for N">N. It

is then obvious that the critical dimensions associated wit
the operators=[N,p] are completely determined by the ei-

genvalues of the finite subblocks wilY = N. In the follow-

2

[(na)P(a®)"],
(62

X;X1,X2) = 9 6(X—X1) 9 6(X = Xg)————
108,

wherea; is a constant vector, whicéifter the differentiation
is substituted withy, 8(x). The diagram in Eq(61) is written
analytically in the form

J Xm"'fdX4V(X;X11X2)<9(X1)9'(X3)>o<9(xz)9'(x4)>o

X (U i(X3)v1(X4) )0k O(X3) 9 0(Xa), (63

ing, we shall not be interested in the precise form of the basi®ith the bare propagators from Ed8), (27); the derivatives
operatorg55), we rather shall be interested in the anomalousappear from the ordinary vertex factaiks?).
dimensions themselves. Therefore, we can neglect all the el- In order to find the renormalization constants, we need not

ements of the matrix59) other thanZy g n,p'7 -

the entire exact expressidfd), rather we need its UV di-

In the isotropic case, as well as in the presence of largevergent part. The latter is proportional to a polynomial built

scale anisotropy, the elemertg, , [n,p’; Vanish forp<p’,

of N factorsg6 at a single spacetime poirt The neededN

and the blockZy p (n.p1) IS triangular along with the corre- gradients have already been factored out from the expression

sponding blocks of the matricd$r andAg from Eqgs.(55),

(63): (N—2) factors from the vertef62) and 2 factors from

(53). In the isotropic case it can be diagonalized by changinghe ordinary verticeg17). Therefore, we can neglect the
to irreducible operatorgscalars, vectors, and traceless ten-spacetime inhomogeneity of the gradients and replace them
sorg, but even for nonzero imposed gradient its eigenvalue®vith the constant vectora;. Expression(63) then can be
are the same as in the isotropic case. Therefore, the inclusioMritten, up to an UV finite part, in the form

of large-scale anisotropy does not affect critical dimensions >

of the operatorg58); see[15]. In the case of small-scale

anisotropy, the operators with different values mfmix
heavily in renormalization, and the mati@y ) (n,p] IS Nei-
ther diagonal nor triangular here.

Now let us turn to the calculation of the renormalization
constantsZy pj [n,pr] 1N -the one-_loop approximation. L_et
I'(x;0) be the generating functional of the 1-irreducible

Green functions with one composite operafdiN,p] from
Eq. (68 and any number of field®. Here x=(t,x) is the
argument of the operator amtlis the functional argument,
the “classical counterpart” of the random fieldl We are
interested in théN-th term of the expansion df(x; 6) in 6,
which we denotd™\(x; 6); it has the form

1
P06 0)= 7 [ e [ e 00w+ 000 FINp]
X(X)O(Xq) - -+ O(XN))1—ir - (60)

In the one-loop approximation the functidB0) is repre-
sented diagrammatically in the following manner:

aay [(na)P(a®)"]Xi; ki (64)

Ja;da;

where we have denoted

Xij,klzf dxsf dxg di{8(X) 0" (X3))0d;{B(X) 0" (X4))o
X{(vi(X3)vi(Xa))o, (65)

or, in the momentum-frequency representation, after the in-
tegration over the frequency,

X :&f dg giq; Ti(a)
ikl 21}0 (27T)d (q2+a(qn)2) (k2+m2)—d/2—s/2’

(66)

with Do from Eq.(3) and Ty, from Eq.(14). The tensoiX; i
can be decomposed in certain basic structures:

6
Xij,kl:g::l B<S{ (67)
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where B are scalar coefficients an8® are all possible
fourth rank tensors constructed of the vectorand Kro-

PHYSICAL REVIEW E63 016309

F
H1=(d=1+p;)Fo+[(d=1)p1—polg

necker delta symbols, and symmetric with respect to the per-

mutations within the pair$ij} and{kl}:
S'u k= O

S(js,)m:
(68)

(n nk5|+n n|5k+ njn|5ik+ njnk5i|)/4,

ij Okl » S(jz,{(lz(ﬁikﬁjl+5i|5jk)/21

oijniny Sl(j k= Oknin;,

|] kI
SPh=nin;ngn; .

It is now convenient to change from the tens(@§), (67) to
the scalar integraldg defined by the relations

Aszijzk:l Xij’k|S|(jS?k|, S= 1, e ,6 (69)

[it is obvious from Egs(67), (68) that the coefficient®\,
and Ag vanish identically by virtue of the relatiog, T.(q)

Fi 3F,
H3=(1+P2)F0+(_1+91_ZP2)F+(P2 Pl) d(d+2)"

F 3F,
Hy=(d— 1+P2)?+[(d—1)P1—Pz]m, (74)
Fqi 3F,
H6:(1+92)F+(_1+P1_2P2)m

157,
P2 P a2y (d T 4y

where we have denotdd,=F(1,1/2+n;d/2+n; — «).

In principle, all the hypergeometric functions entering
into Eqgs.(74) can be reduced to the only function, for ex-
ampleF3, but the coefficients then become too complex.

After quite lengthy but straightforward calculations, the

=0]. The UV divergence and the angular integration in Eqsquantity in Eq.(64) can be expressed through the coefficients

(66), (67) can be disentangled using the relations

Do
=2 J(M)Hs,

AS 2V0

(70

where the integral(m) from Eq.(36) contains a pole irx,
andHg are UV finite ands independent quantities given by
only the angular integrations:

B (L Y L 1L LT
"\ 1+ acoy < * \1+acogy <
(71
b _Tucosy \ o [ninT cos'y
* 1+ acoy S ®*\ 1+ acogy

where ¢ is the angle between the vectagsand n, so that
(ng)=qcosy, and the quantitied; and nin;T;; with T;;
from Eq. (14) depend only on/ (the dependence oth and
the anisotropy parameteps  is of course also implied The
brackets (---)s denote averaging over the unit

B, then throughAg, and finally throughHy:

D
2—12)J<m){Q1F[N,p—2]+Q2F[N,p]+Q3F[N,p+2]

+Q4F[N,p+41},

where we have substituteg back with the gradients; 6(x),
used the notatio58), and denoted

p(p—1)
(d-1)

(79

Q.= (Hs—Heg),

p(p—1) (N
Ta=1) P Hot T
X(Hl—Hg)-l—H4[—(N—2)+p(2d+3)]
+3He[(N—2)—p(d+2)]},

Q.= P H(N=p+d-1)

(76)

(N=p) (2N—2p+d—3)H,+Hs[(N—p)

Qa= (d— 1)(d+1){

d-dimensional sphere, which for a function dependent only

on ¢ takes on the form

d—1

()=
ll/ S Sd

f dysit iy, (72
0

with Sy=27%T(d/2). Finally, the change of variables
=cog y in the integralg71) gives:

Loyt ia—y)t
oy
0 (1+ay)

whereB is the Euler beta function arfdis the hypergeomet-
ric function, see, e.g[39]. This gives

=B(a,b)F(c,a;a+b;—a),
(73

X(d+3)+(d+2)(d—3)]+H,[(N-2)(d+3)
—p(3d+8)]+2Hg(d+2)[~3(N—2)+p(d+4)]},
(N=p)(N-p—2)
(d—1)(d+1)
+(d+2)(d+4)Hg].

Q4 [Hi—(d+2)(Hz+Hy)

The renormalization constan&y pj[n,pr; Can be found
from the requirement that the functig@l) after the replace-
ment F[N,p]—FR[N,p] with FR[N,p] from Eq. (59) be
UV finite, i.e., have no poles in, when expressed in renor-
malized variables using the formula@9). In the MS
scheme, the diagonal element has the f@m 5 n,p;=1
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+ only poles ing, while the nondiagonal ones contain only Furthermore, this minimal valuA[N,py] decreases mono-

poles. Then from Eqg61), (70), and(75) one obtains tonically asN increases for odd and even valueshbéepa-
rately, i.e.,
.. 96Cq ~9GCqy
Zinpiinp =1+ Q20 Zinpiinp-21= 7, Qu 0=A[2n,0]>A[2n+2,0], A[2n+1,1]>A[2n+3,1].
(77)
9 Cy gCy (81b

ZINpINp+21 T 75 Q3 ZINplINp+a]= 7, Q4 o _ _ N _

A similar hierarchy is demonstrated by the critical dimen-
sions of certain tensor operators in the stirred Navier—Stokes
turbulence; see Ref40] and Sec. 2.3 of27]. However, no
clear hierarchy is demonstrated by neighboring even and odd

with coefficientsQ; from Eq.(76) andC, from Eq.(38). The

corresponding  anomalous  dimensionsy pj [n7,p']
1

=ZiNp] [Nn,pn]bﬂz[w,p"] (n,pr have the form dimensions: from the relations
Yinpline = ~9 CaQ2/4, ¥inpiinp-21= ~9 CaQ1/4, e(d+2—4n)
(78) A[2n+1,1]—-A[2n,0]= W,
Yinplinp+21= —9 CaQ3/4,  vin,piiN,p+a]= —9 CaQa/4. (810
In contrast to exact expressio(38), the quantities in Egs. A[2n+2,0]—A[2n+1,1]= (2—d)
(77), (78) have nontrivial corrections of orde® and higher. 2(d+2)

The matrix of critical dimension&3) is given by ) ) )
it follows that the inequality A[2n+1,1]>A[2n+2,0]

A L =Ng/2+ v* . 79 holds for anyd>2, while the relationA[2n,0]>A[2n
(N.PIN.P'T = RETET VN pIEN,p] (79 +1,1] holds only if n is sufficiently large,n>(d+2)/4.

L - The situation is slightly different in the presence of the lin-
where the asterisk implies the substitutiGt). The set of [ D s . ) .
equationg42), (74), (76), (78), (79) gives the desired expres- ear mean .grad|ent. the first te.th/Z m_Eq. (80) IS .then
sion for the matrix of critical dimensions of the composite absent owing to t_he difference n canonical dimensions, and
operatorg58) in the one-loop approximation, i.e., in the first (N€ complete - hierarchy r?Ianons holdy[2n,0]>A[2n
order ine [we recall thatg, =0(e) and @, =0(1)]. In +1’1]>hA[f2r}|+2'0]' Seeth? [15]}]1 . tor th
contrast to simpler expressions |ik&7), the dimensions in In what follows, we shall use the notatiaN, p] for the

: i lue of the matrix79) which coincides with Eq(80)
Eq. (79) depend on the anisotropy parametgrs and have eigenva . . .
nontrivial corrections of ordes? and higher. ’ for p; ,=0. Since the eigenvalues depend continuously on

In the one-loop approximation, the expressi@s) con- P12 this notation is unambiguous at least for small values of
tains only four terms, and therefore all the matrix elementd’1.2- . . . : .
Yin,piin,p) Other than Eq(78) vanish. However, they be- The d|men5|o_nA[2l,0] yanlshes |de.nt|cally for any:»
come nontrivial in higher orders, so that the basis operatorénd to all orders ir. Like in the isotropic model, this can be
(55), associated with the eigenvalues of the matfi®), are demonstrated using the Schwinger equation of the form

given by mixtures of the monomial®8) with all possible

values of the irlde>p, or, in other words,.mixtures of the_ f DD 5[ 0(x)expSr(P) +AD]/60'(x)=0  (82)
tensors belonging to different representations of the rotation

group. _ _ _

As already said above, the critical dimensions themselve§n the general sense of the word, Schwinger equations are
are given by the eigenvalues of the matfi#9). One can any relations stating that any functional integral of a total
check that for the isotropic casp(,=0), its elements with Variational derivative is equal to zero; see, €[84,25). In
p’>p vanish, the matrix becomes triangular, and its eigen£d. (82, Sr is the renormalized actiof28), and the notation
values are simply given by the diagonal elemeffdN,p] !ntroduced in Eq(16) is used. EquatiofB2) can be rewritten
=Apnpn.p - They are found explicitly and have the form in the form

2p(p—1)—(d—1)(N—p)(d+N+p) (0'Dy0—V [ 6°12]+ vZ,A[ 6%12]+ avZ,(nd)?[ 6°12]
2(d—1)(d+2) ° —vZ,F[2,0]— avZ,F[2,2]) o= — Ay SWR(A)/ 5A,.

+0(&?). (80) (83

A[N,p]=Ne/2+

It is easily seen from Eq@80) that for fixedN and anyd Here D, is the correlator(2), (- - - )4 denotes the averaging
=2, the dimensio\[ N,p] decreases monotonically with  with the weight expSz(®)+Ad], Wy is determined by Eg.
and reaches its minimum for the minimal possible value of(16) with the replacemens— Sz, and the argument com-

p=py, i-e.,,py=0 if Nis even ancdpy=1 if N is odd: mon to all the quantities in Eq483) is omitted.
The quantity{F) is the generating functional of the cor-
A[N,p]>A[N,p'] if p>p’. (819 relation functions with one operatérand any number of the
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primary fields®, therefore the UV finiteness of the operator Al2,2]/e
F is equivalent to the finiteness of the functiok&l),. The 25
quantity in the right hand side of E@83) is UV finite (a
derivative of the renormalized functional with respect to fi-
nite argument and so is the operator in the left hand side.
Our operatorg-[2,0], F[2,2] do not admix in renormaliza-
tion to 8’ D 46 (no needed diagrams can be construgtadd 15
to the operatord [ 6%/2] and A[ #%/2] (they have the form

of total derivatives, an@&[N,p] do not reduce to this forjm P2 10
On the other hand, all the operators in E§3) other than 135
F[N,p] do not admix toF[N,p], because the counterterms
of the operator$58) can involve only operators of the same 5 13
type; see above. Therefore, the operatef,p] entering 125
into Eq. (83) are independent of the others, and so they must 0 Q
be UV finite separatelyvZ,F[2,0]+ avZ,F[2,2]= UV fi- -
nite. Since the operator in EJ) is UV finite, it coincides
with its finite part,

20
1.4

FIG. 1. Levels of the dimensioA[2,2] for d=3 on the plane

_ ER R
vZ,F[2,0]+ avZ,F[2,2)= vF 2,01+ avFT[ 2,2, p1—p». Value changes from 1.@eft-bottorm to 1.4 (right-top) with

which along with the relatiori59) gives step 0.05.

Z1Zp oot @ZoZppzo =1 +15d(py—p2) F3H{(d—1)(d+4)

ZlZ[Z,O][2,2]+ aZZZ[zyz][zyz]za, X[(d_l)(d+2)+(d+l)p1+p2]}, (85)
and therefore for the anomalous dimensions in the MSvhere F;=F(1,1/2+n;d/2+n;—a,) with a, from Eq.
scheme one obtains (42) and the hypergeometric function from E@3).

In Fig. 1, we present the levels of the dimensi@5) on

Y1t Y020t @¥22)2,0=0, the p,— p, plane ford=3. We note that the dependence on

p12is quite smooth, and that[ 2,2] remains positive on the

Yozt avet @yiz22=0. whole of thep, , plane, i.e., the first of the hierarchy rela-

These relations can indeed be checked from the explicit first-'.on.S (8D remains valid also in the presence of anisotropy. A
) o . . % similar behavior takes place also fde2.

order expressioné/7), (78). Bearing in mind thaty] = 5 ForN>2 the ei | be found ticall |

=¢ (see Sec. Y, we conclude that among the four elements_ . or > 2, the clgenvalues can be found ana ytica y only

f?h i e vt hich take 1o ba* d within the expansion ip, ,. Below we give such expansions

0* € matrixyg only two, which We take 10 ber3 2. and up to the termsO(p?.) for all the eigenvalues withN<4

V22122 are independent. Then the matrix of critical di- (with the notationps=2p;+dp,):

mensiong80) takes on the form
4(d—2)(d+1)p3

Az pizpr) *[2,2)le= +
) ) V2AE = G ) T (a-nrd+ 2% dra)
TET X V221200 T X €T Ax V2222
=&+t x X : 2(d+1)
Y[2,2[2,0 Y[2,2[2,2 + 3 3
(84) (d—1)°(d+2)°(d+4)(d+6)
— 2 _ 2 5 4__ 3
It is then easily checked that the eigenvalue of the matrix X[ —6d(d"+6d—15)p1+(d>+6d"—41d
(84), which is identified withA[2,0], does not involve un- +42d2+ 16d+24) p1p-
known anomalous dimensions and vanishes identically,
A[2,0]=0, while the second one is represented as +(—12d*+ 23d%+ 2d?— 26d + 24) p3],
Al2,2]=&— ay Vo120 V22122 - (863
Using the explicitO(e) expressions76), (78), one obtains . (d+4) 2(d=2)(d+1)p3
o the orderO(e): (d+2)  (d—1)(d+2)3
_|._
—(d+2)(d+4)(2+(d—2)p,+dp,)F¥ (d—1)2(d+2)8(d+4)?
+3(d+4)(d—2p;+2dp,)F} X [2(d®+ 15d*+ 88d°+ 204d%+ 16d— 96) p3
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+d(—d®+d°+80d*+296d°+ 64d*— 48d
+64)p1p,+ (3d8+29d°+ 74d*— 32d°
—72d2+ 48d+ 64) p3], (86b)

12(d—2)(d+1)?ps

y*[3.3l/e= (d—1)(d+2) (d—=1)%(d+2)%(d+4)

6(d—2)(d+1)

PHYSICAL REVIEW E 63 016309

+184d+96)p7+d(—d’— 16d°— 49d°
+158d%+ 844d°+ 904d%+ 11201+ 640) p1p,
+(13d”+111d%+ 2584°+ 26d* — 124d°
+88d%+336d+ 192) p3], (860

—~2(d+4) 4(d—2)%(d+1)(d+6)p3

— * 4,0 /8: - I
(d—1)3(d+2)8(d+4)%(d+6) V140 (d+2) (d—1)%d(d+2)%(d+4)
(860
X[2(3d%+ 54d°+ 321d*+ 72203+ 4200
|
—d?-5d+8 4(d—2)(d+1)(d?+3d—16 2(d+1
Y [4,2/e= _Adz2)dr Ps_ () [—2(2d°+47d°
(d=1)(d+2) (d—1)%(d+2)%(d+4)? (d—1)3d(d+2)3(d+4)%(d+6)
+4220"+ 12531°— 36841° — 233441* — 40320° + 5785612+ 860161 — 73728 p2+ d(d°— 28d°— 75"
—46541°— 271 24°+ 402321+ 4259213 — 769281 — 20224@ + 122880 p, p, — d(8d°+ 14918+ 699’
—1074%— 109941°— 2240* + 2924813+ 296961° — 49664 + 24576 p3], (860
12 24(d—2)(d+1 12(d—2
A4l = 4d—2)(d+1)p3 (d—2)

(d=1)(d+2) i (d—1)%(d+2)(d+4)? - (d—1)3(d+2)*(d+4)5(d+6)

X [2d(3d” +81d°+ 823d°+ 40231*+ 10230+ 1453617+ 1104G1 + 3456 p?

+(—d1%—23d°— 16308 — 22507 + 20401%+ 9948&1° + 21244+ 2542413+ 1811217+ 89601 + 3072 p, p

+(15d°+ 23248+ 13097 + 33064°+ 37821°+ 780d* — 768d° + 371212+ 66561 + 3072 p3]. (86f)

These expressions illustrate two facts which seem to hold The eigenvalues beyond the small , expansion have

for all N:

(i) The leading anisotropy correction is of ord®(p; )
for p#0 and O(pig) for p=0, so that the dimensions
v*[N,0] are anisotropy independent in thinear approxi-
mation, and

(i) this leading contribution depends pr, only through
the combinatiorp;=2p,+dp,.

been obtained numerically. Some of them are presented in
Figs. 2—5, namely, the dimensioa$n,p] for n=3,4,5,6 vs

py for p,=0, vs p;=p,, and vsp, for p;=0. The main
conclusion that can be drawn from these diagrams is that the
hierarchy(81) demonstrated by the dimensions for the iso-
tropic case f;,=0) holds valid for all the values of the
anisotropy parameters.

This conjecture is confirmed by the following expressions

for N=6,8 andp=0:

—2(d+6)

7*[6,0]/82 W

- 12(d—2)2(d+1)(d?+ 14d+48) p3
(d—1)2d(d+2)*(d+4)?

(87a

—4(d+8)

'y* [8,0]/8 = (dT

| 24d-2)%(d+1)(d*+ 18d+80)p3
(d—1)2d(d+2)%(d+4)2

(87b

VII. OPERATOR PRODUCT EXPANSION AND
ANOMALOUS SCALING

Representation&t9) for any scaling functiong(mr) de-
scribe the behavior of the correlation functions for>1
and any fixed value ofmr; see Sec. V. The inertial range
corresponds to the additional conditionr<1. The form of
the functionsé(mr) is not determined by the RG equations
themselves; in analogy with the theory of critical phenom-
ena, its behavior fomr—0 is studied using the well-known
Wilson operator product expansiq®PB); see, e.g.[24—
28].

According to the OPE, the equal-time product
Fi(X)F,(x") of two renormalized operators foxk=(x
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Al3,P]/¢ Al3,P]/¢e

25 25

# A
15 1.5
1 1 1
0.5 os\ 0.5

\

2 4 6 g 10P p 7 & =0 P T+ —% —8 30°

FIG. 2. Behavior of the critical dimensiofi[3,p]/e for d=3 with p=1,3 (from below to abovevs p=p; for p,=0—left, vsp=p;

= p,—center, vsp=p, for p;=0—right.

+x")/2=const and=x—x"—0 has the representation
F1()Fa(x')= 2 Ce(rF (LX),

where the function€g are coefficients regular im? andF
are all possible renormalized local composite operators a

tributions would be more importanto not appear in Eq.

(89), because they do not enter into the Taylor expansion for

(88)

Sy and do not admix in renormalization to the terms of the
Taylor expansion; see Sec. VI. Therefore, combining the RG

representatior{47) with the OPE representatiof89) gives

lowed by symmetry(more precisely, see belowWithout

loss of generality, it can be assumed that the expansion i%
made in basis operators of the type E8f), i.e., those hav-

ing definite critical dimensiond . The renormalized cor-
relator (F,(x)F,(x’)) is obtained by averaging Eq88)

with the weight exf5; with the renormalized actio(28); the
quantities(F )ocm*F appear on the right hand side.

From the operator product expansi@®B) we therefore
find the following expression for the scaling functigtmr)
in the representatioft9) for the correlator F,(x)F»(x")):

§(mr):; As(mn)2F,  mr<1,

with the coefficientsAg regular in (nr)?2.

Now let us turn to the equal-time structure functidhg

the desired asymptotic expression for the structure function
in the inertial range:

N(1) =D MANETED S X {C p(mn) NPT

N'<sN P

(90

The second summation runs over all valuep,cadllowed for
agivenN’; Cy , are numerical coefficients dependentsgn
d, p; ; and the angle} betweenr andn. The dots stand for
the contributions of the operators other thBhN,p], for
example, 9209%60; they give rise to the terms of order

(mr)2*©) and higher and will be neglected in what fol-

(89) lows.

Some remarks are now in order.

(i) If the mixed correlatofvf) is absent, the odd structure
functions vanish, while the contributions to even functions

are given only by the operators with even valuedNof In

from Eq. (5). From now on, we assume that the mixed cor-the isotropic casep ,=0) only the contributions withp

relator (vf) differs from zero(see Sec. )t this does not

=0 survive; se€/13]. In the presence of the anisotropy,

affect the critical dimensions, but gives rise to nonvanishing, ,# 0, the operators witlp#0 acquire nonzero mean val-
odd structure functions. In general, the operators enteringes, and their dimension§[N’,p] also appear on the right
into the OPE are those which appear in the correspondingand side of Eq(90).
Taylor expansions, and also all possible operators that admix (i) The leading term of the smathr behavior is obvi-

to them in renormalizatiof24,25. The leading term of the
Taylor expansion for the functio8y is obviously given by
the operatorF[N,N] from Eq. (58); the renormalization
gives rise to all the operatofs[N’,p] with N’<N and all

possible values gb. The operators wittN’ >N (whose con-

ously given by the contribution with the minimal possible
value of A[N’,p]. Now we recall the hierarchy relations
(81a, (81b), which hold for p; ,=0 and therefore remain
valid at least folp; ,<1. This means that, if the anisotropy is
weak enough, the leading term in E®O) is given by the

Al4,p]/¢e Al4,p]/¢ Al4,p]/ ¢
i 4
2 /:/ 2
1 \1 1
2 4 6 g8 10° 2 4 6 g 10° 2 4 6 g 1P
T S [ S

FIG. 3. Behavior of the critical dimensiofi[4,p]/e for d=3 with p=0,2,4 (from below to abovevs p=p; for p,=0—Ileft, vsp
=p, = p,—center, vsp=p, for p;=0—right.
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A[5,pP]l/¢e Al5,p)/¢ Al5,p]/¢€

—— 5. —

Nm.\h\m

=1 ¥

/4’
3
2
0T S
4
-2

FIG. 4. Behavior of the critical dimensioA[5,p]/e for d=3 with p=1,3,5 (from below to abovevs p=p, for p,=0—left, vsp
=p, = p,—center, vsp=p, for p;=0—right.

dimensionA[ N,0] for any Sy . For all the special cases stud- terms forS,,,, ; are given by the dimensiony 2n+1,1] for

ied in Sec. VI, this hierarchy persists also for finite values ofall n; see[15]. This can be related to the observation of Ref.

the anisotropy parameters, and the contribution \AifiN,0] [41] that the odd structure functions of the velocity field

remains the leading one for suthandp, ,. appear more sensitive to the anisotropy than the even func-
(iii) Of course, it is not impossible that the inequalitiestions.

(81a), (81b break down for some values of d andp; , Representations similar to Eq&l9), (90) can easily be

and the leading contribution to E¢RO) is determined by a written for any equal-time pair correlator, provided its ca-

dimension withN’ #N and/orp>0. nonical and critical dimensions are known. In particular, for
Furthermore, it is not impossible that the mat(®@0) for ~ the operator$=[N,p] in the IR region Ar—o, mr fixed)

somep; , had a pair of complex conjugate eigenvaluas, one obtains

andA*. Then the smalinr behavior of the scaling function

mr) entering into Eq(90) would involve oscillating terms -
(i) emvering into £a(50 9IS (BN, puIFIN, p]) = v, M D2S 3

of the form b N7 o
(mr)ReALC, cofIm A(mr)]+CysiimA(mr)]}, X (Ar) ™ Amp AN p]
with some constant€; . X &N, p:Nypr(MI), (91

Another exotic situation emerges if the mat{i9) cannot o ) . .
be diagonalized and is only reduced to the Jordan form. I{vhere the summation indicéd, N” satisfy the inequalities
this case, the corresponding contribution to the scaling funcN=<N1, N'<N,, and the indicep, p’ take on all possible
tion would involve a logarithmic correction to the powerlike values allowed for givemN, N’. The smallmr behavior of
behavior, r)2[C, In(mn)+C,], whereA is the eigenvalue the scaling functiongy p.ns pr(mr) has the form
related to the Jordan cell. However, these interesting hypo-
thetical possiblities are not actually realized for the special _ A[N",p”
cases studied above in Sec. VI. gN'p;N"p'(mr)_N%” Crrr(mnSEF, (92

(iv) The inclusion of the mixed correlatapvf)ocnd(t '
—t")C'(r//) violates the evenness im and gives rise to  with the restrictiorN”<N-+N’ and corresponding values of
nonvanishing odd functionS,,.,; and to the contributions p”; Cnr,pr are some numerical coefficients.
with odd N’ to the expansioit90) for even functions. If the So far, we have discussed the special case of the velocity
hierarchy relation$81a), (81b) hold, the leading term for the correlator given by Eq<3), (14). Let us conclude this sec-
even functions will still be given by the contribution with tion with a brief discussion of the general c44é). The RG
A[N,0]. If the relations(81¢) hold, the leading term for the analysis given above in Secs. IlI-VII can be extended di-
odd functionS,,,, 1 will be given by the dimensioa[ 2n,0] rectly to this case; no serious alterations are required. From
for n<(d+2)/4 and byA[2n+1,1] for n>(d+2)/4. Note the expression$21), (71) it immediately follows that only
that for the model with an imposed gradient, the leadingeven polynomials in the expansiqh2) can give contribu-

Al6,P])/¢ A[6,P]/¢ Al6,P]/¢

P s//’__ ——

' "

4 4
2 2L 2
2 4 & 8 1w 2 4 & a8 q0°P ] 2 4 6 8 10°

S——

2 -2 -,2‘_\

FIG. 5. Behavior of the critical dimensiof[6,p]/¢ for d=3 with p=0,2,4,6(from below to abovevs p=p, for p,=0—left, vsp
=p, = p,—center, vsp=p, for p;=0—right.
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Al3,pl/e Al3,pl/e Al3,p]/e
8 6 3
1
X
-40 - 4 -40 - 4
0 o \29\0 0 S \29\0 05 )
-4 —40 -20 20 40
FIG. 6. Behavior of the critical dimensiofi[ 3,p]/e for d=3 with p=1,3 (from below to abovevs x=a, for b;=0—left, vsx=a,
=bs—center, vsx=bj; for a,=0—right.

tions to the renormalization constants, and consequently, to S,(r)=(r?/v)R(ur,mr,g,a), (93

the coordinates of the fixed point and the anomalous dimen-

sions. For this reason, the odd polynomials were omitted inwhere R=R, is some function of dimensionless variables;
Eq. (12) from the very beginning. Moreover, it is clear from the dependence od &, p1, and the angled between the
Eq. (21) that only the coefficients; with 1 =0,1 andb; with  vectorsr andn is also implied. The asymptotic behavior of
1=0,1,2 contribute to the constan® , in Eq. (28) and  the function(93) in the IR region (\r>1, mr fixed) is found

therefore to the basic RG functiori83) and to the coordi-  om the solution of the RG equation, see E@) and (48)
nates of the fixed point in E¢42). Therefore, the fixed point ;, gac. v: ’

in the general mode(11) is parametrized completely by
these five coefficients; the higher coefficients enter only via
the positivity conditiong13).

Furthermore, it is clear from Eqé71) that fora«=0, only
coefficientsa; with <2 andb, with I<3 can contribute to  from Eq.(93) as follows:
the integralsH,, and, consequently, to the one-loop critical
dimensions(79). Therefore, the calculation of the latter es- &uw=R(1u,9, ,a,), (95
sentially simplifies for the special casg=1, a;=0 andb,
=0 for I<2 in Eq.(11). Then the coordinates of the fixed With g, anda, from Eg.(42). The functionR in Eq. (93)
point (42) are the same as in the isotropic model, in particu_Can be calculateq within the renormalized perturbation
lar, o, =0, and the anomalous exponents will depend on théheory as a series ig,
only two parameters, and b;. We have performed a few
sample calculations for this situation; the results are pre-
sented in Figs. 6—9 foA[n,p] with n=3,4,5,6 vsa, for
b;=0, vsa,=h,, and vsb; for a,=0. In all cases studied,
the general picture has appeared similar to that outlineevhere the dots stand for the argumentsRobther thang.
above for the casél4). In particular, the hierarchy of the Making the substitutionsur —1, g—g, and a—a, , ex-
critical dimensions, expressed by the inequali(i®¥), per-  pandingR, in e, and grouping together contributions of the
sists also for this case. We may conclude that the special casame order, from E¢96) we obtain thes expansion for the
(14) case represents nicely all the main features of the gerscaling function:
eral model(11).

Sy(r)=Dg 'r2 g, &(mr), (94)

where the scaling functiog(u) is related to the functiofR

Mw~h%$&vm (96)

o0

VIII. EXACT SOLUTION FOR THE SECOND-ORDER &(u)= 2
STRUCTURE FUNCTION AND CALCULATION n=0
OF THE AMPLITUDES

e"&n(u). (97)

[It is important here that the calculation of any finite order in
In renormalized variables, dimensionality considerationss requires only a finite number of terms in H§6), because
give, see Eq(44), 0, =0(e), and the coefficientR, for the renormalized

Al4,p]/¢ Al 4,p]/¢
10

FIG. 7. Behavior of the critical dimensioA[4,p]/e for d=3 with p=0,2,4 (from below to abovevs x=a, for b;=0
=a,=hsz—center, vsx=b; for a,=0—right.

Al 4,p]/¢

\\\\%\‘—/,
f\\\\

.
A\
K
/ﬁ\\

X

i -

—Ileft, vs x

016309-17



ADZHEMYAN, ANTONOV, HNATICH, AND NOVIKOV

PHYSICAL REVIEW E 63 016309

Al5,pl/¢ Al5,p]l/e Al5,p]l/e
10 10/ \?
\5/ \i —

/ X
40 yw
‘5

FIG. 8. Behavior of the critical dimensioA[5,p]/e for d=3 with p=1,3,5 (from below to abovevs x=a, for b;=
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0—right.
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quantity do not contain poles in.] However, the expansion functionsé,(u), we only need the terms of the fora® In9u

(97) is not suitable for the analysis of the smalbehavior of
&(u): we shall see below that the coefficietscontain IR
singularities of the formuPIn%u, these “large IR loga-
rithms” compensate for the smallness of and the actual
expansion parameter appears tostheu rather thare itself.

The formal statement of the problem is to sum up the
expansion(97) assuming that is small with the additional
condition thate Inu=0(1). The desired solution is given by
the OPE; it shows that the smailbehavior of&(u) for the
second-order structure function has the form, see EB$.
and(90) in Sec. VII:

E(U)=Cy+Coutl2a 4. .. (99)

in their smallu asymptotic expansions. Knowledge of the
terms 1 ana: Inu is sufficient for the calculation of the low-
est(zerg order coefficientsc(lf’z). Calculation of the terms
(g lnuyP W|th p>1 gives additional equations for the same
quantltlesclz, which must be satisfied automatically and
€can therefore be used to verify the representat@g). Cal-
culation of the termsP In%u with p>q gives the equations
for the higher term@“‘) with k=1. Finally, the terms of the
form £PuXInu with k>0 are related to the contributions of
the formuk™() in Eq. (98).

In what follows, we confine ourselves with the calculation
of the coefficientsC{’}. To this end, we have to find the
function £(u) with the accuracy of

The first term is the contribution of the operators 1 and

F[2,0] with the dimensiom\[ 2,0]=0, see the text below Eq.
(84), andA[2,2] is given to the ordeD(e) in Eq. (85); the
dots in Eq.(98) stand for the contributions of order* ©(*)
and higher. The coefficients; depend org, d, p; ,, and the
angled. They are sought in the form of seriesdn

Ch=>, CPek, (99)
k=0

Equation(98) can be expanded ia and compared with Eq.
(97). Such a comparison with knows expansions for the
coefficientsé, in Eq. (97) and exponents in Eq98) allows
one to verify the representation E(8) directly from the

E(u)=Ag+Aelnu, (100
whereA;=A;(d,p; ,,9). From the definition of the structure
functions(5) and the representatiof@4), (95) it follows that
£(u)=(D(w,k))rg, Where by the brackets we have denoted

the following operation:

(D(w,k))rc= ———D(w,k)

f(Zw) (2w )d

X[l_exqikr)“u:l/r,g:g* Ja=a,
(101)

perturbation theory, and to determine the coefficients in Eq.

(99).
In order to find the coefficient€, ,, related to the expo-
nents of ordeO(e) in Eq. (98), we do not need the entire

andD(w,k) =(66) is the exact pair correlator of the fielt)
which we need to know here up to the one-loop approxima-
tion:

AL8,p] /¢ AL6.pl/e AL6,p] /¢

8

15 20 \&\

X X X

-40 -20 20 40 40 -2 20 40 wﬂ

%\ % e \
-15 -6

FIG. 9. Behavior of the critical dimensioA[6,p]/e for d=3 with p=0,2,4 (from below to abovevs x=a, for b;=0—left, vs x

=a,=hsz—center, vsx=b; for a,=0—right.
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- - P

D(w,k) = + i + S + Eai 4 e (102
|
In what follows, we set’= in Eqg. (2); the IR regular- 1 do’
ization is provided by the “massinin the correlator(3). In T 5
the momentum-frequency representation, the correlépr w?+ (k) (2m)
takes on the fornC(k) = (27)958(k), and the bare propaga- . ,
tor in the renormalized perturbation theory is obtained from Xf dq gvu’Ti(q") C(a)aiq;
(06), in Eq. (18) with the substitutionvok?— e(k)= vk? (2m)% ((q")2+m?) 42722 (") 24 €2(q)
+ va(kn)?. _ )
Therefore, the contribution of the firdbopless diagram ~ Whereq’ =k —q. We perform the integrations over' andw
in Eq. (102 to the function(101) has the form [the latter is implicit in Eq(101)] and replacey’ with k in
the integral oveq [we recall thatC(k) = 5(k)]; this gives
(27)98(k) 1 a, (1+2 cogd) grutT (k) aid;
) =5l o +0(pi))|. — /J q8(q)——. (105
w?+ (k) [ o, 2d (d+2) 4e(K)(K2+m?)diz+e e(q)’

(103 . .
Using Eq.(14) and the relation
For the sake of simplicity, here and below we confine our- qi9; _ dij @ 2
selves with the first order in the anisotropy paramejgrs f dq &(q) e(q) vd wvd(d+2) [8ij+2nin;]+O(a”)

[we recall thate, =O(p1 ) ]; only the final results will be
given for generap. Note also that all the integrals entering we obtain for the quantity105)
into the left hand side of Eq103 are well-defined for”

=0, for example, iy
4dv k3 (k2 + mz)d/2+s/z[00+ ¢y coS'y] (106
o [ r with the coefficients
f dk?[l—exp(lkr)]_ >q

Co=d—1+py— a(d+1)/(d+2),

f dk [1 explikr)]

(we also recall thay is the angle betweek andn). Substi-
, tuting Eqg.(105) into Eq.(101) gives

" 2d(d+2)

rirj

8j+2— (104
r

S Lol o) + 11 3()] 107

It is also not too difficult to take into account the contri- with the dimensionless convergent integrals
butions from the second and thitdsymmetri¢ diagrams in

Eq.(102. It follows from Egs.(34) and(35) that one simply 1 (cosy)" 1—exdik
has to replace(k) in the left hand side of Eq103) with the - zw)d K2(k2+ 2)d/2[ explikr) ]
expressiongk?+ aqgre(nk)2—3 4, and change to the renor- (108

malized variables using the relatio(®9) and(38). The pole

part of the integral(m) in Eq. (35) is then subtracted; the  [within our accuracy, we have set=0 in all exponents in
expansion of the difference gives rise to the logarithrmof Eqgs.(107), (108)]. The leading terms of their smallbehav-

The substitutiory—g, , a— a, leads to drastic simplifica- ior are found as follows: one differentiategu) with respect

tion [this is due to the fact that the expressi¢a®) for the  to u, performs the change of variable— uk, expands inu

fixed point originated from the same E@5)], and the total the quantity in the square brackets, and selects the leading
contribution of the first three diagrams in E4.02) reduces terms of order 1. This gives

to the loopless contributiofl03) multiplied with the factor

(1—elnu). (W= iy, 1y(u)=— MY o 2o,
Now let us turn to the last diagram in E¢L02). The 0 2d 1t 2d(d+2)
guantity to be “averaged” in Eq(101) has the form (109
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with C4 from Eq. (38). where the quantitieg, , @, and A=A[2,2] are given in
Collecting all the contributions of the form E¢LO0) in Egs. (42) and (85), Py(2)=2°—(1+«a,)/(d+a,) and F¥
Eq. (101) within our accuracy gives =F(1,1/2+n;d/2+n; - a,) [as in Eq.(85)].
1 a, (1+2 cogd) Now let us turn to the exact equation satisfied by the
AO:E 1- T a— second-order structure functi@(r). From the definition of

the latter and Eq(23) we obtain

A — (d+1)[(d*>+d—4)p,—dp,] P,(cosd). 20pA S,y (1) + DS (1) 33,Sy(r)=2C(r1/). (113

(d—1)%(d+2)®

(110 In the inertial range we neglect the viscosity and set

5 i C(r//)=C(0)=1; this gives
where P,(z)=z"—1/d is the second Gegenbauer polyno-

mial. S;j(r)di9;Sy(r)=2Dg *. (114
It is sufficient to takeA =A[2,2] in the isotropic approxi-
mation,A=ed(d+1)/(d—1)(d+2), see Eq(80) [it is im- We should also senr<1. The integral24) has a finite

portant here tha#\; = O(p; ) ]. limit for m=0; the explicit calculation withT;; from Eq.
Comparing Eq(98) with Eq. (100 givesC,=A;e/A and (14 gives
C,=A,—C,. Substituting these expressions into E§8)

and then into Eq(94) and using Eq(42) we obtain the final ore
expression foiS,: Sij(r)= co) (d+e—1)8;—err;/r?+p;(1+e72%)
eDgylree —
sz(r)=(d°T 1—(p1+p2)/d+2(€);+g§) P,(cos®d) +po[ (d+e—2)mnj—sz(nirj+n;r;)/r]
- d
(p2—p1) 2 2
( )Az[(d2+d_4)91_dpz]P ( 19) +m[5ij+2ninj+8(5ijz +rirj/r
—(mr cosd) .
(d—1)(d+2)2 2
(111) +2z(mirj+njr)/n)+e(e—2)z%r; Ir?] 1,
Similar (but much more cumbersomealculations can (115
also be performed if the anisotropy parameters are not
supposed to be small. The result has the form wherez=(nr)/r and
de Dy tr2e

C(e)=—22" (4m)¥T (dI2+&/2+1)IT(—&l2)
= 26d/Cy+O(s?). (119

S0 = = 1)(d+ p1+p2)Cy

( 1+ gy (d+a, )(d+ 1)(p2_p1)5 (cos®)
2(d—1)(d+2)A 2 For what follows, we need to know the action of the dif-
ferential operator in the left hand side of Ed.14) onto a
~3(d+ay) F2 | (mr) (dta,) - function of the formr2~¢*Yy(z), where y is an arbitrary
(d+2) "2 (d—1)d(d+2) ? exponenibelow we usey to denote different exponents; the

precise meaning in each case will be clear from the context

X (cos®)| oy, (3dF3 — (d+2)F¥)

rY

Si(NadIr* (@)= gy L), (117

N 0. (d+1)(p2—p1) ( - 3(d+ay) F*)“,

2
24 (d+2) Here L(y) is a second-order differential operator with re-

(112 spect toz, whose explicit form is

L(y)=(2+y=e){(d=1)(d+ y)(d+2+e)+(d=1)(d+2)(p1+p2) +2e(dp2—p1)
+2%d(d+1)(p1—po) +Y[(d+1)p1+(e+1)pat2%(pa(ed—e—2))+ pp(d®—2—¢) ]} +{(1—d)(d—1+s)(d
+2+¢e)—(d?+1)p;+(d®>—d—1)p,—e(d—1)p;—&(d®—2)p,+4e?p;— (2d+1)e?p,+ 22 [2p,— (d2—2)p,
+e(d+1)((1—d)py+(2d—3)py)+e*(—(d+3)py+(2d+1)py)]
—Y(1=2)[4p,—2(d%>=2)p,+&(4py—2dpy) 1} 29, +{(d+e—1)[d+2+e+p,+(d+ 1+¢)p,]
+Z2[2+e(d+1+e))pi—(d+e)?—2—&)p,]H(1—2%)d2. (118
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We seek the solution to E4114) in the form
S(r)=r?7°2D4 *C(&) y(2),

which gives the following differential equation fa¥(z):

(119

Lyp(z)=1, L=L(y=0). (120
Here the operatof has the form
L=/52)0>+/1(2)0,+ 7 o(2), (121)

with some functions/;(z) whose explicit form is readily
obtained from Eq(118 and will not be given here for the
sake of brevity. The operatd is self-adjoint on the interval
—1=<z=<1 with respect to the scalar product

1
(f,g)Ejilep(Z)f(Z)g(Z) (122

with the weight function
p(z)=/2_1(z)expfzdz’/'1(z’)//2(2’). (123

The integration gives

p(z)=<1—z2><d-3>’2[ 1

[2+e(d+1+e)]pi—[(d+e)?—2—¢]p, ) $
(dte—1)[2+dtetpt(dtite)p,] | "

(1243

where

(2+d=—g)[—(1+e)py+(d(d+e)/2)—1]p,]
[2+e(d+1+e)]py+[2+e—(d+e)?]p,

= (124b

[the lower limit in Eq. (123 is chosen such that(z=0)
=1].

The self-adjoint operatof possesses a complete set of

PHYSICAL REVIEW E63 016309

72=(1-22)[1+a, (1-29)].

It is easy to see that the constant is one of the eigenfunc-
tions of the operatof, (a consequence of the fact thé§ is
independent of). The other eigenfunctiotwith the eigen-

value of zerg is P,(z) from Eq.(112):
Eoﬁz(Z):O.

Therefore, a solution to the equatidhy(®)(z)=1 can be
written in the form

PO (z2)=/51+CPy(2). (125

In order to find the constar@@, consider the equation for the
correctionyt)(2):
L O+ LopM=0. (126

Using the scalar produdfl22) with the weight(124) at
=0,

2

z

(127

—1-d/2
(0)(2)=(1—72)(d=3)/2[ 1 _

p(2)=(1-29) (1 Tt a, )

(the operatorL, is self-adjoint with respect to)itwe obtain

(P, Lot =(LoP,, D) =0. Then from Eq(126) it fol-

lows that P,,£.4(?)=0. From the latter relation and Eq.

(125 we find

. (]52"68/(;1)
(ﬁz,ﬁsﬁz) ,
which gives
L, (Pl 1)
O(z)=/Y1- =——"P,(2)|. 128
PN 2)=7/g B, .L.Py) 2(2) (128

Below we shall show that the solutiofi28 coincides

eigenfunctions, but it is not possible to find them explicitly in with the RG result(112) for m=0. To this end, we shall

the general case. However, H4.19 can be treated within
regular perturbation expansions én p; , and 14. In what
follows, we shall discuss them separately.

Perturbation theory ire. We write the operato= L(y
=0) in Eq. (118 and the desired solution(z) as series in
e:

L=Lote Lo+, W)= O2)+epD(2)+---.
The leading operatof, has the form Eq(121) with the
functions

/1(2)=71(2)[(d=1)(d+2)+py(d+1)+po],
where

7o=2(d+ay), 71=—2d-1-a,(1-2)],

show first that the last term in Eq112), proportional to
(mr)4, is an eigenfunction of the operator in the left hand
side of Eq.(113 with the eigenvalue of zero. We seek the
zero mode of that operator in the formd—**? ®(z) with
some exponenty and function ®(z). According to Eq.
(117), we arrive at the equatio(y)®(z)=0 with L(y)
from (118). For e=0, the solution of the latter equation is
given by y=0 and®(z) =P,(z) from Eq.(112. TheO(e)
correction to the solutiony=0 is sought from the equation

(LoteL,+yL,)D(2)=0,

where yL, is the part of operatof118) linear in y. We

require that the correction operaterC, + yL£, do not shift

the original (zero eigenvalue. This leads to the equation

(P,.(eL,+vL,)P,)=0, from which it follows
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(P,,L.P,) with /5 from Eqg. (131).
Y= (129 The knowledge of the eigenfunctions and eigenvalues of
(P2,L,P5) the operatorZy= Ly(y=0) in Eq.(120) allows one to easily

construct the iterative solution of that equation. In particular,

Using Eqs(118 and(127) it is not difficult to check that the in the leading order one has

expression129 coincides with the dimensio(85), e.g.,y

=A[2,2]. Therefore, we have shown that the last term in Eq. pO(2)=1//y=1(2—¢e)d(d—1)(d+¢).

(112 is indeed an eigenfunction of the operator from Eq.

(114), and the exponent and functi@m(z) are found in the Form=0, the corrections to the solution of Ed.14) are
first and zeroth order is, respectively. determined by the zero modes of the operai6). In the

Using Eq.(129), expressior(128) can be rewritten in the leading(zeroth order inp, , they are simply found by equat-
form ing the eigenvaluegl33) to zero. The “admissible’(in the
5 sense of 7-9]) solution is:
e(Py,L,-1)

P O(2)=/5 1+

Py2)|. (130  2y0=(e—d-2)

2
Calculation of the scalar products using EdsL8 and(127) *V(e=d=2)% an(n+d-2)(d+e—1)/(d-1).
shows that Eq.(130 indeed coincides with the solution (134
(112 for m=0. Therefore, in such approximation the zero modes of the op-
Perturbation theory in the anisotropy parametgrs,. In ' PP P

PN )
this case it follows from Eq(118 with p;,=0, that the erator from Eq.(114 have the formr?=*"" P(z), in

Al 2, 2](P2,£, P,)

leading operatol’y(y) has the form Eq(121) with agreement with Ref.7] (owing to thez— —z symmetry of
our model, only evem can contributg From the RG view-
/o=2+y—e)(d—=1)(d+y)(d+2+¢&), points, the exponents in E¢L34) are related to the-th rank
composite operators builtof two fieldsandn derivatives; in
/1=—(d=1)(d—1+e)(d+2+e)z (13D particular, y, (which gives the leading correction fanr
, 5 <1) coincides with the dimensioA[ 2,2].
/2=(d=1+¢)(d+2+¢)(1-29). In order to find theD(p, ») correction toyy”), which we

denoteySt, we expand the operatat(y) from Eq. (118
around the poinp; ,=0 andy=y% up to the terms linear

Lo(y)=—(d—1+e)(d+2+8)T+/s. (132 inpipandys):

It can be represented in the form

2

The eigenfunctions of the operatof=(z’—1)d>+(d £(y) £0+2 pLi+ L,

—1)za, are nothing other than the well known Gegenbauer
polynomials P,(z), the corresponding eigenvalues being
n(n+d—2); see[39]. They form an orthogonal system on Which defines the operatory' and ;. Proceeding as for the
the interval[ — 1,1] with the weight (1-22)(4~3)/2[see Eq. Previous case, we obtain

(124 with p, ,=0]. Since the term’, in Eq. (132) is inde- >
pendent ofz, the eigenfunctions of the operatdg(y) are (1)_ 2 P (P2,L'P;)
the same polynomial®,(z), and the eigenvalues have the l(P21£1 2)’
form
where the scalar product is defined with the weight (1
—(d—1+e)(d+2+e)n(n+d—2)+7y, (133  —2z%)(@ 32 The explicit calculation gives the desired result:

4(d—2)(d+1)e[2p;+(d+&)p,]
(d—1)(d+4)(d+2+¢e)[4d(d®—1)e+(d—1)4(d+2—¢)2]Y?

Y=

(139

Perturbation theory inl/d. For d—c, the weight(124) differs remarkably from zero only in a small vicinity of the
takes on the form pointz=0, more preciselyz’< 1/d. This becomes especially
clear if one changes to the new variabfe=dz2/2(1+ p,).

1-72 a2 In terms ofx, the function(136) has a finite limit ford—oo:
p(2)=| ————— (136
1—-p2z°/(1+py)
From Eq.(136) it follows that, ford>1, the functionp(z) p(x)ze‘xz. (137
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The integration domain in the scalar prodgt22) becomes
—Jd=x=/d, which for d— gives —e<x=<oo,

According to Eq.(118), Eq. (120 in terms of the variable
x and in the leading approximation indLtan be written in
the form

Lop(x)=2/d3, (138

where
Lo=Lo(y=0), Lo(y)=3d2—2xd+2(2+y—¢).
(139

The eigenfunctions of the operat@ﬁ—Zan are the well
known Hermit polynomialdd(x) (see, e.qg.[39)):

(92— 2xd)Hn(x)=2nHy(x), n=012...,
which form an orthogonal system on the axige<x=<oo
with the weight(137). It is clear from Eq.(139 that the
eigenfunctions of the operatdl,(y) are also the polynomi-
als H,(x), the corresponding eigenvalues beikg=2(n
+e—2—7).

The zero modesX;,=0) correspond to the values

y=n—2+e, (140

wheren=2, 4, 6 and so on, owing to the symmetzy-
—z of our model; the minimal eigenvalue ig=¢ with n
=2. Therefore, the operatofy,=Ly(y=0) has no zero
modes, and the solution to E¢L38 is simply given by
P(x)=1/d3(2—¢).

The corrections to the solutiop=¢ in 1/d are found as
above for the perturbation theoriesdnandp, ,. This gives

y=e+2&(1+2p,+ p1p,)/d®+0O(1/d%)

[the O(1/d) term is absenf and the corresponding zero
mode is

(1=%%) = pyl2+ 1+ o) d(1+ py) + O(L/d).

IX. CONCLUSION

Let us recall briefly the main points of the paper.
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FIG. 10. Levels of the dimensioA[3,1]/e for d=3 on the
plane p;—p,. Value changes from-0.15 (top) to 0.15 (bottom
with step 0.05.

variablemr, whose behavior anr<1 is determined by the
OPE. It establishes the existence of the inertial-range anoma-
lous scaling behavior. The structure functions are given by
superpositions of power laws with nonunivergdépendent

on the anisotropy parametepg ;) exponents.

The exponents are determined by the critical dimensions
of composite operatoré8) built of the scalar gradients. In
contrast with the isotropic velocity field, these operators in
our model mix in renormalization such that the matrices of
their critical dimensions are neither diagonal nor triangular.
These matrices are calculated explicitly to the or@€e)
[Eqgs.(74), (76), (78), (79)], but their eigenvalue@nomalous
exponentscan be found explicitly only as seriespq ,[Eqs.

(86), (87)] or numerically(Figs. 1-9.

In the limit of vanishing anisotropy, the exponents can be
associated with definite tensor composite operators built of
the scalar gradients, and exhibit a kind of hierarchy related to
the degree of anisotropy: the less is the rank, the less is the
dimension and, consequently, the more important is the con-
tribution to the inertial-range behavipsee Eqs(81)].

The leading terms of the eveiedd) structure functions

We have studied the anomalous scaling behavior of a page given by the scalawvecton operators. For the finite an-
sive scalar advected by the time-decorrelated strongly anisdsotropy, the exponents cannot be associated with individual
tropic Gaussian velocity field. The statistics of the latter isoperators(which are essentially “mixed” in renormaliza-
given by Eqgs.(3) and(11). The general caséll) involves tion), but, surprising enough, the aforementioned hierarchy
infinitely many parameters; most practical calculations haveurvives for all the cases studied, as is shown in Figs. 2-9.
been performed for the truncated two-parametric mobiél, The second-order structure functi@y(r) is studied in
which seems to represent nicely the main features of th&wore detail using the RG and zero-mode techniques; like in
general cas€l4). the isotropic casd6], its leading term has the forns,

The original stochastic probleifl)—(3) can be cast as a *r?¢, but the amplitude now depends pp, and the angle
renormalizable field theoretic modgqgs.(15)—(18)], which  between the vectons andn from Eqg. (14). The first aniso-
allows one to apply the RG and OPE techniques to it. Thdropic correction has the formn(r)2[22 with the exponent
corresponding RG equations have an IR stable fixed pointA\[2,2]=0(e) from Eq. (85). The functionS, satisfies the
Eqg. (42), which leads to the asymptotic expressions of theexact equatiori113); this allows for an alternative derivation
type Egs.(49), (52) for various correlation functions in the of the perturbation theory ig, and also gives a basis for
regionAr>1. perturbation theories in d/or the anisotropy parameters

Those expressions involve certain scaling functions of the, ,; see the discussion in Sec. VIII.
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It is well known that, for the isotropic velocity field, the

PHYSICAL REVIEW E 63 016309

of the inertial range; the higher-order odd ratios increase al-

anisotropy introduced at large scales by the external forcingeady when the anisotropy is weak.
or imposed mean gradient, persists in the inertial range and

reveals itself inodd correlation functions: the skewness fac-
tor S;/S3? decreases fomr—0 but slowly (see Refs.
[3,4,10,13), while the higher-order ratioS,,. /Sy Y2 in-
crease(see, e.9.j15,17,19).
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