PHYSICAL REVIEW E, VOLUME 63, 016307
Localized perturbations in binary fluid convection with and without throughflow
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Dynamics and structure of spatially localized convective perturbations in binary fluid layers heated from
below and the effect of a plane horizontal Poiseuille throughflow on them are investigated. Fronts and pulse-
like wave packets formed out of the three relevant perturbations—two oscillatory ones and a stationary
one—are analyzed after evaluating the appropriate saddle points of the three respective dispersion relations of
the linear field equations over the complex wave number plane. Front and pulse properties are elucidated in
quantitative detail as a function of small throughflow Reynolds numbers for different Soret coupling strengths
¢ including the pure fluid limity= 0 in comparison with the appropriate Ginzburg-Landau amplitude equation
approximations. Furthermore, small amplitude pulses and fronts obtained from solving therfiidlearfield
equations numerically are presented to check and compare with the linear results.
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[. INTRODUCTION counterpropagating waves and the blinking state are strongly
influenced by the system size and the reflection properties of
In forced nonequilibrium systems that undergo a patterrthe sidewall§8,13]. On the other hand, freely moving linear
forming instability[1] the spatiotemporal evolution of spa- wave packets of TW’s were observed up to the time where
tially localized perturbations is of substantial practical, ex-they hit a sidewal[14] or collided with a strongly nonlinear,
perimental, and theoretical interest. As long as the field amspatially localized convection pul$é5].
plitudes of the perturbation are small one can discard the It should be noted that the aforementioned linear or
effect of nonlinearities in the deviations from the unper-weakly nonlinear convection phenomena differ substantially
turbed reference state. Then one can use a linear analysisfi@m the strongly nonlinear spatially extended and spatially
determine the behavior of such perturbations that often camcalized convection statelsl6] showing large deviations
be decomposed as linear wave packet superpositions of spa-7,1g of the concentration distribution from the conductive
tially extended Fourier modes. In particular when the packektate and they also differ from the erratic burst and decay of
contains modes that can grow one wants to determine the,y pulses[26] that has been called dispersive chds).
spatiotemporal evolution of the fronts that join the wave |, ihis paper we present a linear analysis of spatially lo-

pac"?t’s intensity envelope to the unperturbed state aS &lized convection fields thereby restricting ourselves to
function of control parameters and of the structural dynamlcsSmall perturbations of the conductive state. We determine
of the constituent pattern type. Here questions arise concern- . "
ing the propagation velocitiegand their directionsof the and elucidate front and wave packet properties of the three

fronts, the spatial growth and decay behavior of the fromsrelevant perturbation types and th_e influenc_:e_of an eXtema"y
and the pattern selection induced under the moving fronts. Imposed throughflow on them. Th|§ analysis is made for dif-
In this paper we investigate these problems theoreticallfe"ent strengths of the Soret couplifigoetween temperature
for perturbations that occur in binary fluid mixtures heated@nd concentration fields including the pure fluid limiting case
from below[2,1] close to the primary stability and bifurca- Y=0. The_analy_5|s is ba;ed on a numerical evaluation of the
tion threshold$3—5] of the quiescent homogeneous conduc-complex dispersion relations over the complex wave number
tive state. Its linear stability analysis shows that there ar@lane. These functions are determined for the different per-
three different types of perturbations—and of course theiturbation types using the full linearized field equations. But
superpositions—that depending on parameters can grow ange also make quantitative comparisons with the appropriate
thereby destroy the conductive state near threshold in thi&inzburg-Landau amplitude equati¢BLE) approximations
system: a stationary perturbation that has the structure dbr differenty and different throughflow and with numerical
rolls which are fixed in space and two oscillatory perturba-simulations of the full nonlinear field equations.
tions in the form of traveling wave@W'’s) where the phase It is somewhat surprising that such an analysis has not yet
of the roll pattern is propagating in opposite directions. been performed in view of the fact that the two fronts that are
After the experimental observatiofi6] of transient, bounding each of the three different packet types consisting
weakly nonlinear TW convection close to the oscillatory of the three different perturbation types differ in general
threshold also weakly nonlinear, so-called, counterpropagafrom each other. Thus, all in all there are six different fronts
ing waves were seen in rectangular convection chanfigds  some of which are for special cases related to each other by
as superpositions of left and right propagating TW’s thatsymmetry operations. But even in the absence of any
were reflected from the lateral sidewalls. Also so-calledthroughflow the spatiotemporal properties of the two fronts
blinking state§7—10] were observed where the amplitude of of a TW packet are different thus giving rise to a competition
a TW becomes alternatingly large at the sidewalls beforef different pattern selection and growth behavior at the two
being reflected with reduced amplitufi&l,12,§. Thus, the fronts. We hope that our analysis will help to shed more light
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on the rather complex pattern growth processes that occur iof the temperature from the mean temperafiyén the fluid.

binary mixture convection. The field C=(C—Cy)B/(aAT) is the scaled deviation of
Our paper is organized as follows. In Sec. Il we describehe mass concentratiod=p,/(p,+ p,) of the solute from

the system and we provide the theoretical framework foits meanC,. Herep, andp, are the mass density fields of

determining its linear properties. In Sec. lll we briefly review the two components. For small deviationsTofind C from

the linear bifurcation behavior of different spatially extendedtheir means the total mass density: p, + p, is governed by

convective patterns with and without external throughflow ina linear equation I

order to provide the background and a frame for discussing

later on spatially localized perturbations. In Sec. IV we p=pol1—a(T—To)—B(C—Cy)], 2.2

evaluate with a saddle point analysis of the complex disper\-Ni,[h being the thermal and solutal expansion coeffi-
sion relations of the field equations and of the GLE approxi-_. @ B 9 . P .
ent of the fluid, respectively. For ethanol-water mixtures at

mations the boundaries in parameter space between conve "
tive and absolute instability in order to determine whether 9™ tempgraturez and{B are po§|t|ve[28]. . :
the two fronts of a particular wave packet type move in the . The Lewis numbenT IS .th.e ratio of concentration diffu-
same or into opposite directions. Section V deals with fronts'v'ty D qnd thermal d|ffu3|v'|ty;<,'a'nd the Pr_andtl number
and pulse behavior in mixturegs/& 0) and in pure fluids for Is the ratio of momentum diffusivity and «:

zero and finite throughflow. Here we compare also for the D v

different perturbation types the saddle point properties of the L=—; o=-. (2.3
appropriate dispersion relations of the field equations with
those of the GLE approximations. In order to check and ta=or room temperature€l0 °C—40 °C), the Prandtl number
compare the spatiotemporal behavior of fronts and pulsegf ethanol-water mixtures lies between 5 and[28], while
following from the saddle point analysis of the dispersionfor normal fluid Helium it is ten or more times smaller. The
relations of thelinear field equations we present in Sec. V | ewis number of liquid mixtures is about 0.01. In this paper
some representative results that were obtained from a nyye take the fluid parametets=0.01 ands= 10 as represen-
merical solution of the fullnonlinear hydrodynamical field tative examples for ethanol-water mixtures.

equations. Section VI contains a summary of the major re- The setup is characterized by three control parameters that
sults and in the Appendix we give details about the differentan be varied independently:

numerical methods used here. (i) The Rayleigh number

d3
” AT (2.9

o
Il. SYSTEM Ra= 29

We consider a horizontal layer of a binary fluid mixture
like, e.g., alcohol-water confined between two parallel, permeasures the externally imposed thermal driving due to the
fectly heat conducting and impervious plates. The setup isemperature gradient between the plates. For convenience we
exposed to a homogeneous gravitational fggtd—ge, and a  use the scaled Rayleigh number
temperature gradiem T =T,y — Typper bEIWEEN the lower
and upper confining boundaries. Unscaled quantities are un- _Ra
derlined to distinguish them from the scaled ones introduced r= R_ag

below.

(2.9

that is reduced by the critical Rayleigh numlﬁm‘g for onset
A. Field equations of convection in a pure fluid with the critical wave number

0 ; 0__ 0
The system is described by the balance equations f0l§C' The analytical values arRa;=1707.762 andk,

mass, heat, concentration, and momentum in Oberbeck?31.11632' .
(i) The lateral throughflow driven by a lateral pressure

Boussinesq approximatidiz?,2 gradient defines the Reynolds number

0=-V-u, (2.19 d
Re=(u),— (2.6
4T=-V-Q; Q=uT-VT, (2.1b v

where(u), is the vertical average of the lateral velocity field.

We consider in this paper a throughflow in positive

x-direction with positive Reynolds number.

(iii) The separation ratio

#C=-V-J J=uC-LV(C—yT), (219
du=—V(uu+p—oVu)+B; (2.1d

B=oRa(T+C)e,. k

a( )€, e § T_T 2.7
Lengths are scaled with the heigthiof the layer, time with =9
the vertical thermal diffusion time&l?/ «, and the velocity with the thermo diffusion ratid; of the mixture reflects the
field u=(u,v,w) with «/d. Here,« is the thermal diffusivity  influence of temperature gradients on the concentration cur-

of the mixture;T=(T—Ty)/AT denotes the scaled deviation rentJ.
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For negative separation ratigsthe imposed temperature Eg. (2.128 we have applied twice the curl operator to Eq.
gradient causes in the quiescent heat conducting state an d2-1d using(2.1a. Note that the Poiseuille flow profild(z)
tiparallel concentration gradient via the Soret effect. The reenters into Eqs(2.12 making them nonautonomous.
sulting solutal contribution to the density change is opposite The horizontal boundary conditions for the convective
to the thermal contribution, thus weakens the buoyancy angerturbation fieldsv, 8, and{ are
stabilizes the heat conducting state. For room temperature
ethanol-water mixturesy-values between about 0.5 and f=w=09,W=0,{=0 at z==*3. (2.14

+0.2 can be easily realized experimentd®g]. The Dufour

effect that reflects the coupling of a concentration gradienf\SSUming the system to be laterally unbounded the general
into the heat curren® can be discarded in binary liquid solution of the perturbation equatiofi.12) can be written

mixtures[29,30. The buoyancy forcef(— po)g due to den- a5 @ superposition of plane waves with horizontal wavevec-
sity deviations from the mean is the driving mechanism forto"
convective motion. It enters into the momentum balance K=k.e.+ K (2.15
(2.1d via the buoyancy ternB which follows from (2.2) xS Ky - '
after scaling. This is the only place, where density variationsyy,o plane-wave solution ansatz for the fielis=(w, 6,¢)
are retained in Oberbeck-Boussinesq approximation. In the, - 4o
continuity equation2.13, the fluid has been assumed to be
incompressible. _a i (keX+kyY) oSt
Rigid, impervious and perfectly heat conducting plates B(r,)=d(z)e® Ve (218
located atz= =+ 3 define the horizontal boundary conditions with a complex characteristic exponent
u=0; T=%; atz==x; (28 S=Ms+iJs=y—iw (2.17
for the fluid’s velocity and temperature fields. Due to the _ PPN
impermeability of the plates there is no concentration curren@nd complexz-dependent amplitude functiods=(w, ,{).
through the plates]-e,=0, or Inserting the ansat2.16 into the field equation$2.12)
yields the 3x 3 linear eigenvalue problem
3,C=d,T at z=+3. (2.9 A
) . _ ) ) ) (L+sM)P(z2)=0 (2.183
Since the pressuneis determined via a Poisson equation by

u, T, andC, we do not need boundary conditions for it. for the eigenvalues and eigenvectoré) with

B. Linear eigenvalue problem L=LO+iok,ReL®), (2.18b
For smallRa andRe a laterally homogeneous heat con- s o )
ducting state without convective vertical velocity is stable. In —o(d;—k»? oRa(l+y)k* oRak
this basic state the velocity field,,,q=U(2)e, is given by £0)= -1 K2— g2 0
the plane horizontal Poiseuille flow ) 22 -
0 w(é’z_k ) L(k _‘92)
U(z)=o0ReRz)=0Re6(}—7%); (2.10 (2.189
temperature and concentration fields are linear functioms in Into
Teona=—2Z, Ccong= —¥2Z. (2-1:D P(&Z_ k2) _ 072P 0
(l): z z
The basis for our linear analysis of convective perturba- L 0 P o0/’ (2.189

tions of the conductive state are the linearized field equations
enters the vertical profileP(z) (2.10 of the Poiseuille

(9= oV V2W+(UVZ= U)W throughflow and its second derivative. Finally
=oRaA(Z+R)(A+po+], (2123 2ok 0 0
(8,—V2+Ud,)0=w, (2.12h M= 0 1 0f. (2.18¢
0 0 1
(—LV2+Ud)i=—4V?6 (2.129

In the absence of throughflos reduces toZ (). Due to the
boundary conditions at the plates the eigenvalue spectrum is
discrete. We are interested in characteristic exponents

whose eigenfunctioné(z) have no nodes other than at the
from the conductive stat@.10),(2.11). Herew is the vertical  horizontal boundarieg= *=1/2 which have growth rateg
velocity field that vanishes in the conductive state. To derivahat are closest to zero.

for the deviations

W, 0=T—=Teongs ¢=C—Ceong— 0 (2.13
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Since the horizontal wavevectde of the perturbation ~—449y/(1+ ¢+ 1/0) [37,9]. For ¢ above(below) the tri-
(2.16 and the throughflow Reynolds numbRe enter into  critical value /4= —O(10™ %) [33,3§ the TW bifurcation
Eg. (2.12 only ask? andk,Re the dependence of the func- is forwards(backwards The bifurcation thresholds,,; and

tionsf=s,d onk andReis rosc become equal at the codimension-two valugtp
=—0(10"%) with slightly different critical wave numbers
f=f(k? kRe). (2.19 and a small Hopf frequency. For a more detailed discussion

. . . _ of the codimension-two point see, e.f3-5,33,36.
Using this behavior the Squire transformati@1i]

f(2+K2 kRe)= (K2 KRe), (2.203 . Notation . o
Instead of numbering the three different bifurcation
K thresholds and bifurcating convective solutions of the33
Ke=k2+ k§; Re=-2Re (2.20p  eigenvalue problent2.12) in the presence of throughflow,
Ky Re>0, we use henceforth superscri$J,D. They identify

, _ _ the behavior of critical perturbations|*~ <) in the limit
relates the function§ for a wavevector with arbltrary-com- Re—0. Eigenvalues for whichw.(Re—0)=0 are marked
ponentsk, ,kxto~the functions that have been determined forby S since these perturbations are stationaryRee=0. Ei-
wavevectork =Kk,eg, in throughflow direction and Reynolds genvalues for whichw.(Re—0) is positive(negative carry
numbersRe The linear behavior of general perturbationsthe superscripD (U), since they characterize perturbations
with ky,k, can be obtained from the result fa; andRe which propagate in downstrear@pstream direction for
with Eq. (2.20. Therefore we investigate here only convec-R€—0. Thus, the casesS (“stationary”), D (“down-
tive perturbations with wavevectors sadirection. In experi-  Stream’), andU (“upstream”) characterize the perturbations
ments they give rise to straight rolls which can most easily@nd with it the bifurcating nonlinear solutions in the limit

be seen in convection channels that are |0ng_mrection Re—0. For convenience we use this n(:)tatio.n' also in the
and narrow iny_direction' absence of throughflovRe=0. ThenD(U) identifies a TW

where the phase is propagating to the rigeft) with fre-
quencyw®>0 (0Y<0).

Finally we should like to draw the attention to the fact
that we distinguish the propagation direction of different

In this section we briefly review the influence of through- TW's bv their frequency not by their wavevector — we onl
flow on linear bifurcation properties of differerspatially s Teq - y not by y
consider positivek,=k in this work.

extendedconvective patterns that have spatially homoge-
neous amplitude$32]. These properties provide the back-
ground and a frame for discussing in the main part of this
paper our findings on the behavior gfatially localizedper- We briefly review in this subsection critical properties of
turbations. We focus here our interest on small Reynolds binary mixture like ethanol-water witli= —0.25 as a rep-
numbers. For sufficiently larg@e, the lowest relevant bifur-  resentative case for moderately negative Soret couplings. In
cation threshold of binary mixtures with any asymptoti-  the absence of throughflow, the threshold of stationary con-
cally approaches the critical Rayleigh number of pure fluidvection has already disappeared singe o= —L/(L
convection[32] since in this limit the externally imposed +1). There exists only the Hopf bifurcation threshold at
shear flow effectively eliminates the Soret-induced Couplinqosc: 1.3348 for symmetry degenerate left or right propagat-
effects between the convective concentration field and thghg TW's with the critical Hopf frequencywy = 11.2125.

other fields by suppressing vertical convective transport ofinjte throughflow breaks the symmetry of the two TW pat-

Ill. SPATIALLY EXTENDED STRUCTURES

C. Effect of throughflow on the oscillatory instability

Soret driven concentration perturbations. terns and different, up- and downstream propagating TW's
bifurcate out of the conductive state. They will be referred to
A. Absence of throughflow as TWU (traveling wave upstreamand TWD (traveling

. . . ... wave downstreaim
The stability properties of the conductive state against 'n& The relative difference between the critical wave numbers

finitesimal convective perturbations in the absence o . .
P D andkY of the D and U waves, repectively, is not more

throughflow have been discussed in detail in the literatur o ¢ for the mi 4R Id b
[3-5,33. For ¢ above(below) the tricritical valueysoc= than a few percent for the mixtures and Reyno $, umbers

—0(10™7) [33], the stationary bifurcation to the so-called cons[dered. here. Th? critical frequencies and w’ are
SOC state is forwardbackward. However, belowy? .= practically linear functions oRe. They start at zero through-
. ' SOoC™

_ . . flow with the Hopf valueswy and —wy, respectively, and
Verges, the lovier SOC soltion branh s cisconnieed frof12Y ¢an be very well approximated by the fistorder resul
the conductive solution for positive[36]. In addition there of a lowRe expansior(32]

gmsts for strong stabilizing Soret coupling a Hopf bifurca- ‘UE’U: + oy +41.Re 3.1)
tion threshold at ,¢. where symmetry-degenerated left and

right traveling wave solutions branch out of the conductiveThe rate of changelw./dJRe=41.9 also holds for other
state. The Hopf frequency wy varies as wﬁ separation ratiof32] including the pure fluid casE39].
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1. rY(Re, o)

With increasing throughflow ratet;tJ (thin, solid lines in

Fig. 1) decreases for smeite, develops a minimum close to

] where wlCJ goes through zero, steeply increases thereafter,
and finally flattens asymptotically for any Soret coupli#g
towards the Re-dependent pure fluid stability boundary
r.(Re =0) at largeRe. The flattening oftJ can be seen in
Fig. 1 for the weaker Soret couplingg= —0.001;-0.01.
With increasing Soret strength the flatteningrﬂf towards
r.(Re =0) shifts to larger and largeR e [32] outside the

- plot range of Fig. 1. Thus a sufficiently large throughflow
eliminates the Soret induced coupling effects between con-
centration field on one side and temperature and velocity
field on the other side. For small, e.g., aty= —0.001, the
stability boundaryr! lies always below 2 while for larger
|| there are two intersections of the curveSandr? with
ro<r? in between[32]. Note, however, that the bicritical
upstream and downstream TW perturbations can not be su-
perimposed linearly to a standing wave since their wave
numbersky # kL differ and furthermorewy # — w2 . So in
the Re-interval between the bistable intersectionsr Bfand
r2 downstream propagating convection waves grow first
while outside this interval at smaRe and largeRe TWU
convection bifurcates first out of the conductive state.

0.1 0.3 0.5 0.1 03 05
Re Re

FIG. 1. Borderlines._, between absolute and convective in-

stability and stability curves; versus throughflow rate according to 2. 1°(Re, )
[32]. Symbols andhick curves represent,_, obtained from the e
full field equations and from the GLE, respectivelphin curves The bifurcation thresholdcD (thin, dashed lines in Fig.)1

show bifurc_:ation thresh_oldsC for spatially extendgd structl_Jres _a's always increases monotonically wifRe. The initial slope
gISCL'lSTed |ndSSc. Illj. :?n‘ferent types(,jof pgrtgrbat!onslare |d§r;t|:‘||ed07rCD/(9Re increases somewhat with decreasjug. For =

oy circles and dotted linesS), upwards pointing triangles and full - _ 5 41 he stability curves? andr S collide in theRe-range
lines (U), and downwards pointing triangles and dashed lif&k. ( disol din Fia. 1. For hiaher th hl tes th

The case of a pure fluid;= 0, is shown by dash-dotted lines: thick ISplayed In F1g. 1. For higher rqug ow rates erg opens
one forrS_, and thin one forS. Parameters are=0.01p=10, UP & wave number gap where neitlizmor S perturbations
and s as shown. can grow[32,40.

Note that forRe=w,/41.9 both critical frequencies)? 3. r5(Re, )
andw, , as well as the phase velocitiegy,’ = w¢"“/kg"" are In pure fluids, y=0, the bifurcation threshold.(Re,y
positive. Then both critical waves propagate in throughflow=0) (thin, dashed-dotted line in right, top part of Fig. 1
direction in the laboratory frame. Howevetrt,’h is always slightly increases with growin@e [39]. In binary mixtures
smaller — by about @ /k.,(Re=0) — thanv'gh. Only for  with negative Soret coupling, on the other hand, the station-
Re<wy/41.9 the phase velocitytfh is negative and opposite ary thresholdr{ (thin, dotted lines in Fig. 1L gets very
to the throughflow. So, the wording “upstream traveling strongly depressed by a small throughflow. In the absence of
waves” does not necessarily imply that the phase velocity othroughflow rS rapidly increases witHy| and diverges at
such a TW is negative in the laboratory frame. It would beyg,-=—L/(L+1). Beyond this Soret coupling the solution
negative in a frame moving in throughflow direction with a pranch of stationary nonlinear convection is disconnected
conveniently defined mean lateral velocity like, e.g., from the basic state asg(Re=0,< 5od =*. A small but
=3(vpntupn- finite throughflow, however, moves the threshofdown to
finite values: The dotted line fmf of Fig. 1 for y=—0.01
< %o shows(i) thatr 5= below a finiteRe,=0.019,(ii)
thatr? is finite for Re>Re,, and(iii) thatr? steeply drops

Here we discuss the bifurcation threshot@’s(thin, solid down forRe>Re, [32]. The Reynolds numbeRe, where
lines), r (thin, dashed linés andr$ (thin, dotted linesas  r¢ diverges grows with increasings| — a stronger Soret
functions ofRe for a few characteristic negative Soret cou- coupling requires a larger throughflow to move the bifurca-
plings as shown in Fig. 1. tion thresholdf from infinity to a finite value.

D. Bifurcation thresholds at negative i
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IV. TRANSITION BETWEEN CONVECTIVE AND two parameter regimes to be distinguishé&d.In the so-
ABSOLUTE INSTABILITY called connectively unstable parameter regiif6,51 the
Whenever at a stability threshold the frequency is nonzerg ave packet_ moves .W'tr.' the velocity, faster. away than it

with a finite group velocity grows — while growing in the frame comoving \_NlthJ the _
pulse moves out of the system so that the basic conductive
state is restored. In other words, the two fronts that join the
(4.1 wave packet's intensity envelope to the structureless state
ke propagate both in the direction in which the packet center
moves. (i) In the so-called absolutely unstable parameter

one has to distinguish between spatiotemporal growth behayegime the growth rate of the packet is so large that one front
ior of spatially extendedand of spatiallylocalizedperturba- ~ Propagates in the laboratory frame to the center motion.
tions. The former having a form-e*<* have a positive Thus, the packet expands not only into the direction of the
growth rate above the bifurcation threshotdsletermined in ~ Pulse motion but also opposite to[60] so that eventually
the previous section. the initial perturbation can fill the entire system.

We should like to emphasize that we are dealing here only
with a linear analysis of the convective fields. Thus we do
not address the question whether the above described wave

Due to the rotational invariance of the fluid layer in the packet grows to a stable nonlinear state that then might ex-
x—y plane without throughflow there is no preferred pand back into the system with a larger negative nonlinear
wavevector direction for the growth of infinitesimal pertur- front velocity so that the nonlinear structured state ultimately
bations out of the basic state. Consequently one observes invades the region occupied by the homogeneous state al-
experimental setups with large extensidig,I'y>1 in x-  though the latter is linearly not absolutely unstafia,53.
andy-direction, respectively, for strong stabilizing Soret cou-
plings a growth dynamics of TW perturbations that is quite B. Saddle point analysis

complex in space and timgt1-43. However, in narrow The boundary | ; betw i q
convection cells, say, withy=1—3 and largd’, or in nar- € boundary In parameter Space between convective an

row annular convection channels the roll axes are orienteabSOIUte instability is marked by parameter combinations for

parallel to the smaller side of the cell and the wave vectord/hich one of t'he f.ront's of the linear wave pa}cket reverts its
are oriented inc-direction. Here we shall not investigate the Propagation direction in the laboratory frame: In the convec-

competition[44,45 between logitudinal rolls and transversal t|vel_y unstable regime this front propagates in the same di-
rolls with wavevectors irx-direction andy-direction, respec- rection as the center of the packet, in the absolutely unstable
tively, that occurs in wider systems in the presence of egime It moves opposite to i, anq nght_ on th(_a boundary
throuighflow etween the two regimes the front is stationary in the labo-
Consider first a spatially localized, infinitesimal perturba—ratory frame. This parameter combination can be determined

tion of the basic state that contains only one type of TW's,by a saddle point analysis of the linear complex dispersion
e.g., right traveling waves with different wave numbers. Sorelauon s(Q) over the pane of complex wave numbgsd]
this is a linear superposition, i.e., a wave packet, of TWD’s. 0=RO+iJQ=k—iK. (4.29
Above the threshold of instability,>r s, the projection of

the initial perturbation onto th_e gigenfunctions of the criti.caIHere we do not display the dependence of

mode grows exponentially within the framework of the lin-

earized field equations, whereas any contributions from s(0)=Rs(0)+iTs(0) = —i 4.2
modes with higher threshold values and more complicated Q) Q) (Q=rQ~10(Q  (4.20
vertical field structure are strongly damped. Furthermore, fo
small|r —r,sd only contributions with wave numbers in the

dw(K)
YeT ok

A. Wave packets

bnr,Re, ¢,L,o and we also do not indicate that in binary

g " mixtures with throughflow one has to consider three different
narrow band above the marginal stability cungh(k) can dispersion relations for the three different perturbations of
grow whereas other contributions are damped. After fas pe S,U, andD as explained in Sec. IIl.

transients have decayed a pulse like perturbation of TWD'S" 1ha condition of vanishing front propagation velocity is
survives with wave numbers within the unstable band CeNgquivalent to finding the parameters for which

tered around the wave number of maximal grovkh,

zkIW. The center of such a pulse propagates approxima- Rs(Q*)=y(Q*)=0 (4.39
tively with the linear group velocityy 4 (4.1), which can be

determined via a standard linear stability analysis. Suclyith Q* denoting the appropriate saddle positiors(®) in

pulses have also been investigated experimentally, €.g., Rje complex wave number plane given ys(Q)/d Q]| ox
Kolodneret al.[14]. Due to reflection at the lateral sidewalls —q ysing the Cauchy-Riemann relations for the analytic

of rectangular channels exponentially growing pulses cam,nction s(Q) this saddle condition amounts to
end up in blinking states for very small overcritical Rayleigh

num_bers[8,9,13,14,46—4p_ _ , Iv(Q) av(Q)
Since the above described wave packet contains TWD's K =0, =0. (4.3b
that can grow the pulse will grow as well. However, there are J Q* K Q*
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The solution of Eq.(4.3) yields the sought after boundary r
between convectively and absolutely unstable parameter re- M= 1 4.7
gimes. Quantities on this boundary are identified henceforth ¢
by the subscript—a. of the Rayleigh number from its critical valuer . for onset

To solve Egs.(4.3 we evaluate the dependent eigen- of convection which in general depends B, ¢, o, andL.
functions®(Q,z,s) that solve the eigenvalue problg@18  The higher order terms in E@4.6) should be of ordep®?
for fixed o, L, ¢, Re r, Q, and an initial guess fos=vy  since for small B<u<1 only extended perturbations with
—iw. With two staggered Newton algorithms we first itera- (rea) wave numbers out of a band of widkh- k.~ /u can
tively adjusts in order to fulfill the boundary conditions at grow.
the plates and then changek, andK such as to match the The expansion coefficients of E@t.6) appear also in the
conditions of Eqgs(4.3). In addition we solved the eigen- linear parts of the complex GLE
value problem also with a Galerkin expansithppendix
for the z dependent eigenfunctions. Then we used the more TO(&t+ugax)A=[(1+ico),u+(1+ic1)§(2)&§]A
convenient formulation

+nonlinear terms. (4.83
oD
v=0, D=0, £=0 (4.4  HereA(x,t) is the common complex amplitude of convec-
tion fields® = (w, 6,c)
of Egs.(4.3) in terms of the implicit formulatior{Appendix A ,
D(o,L,,Rer,Q,s)=0 of the dispersion relation in order D(x,z,t) =A(x,t)P(z)e'ke* D+ cc.  (4.8D

to determinek._,, Ke.a, Mca» andwg_, [40]. ) )
that bifurcate out of the conductive stateat0. The ap-

proximation(4.8) can be expected to be a good one as long

asA is small and, more importantly, as long as the spatial
To determine the boundary between convective and absdield structure is well represented by that of the critical eigen-

lute instability via the solution of Eq$4.3) requires knowl- functionS&)(z)eikcx.

edge of the dispersion relatia(Q;r,Re ) for complexQ. The relations between the expansion coefficients arfid

So one has to solve the eigenvalue probl@ni8 for com-  yhe coefficients in the amplitude equation are
plex Q which is a quite involved numerical task. A some-

C. Ginzburg-Landau amplitude equation approximation

what simpler, yet approximate method, is to use an expan- Js [ dw .
sion of s(Q;r,Re#) around the critical pointQ.=K.,r (@) =—I(E> =—ivg, (4.939
=r., that corresponds to approximate the full linear field c c
equations by the linear Ginzburg-Landau amplitude equation ,
(GLE). We recapitulate the relevant equatid@g] here for (rf) . (ﬂ—i ‘7_“’) _1+ice (4.9b
completeness. The comparison with results from the full field ar. €\ ar ar T '
equation(Sec. IV D) shows that the GLE yields quite useful
approximations to the borderlines between absolute and con- 22s 242
vective instability. (_2) = _0(1+ icy) (4.99
ConsiderRe and ¢ to be fixed for the moment so that we Q%) .
do not have to display them explicitly in the argument list of
s. Under the assumptior(®) that the sought after sadd@* In Eq. (4.90 we have used
in the complexQ plane lies close to the critical wave number
k. of the respective perturbation type afiid that the relative &y |9y 9?1 stab 4.10
distance K2 . I g2 :
Mo
Mc—a cr -1 (4.5  to relate the second derivative of the growth rate to the
¢ critical curvature£s= 1 (9°r ;an/ k%) of the marginal stabil-
between the convective/absolute bordgr, and the critical ity curve rsi(k). The approximated dispersion relation
Rayleigh number . is small we expand (4.6)
9s 1 , s To[Stiwc+ivg(Q—Ke)]
s(Qir)=sc+(Q—ko)| 5| +5(Q—ko)| — : ,
¢ “\oQ/, 2 “1aQ? =(1+ico)u—(1+icy) £(Q—ko)? (4.1
Js is precisely the one of the GLE approximati¢h8) to the
+ulro-] Thot (4.8 Jinear fields ,c, 6).
Cc

Note that the dispersio#.6) and with it the coefficients

Here we have introduced for convenience the relative dis7o:Vg:Co:C1,€o (4.9) of the amplitude equation, the ampli-
tance tude A(x,t), the eigenfunction®(z), and the critical quan-
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tities k¢, w1 all carry a superscrips, U, or D that identi- 3 7 — .. ol 7 40
fies the kind of perturbation considered. ——-o=1 /s
With the notation(4.9) the saddle€Q* of the approximated W ’ e
dispersion(4.6) lies at il z
— 2+ // = 20 =
2 ~
Q* =k | vgTo (4.12 i
=Ke™ ; . .
1+icy 25(2) X
1 : 0
Then the conditior{4.33 yields the GLE approximation a5 b i P ;,/_ )
— _/,—b‘—'——:—_ /// =
vird 2 S ~~— T . =
-—9° @413 T |° A — -
Mc—a™ f . s - =
T ag1cd) *asp T S
., iy
.......... /
rcfa:(l'*_,“«cfa)rc (4-13b ............ :'//
" ' s ' 0 ' s —0°
for the boundary between the convectively and absolutely Pe Pe

unstable parameter reginig1,54.

D. Results

FIG. 2. Saddle point results for wavepackets at the transition
between convective and absolute instability in pure fluid convection
(¢¥=0) as a function of throughflow Peclet numiee=oRe for

In this section we present results related to the bordeseveral Prandtl numbers as indicated. Shown ane._,, w._,,
between convective and absolute instability. They were obk._,, andK._, as obtained from determining the dispers&f®)

tained with the saddle point analysis @f the numerically

of the full field equations with a shooting method.

obtained dispersion relations of the full linear field equations
(Appendi¥ and(ii) of their GLE approximations. Quantities r. In the absence of throughflok:_, and u._, are identical
on the border between convective and absolute instability arfyr left and right traveling waves where#s._, and w,_,

marked by the subscrifg— a.

1. Pure fluid convection as a test case

have opposite sign.
In the presence of throughflow the symmetry degeneracy
between left and right traveling waves is lifted and one has to

To test our numerical procedure we have investigated thélistinguish between the three different types of extended,

pure fluid limiting case of vanishing Soret coupling=0.
We have determined the valudés ,, K. ,, rc_,, and
w¢_ 4 [55,49 as functions of the Peclet number

Pe=oRe

(4.14)

propagating perturbations, name§;, U, and D, against
which the basic conductive state becomes unstable at the
bifurcation thresholds?, rY, andr? [32]. Consequently
one has to investigate the spatiotemporal growth behavior of
three different wave packets consisting of superpositions of

TWS, TWU, or TWD plane wave perturbations.

In Fig. 2 we show results determined with the shooting The set of these three eigenfunctions and eigenvalues of
method (Appendi® using a spatial discretization of 1/500 Ed. (2.18 transforms into each other upon reverting the

and 1/1000 forc=0.1, 1, 10, andr— .

throughflow direction, i.e., under the operati®e— —Re

It is easy to see that the results are independent under tiséhce the hydrodynamic field equations are invariant under

combined symmetry operations

Pe——Pe, K a——Kela, ®eoa— —we_3a-

(4.195

SoK._ , andw,_, are linear functions anl, 5 and .,
are quadratic functions in lowest order B [45]. Within
the GLE approximation the symmet¢.15 is reflected by
the fact thatcy, ¢;, andv4 are odd functions iPe whereas
7o and €2 are even functions.

2. Binary mixtures: Convective and absolute instability
for S,U, and D perturbations

the parity operationx,u)— — (x,u) with u being the veloc-
ity field in x-direction. The transformation behavi#2] of

{sS,sY,sP;®S dY &P} follows explicitly from the fact that
the linear operatof entering the eigenvalue equati¢h18)
transforms a€(—k,Re) = L* (kyRe) underRe— — Rewith
the star denoting here complex conjugation. Here we do not
display the other arguments gfthat remain unchanged. The
transformation behaviof32] of the dispersion relations
sS,sY,sP under the operatioRe— — Re imply relations be-
tween{r k,K,w}>%P for Re and —Re[40].

In Fig. 1 we present the boundarie3 , (circles, ry_,
(upwards pointing trianglesandrcD_a (downwards pointing
triangles between convective and absolute instability of the

In binary fluid mixtures the Hopf bifurcation of TW’'s basic state against tyg®U, and D perturbations as func-
generates already in the absence of throughflow finite groupions of Re for different Soret coupling strength32]. These

velocities. Therefore, there exists also Re=0 a transition

results have been obtained from the saddle point analysis of

between convective and absolute instability when increasinthe respective dispersion relations over the com@lgxane
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which themselves were determined with the shooting methoterminate close to the Reynolds number where the wave
(Appendi® using a spatial resolution of 1/3000 and 1/6000.number gap opens up in tfiz— S marginal stability curves.

In order to determine these three boundaries within th&hereK* seems to change sign when increadigfurther.
GLE approximation we have determined the derivativesA graphical analysis of this saddle that has moved into the
(4.9 of the respective eigenvalues,s”, and sP at their  lower complexQ-plane suggests that thefg&s<0 above a
respective critical pointg (Re ), k(Rey). Then Eqg. certainRelimit for all r so that this saddle can be ignored.
(4.13 yields the functions._ ,(Re #) for the three patterns.

They are shown in Fig. 1 by thick line${dotted,U: full, D:
dashedl together with the corresponding bifurcation thresh- V. FRONTS AND PULSES

olds re (thin lineg. Especially for stabilizing Soret cou- | yiew of the fact that the literature on linear fronts and
plings, >0, and smalRe the GLE approximation is very pises is quite extensive — cf. the review of Cross and Ho-
close to the numerically exact results, however, with toohenberg[l] for a concise example — we give here only the
large slopes at higher throughflow rates. _ theoretical background that is necessary for understanding
W'th'”sthe GLE approximation one obtains a local maxi- 5 results. The fronts that we are investigating here and that
mum ofrc_, (e.g., atyy=0.01,Re=0.25 and aty=0.001,  appear also as constituents of pulses are perturbations of the

Re=0.1) when the product of,, which decreases witRe,  pasic state where the fieldmcally) have the form
andvg, which increases witiiRe, reaches a maximum. For

#=0.01 a second maximum is visible at smRIe that is
possibly associated with a root of. In contrast?_, result-
ing from the full field equationgcircles is monotonously

increasing withRe. This strong deviation inf_a1 for positve  Here Q=k—iK as in the previous section ans(Q)

¥ between GLE and full analysis is caused by the strong=y(Q)—iw(Q) is the linear complex dispersion relation of
Re dependence of the coefficients of the amplitudethe field equations over the plane of complex wave numbers
equation[32].

For the negative Soret couplings of Fig.rf;La first de-
creases with increasinge, coincides at its local minimum
with r{ when vyg=0, and afterwards increases wite.
Hence, at fixed one encounters with increasiriRe first a Here we introduce the notation for the six different linear
transition from convective to absolute instability againstfronts of the form(5.1) that we discuss in this paper. The
TWU perturbations. Then, upon increasiRe further, one  envelope of Eq(5.1) varies ae®*. So whenK>0 the per-
leaves the absolutely unstable region again to enter againtarbation (5.1) grows atx= —o out of the basic state. We
convectively unstable regime. The consequences followingall such a front to be of type- and identify the associated
from this functional form of the border Iine‘C{a on the front properties by a subscript. On the other hand, faK
behavior of TWU fronts are discussed in Sec. VI B 2. The<0 we have a front of type—with an intensity envelope of
GLE approximation yields good quantitative agreement withthe perturbatior(5.1) that joins at+< with the basic state;
the results of the full field equations fof_, (upwards point- ~ see Fig. 3 for schematic plots. So the two subscriptisien-
ing triangles in the vicinity of the local minimum, while for tify the spatial variations of the front profiles. A pulse-like
higherRe the GLE results increase more strongly witle. perturbation of the quiescent state would consist sufficiently
For smaller Reynolds numbers the validity range of the GLEaway from its center of & front to the left and of a- front
result is typically enlarged down t®e=0 for the -values to the right of the pulse center.
presented here. The dynamicalproperties of the constituent perturbations

We have limited our investigation crﬂ? and rf as func- (5.2) under a front envelope are identified by superscripts
tions of Re to cases, where the wave number gap inBhe S,U, andD as eXplained in Sec. Il B, as used in Sec. IV D,
— S marginal stability curve$32,40 has not yet appeared. and as indicated schematically in Fig. 3. The three different
Therefore, within the GLE approximatia?_, andrS_, are dynamical properties combined with the two different spatial
determined by the expansion coefficients 0f4.9) at the profiles y|eld six different fronts. For convenience we use the
critical Rayleigh number,, only as long as the calculation of SUPerscriptsU and D also for the caseRe=0 without

r2 andrS was numerically possible. Nevertheless, for highert"roughflow to identify left or right traveling waves, respec-

Re critical Rayleigh numbers still exist to the left and right 1vely- The throughflow wittRe>0 is always understt)ood to
hand side of the wave number gap. We also found thasthe P& directed in positivecdirection. So, for examplek’, de-
saddle point of the full field equatiorigvaluated by succes- Notes the real wave number of a TWD-pattern whose phase
sively increasingRe) evolves monotonously wheRe in- propagates in downstreaan direction under a front of type
creases beyond the threshold where the wave number gayith a spatial growth~e*+*. The velocityv® of this front
occurs. The wave number of this saddle point increases withight be positive or negative. So in the casev8>0(v"?
Re. <0) this front moves downstreatapstream The time evo-

The GLE results forrCD,a are increasing stronger than lution of, e.g., the width of a pulse consisting, say, of TWD
those of the full field equationsdownwards pointing tri- perturbations then depends on the magnitude and sign of the
angles. For ¢=—0.001 ther?_, stability limit seems to velocitiesv? andv® of its left and right fronts, repectively.

F(x,t) ~ 51l = gl HQ) - 10(@ltgk-iKIx (5 1)

A. Notation
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d
front lypy dGLS(Q +ivQllg-g»=0. (5.49

The condition that the temporal growth rate of the front van-
0 st ., US> D ishes in the frame comoving with the front velocity im-

— plies the relation
(a) \ 0=R[S(Q) +ivQllg-g+=¥Q*) +v*K*. (5.4b

We combine Egs(5.49 and(5.4b) into the three equations

. QY

_ Q| Q)

K* K o ok

front type: —
Rt =0
(5.49

that we have solved. The solution of these three equations
yields the three quantitie®* and v*. In the laboratory

- : frame the spatiotemporal structure of the field under the front
X (arbztrary umts) determined by Eq(5.4) has the form

FIG. 3. Schematic plot of different fronts. Thick full lines (&) f(x,t)~ el (Kx—o*)gK* (x=v™1), (5.5)
and thin full lines in(b) show intensity envelopes of type and of
— type fronts connecting to the quiescent basic stale-at-c and  Thus the saddle conditior(s.4) determine all spatiotemporal
atx—, respectively. Dots denote the actual TW structure growingproperties of the front: velocity*, spatial growth raté*
under the front: a TWU perturbatidmarked byU and a full arrovy wave numbek*, and frequencyv* .
propagates upstream to the left and a TWD perturbdtiearked by Investigations of the linear front dynamics within the
D aqd a dashed ar_r(jwnoves downstream to thg right. These con- GLE approximation showed that front solutions witk|
)[/ennons., Sa;;hedflmesf for TWDd pf:.ttelms’ ffu” I"f'es for TWU %at- >|K*| were unstable against the marginally stable front de-
erns, thick lines fort fronts, and thin lines for- fronts are used o yinay hy the saddi©* of the GLE dispersion relation
also later on in Figs. 5 and 6. . ; .
[56—-60. So here we have a universal long-time dynamical
. i selection of the marginally stable front solution that holds
B. Saddle point analysis almost independently from the form of the localized initial
The analysis of linear fronts is based upon an investigaperturbation58,1]. For this reason and in order to compare
tion of the spatiotemporal properties of spatially localizedlater on with results obtained from the full field equation we
perturbations first compile in Sec. V C the known front properties follow-
ing from the GLE.

= dk .
f(x,t)=| ——e*f(k,t=0)esM 5.2
1) fwaW ( ) 6.2 C. Ginzburg-Landau amplitude equation approximation

The saddle point analysis of Sec. V B applied to the dis-
that consist of a wave packet superposition of spatially exPersion relatior(4.11) of the GLE(4.8) yields the following
tended waves with real wave numbef1]. Each wave con- front properties;

tributes to Eq.(5.2 with the weightf(k,t=0) being the
smooth Fourier transform of a sufficiently localized initial £oKE =+ / M
o= — 2!
1+cf

perturbationf(x,t=0) and evolves according to its disper- (5.69
sion s(k). To find the (linearly selecteg long-time front
propagation behavior of such a perturbation under a front K% —k.=—c,K%, (5.60
that connects the perturbation to the basic state and that - -
propagates with velocity one analyzes gg
v’;—vg:—z(1+c§)T—oK§, (5.60
— — = dk [s(k) +ivk]t —
f(X—Ut,t)—Jier f(k,t=0) (5.3 yr=—v*K*, (5.60)

TO(“’;_wc):TOUg(ki_kc)"'(Cl_Co)M (5.66
in the frame comoving with the front. In the limit af- o
the integral(5.3) is evaluated after deforming the original for the two front types witkK* >0 andK* <0, respectively.
integration path along the reklaxis into the complex wave They are associated with the two saddles of Eqg4) that
number plane via the dominant contribution from the rel-arise from the quadratic dispersion relatighl1). At the
evant saddle poin* given by boundaryu._, (4.133 between convective and absolute in-
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stability the velocityv* and the temporal growth ratg; of
the + front vanish in the laboratory frame. Therf =2v,,
and y* =viro/£5(1+c}) are the velocity and the growth
rate, respectively, of the- front. Thus, the center of the
pulse-like perturbation moves with the group velocity
such that atu._, its left front remains fixed and its right
front moves with velocity 2. In the convecively unstable
regime O<u<u._, both the left front as well as the right
front of the pulse move into the santdownstream direc-
tion, 0O<v* <v*. In the absolutely unstable regimg

>pue_a, however, the left front moves upstream and the

right front moves downstream,; <0<uv* .

Note thatall quantities in Eq.(5.6) and in the ensuing
discussion carry also the supersci$t, or D which, how-
ever, is not displayed in Ed5.6) for the sake of shortness.

These superscripts identify the phase dynamics of the respec

tive perturbation under the froricf. Sec. V B. The coeffi-

cients of the three associated amplitude equations entering

into Eq. (5.6) have been evaluated as a functionggRe in
[61]. The limiting case,y=0, of pure fluid convection is
contained also in Eq5.6).

D. Fronts in pure fluids—comparison of GLE and field
equations

PHYSICAL REVIEW E63 016307

35+ et —f e =01 4
== —= o=1 Re
P _ ’/
|—ot10
— NS e —-- c=00 7,
<) ~=— =
= <]
~ (=N
v —

K (1/d)

2
1.0

FIG. 4. Comparison of front properties in pure fluidg=<0) in

the absence of throughflonRe=0) resulting from the GLE and
from the full field equations. Shown are the selected wave number
k%, velocity v* = —v?% , spatial growth rat&K* = —K* , and fre-
guencyw? versus reduced Rayleigh numbefor different Prandtl
numberso as indicated. Thick lines refer to saddle properties of the
dispersion of the full field equations obtained with a shooting
method. Thin lines refer to the resui.7) obtained from the GLE.

We have first investigated as a test case the pure fluid

limiting case of vanishing Soret coupling,=0, in the ab-
sence of throughflowRe=0. Then u=e=r/r.—1 with

front of perturbations that grow beyond the stationary insta-
bility of pure fluids seems to be a somewhat open question

r(Re=0,y/=0)=1. Here we compare the front properties [62].
of stationary roll convection perturbations growing under the

fronts obtained from the field equations with those from the

GLE. The latter yields according to E¢5.6) in the absence

of throughflow for a stationary pattern the well known results

[1]

EKE=%Ve Ki=k, (5.7a

0t=0

€
vi=12§ﬁ; yi=2—; (5.7
- 70 - 7o

since cp=c;=vy=w =0 for pure fluids without through-
flow. For this system one hag,=0.385 and 7= (o
+0.5117)/19.66 for rigid horizontal boundary conditions
[1].

This GLE result(thin lines in Fig. 4 is in reasonable good

agreement with the linear front properties that we evaluated

for a wide range of Prandtl numbessfrom the dispersion of
the full field equations by a shooting meth@tick lines in
Fig. 4). Corrections to the-independent GLE values &f;

E. Fronts in mixtures without throughflow

In Fig. 5@ we compare front properties in a mixture with
y=—0.25 (dashed and full lingswith those in pure fluid
convection,iy=0 (dash-dotted lines both without through-
flow. In Fig. 6@) this comparison is made fay=—0.01.
These results were obtained by evaluating the dispersion
s(Q) of the full linear field equations with a many-mode
Galerkin expansiofAppendiX.

1. Symmetries

Invariance of the field equations under-—x for Re
=0 implies that stationary perturbations with =0 under a
+ front are mirror images of those under-a front. This
implies for Re=0 the symmetry relations
(K,w,0)?=-(Kwv)™; k¥=k>*. (59
This symmetry property of the two front types of
Sperturbations withw,=0 can be seen in Fig.(& and in

=k, andw?’ =0 are of higher order that are not captured byFig. 6(@) for the casey=0 of pure fluid convectioridashed

the GLE. Sinceé, is independent ofr so isK*. But v*
depends omr via 7.

dotted lines.
Now consider TWD and TWU perturbations. Here the

Note that according to the full field equations the pertur-invariance of the field equation®.12) under x— —x for
bation (5.5 that is growing under the moving front shows a Re=0 implies first of all that a spatially extended TWD with

phase propagation with phase velocii§/k* that is in gen-
eral nonzero while the GLE yields* =0. The question of

uniform amplitude is the mirror image of a spatially ex-
tended TWU. Furthermore, a TWD under+a front with

whether there is a phase propagation under a convectigpositive K is symmetry degenerate with a TWU under-a
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FIG. 5. Front properties in systems with and without through-  FIG. 6. Front properties in systems with and without through-
flow, Re, as indicated. Saddle point results for wave numider  flow, Re, as indicated. Saddle point results for wave numiber
velocity v*, spatial growth rateK*, and frequencyw* obtained  velocity v*, spatial growth rat&K*, and frequencyw* obtained
from the dispersion of the full field equations are shown versus from the dispersion of the full field equations are shown versus
Dash-dotted lines refer to fronts in pure fluidg=€0). Full lines  Dash-dotted lines refer to fronts in pure fluidg=0). Full lines
refer to TWU fronts and dashed lines to TWD fronts in mixtures refer to TWU fronts, dashed lines to TWD fronts, and dotted lines
with = —0.25. In each case a thick line denotes-dront and a  in (c) to TWS fronts occurring in mixtures witly= —0.01. In each
thin line a— front. Parameters are=10L =0.01. case a thick line denotes & front and a thin line a— front.

Parameters are=10L=0.01.

front with negativeK. Similarly a TWU under a+ type front
is the mirror image of a TWD under a front (cf. Fig. 3. (K,0,0)V*=—(K,0,0)%*; k¥*=kP*. (5.9p
This implies forRe=0 the symmetry relations

They can be seen to be realized in Fige)and in Fig. 6a)
(K,o,0)2*==(Kw,0)2*; k2*=kZ*, (598  (¢f. dashed and full linas
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The GLE approximation yields beyond E¢5.9) addi- vP el

tional symmetry relations foRe=0 that follow from the

fact that, 7o =13 ,é5=¢&5 , andc?=—c} [63] for Re=0.

This then implies according to E¢b.6) that within the GLE

approximation, for example,

K (1/d)

KO* =K% = —KD* = —KY* | (5.103
v'?,*—ng=v$*—vg (5.10p

holds. Herevy = —vg for Re=0.

Inspecting Figs. &) and §a) shows, however, that front
solutions of the field equations have this additional GLE
symmetry (5.10 only close to onsetr?(Re=0)=rJ(Re
=0)=r,s.. Further awayk?* #KY* and KP* #KY* so
that GLE fronts deviate from those of the full field equations.

K (1/d)

2. Dependence on Rayleigh number

For r=r,. the saddle point analysis reproduces the re-
sults of the linear stability analysis. The latter yields that at
I'osc ONly an extended, spatially uniform plane wave pertur-
bation with the critical wave number can grow. Conse-
guently the saddle point analysis shows that the spatial
growth rates of all four fronts vanistK?* =KY*=0 at
l'osc. And the front velocities 2* andvY* start atr ¢ with
the group velocitiesg andvg=—v, of the respective criti-  —0.25, andr=1.65. In the white regions with thin dashed
cal waves forRe=0. v-isolinesy is negative whiley>0 in the grey regions. Thereip

For r values above .. spatially localized perturbations decreases with increasing darkness so that the black boundary line
consisting of wave packets with wave numbers from the unbetween the grey and the white regions is te0 isoline. The
stable band can grow, thus allowing the formation of pulsesoPen square in the tofpottorm region of each plot marks the loca-
The spatial growth rates of their fronts increase with growingfion of the saddieQ? (Q*) for both theD and theU case when
r so that the pulses are getting steeper. Also the temporaf 1.65. The dashe(full) lines with arrows in the I.ef(rlght) col-
growth rates increase with growingIn the top row of Fig. Umn show how thd® (U) saddles move as a function of
7 we show the temporal growth rag€ (left column andy" , o
(right column) with a combination of contour- and gray-scale lmost zero at the respective saddle posm%ns in the Lt)op row
plot over the complexQ-plane fory=—0.25, Re=0, and  Of Fig. 7. If one increases further, thenQ7* and Q=*
r=1.65. AtK=0, i.e., along the redt-axis one can read off return to the real axisK =0, and vanish there in a collision.
the k-variation of the real parts of the two Hopf eigenvalues This is linked with the fact that foRe=0 the TW eigenval-
yP(k)=yY(K) that are symmetry degenerate #6=0, Re  ues,s’(k,r) ands”(kr), depending on the real wave num-
=0. Away from the reak-axis the Hopf bifurcation symme- ber k undergo a transformation from a complex conjugate
try for Re=0 implies the relation pair (y°=7", 0®=—w") to a pair of two distinct real ei-
genvalues §°#yY, o®=—w"=0) at sufficiently larger
(5.1  [32,40.

The variations of the saddle values ¢f and of K*
that is obvious from comparing the top left with the top right change the front velocities: the velocity of those fronts to-
plots of Fig. 7. Thus, foRe=0 the intersection of the two wards which the phase of the pattern is propagating increases
surfaces ofy?(Q) and yY(Q) over the complexQ-plane  in magnitude while the opposite holds for fronts from which
occurs atk =0. the phase is moving away. This can be seen in Fig. &d

\\

2 k (1/d 4 2

k (1/d) 4

FIG. 7. Temporal growth rateg® (left column and vV (right
column for Re=0 (top row) and forRe=0.25 (bottom row over
the complexQ-plane. Other parameters ave=10, L=0.01, =

YP(k,K;r,Re=0)=9"(k,~K;r,Re=0)

The paths of the saddle positiogs* (QY*) as a func-
tion of r are marked by thick dashdthick full) lines in the
complexQ plane. Atr . all saddles lie on the re&taxis at
k.. Increasing the Rayleigh number abayg the saddles

P* and QY* move towards positive while Q°* and

QY* move towards negativié. Forr=1.65 the positions of

in Fig. 6(@) by comparingv®* (thin dashed linpwith v2*
(thick dashed lingand [vY*| (thick full line) with v *|
(thin full line). At the boundaryr>_, between absolute and
convective instabilityy?* changes sign and a TWD pertur-
bation can spread into the entire system against the group

velocity. In the absence of throughflowy_,=r__, so that

these four saddles are marked in Fig. 7 by open squaregisoyY* changes sign and also the TWU perturbation can

Since this r-value is close to the border? ,(Re=0)

expand into the entire system.

=r‘c"_a(Re=0) between convective and absolute instability  Note, that in contradistinction to the GLE result the two

the temporal growth rateg_'i* (Re=0) andy"* (Re=0) are

fronts of a pulse-like perturbation show also in the absence
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of a throughflow different spatiotemporal properties: Theright at the bifurcation thresholds’ and r2 with critical
spatial growth rateK?*=|K"*| is bigger than|K°*|  onset wave numberk! andk®, respectively. The critical
=KY* and the wave numbers?* =k"* differ from k®*  thresholds and wave numbers are for TWU and TWD pat-
=kY* . Also the oscillation frequencias”* = — w"* differ  terns different wherRe>0 while they are symmetry degen-
from w®* = — w"* . Therefore our analysis predicts a com- erate forRe=0.

petition of two different selection processes for convection Besides that and in addition to it one has above the re-
structures in binary mixtures that grow out of the left and thespective thresholds that, e.g§?*#—K®* and KY* #

right front of a pulse-like perturbation being different in —K"* . Hence the two fronts of a TWD or of a TWU pulse-

wave number, frequency, and spatial envelope profile. like perturbation are different. This difference occurs, how-
ever, already in the absence of throughflesf. the discus-
F. Fronts in mixtures with throughflow sion at the end of Sec. VB2

. To understand the variation of the growth rates
The throughflow breaks the symmetry relations that theyD,u(k K:Re) over the complexQ-plane and its change
Hopf b|fur::a'F|on gymmetg’ |Umposefs f@ezodo_?vbhj dis- with increasingRe (bottom row in Fig. 7 one can again
persion relations (.Q) ands™(Q) of TWD an ’ P invoke the GLE approximatio4.11) for the dispersion. It
turbations, respectively. Hence the symmetry relaticm9) yields
between the saddle properties fRe=0 and the ensuing

relations between properties of TWD fronts and of TWU &2

fronts do not longer hold foRe>0. However, the influence y=—vK+ Lad ——0[(k— ke)2— K2+ 2¢,(k—ko)K].

of a finite throughflow on the front properties can be under- To 7o

stood to a large extent on the basis of the GLE prediction for (5.13
the throughflow-induced changes. Therefore, we first review DU bU DU )
the latter briefly. Now 75V(Re), £ V(Re), and c?'Y(Re) do not deviate

The Re dependence of the coefficients in the GLE for much from (t)he|r respectiveRe=0 values whereas
TWD and TWU perturbation§61] shows that the frequen- vgq' (R€)=*vg+bRevaries linearly inRe as noted in Eq.
cieswb* and the group velocities>"V are changed most by (5.12a. Thus, the throughflow ftilts th&e=0 surfaces of
a small throughflow. These quantities increase linearly fory™ " over theQ-plane by the common term—ReKsuch as

smallRe, to increasddecreaspy for negative(positive) K. This leads
for the parameters of Fig. 7 to an almost symmetric variation
w)Y(Re)=*wy+aRe of yY with K aroundK =0 while y° becomes negative for
almost all positivek and the intersection line wherg®(Q)
vgY(Re==+v]+bRe (5.128  =9"(Q) is no longer located at the real axis=0. Also the

saddle positions change. In particukP* and K“* do no

with wy,vg.a, andb all being positive. This behavior to- |onger merge at largar with the realQ axis above onset of
gether with the GLE result5.6) for the front velocitiesy* convection(cf. bottom row of Fig. 7.
and the front frequencies* explains much of the upwards  The influence of the Soret coupling strength on the saddle
shift of v* and w™*, respectively, that results from the field points can be seen by comparing the resultsffer—0.25 in
equations when the throughflow is switched on: A compari+ig. 5 with those forys= —0.01 in Fig. 6. In the absence of
son of the plots in Figs. 5 and 6 fos* andv* atRe=0 in  throughflow, Re=0, one observes in Fig.(® for =
(a) with the plots atRe>0 in (b) and (c) shows that the —0.01 atr~1.21 the transition K,w)2* = — (K,w)Y* -0
throughflow shifts the front velocities® and the phase ve- of a complex conjugate pair of eigenvalues to two distinct
locities w* /k* upwards towards more positive values. real eigenvaluef32,4Q that was mentioned already in Sec.

Compared to the large throughflow-induced changes irv E 2. There theD ;. saddle and thé&) _ saddle collide and
we,w*,vg, andv* the changes predicted by the GLE ap- disappeaf40] yielding a formal divergence af. Any finite
proximation(5.6) for k* andK* are relatively small coming throughflow lifts the symmetry degeneration and prevents
only from the small variations o€j,k., andc; with Re. this saddle collision with the associated transition to real
Thus, in Figs. 5 and 6 also the front valueskdf andK*  eigenvalues. Then th . and theU _ saddles do not end on
obtained for the full field equations do not change muchthe realk-axis but keep moving separately with increasing
when switching on the throughflow while, however, the to- However, betweerRe=0 and Re=0.2 [Figs. Ga) and
pology of the curves of the front properties versushanges  6(b), respectivelythere does occur a collision of tie_ and
somewhat. theU _ saddles at negativ¢ after which the identification of

Since the throughflow breaks the symmetry relati@8)  these saddles becomes interchangtdl. Thus in Fig. 6a)
holding for Re=0 one finds, e.g., that wave numbers andthe thin full lines identifying theU_ saddle properties ap-
intensity profiles of @ , frontand of aU _ front differ when  proach for larger the properties of the- saddle in pure
Re>0. This holds in particular also for the vicinity of the fluids (thin dash-dotted lingsWhereas in Fig. @) it is the
bifurcation thresholdst’(Re)#rE(Re) for TWU and TWD  D_ saddle propertiegthin dashedlines) that approach for
patterns, respectively, that are located at different intersedarger the pure fluid limiting behavior. These saddle colli-
tions of the respectivi* -curves with the-axis. They mark sion properties are somewhat involvetD] and will there-
fronts with spatial growth rates* — 0 that become possible fore not be discussed further here. We also mention only
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briefly that at largeRe in Fig. 6(c) there appear the TWS Hence the temperature and the lateral heat current vary con-
saddlegdotted line$. They have moved with increasiiRge  tinuously at the inner sidewall surface so that convective

first downwards irr thereby approaching the TWD saddles. temperature variations generated in the fluid penetrate to
Then, upon increasing e further the TWD and TWS saddles some extent the sidewalls. At the outside surface of the side-

move—after an interval with more complex behai4d|—  walls we imposed the lateral heat flux to vanish.
upwards inr and thus lose their experimental relevance.
For strong throughflow rates the TWU saddle properties B. Results

(full lines in Figs. 5 and Bapproach at large those of pure _ _ ) _

fluid convection(dashed-dotted lines in Figs. 5 anyl Bhis The simulations discussed here were done for fluid pa-
is especially visible for the smaller Soret coupling strength/ameterso=10, L=0.01, andy=—0.25. Each run was
= —0.01. It reflects the physical property that with increas-Sta’ted from a spatially localized initial perturbation in the
ing throughflow and with increasing heating not only thet€mperature field that was perfectly symmetric around the
nonlinear behavior of well mixed binary fluida8] but also ~ Middle of the cell. The center of gravity of the initial pertur-
the linear properties of perturbatiof82] become more and Pation of the homogeneous conductive state was exactly at

more similar to those of pure fluids. For stronger Soret couX=40- The resulting evolution of the lateral profiles of the
pling this happens at larger and largee,r. temperature field at midheight=0, of the cell is shown

with so-called hidden line plots for different supercritical
Rayleigh numbers in Figs. 8 and 9 f&®e=0 and Re

VI. SIMULATIONS OF THE NONLINEAR FIELD =0.05, respectively.

EQUATIONS

In order to check and to compare the spatiotemporal prop- 1. Absence of throughflow

erties of fronts and pulses that were obtained in the previous The above described symmetric initial perturbation gener-
section from the saddle point analysis of the dispersion relaates in the absence of throughflaRe=0, two pulses shown
tion of thelinear field equations we present here some rep-in Fig. 8 that are mirror images of each other. The (ght)
resentative results that were obtained from a numerical solwne consists of TWUTWD) perturbations whose phase is
tion of the full nonlinearhydrodynamical field equations.  propagating to the leftright). If the initial perturbation is not
mirror symmetric but of some arbitrary generic, albeit local-
A. System ized form then it still generates TWU and TWD pulses.
) However, their amplitudes are generically different depend-
In order to study the structural dynamics of fronts anding on the magnitude of the overlap of the initial perturbation
pulses we performed numerical 5|mulat_|ons of convection inyith the critical TWU and TWD eigenfunctions, respec-
a long and narrow rectangular convection channel of lengtly e, only in the nongeneric case of an initial perturbation
I'=80 in x-direction. To that end we used a finite-difference being a pure wave packet in the sense that it consists of
code(Appendix to solve the time dependent nonlinear field -\ or TWD excitations only can one observe the growth
equations (2.1). In such channels that are narrow in of only one pulse, TWU or TWL}66].
y-direction convection occurs in the form of straight parallel |, i1e top part of Fig. 8 we show the pulse evolution
rolls with axes aligned iry-direction. The field variations in - ponveent=0 andt=10 forr = 1.341 which is very close to
y-direction may be ignored for our purposes since these CONpe oscillatory bifurcation threshold, . for = —0.25. The
vection structures are effectively 2D so that a description irbroup velocities of the TW perturba?icons in Fig. 8 are in the
the x—2z midplane perpendicular to the roll axes suffices. gy me directions as the respective phase velocities. Thus the
In our s_|mglat|ons the channel was closekat0 andx _ TWU (TWD) pulse moves to the lefright). Because of the
=TI" by rigid impermeable lateral sidewalls, each of which jcinity to the Hopf threshold the phase velocities of the
had a thickness of 2. However, when simulating convection ayes and the group velocities of the pulses are large and the
in the presence of throughflow we imposed the plan_e_ horigyave amplitudes grow exponentially in time. Furthermore,
zontal Poiseuille profilé)(z) (2.10 as a boundary condition  he pyise shape remains almost Gaussian as the imposed ini-
atx=0 andx=I". The ratio of the heat diffusivities of the i3] perturbation. The latter is shown in the lowest profile in
sidewalls x,, and of the binary fluidk was chosen to be i4e top part of Fig. 8.
Ky /x=0.43 andA,,/A=1.23 was the ratio of the respective A perfectly symmetric Gaussian behavior around the re-
heat conductivities. Thus we solved the diffusion equation spective pulse center would result from the GLE approxima-
_ 2, 2 tion. Therein the spatial growth rates of all four fronts would
I Tw= Ku( 93+ ) Tw 6.0 be the same. Also the front velocities relative to the veloci-
ties of the two pulse centersg: —vg, would be the same
according ta5.6), (5.10. While the pulse centers separate in
the top part of Fig. 8 with twice the group velocity of TWD
A or TWU perturbations the velocities of the four fronts are not
T,=T and ,T,=—a,T at x=0, T, (6.2a the same. They agree, however, very well with the results,
w v*=—9pY* =297 andv®*=-0v{*=3.93, that we ob-
tained from the saddle point analysis of the linear field equa-
I Tw=0 at x=-2, I'+2. (6.2b  tions and that are displayed in Fig@b (with the line con-

for the temperaturd@,, in the sidewalls subject to the bound-
ary conditions
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FIG. 8. Direct numerical simulation of convection pulses origi-  FIG. 9. Direct numerical simulation of convection pulses origi-
nating in the absence of throughflow from a symmetrical localizednating in the presence of a small throughflow from a symmetrical
initial perturbation. Shown are hidden-line plots of equidistantly localized initial perturbation. Shown are hidden-line plots of equi-
spaced snapshots, staggered one above the other, of the latedidtantly spaced snapshots, staggered one above the other, of the
variation of the temperature at midheight- 0. They cover inter-  lateral variation of the temperature at midheigt# 0. They cover
vals of length 10 (=1.342, top pajt 5 (r=1.518, middle paijt intervals of length 10 (=1.342, top pajt 5 (r=1.518, middle
and 5 thermal diffusion times & 1.671, bottom paJt respectively.  parf), and 5 thermal diffusion times & 1.671, bottom pajt respec-
Parameters are=10, L=0.01, = —0.25, andRe=0. Grey ver-  tively. Parameters are=10, L=0.01, = —0.25, andRe=0.05.
tical stripes locate thermally conducting sidewalls that close theGrey vertical stripes locate thermally conducting sidewalls that
convection cell laterallycf. text for details. close the convection cell laterallgf. text for details.

ventionD: dashedy: full, +: thick, and—: thin). Note that convective and absolute instabilifriangle in the lower
the four fronts of the two pulses in Fig. 8 obey the mirror gt corner of Fig. 1 aRe=0) then the trailingd , andU _
symmetry relationg5.9) in the absence of throughflow be- fronts that are orlgnted towards_, .the center of the CE” move
tween the two trailing frontsD , andU_, and between the mucl:Jh slower, their fron_t. velocities are redgced uB* =
two leading frontsD _ andU., , respectively. Here trailing —v-" =0.77. The velocities of the two leading fron,-
and leading refers to the direction of phase propagation oRndU . , have increased 0°* = —v{* = 6.62[cf. also Fig.
the underlying waves. 5(a)]. Therefore we show in the middle part of Fig. 8 only
With the Rayleigh number so close to the Hopf bifurca-the time interval fromt=0 to t=>5 to avoid front collisions
tion the conductive state of the top part of Fig. 8 is onlywith the walls.
convectively unstablecf. lower right corner of Fig. 1L The asymmetry of the pulse shapes that is predicted by
Therefore both, ther as well as the- front of each pulse, the saddle point analysis is reproduced by our nonlinear nu-
move into the same direction as the pulse center. Hencénerical simulations: the trailing fronts with spatial growth
behind the two trailing convection frontB,, andU _, the ratesk2* = —KY* =0.95 have become significantly steeper
system returns to the basic conductive state and the regiahan the leading fronts witk®* = — Klj* =—0.83, cf. Fig.
between these fronts with quiescent fluid in the center of th&(a). Also the wave amplitudes increase there more rapidly
cell grows. In a finite cell, however, the pulses are reflectedn time.
off the sidewalls[14] and propagate inwards with some re-  During an initial period in time one can see in the middle
duced amplitud¢11,12,4Q. For the setup of the top part of part of Fig 8 a transient behavior where TWD and TWU
Fig. 8 the fronts had reached the sidewalls at about 10 velperturbations are superimposed to form a standing wave un-
tical thermal diffusion times. der the two overlapping trailing fronts before they fully sepa-
If one increases the Rayleigh numberte1.518(middle  rate. Such behavior can also be seen for a longer time in the
part of Fig. 8 which is shortly below the border between bottom part of Fig. 8. There the Rayleigh number has been
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increased to =1.671. Here the leading front velocities have in the lower right corner of Fig.)ldecreases upon switching
increased tov®* = —yY*=8.08 [cf. also Fig. %a)]. But, on the throughflow. On the other hand, the TWD perturba-
more importantly, the trailingd, and U_ fronts that are tions are more easily blown out of the system — the bound-
oriented towards the center of the cell have reversed theiry rE_a (downwards pointing triangles in the lower right
propagation direction. According to the saddle point analysisorner of Fig. ) increases wittRe and so doe® E* .
one has here E* =—pY*=-0.24, cf. Fig. %a), so that one As an aside we mention here that one can at a sufficiently
has entered here the absolute instability range of the condutarge Re (of about 0.5 according to Fig.) Enter again the
tive state, cf. Fig. 1, where the two fronts of a pulse move inconvectively unstable range by crossing the right part of the
opposite direction. rt’_a curve when the throughflow becomes so large that the
Thus, the TWD state in the right part of the cell would leadingU , front of the left TWU pulse reverts its motion
expand also to the left and the TWU in the left part of theinto downstream direction — then the TWU pulse moves out
cell would expand also to the right if these fronts were free toof the system; this time however in downstream direction.
move into quiescent fluid. Instead, these two counterpropa- At r=1.671 andRe=0.05 in the lower part of Fig. 9 the
gatingD . andU _ fronts collide and thereby they first gen- boundaryr?_, (downwards pointing triangles in the lower
erate a longer lasting initial transient with standing wavesight corner of Fig. 1 has just been crossed, the conductive
than at the smaller in the middle part of Fig. 8. However, state is absolutely unstable both against TWD as well as
the time interval during which TWD and TWU perturbations against TWU perturbations, the front velocitigs* andyY*

combine Iinear_ly to a stano_ling wave is restricted by thepgye changed their signs, and consequenthPthefront and
growth of nonlinear interactions between TWD and TWU the U _ front collide thereby creating a source defect in the

that become relevant when their amplitudes have grown sufsenier of the cell. Now, however, witRe>0 this defect
ficiently. They cause a destructive interference of the twgy,oves downstream with the throughflow.
colliding fronts in the center region thereby creating a source Finally we would like to stress that the analysis presented
defect. This defect cc_)nnection b_etween th_e developed TWWeare refers to the spatiotemporal growth behaviosmll
and TWD patterns with left moving phase in the left part of T\y perturbations of the conductive state only. The analysis
the cell and right moving phase in the right part of the cell iSyf the bifurcation properties of spatially extended, nonlin-
stable and stationary for our perfectly symmetric setup anayly saturated TW solutions shows, for example, that for
|n|t|al COﬂdItIO'nS. Source and sink defects have been invesgyfriciently large throughflow stable nonlinear TWU states
tigated experimentally by Kolodne65] and Kaplan and e not available for linear TWU perturbations to grow to.
Steinberg/46,64. Then, a nonlinear transformation from an intermediate TWU
to a final saturated TWD state occurs that is accompanied by
2. Finite throughflow a somewhat spectacular reversal of the phase propagation

A finite throughflow breaks the mirror symmetry between[67)-
TWD and TWU pulses as can be seen in Fig. 9 for the small
throughflowRe=0.05. The respective three parts of Fig. 8 VIl. CONCLUSION
and of Fig. 9 refer to the same Rayleigh numbers so that one

: ; Spatiotemporal properties of spatially localized structures
can _|mmed|ately see.the effect .Of the throughflow on thehave been analyzed that consist of convective perturbations
spatiotemporal evolution of localized perturbations. First of

all it shifts all velocities of convective perturbations u WardsOf the basic conductive state of a horizontal binary fluid layer
. : P S up heated from below and the effect of a plane horizontal Poi-
to more positive values. This holds for the velocities of the

L ... _seuille flow on them has been determined. To that end the
centers of the two pulses in Fig. 9 as well as for the Veloc't'e%ehavior of linear fronts and of pulse-like wave packets
of the two fronts of each pulse. For example, the leading

front of the right TWD pulse is now moving faster down- formed out of the three different perturbations — two oscil-

. latory ones and a stationary one — that are relevant in binary
stream to the outlet_atzl“ than without throughflow af.‘d mixture convection has been investigated. This was done by
faste_r than the leading . frontl of the left TWU pulse is analyzing the appropriate saddle points of the complex dis-
moving upstream_ t_ow%rii s the 'SLM’:O' . persion relations(Q). The latter are obtained numerically

Also the velocn_leSU+ andv - _of the trailingD . and < functions of the complex wave numb@r=k—iK from
UD— fronts, 5espect|vely, are now different. Hence the bordersne 1| linearized field equations for the three different per-
rc—a andr._, between convective and absolute instability {,rhations in question. We also determined these functions
against TWD and TWU perturbations wharB* andv™*,  \ithin a Ginzburg-Landau amplitude equation approxima-
respectively, change sign are now differéat downwards  tion to compare with its predictions for the front and pulse
and upwards pointing triangles in Fig).In the top part of  pehavior in pure fluids=0) and in mixtures ¢#0) as a
Fig. 9 the conductive state is well within the range of con-function of the throughflow.
vective instability (Fig. 1) against TWD as well as TWU e first briefly reviewed the linear bifurcation properties
perturbations with both fronts of each pulse moving into theof different spatiallyextendectonvective patterns that have
same direction. In the middle part of Fig. 9 mt1.518,  spatially homogeneous amplitudes and how they are influ-
however, where)“* is almost zero the TWU perturbations enced by a lateral throughflow thereby providing the back-
of the left pulse are about to expand also in downstreanground and the frame for discussing our findings on the be-

direction — the boundaryg_a (upwards pointing triangles havior of spatiallylocalizedperturbations. The results of this
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earlier study that are most important for understanding theelection processes for convection structures in binary mix-
behavior of spatiallyocalizedperturbations are that the sym- tures that grow out of the left and the right front of a pulse-
metry degeneracy of the Hopf bifurcation of the conductivelike perturbation being different in wave number, frequency,
state atr o into two left or right propagating TW’s with and spatial envelope profile.

frequenciest wy, is broken: In the presence of a throughflow ~ A finite throughflow breaks the relations that the Hopf
the dispersion relations’(Q) ands®(Q), and thus the bi- bifurcation symmetry imposes fdke=0 on the dispersion
furcation thresholds and the spatiotemporal behavior of th&elationss®(Q) ands”(Q) of TWD and TWU perturbations,
upstream traveling wav@WU) and of the downstream trav- "€SPectively. Hence the symmetry relations between the
eling wave (TWD) are different. Furthermore, in mixtures Saddle properties foRe=0 and the ensuing relations be-
with negative Soret coupling the bifurcation threshold €N properties of TWD fronts and of TWU fronts no

rf(Re) for TWS structures, which become a stationary pat_kr)]ngerh]t]lold .for Re=0. In part#ulafrfthere IIS an goverall
tern whenRe=0 but propagate wheRe>0, gets strongly throughtlow md_u_ceo’lkupl/vards shift of front ve ocitie and
depressed by a small throughflow. These findings allow toO'c phaslia velocilesn™ /K dtohwards more posm;/e value;. f
understand also to a large extent the variation of the trans%orljtlgath)gtv\\;\?ergog]bpt):irr?e d tfrgmsgﬁgogzglﬁgraoiEtro;)neglt'i?s %f
tion boundaries between the parameter regions in which tht di . lati f thenear field f ith y i
conductive state is convectively or absolutely unstable € dispersion refation o earfield equations with nu
against TWD, TWU, or TWS perturbations, repectively. merical solutions of the fulhonlinear hydrodynamical field

We have determined these boundaries where one of th%quations. To that end we simulated pulses not only in the
convectively unstable parameter regimes, where both;+the

fronts of a pulse-like wave packet reverts its propagation . . .
direction in the laboratory frame by a saddle point analysi hd the— front _prop_agate(wnh different front velocme}_;
Into the same direction as the pulse center, but also in the

. . . . U
of the respective dispersion relatiosS(Q), s°(Q), and absolutely unstable regime where the two fronts of the pulse

s3(Q) as functions ofRe for different Soret coupling int ite directi Th it R
strengths. Furthermore and in addition to it we have deterMOVE INtO Opposite directions. These resulls agreexer
=0 as well as for finiteRe with the spatiotemporal proper-

mined the general front behavior of TWD, TWU, and TWS . . :
patterns each under an intensity envelope with a spatiaﬂes of fronts obtained from the saddle point analysis.
variation of type+ (growth in positivex-direction or an
envelope with a spatial variation of type (growth in nega- ACKNOWLEDGMENT
tive x-direction. Our interest was focused on small Reynolds
numbers since for larg®e the externally imposed shear
flow effectively eliminates the Soret-induced coupling ef-
fects between the convective concentration field and the
other fields by suppressing vertical convective transport of APPENDIX: NUMERICAL METHODS
Soret driven concentration perturbations.

The combination of the three different dynamics of the

constituent perturbation§fWb, TWU, TWS) and the two the eigenvalue problen2.18 as functions of the complex

different spatial proflle?(ﬁ,xjwltl)eigfxi()vigx fﬂlfferent fronts wave numbeQ=k—iK we used a shooting method that is
of the form f(x,t)~e e inlaboratory  gescribed in Ref{32] and/or a Galerkin method. Therein we

space. Their velocity*, spatial growth rat&* , wave num- . LA
berk*, and frequencyw* as determined via a saddle point expanded the complex: dependent eigenfunctionsd

analysis of the respective dispersion relations differ in gen= (W.6,{) that have positive parity under —z as follows:

eral from each other in the presence of a throughflow. For

Re=0, how_ever, the invariance of the field equations under W(2)=3 W,Cy(2), (Ala)

x— —x implies symmetry relations like, e.g., stationary per- n=1

turbations withw,=0 under a+ front are mirror images of

those under a front, a TWD under at+ front with positive . .

K is symmetry degenerate with a TWU undetafront with 0(2)= 2, 9,12 co§(2n+1)mz], (Alb)
negativeK, and a TWU under a- type front is the mirror n=0

image of a TWD under a front. However, the two fronts

of a pulse-like perturbation show also in the absence of a SN — > o s

throughflow different spatiotemporal properties: The spatial (@) ngo {nV2~ Ongcos2n2). (Al9
growth ratek 2* =|K"*| is bigger thajK®*|=KY* and the

wave numbersﬁ* =kY* differ from k°* =k$* . Also the  HereC,(z) are Chandrasekhar functiof@8]. Inserting Eq.
oscillation frequencieso* = —w"* differ from ©°*=  (Al) into Eq.(2.18 yields after projection onto the normal
—wY* and the velocity of those frontsD(_,U.) towards Mmodes an algebraic system of equations for the complex
which the phase of the pattern is propagating grows wittmode amplitudesv,,6,, andZ,. The solvability condition
increasing Rayleigh number while the opposite holds for theD(o,L,#,Rer,Q,s)=0 that requires the determinait of
fronts (D, ,U_) from which the phase is moving away. this system of equations to vanish yields the three dispersion
Hence our analysis predicts a competition of two differentrelations as the roots @=0.

This work was supported by the Deutsche Forschungsge-
meinschatft.

To determine the dispersion relatioe@Q) of the linear
field equations, i.e., the three eigenvaledss”, andsP of
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In particular in the presence of a finite throughflow we[69,70. This is a finite-difference method of second order in
found the Galerkin method to be significantly faster andspace formulated on staggered grids for the different fields
more robust than the shooting method. The advantages of thveith a uniform spatial resolution for which we toakx
former are that it does not require explicit integrations, say of=Az=0.025. An explicit first-order Euler step in time was
Runge-Kutta type, and that the solvability condition used in the balance equations of hé&atlh and concentra-
D(o,L,¥,Rer,Q,s)=0 can be written in terms of analyti- tion (2.10 and a second order DuFort-Frankel-scheme in
cal expressions. time was used in the momentum balance equatid).

For the sake of comparison and crosscheck we also intéFhe Poisson equation for the pressure field that results from
grated thenonlinear field equationg2.1) using a modifica- taking the divergence of Eq2.1d was solved iteratively
tion of the SOLA code that is based on the MAC methodusing the artificial viscosity methdd0].
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