
PHYSICAL REVIEW E, VOLUME 63, 016307
Localized perturbations in binary fluid convection with and without throughflow

P. Büchel and M. Lücke
Institut für Theoretische Physik, Universita¨t des Saarlandes, Postfach 151150, D-66041 Saarbru¨cken, Germany

~Received 21 August 2000; published 21 December 2000!

Dynamics and structure of spatially localized convective perturbations in binary fluid layers heated from
below and the effect of a plane horizontal Poiseuille throughflow on them are investigated. Fronts and pulse-
like wave packets formed out of the three relevant perturbations—two oscillatory ones and a stationary
one—are analyzed after evaluating the appropriate saddle points of the three respective dispersion relations of
the linear field equations over the complex wave number plane. Front and pulse properties are elucidated in
quantitative detail as a function of small throughflow Reynolds numbers for different Soret coupling strengths
c including the pure fluid limitc50 in comparison with the appropriate Ginzburg-Landau amplitude equation
approximations. Furthermore, small amplitude pulses and fronts obtained from solving the fullnonlinearfield
equations numerically are presented to check and compare with the linear results.
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er
-
x
m
th
r
is
ca
s
ke
t

ve
s
ic
e

ts
ts
al
ed
-
c
ar
e
a
th

a

ry
ga

a
le
of
or

ngly
s of
r
ere
,

or
lly
lly

e
of

lo-
to

ine
ree
ally
if-

se
the
ber
er-
ut

iate

l

yet
are
ting
ral
ts
r by
ny

nts
on
wo
ht
I. INTRODUCTION

In forced nonequilibrium systems that undergo a patt
forming instability @1# the spatiotemporal evolution of spa
tially localized perturbations is of substantial practical, e
perimental, and theoretical interest. As long as the field a
plitudes of the perturbation are small one can discard
effect of nonlinearities in the deviations from the unpe
turbed reference state. Then one can use a linear analys
determine the behavior of such perturbations that often
be decomposed as linear wave packet superpositions of
tially extended Fourier modes. In particular when the pac
contains modes that can grow one wants to determine
spatiotemporal evolution of the fronts that join the wa
packet’s intensity envelope to the unperturbed state a
function of control parameters and of the structural dynam
of the constituent pattern type. Here questions arise conc
ing the propagation velocities~and their directions! of the
fronts, the spatial growth and decay behavior of the fron
and the pattern selection induced under the moving fron

In this paper we investigate these problems theoretic
for perturbations that occur in binary fluid mixtures heat
from below @2,1# close to the primary stability and bifurca
tion thresholds@3–5# of the quiescent homogeneous condu
tive state. Its linear stability analysis shows that there
three different types of perturbations—and of course th
superpositions—that depending on parameters can grow
thereby destroy the conductive state near threshold in
system: a stationary perturbation that has the structure
rolls which are fixed in space and two oscillatory perturb
tions in the form of traveling waves~TW’s! where the phase
of the roll pattern is propagating in opposite directions.

After the experimental observation@6# of transient,
weakly nonlinear TW convection close to the oscillato
threshold also weakly nonlinear, so-called, counterpropa
ing waves were seen in rectangular convection channels@7,8#
as superpositions of left and right propagating TW’s th
were reflected from the lateral sidewalls. Also so-cal
blinking states@7–10# were observed where the amplitude
a TW becomes alternatingly large at the sidewalls bef
being reflected with reduced amplitude@11,12,8#. Thus, the
1063-651X/2000/63~1!/016307~20!/$15.00 63 0163
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counterpropagating waves and the blinking state are stro
influenced by the system size and the reflection propertie
the sidewalls@8,13#. On the other hand, freely moving linea
wave packets of TW’s were observed up to the time wh
they hit a sidewall@14# or collided with a strongly nonlinear
spatially localized convection pulse@15#.

It should be noted that the aforementioned linear
weakly nonlinear convection phenomena differ substantia
from the strongly nonlinear spatially extended and spatia
localized convection states@16# showing large deviations
@17,18# of the concentration distribution from the conductiv
state and they also differ from the erratic burst and decay
TW pulses@26# that has been called dispersive chaos@26#.

In this paper we present a linear analysis of spatially
calized convection fields thereby restricting ourselves
small perturbations of the conductive state. We determ
and elucidate front and wave packet properties of the th
relevant perturbation types and the influence of an extern
imposed throughflow on them. This analysis is made for d
ferent strengths of the Soret couplingc between temperature
and concentration fields including the pure fluid limiting ca
c50. The analysis is based on a numerical evaluation of
complex dispersion relations over the complex wave num
plane. These functions are determined for the different p
turbation types using the full linearized field equations. B
we also make quantitative comparisons with the appropr
Ginzburg-Landau amplitude equation~GLE! approximations
for differentc and different throughflow and with numerica
simulations of the full nonlinear field equations.

It is somewhat surprising that such an analysis has not
been performed in view of the fact that the two fronts that
bounding each of the three different packet types consis
of the three different perturbation types differ in gene
from each other. Thus, all in all there are six different fron
some of which are for special cases related to each othe
symmetry operations. But even in the absence of a
throughflow the spatiotemporal properties of the two fro
of a TW packet are different thus giving rise to a competiti
of different pattern selection and growth behavior at the t
fronts. We hope that our analysis will help to shed more lig
©2000 The American Physical Society07-1
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on the rather complex pattern growth processes that occ
binary mixture convection.

Our paper is organized as follows. In Sec. II we descr
the system and we provide the theoretical framework
determining its linear properties. In Sec. III we briefly revie
the linear bifurcation behavior of different spatially extend
convective patterns with and without external throughflow
order to provide the background and a frame for discuss
later on spatially localized perturbations. In Sec. IV w
evaluate with a saddle point analysis of the complex disp
sion relations of the field equations and of the GLE appro
mations the boundaries in parameter space between con
tive and absolute instability in order to determine wheth
the two fronts of a particular wave packet type move in
same or into opposite directions. Section V deals with fr
and pulse behavior in mixtures (cÞ0) and in pure fluids for
zero and finite throughflow. Here we compare also for
different perturbation types the saddle point properties of
appropriate dispersion relations of the field equations w
those of the GLE approximations. In order to check and
compare the spatiotemporal behavior of fronts and pu
following from the saddle point analysis of the dispersi
relations of thelinear field equations we present in Sec.
some representative results that were obtained from a
merical solution of the fullnonlinear hydrodynamical field
equations. Section VI contains a summary of the major
sults and in the Appendix we give details about the differ
numerical methods used here.

II. SYSTEM

We consider a horizontal layer of a binary fluid mixtu
like, e.g., alcohol-water confined between two parallel, p
fectly heat conducting and impervious plates. The setu
exposed to a homogeneous gravitational fieldg52gez and a
temperature gradientDT5Tlower2Tupper between the lower
and upper confining boundaries. Unscaled quantities are
derlined to distinguish them from the scaled ones introdu
below.

A. Field equations

The system is described by the balance equations
mass, heat, concentration, and momentum in Oberb
Boussinesq approximation@27,2#

052“•u, ~2.1a!

] tT52“•Q; Q5uT2“T, ~2.1b!

] tC52“•J; J5uC2L“~C2cT!, ~2.1c!

] tu52“~u:u1p2s“u!1B; ~2.1d!

B5sRa~T1C!ez .

Lengths are scaled with the heightd of the layer, time with
the vertical thermal diffusion timed2/k, and the velocity
field u5(u,v,w) with k/d. Here,k is the thermal diffusivity
of the mixture;T5(T2T0)/DT denotes the scaled deviatio
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of the temperature from the mean temperatureT0 in the fluid.
The field C5(C2C0)b/(aDT) is the scaled deviation o
the mass concentrationC5r1 /(r11r2) of the solute from
its meanC0. Herer1 and r2 are the mass density fields o
the two components. For small deviations ofT andC from
their means the total mass densityr5r11r2 is governed by
a linear equation

r5r0@12a~T2T0!2b~C2C0!#, ~2.2!

with a, b being the thermal and solutal expansion coe
cient of the fluid, respectively. For ethanol-water mixtures
room temperaturea andb are positive@28#.

The Lewis numberL is the ratio of concentration diffu-
sivity D and thermal diffusivityk, and the Prandtl numbers
is the ratio of momentum diffusivityn andk:

L5
D

k
; s5

n

k
. ~2.3!

For room temperatures~10 °C240 °C!, the Prandtl number
of ethanol-water mixtures lies between 5 and 20@28#, while
for normal fluid Helium it is ten or more times smaller. Th
Lewis number of liquid mixtures is about 0.01. In this pap
we take the fluid parametersL50.01 ands510 as represen
tative examples for ethanol-water mixtures.

The setup is characterized by three control parameters
can be varied independently:

~i! The Rayleigh number

Ra5
agd3

kn
DT ~2.4!

measures the externally imposed thermal driving due to
temperature gradient between the plates. For convenienc
use the scaled Rayleigh number

r 5
Ra

Rac
0

~2.5!

that is reduced by the critical Rayleigh numberRac
0 for onset

of convection in a pure fluid with the critical wave numb
kc

0 . The analytical values areRac
051707.762 andkc

0

53.11632.
~ii ! The lateral throughflow driven by a lateral pressu

gradient defines the Reynolds number

Re5^u&z

d

n
~2.6!

where^u&z is the vertical average of the lateral velocity fiel
We consider in this paper a throughflow in positiv
x-direction with positive Reynolds number.

~iii ! The separation ratio

c52
b

a

kT

T0
~2.7!

with the thermo diffusion ratiokT of the mixture reflects the
influence of temperature gradients on the concentration
rent J.
7-2
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For negative separation ratiosc the imposed temperatur
gradient causes in the quiescent heat conducting state a
tiparallel concentration gradient via the Soret effect. The
sulting solutal contribution to the density change is oppo
to the thermal contribution, thus weakens the buoyancy
stabilizes the heat conducting state. For room tempera
ethanol-water mixtures,c-values between about20.5 and
10.2 can be easily realized experimentally@28#. The Dufour
effect that reflects the coupling of a concentration gradi
into the heat currentQ can be discarded in binary liqui
mixtures@29,30#. The buoyancy force (r2r0)g due to den-
sity deviations from the mean is the driving mechanism
convective motion. It enters into the momentum balan
~2.1d! via the buoyancy termB which follows from ~2.2!
after scaling. This is the only place, where density variatio
are retained in Oberbeck-Boussinesq approximation. In
continuity equation~2.1a!, the fluid has been assumed to
incompressible.

Rigid, impervious and perfectly heat conducting pla
located atz56 1

2 define the horizontal boundary condition

u50; T57 1
2 at z56 1

2 ~2.8!

for the fluid’s velocity and temperature fields. Due to t
impermeability of the plates there is no concentration curr
through the plates,J"ez50, or

]zC5c]zT at z56 1
2 . ~2.9!

Since the pressurep is determined via a Poisson equation
u,T, andC, we do not need boundary conditions for it.

B. Linear eigenvalue problem

For smallRa andRe a laterally homogeneous heat co
ducting state without convective vertical velocity is stable.
this basic state the velocity fielducond5U(z)ex is given by
the plane horizontal Poiseuille flow

U~z!5sReP~z!5sRe6~ 1
4 2z2!; ~2.10!

temperature and concentration fields are linear functionsz

Tcond52z; Ccond52cz. ~2.11!

The basis for our linear analysis of convective pertur
tions of the conductive state are the linearized field equat

~] t2s“2!“2w1~U“

22]z
2U !]xw

5sRa~]x
21]y

2!@~11c!u1z#, ~2.12a!

~] t2“

21U]x!u5w, ~2.12b!

~] t2L“21U]x!z52c“2u ~2.12c!

for the deviations

w, u5T2Tcond, z5C2Ccond2cu ~2.13!

from the conductive state~2.10!,~2.11!. Herew is the vertical
velocity field that vanishes in the conductive state. To der
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Eq. ~2.12a! we have applied twice the curl operator to E
~2.1d! using~2.1a!. Note that the Poiseuille flow profileU(z)
enters into Eqs.~2.12! making them nonautonomous.

The horizontal boundary conditions for the convecti
perturbation fieldsw,u, andz are

u5w5]zw5]zz50 at z56 1
2 . ~2.14!

Assuming the system to be laterally unbounded the gen
solution of the perturbation equations~2.12! can be written
as a superposition of plane waves with horizontal wavev
tor

k5kxex1kyey . ~2.15!

The plane-wave solution ansatz for the fieldsF5(w,u,z)
reads

F~r ,t !5F̂~z!ei (kxx1kyy)est ~2.16!

with a complex characteristic exponent

s5Rs1 iIs5g2 iv ~2.17!

and complexz-dependent amplitude functionsF̂5(ŵ,û,ẑ).
Inserting the ansatz~2.16! into the field equations~2.12!

yields the 333 linear eigenvalue problem

~L1sM!F̂~z!50 ~2.18a!

for the eigenvaluess and eigenvectorsF̂ with

L5L (0)1 iskxReL (1), ~2.18b!

L (0)5S 2s~]z
22k2!2 sRa~11c!k2 sRak2

21 k22]z
2 0

0 c~]z
22k2! L~k22]z

2!
D .

~2.18c!

Into

L (1)5S P~]z
22k2!2]z

2P 0 0

0 P 0
D , ~2.18d!

enters the vertical profileP(z) ~2.10! of the Poiseuille
throughflow and its second derivative. Finally

M5S ]z
22k2 0 0

0 1 0

0 0 1
D . ~2.18e!

In the absence of throughflowL reduces toL (0). Due to the
boundary conditions at the plates the eigenvalue spectru
discrete. We are interested in characteristic exponens

whose eigenfunctionsF̂(z) have no nodes other than at th
horizontal boundariesz561/2 which have growth ratesg
that are closest to zero.
7-3
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Since the horizontal wavevectork of the perturbation
~2.16! and the throughflow Reynolds numberRe enter into
Eq. ~2.12! only ask2 andkxRe the dependence of the func

tions f 5s,F̂ on k andRe is

f 5 f ~k2,kxRe!. ~2.19!

Using this behavior the Squire transformation@31#

f ~kx
21ky

2 ,kxRe!5 f ~ k̃x
2 ,k̃xRẽ!, ~2.20a!

k̃x
25kx

21ky
2 ; Rẽ5

kx

k̃x

Re ~2.20b!

relates the functionsf for a wavevector with arbitrary com
ponentskx ,ky to the functions that have been determined
wavevectorsk̃5 k̃xex in throughflow direction and Reynold
numbersRẽ. The linear behavior of general perturbatio
with kx ,ky can be obtained from the result fork̃x and Rẽ
with Eq. ~2.20!. Therefore we investigate here only conve
tive perturbations with wavevectors inx-direction. In experi-
ments they give rise to straight rolls which can most ea
be seen in convection channels that are long inx-direction
and narrow iny-direction.

III. SPATIALLY EXTENDED STRUCTURES

In this section we briefly review the influence of throug
flow on linear bifurcation properties of differentspatially
extendedconvective patterns that have spatially homog
neous amplitudes@32#. These properties provide the bac
ground and a frame for discussing in the main part of t
paper our findings on the behavior ofspatially localizedper-
turbations. We focus here our interest on small Reyno
numbers. For sufficiently largeRe, the lowest relevant bifur-
cation threshold of binary mixtures with anyc asymptoti-
cally approaches the critical Rayleigh number of pure fl
convection@32# since in this limit the externally impose
shear flow effectively eliminates the Soret-induced coupl
effects between the convective concentration field and
other fields by suppressing vertical convective transpor
Soret driven concentration perturbations.

A. Absence of throughflow

The stability properties of the conductive state against
finitesimal convective perturbations in the absence
throughflow have been discussed in detail in the literat
@3–5,33#. For c above~below! the tricritical valuecSOC

t 5
2O(1027) @33#, the stationary bifurcation to the so-calle
SOC state is forward~backward!. However, belowcSOC

` 5
2L/(11L) @34,35# where the stationary thresholdr stat di-
verges, the lower SOC solution branch is disconnected f
the conductive solution for positiver @36#. In addition there
exists for strong stabilizing Soret coupling a Hopf bifurc
tion threshold atr osc where symmetry-degenerated left a
right traveling wave solutions branch out of the conduct
state. The Hopf frequency vH varies as vH

2
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'2449c/(11c11/s) @37,9#. For c above~below! the tri-
critical valuecTW

t 52O(1024) @33,38# the TW bifurcation
is forwards~backwards!. The bifurcation thresholdsr stat and
r osc become equal at the codimension-two valuecCTP
52O(1025) with slightly different critical wave numbers
and a small Hopf frequency. For a more detailed discuss
of the codimension-two point see, e.g.,@3–5,33,36#.

B. Notation

Instead of numbering the three different bifurcatio
thresholds and bifurcating convective solutions of the 333
eigenvalue problem~2.12! in the presence of throughflow
Re.0, we use henceforth superscriptsS,U,D. They identify
the behavior of critical perturbations,ei (kcx2vct), in the limit
Re→0. Eigenvalues for whichvc(Re→0)50 are marked
by S, since these perturbations are stationary forRe50. Ei-
genvalues for whichvc(Re→0) is positive~negative! carry
the superscriptD (U), since they characterize perturbatio
which propagate in downstream~upstream! direction for
Re→0. Thus, the casesS ~‘‘stationary’’!, D ~‘‘down-
stream’’!, andU ~‘‘upstream’’! characterize the perturbation
and with it the bifurcating nonlinear solutions in the lim
Re→0. For convenience we use this notation also in
absence of throughflow,Re50. ThenD(U) identifies a TW
where the phase is propagating to the right~left! with fre-
quencyvD.0 (vU,0).

Finally we should like to draw the attention to the fa
that we distinguish the propagation direction of differe
TW’s by their frequency not by their wavevector — we on
consider positivekx5k in this work.

C. Effect of throughflow on the oscillatory instability

We briefly review in this subsection critical properties
a binary mixture like ethanol-water withc520.25 as a rep-
resentative case for moderately negative Soret couplings
the absence of throughflow, the threshold of stationary c
vection has already disappeared sincec.cSOC

` 52L/(L
11). There exists only the Hopf bifurcation threshold
r osc51.3348 for symmetry degenerate left or right propag
ing TW’s with the critical Hopf frequencyvH511.2125.
Finite throughflow breaks the symmetry of the two TW pa
terns and different, up- and downstream propagating TW
bifurcate out of the conductive state. They will be referred
as TWU ~traveling wave upstream! and TWD ~traveling
wave downstream!.

The relative difference between the critical wave numb
kc

D and kc
U of the D and U waves, repectively, is not mor

than a few percent for the mixtures and Reynolds numb
considered here. The critical frequenciesvc

D and vc
U are

practically linear functions ofRe. They start at zero through
flow with the Hopf valuesvH and 2vH , respectively, and
they can be very well approximated by the first-order res
of a low-Re expansion@32#

vc
D,U56vH141.9Re. ~3.1!

The rate of change]vc /]Re.41.9 also holds for other
separation ratios@32# including the pure fluid case@39#.
7-4
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Note that forRe>vH/41.9 both critical frequencies,vc
D

andvc
U , as well as the phase velocitiesvph

D,U5vc
D,U/kc

D,U are
positive. Then both critical waves propagate in throughfl
direction in the laboratory frame. However,vph

U is always
smaller — by about 2vH /kc(Re50) — thanvph

D . Only for
Re<vH/41.9 the phase velocityvph

U is negative and opposit
to the throughflow. So, the wording ‘‘upstream travelin
waves’’ does not necessarily imply that the phase velocity
such a TW is negative in the laboratory frame. It would
negative in a frame moving in throughflow direction with

conveniently defined mean lateral velocity like, e.g.,v̄
5 1

2 (vph
U 1vph

D ).

D. Bifurcation thresholds at negativec

Here we discuss the bifurcation thresholdsr c
U ~thin, solid

lines!, r c
D ~thin, dashed lines!, and r c

S ~thin, dotted lines! as
functions ofRe for a few characteristic negative Soret co
plings as shown in Fig. 1.

FIG. 1. Borderlinesr c2a between absolute and convective i
stability and stability curvesr c versus throughflow rate according t
@32#. Symbols andthick curves representr c2a obtained from the
full field equations and from the GLE, respectively.Thin curves
show bifurcation thresholdsr c for spatially extended structures a
discussed in Sec. III. Different types of perturbations are identi
by circles and dotted lines (S), upwards pointing triangles and fu
lines (U), and downwards pointing triangles and dashed lines (D).
The case of a pure fluid,c50, is shown by dash-dotted lines: thic
one for r c2a

S and thin one forr c
S . Parameters areL50.01,s510,

andc as shown.
01630
f

1. rc
U
„Re,c…

With increasing throughflow rates,r c
U ~thin, solid lines in

Fig. 1! decreases for smallRe, develops a minimum close to
where vc

U goes through zero, steeply increases therea
and finally flattens asymptotically for any Soret couplingc
towards the Re-dependent pure fluid stability boundar
r c(Re,c50) at largeRe. The flattening ofr c

U can be seen in
Fig. 1 for the weaker Soret couplingsc520.001,20.01.
With increasing Soret strength the flattening ofr c

U towards
r c(Re,c50) shifts to larger and largerRe @32# outside the
plot range of Fig. 1. Thus a sufficiently large throughflo
eliminates the Soret induced coupling effects between c
centration field on one side and temperature and velo
field on the other side. For smallc, e.g., atc520.001, the
stability boundaryr c

U lies always belowr c
D while for larger

ucu there are two intersections of the curvesr c
U and r c

D with
r c

D<r c
U in between@32#. Note, however, that the bicritica

upstream and downstream TW perturbations can not be
perimposed linearly to a standing wave since their wa
numberskc

UÞkc
D differ and furthermorevc

UÞ2vc
D . So in

the Re-interval between the bistable intersections ofr c
D and

r c
D downstream propagating convection waves grow fi

while outside this interval at smallRe and largeRe TWU
convection bifurcates first out of the conductive state.

2. rc
D
„Re,c…

The bifurcation thresholdr c
D ~thin, dashed lines in Fig. 1!

always increases monotonically withRe. The initial slope
]r c

D/]Re increases somewhat with decreasingucu. For c5

20.01 the stability curvesr c
D andr c

S collide in theRe-range
displayed in Fig. 1. For higher throughflow rates there op
up a wave number gap where neitherD nor S perturbations
can grow@32,40#.

3. rc
S
„Re,c…

In pure fluids,c50, the bifurcation thresholdr c(Re,c
50) ~thin, dashed-dotted line in right, top part of Fig. 1!
slightly increases with growingRe @39#. In binary mixtures
with negative Soret coupling, on the other hand, the stati
ary thresholdr c

S ~thin, dotted lines in Fig. 1! gets very
strongly depressed by a small throughflow. In the absenc
throughflow r c

S rapidly increases withucu and diverges at
cSOC

` 52L/(L11). Beyond this Soret coupling the solutio
branch of stationary nonlinear convection is disconnec
from the basic state asr c

S(Re50,c<cSOC
` )5`. A small but

finite throughflow, however, moves the thresholdr c
S down to

finite values: The dotted line forr c
S of Fig. 1 for c520.01

,cSOC
` shows~i! that r c

S5` below a finiteRè .0.019,~ii !
that r c

S is finite for Re.Rè , and~iii ! that r c
S steeply drops

down for Re.Rè @32#. The Reynolds numberRè where
r c

S diverges grows with increasingucu — a stronger Soret
coupling requires a larger throughflow to move the bifurc
tion thresholdr c

S from infinity to a finite value.

d
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P. BÜCHEL AND M. LÜCKE PHYSICAL REVIEW E63 016307
IV. TRANSITION BETWEEN CONVECTIVE AND
ABSOLUTE INSTABILITY

Whenever at a stability threshold the frequency is nonz
with a finite group velocity

vg5
]v~k!

]k U
kc

~4.1!

one has to distinguish between spatiotemporal growth be
ior of spatiallyextendedand of spatiallylocalizedperturba-
tions. The former having a form;eikcx have a positive
growth rate above the bifurcation thresholdsr c determined in
the previous section.

A. Wave packets

Due to the rotational invariance of the fluid layer in th
x2y plane without throughflow there is no preferre
wavevector direction for the growth of infinitesimal pertu
bations out of the basic state. Consequently one observe
experimental setups with large extensionsGx ,Gy@1 in x-
andy-direction, respectively, for strong stabilizing Soret co
plings a growth dynamics of TW perturbations that is qu
complex in space and time@41–43#. However, in narrow
convection cells, say, withGy.123 and largeGx or in nar-
row annular convection channels the roll axes are orien
parallel to the smaller side of the cell and the wave vect
are oriented inx-direction. Here we shall not investigate th
competition@44,45# between logitudinal rolls and transvers
rolls with wavevectors inx-direction andy-direction, respec-
tively, that occurs in wider systems in the presence o
throughflow.

Consider first a spatially localized, infinitesimal perturb
tion of the basic state that contains only one type of TW
e.g., right traveling waves with different wave numbers.
this is a linear superposition, i.e., a wave packet, of TWD
Above the threshold of instability,r .r osc, the projection of
the initial perturbation onto the eigenfunctions of the critic
mode grows exponentially within the framework of the li
earized field equations, whereas any contributions fr
modes with higher threshold values and more complica
vertical field structure are strongly damped. Furthermore,
small ur 2r oscu only contributions with wave numbers in th
narrow band above the marginal stability curver stab

TW (k) can
grow whereas other contributions are damped. After f
transients have decayed a pulse like perturbation of TW
survives with wave numbers within the unstable band c
tered around the wave number of maximal growthkmax

TW

.kc
TW . The center of such a pulse propagates approxi

tively with the linear group velocity,vg ~4.1!, which can be
determined via a standard linear stability analysis. S
pulses have also been investigated experimentally, e.g.
Kolodneret al. @14#. Due to reflection at the lateral sidewal
of rectangular channels exponentially growing pulses
end up in blinking states for very small overcritical Raylei
numbers@8,9,13,14,46–49#.

Since the above described wave packet contains TW
that can grow the pulse will grow as well. However, there
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two parameter regimes to be distinguished.~i! In the so-
called connectively unstable parameter regime@50,51# the
wave packet moves with the velocityvg faster away than it
grows — while growing in the frame comoving withvg the
pulse moves out of the system so that the basic conduc
state is restored. In other words, the two fronts that join
wave packet’s intensity envelope to the structureless s
propagate both in the direction in which the packet cen
moves. ~ii ! In the so-called absolutely unstable parame
regime the growth rate of the packet is so large that one fr
propagates in the laboratory frame to the center moti
Thus, the packet expands not only into the direction of
pulse motion but also opposite to it@50# so that eventually
the initial perturbation can fill the entire system.

We should like to emphasize that we are dealing here o
with a linear analysis of the convective fields. Thus we
not address the question whether the above described w
packet grows to a stable nonlinear state that then might
pand back into the system with a larger negative nonlin
front velocity so that the nonlinear structured state ultimat
invades the region occupied by the homogeneous state
though the latter is linearly not absolutely unstable@52,53#.

B. Saddle point analysis

The boundary in parameter space between convective
absolute instability is marked by parameter combinations
which one of the fronts of the linear wave packet reverts
propagation direction in the laboratory frame: In the conv
tively unstable regime this front propagates in the same
rection as the center of the packet, in the absolutely unst
regime it moves opposite to it, and right on the bounda
between the two regimes the front is stationary in the la
ratory frame. This parameter combination can be determi
by a saddle point analysis of the linear complex dispers
relations(Q) over the pane of complex wave numbers@51#

Q5RQ1 iIQ5k2 iK . ~4.2a!

Here we do not display the dependence of

s~Q!5Rs~Q!1 iIs~Q!5g~Q!2 iv~Q! ~4.2b!

on r ,Re,c,L,s and we also do not indicate that in bina
mixtures with throughflow one has to consider three differ
dispersion relations for the three different perturbations
type S,U, andD as explained in Sec. III.

The condition of vanishing front propagation velocity
equivalent to finding the parameters for which

Rs~Q* !5g~Q* !50 ~4.3a!

with Q* denoting the appropriate saddle position ofs(Q) in
the complex wave number plane given by@ds(Q)/dQ#uQ*
50. Using the Cauchy-Riemann relations for the analy
function s(Q) this saddle condition amounts to

]g~Q!

]k U
Q*

50,
]g~Q!

]K U
Q*

50. ~4.3b!
7-6
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The solution of Eq.~4.3! yields the sought after boundar
between convectively and absolutely unstable paramete
gimes. Quantities on this boundary are identified hencefo
by the subscriptc2a.

To solve Eqs.~4.3! we evaluate thez dependent eigen

functionsF̂(Q,z,s) that solve the eigenvalue problem~2.18!
for fixed s, L, c, Re, r, Q, and an initial guess fors5g
2 iv. With two staggered Newton algorithms we first iter
tively adjusts in order to fulfill the boundary conditions a
the plates and then changer, k, andK such as to match the
conditions of Eqs.~4.3!. In addition we solved the eigen
value problem also with a Galerkin expansion~Appendix!
for the z dependent eigenfunctions. Then we used the m
convenient formulation

g50, D50,
]D
]Q

50 ~4.4!

of Eqs.~4.3! in terms of the implicit formulation~Appendix!
D(s,L,c,Re,r ,Q,s)50 of the dispersion relation in orde
to determinekc-a , Kc-a , r c-a , andvc-a @40#.

C. Ginzburg-Landau amplitude equation approximation

To determine the boundary between convective and a
lute instability via the solution of Eqs.~4.3! requires knowl-
edge of the dispersion relations(Q;r ,Re,c) for complexQ.
So one has to solve the eigenvalue problem~2.18! for com-
plex Q which is a quite involved numerical task. A som
what simpler, yet approximate method, is to use an exp
sion of s(Q;r ,Re,c) around the critical point,Qc5kc ,r
5r c , that corresponds to approximate the full linear fie
equations by the linear Ginzburg-Landau amplitude equa
~GLE!. We recapitulate the relevant equations@32# here for
completeness. The comparison with results from the full fi
equation~Sec. IV D! shows that the GLE yields quite usef
approximations to the borderlines between absolute and
vective instability.

ConsiderRe andc to be fixed for the moment so that w
do not have to display them explicitly in the argument list
s. Under the assumptions~i! that the sought after saddleQ*
in the complexQ plane lies close to the critical wave numb
kc of the respective perturbation type and~ii ! that the relative
distance

mc2a5
r c2a

r c
21 ~4.5!

between the convective/absolute borderr c2a and the critical
Rayleigh numberr c is small we expand

s~Q;r !5sc1~Q2kc!S ]s

]QD
c

1
1

2
~Q2kc!

2S ]2s

]Q2D
c

1mS r
]s

]r D
c

1h.o.t. ~4.6!

Here we have introduced for convenience the relative
tance
01630
e-
th

re

o-

n-

n

d

n-

f

-

m5
r

r c
21 ~4.7!

of the Rayleigh numberr from its critical valuer c for onset
of convection which in general depends onRe,c,s, andL.
The higher order terms in Eq.~4.6! should be of orderm3/2

since for small 0,m!1 only extended perturbations wit
~real! wave numbers out of a band of widthk2kc;Am can
grow.

The expansion coefficients of Eq.~4.6! appear also in the
linear parts of the complex GLE

t0~] t1vg]x!A5@~11 ic0!m1~11 ic1!j0
2]x

2#A

1nonlinear terms. ~4.8a!

Here A(x,t) is the common complex amplitude of conve
tion fieldsF5(w,u,c)

F~x,z,t !5A~x,t !F̂~z!ei (kcx2vct)1c.c. ~4.8b!

that bifurcate out of the conductive state atm50. The ap-
proximation~4.8! can be expected to be a good one as lo
as A is small and, more importantly, as long as the spa
field structure is well represented by that of the critical eige

functionsF̂(z)eikcx.
The relations between the expansion coefficients ofs and

the coefficients in the amplitude equation are

S ]s

]QD
c

52 i S ]v

]QD
c

52 ivg , ~4.9a!

S r
]s

]r D
c

5r cS ]g

]r
2 i

]v

]r D
c

5
11 ic0

t0
, ~4.9b!

S ]2s

]Q2D
c

52
2j0

2

t0
~11 ic1!. ~4.9c!

In Eq. ~4.9c! we have used

S ]2g

]k2 D
c

52S ]g

]r

]2r stab

]k2 D
c

~4.10!

to relate the secondk derivative of the growth rate to the
critical curvaturej0

25 1
2 (]2r stab/]k2)c of the marginal stabil-

ity curve r stab(k). The approximated dispersion relatio
~4.6!

t0@s1 ivc1 ivg~Q2kc!#

5~11 ic0!m2~11 ic1!j0
2~Q2kc!

2 ~4.11!

is precisely the one of the GLE approximation~4.8! to the
linear fields (w,c,u).

Note that the dispersion~4.6! and with it the coefficients
t0 ,vg ,c0 ,c1 ,j0 ~4.9! of the amplitude equation, the ampl

tudeA(x,t), the eigenfunctionsF̂(z), and the critical quan-
7-7
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tities kc ,vc ,r c all carry a superscriptS,U, or D that identi-
fies the kind of perturbation considered.

With the notation~4.9! the saddleQ* of the approximated
dispersion~4.6! lies at

Q* 5kc2
i

11 ic1

vgt0

2j0
2

. ~4.12!

Then the condition~4.3a! yields the GLE approximation

mc2a5
vg

2t0
2

4j0
2~11c1

2!
, ~4.13a!

r c2a5~11mc2a!r c ~4.13b!

for the boundary between the convectively and absolu
unstable parameter regime@51,54#.

D. Results

In this section we present results related to the bor
between convective and absolute instability. They were
tained with the saddle point analysis of~i! the numerically
obtained dispersion relations of the full linear field equatio
~Appendix! and~ii ! of their GLE approximations. Quantitie
on the border between convective and absolute instability
marked by the subscriptc2a.

1. Pure fluid convection as a test case

To test our numerical procedure we have investigated
pure fluid limiting case of vanishing Soret coupling,c50.
We have determined the valueskc2a , Kc2a , r c2a , and
vc2a @55,45# as functions of the Peclet number

Pe5sRe. ~4.14!

In Fig. 2 we show results determined with the shooti
method ~Appendix! using a spatial discretization of 1/50
and 1/1000 fors50.1, 1, 10, ands→`.

It is easy to see that the results are independent unde
combined symmetry operations

Pe→2Pe, Kc2a→2Kc2a , vc2a→2vc2a .
~4.15!

So Kc2a andvc2a are linear functions andkc2a andmc2a
are quadratic functions in lowest order ofPe @45#. Within
the GLE approximation the symmetry~4.15! is reflected by
the fact thatc0 , c1, andvg are odd functions inPe whereas
t0 andj0

2 are even functions.

2. Binary mixtures: Convective and absolute instability
for S,U, and D perturbations

In binary fluid mixtures the Hopf bifurcation of TW’s
generates already in the absence of throughflow finite gr
velocities. Therefore, there exists also forRe50 a transition
between convective and absolute instability when increas
01630
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r. In the absence of throughflowkc2a andmc2a are identical
for left and right traveling waves whereasKc2a and vc2a
have opposite sign.

In the presence of throughflow the symmetry degener
between left and right traveling waves is lifted and one has
distinguish between the three different types of extend
propagating perturbations, namelyS, U, and D, against
which the basic conductive state becomes unstable at
bifurcation thresholdsr c

S , r c
U , and r c

D @32#. Consequently
one has to investigate the spatiotemporal growth behavio
three different wave packets consisting of superpositions
TWS, TWU, or TWD plane wave perturbations.

The set of these three eigenfunctions and eigenvalue
Eq. ~2.18! transforms into each other upon reverting t
throughflow direction, i.e., under the operationRe→2Re
since the hydrodynamic field equations are invariant un
the parity operation (x,u)→2(x,u) with u being the veloc-
ity field in x-direction. The transformation behavior@32# of

$sS,sU,sD;F̂S,F̂U,F̂D% follows explicitly from the fact that
the linear operatorL entering the eigenvalue equation~2.18!
transforms asL(2kxRe)5L* (kxRe) underRe→2Rewith
the star denoting here complex conjugation. Here we do
display the other arguments ofL that remain unchanged. Th
transformation behavior@32# of the dispersion relations
sS,sU,sD under the operationRe→2Re imply relations be-
tween$r ,k,K,v%c2a

S,U,D for Re and2Re @40#.
In Fig. 1 we present the boundariesr c2a

S ~circles!, r c2a
U

~upwards pointing triangles!, andr c2a
D ~downwards pointing

triangles! between convective and absolute instability of t
basic state against typeS,U, and D perturbations as func
tions ofRe for different Soret coupling strengths@32#. These
results have been obtained from the saddle point analys
the respective dispersion relations over the complexQ-plane

FIG. 2. Saddle point results for wavepackets at the transi
between convective and absolute instability in pure fluid convec
(c50) as a function of throughflow Peclet numberPe5sRe for
several Prandtl numberss as indicated. Shown arer c2a , vc2a ,
kc2a , andKc2a as obtained from determining the dispersions(Q)
of the full field equations with a shooting method.
7-8
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which themselves were determined with the shooting met
~Appendix! using a spatial resolution of 1/3000 and 1/600

In order to determine these three boundaries within
GLE approximation we have determined the derivativ
~4.9! of the respective eigenvaluessS,sU, and sD at their
respective critical pointsr c(Re,c), kc(Re,c). Then Eq.
~4.13! yields the functionsr c2a(Re,c) for the three patterns
They are shown in Fig. 1 by thick lines (S: dotted,U: full, D:
dashed! together with the corresponding bifurcation thres
olds r c ~thin lines!. Especially for stabilizing Soret cou
plings, c.0, and smallRe the GLE approximation is very
close to the numerically exact results, however, with
large slopes at higher throughflow rates.

Within the GLE approximation one obtains a local ma
mum of r c2a

S ~e.g., atc50.01, Re.0.25 and atc50.001,
Re.0.1) when the product oft0, which decreases withRe,
andvg , which increases withRe, reaches a maximum. Fo
c50.01 a second maximum is visible at smallRe that is
possibly associated with a root ofc1. In contrastr c2a

S result-
ing from the full field equations~circles! is monotonously
increasing withRe. This strong deviation inr c2a

S for positive
c between GLE and full analysis is caused by the stro
Re dependence of the coefficients of the amplitu
equation@32#.

For the negative Soret couplings of Fig. 1r c2a
U first de-

creases with increasingRe, coincides at its local minimum
with r c

U when vg50, and afterwards increases withRe.
Hence, at fixedr one encounters with increasingRe first a
transition from convective to absolute instability again
TWU perturbations. Then, upon increasingRe further, one
leaves the absolutely unstable region again to enter aga
convectively unstable regime. The consequences follow
from this functional form of the border liner c2a

U on the
behavior of TWU fronts are discussed in Sec. VI B 2. T
GLE approximation yields good quantitative agreement w
the results of the full field equations forr c2a

U ~upwards point-
ing triangles! in the vicinity of the local minimum, while for
higherRe the GLE results increase more strongly withRe.
For smaller Reynolds numbers the validity range of the G
result is typically enlarged down toRe50 for thec-values
presented here.

We have limited our investigation ofr c
D and r c

S as func-
tions of Re to cases, where the wave number gap in theD
2S marginal stability curves@32,40# has not yet appeared
Therefore, within the GLE approximationr c2a

D andr c2a
S are

determined by the expansion coefficients ofs ~4.9! at the
critical Rayleigh numberr c only as long as the calculation o
r c

D andr c
S was numerically possible. Nevertheless, for high

Re critical Rayleigh numbers still exist to the left and rig
hand side of the wave number gap. We also found that thS
saddle point of the full field equations~evaluated by succes
sively increasingRe) evolves monotonously whenRe in-
creases beyond the threshold where the wave number
occurs. The wave number of this saddle point increases
Re.

The GLE results forr c2a
D are increasing stronger tha

those of the full field equations~downwards pointing tri-
angles!. For c520.001 ther c2a

D stability limit seems to
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terminate close to the Reynolds number where the w
number gap opens up in theD2S marginal stability curves.
ThereK* seems to change sign when increasingRe further.
A graphical analysis of this saddle that has moved into
lower complexQ-plane suggests that thereRs,0 above a
certainRe-limit for all r so that this saddle can be ignored

V. FRONTS AND PULSES

In view of the fact that the literature on linear fronts an
pulses is quite extensive — cf. the review of Cross and H
henberg@1# for a concise example — we give here only th
theoretical background that is necessary for understan
our results. The fronts that we are investigating here and
appear also as constituents of pulses are perturbations o
basic state where the fields~locally! have the form

f ~x,t !;es(Q)teiQx5e[g(Q)2 iv(Q)] tei [k2 iK ]x. ~5.1!

Here Q5k2 iK as in the previous section ands(Q)
5g(Q)2 iv(Q) is the linear complex dispersion relation o
the field equations over the plane of complex wave numb
Q.

A. Notation

Here we introduce the notation for the six different line
fronts of the form~5.1! that we discuss in this paper. Th
envelope of Eq.~5.1! varies aseKx. So whenK.0 the per-
turbation ~5.1! grows atx52` out of the basic state. We
call such a front to be of type1 and identify the associate
front properties by a subscript1. On the other hand, forK
,0 we have a front of type—with an intensity envelope
the perturbation~5.1! that joins at1` with the basic state;
see Fig. 3 for schematic plots. So the two subscripts6 iden-
tify the spatial variations of the front profiles. A pulse-like
perturbation of the quiescent state would consist sufficien
away from its center of a1 front to the left and of a2 front
to the right of the pulse center.

The dynamicalproperties of the constituent perturbatio
~5.1! under a front envelope are identified by superscri
S,U, andD as explained in Sec. III B, as used in Sec. IV
and as indicated schematically in Fig. 3. The three differ
dynamical properties combined with the two different spa
profiles yield six different fronts. For convenience we use
superscriptsU and D also for the caseRe50 without
throughflow to identify left or right traveling waves, respe
tively. The throughflow withRe.0 is always understood to
be directed in positivex-direction. So, for example,k1

D de-
notes the real wave number of a TWD-pattern whose ph
propagates in downstream direction under a front of type1

with a spatial growth;eK1
D x. The velocityv1

D of this front
might be positive or negative. So in the case ofv1

D .0(v1
D

,0) this front moves downstream~upstream!. The time evo-
lution of, e.g., the width of a pulse consisting, say, of TW
perturbations then depends on the magnitude and sign o
velocitiesv1

D andv2
D of its left and right fronts, repectively
7-9
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B. Saddle point analysis

The analysis of linear fronts is based upon an investi
tion of the spatiotemporal properties of spatially localiz
perturbations

f ~x,t !5E
2`

` dk

2p
eikxf ~k,t50!es(k)t ~5.2!

that consist of a wave packet superposition of spatially
tended waves with real wave numberk @1#. Each wave con-
tributes to Eq.~5.2! with the weight f (k,t50) being the
smooth Fourier transform of a sufficiently localized initi
perturbationf (x,t50) and evolves according to its dispe
sion s(k). To find the ~linearly selected! long-time front
propagation behavior of such a perturbation under a fr
that connects the perturbation to the basic state and
propagates with velocityv one analyzes

f ~x5vt,t !5E
2`

` dk

2p
e[s(k)1 ivk] t f ~k,t50! ~5.3!

in the frame comoving with the front. In the limit oft→`
the integral~5.3! is evaluated after deforming the origin
integration path along the realk-axis into the complex wave
number plane via the dominant contribution from the r
evant saddle pointQ* given by

FIG. 3. Schematic plot of different fronts. Thick full lines in~a!
and thin full lines in~b! show intensity envelopes of1 type and of
2 type fronts connecting to the quiescent basic state atx→2` and
at x→`, respectively. Dots denote the actual TW structure grow
under the front: a TWU perturbation~marked byU and a full arrow!
propagates upstream to the left and a TWD perturbation~marked by
D and a dashed arrow! moves downstream to the right. These co
ventions, dashed lines for TWD patterns, full lines for TWU p
terns, thick lines for1 fronts, and thin lines for2 fronts are used
also later on in Figs. 5 and 6.
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dQ
@s~Q!1 ivQ#uQ5Q* 50. ~5.4a!

The condition that the temporal growth rate of the front va
ishes in the frame comoving with the front velocityv* im-
plies the relation

05R@s~Q!1 ivQ#uQ5Q* 5g~Q* !1v* K* . ~5.4b!

We combine Eqs.~5.4a! and ~5.4b! into the three equations

v* 52
g~Q* !

K*
52

]g~Q!

]K U
Q*

;
]g~Q!

]k U
Q*

50

~5.4c!

that we have solved. The solution of these three equat
yields the three quantitiesQ* and v* . In the laboratory
frame the spatiotemporal structure of the field under the fr
determined by Eq.~5.4! has the form

f ~x,t !;ei (k* x2v* t)eK* (x2v* t). ~5.5!

Thus the saddle conditions~5.4! determine all spatiotempora
properties of the front: velocityv* , spatial growth rateK* ,
wave numberk* , and frequencyv* .

Investigations of the linear front dynamics within th
GLE approximation showed that front solutions withuKu
.uK* u were unstable against the marginally stable front
termined by the saddleQ* of the GLE dispersion relation
@56–60#. So here we have a universal long-time dynami
selection of the marginally stable front solution that hol
almost independently from the form of the localized initi
perturbation@58,1#. For this reason and in order to compa
later on with results obtained from the full field equation w
first compile in Sec. V C the known front properties follow
ing from the GLE.

C. Ginzburg-Landau amplitude equation approximation

The saddle point analysis of Sec. V B applied to the d
persion relation~4.11! of the GLE~4.8! yields the following
front properties;

j0K6* 56A m

11c1
2
, ~5.6a!

k6* 2kc52c1K6* , ~5.6b!

v6* 2vg522~11c1
2!

j0
2

t0
K6* , ~5.6c!

g6* 52v6* K6* , ~5.6d!

t0~v6* 2vc!5t0vg~k6* 2kc!1~c12c0!m ~5.6e!

for the two front types withK1* .0 andK2* ,0, respectively.
They are associated with the two saddles of Eq.~5.4! that
arise from the quadratic dispersion relation~4.11!. At the
boundarymc2a ~4.13a! between convective and absolute i

g
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stability the velocityv1* and the temporal growth rateg1* of
the 1 front vanish in the laboratory frame. Thenv2* 52vg

and g2* 5vg
2t0 /j0

2(11c1
2) are the velocity and the growt

rate, respectively, of the2 front. Thus, the center of the
pulse-like perturbation moves with the group velocityvg
such that atmc2a its left front remains fixed and its righ
front moves with velocity 2vg . In the convecively unstable
regime 0,m,mc2a both the left front as well as the righ
front of the pulse move into the same~downstream! direc-
tion, 0,v1* ,v2* . In the absolutely unstable regimem
.mc2a , however, the left front moves upstream and t
right front moves downstream,v1* ,0,v2* .

Note thatall quantities in Eq.~5.6! and in the ensuing
discussion carry also the superscriptS,U, or D which, how-
ever, is not displayed in Eq.~5.6! for the sake of shortness
These superscripts identify the phase dynamics of the res
tive perturbation under the front~cf. Sec. V B!. The coeffi-
cients of the three associated amplitude equations ente
into Eq. ~5.6! have been evaluated as a function ofc,Re in
@61#. The limiting case,c50, of pure fluid convection is
contained also in Eq.~5.6!.

D. Fronts in pure fluids—comparison of GLE and field
equations

We have first investigated as a test case the pure fl
limiting case of vanishing Soret coupling,c50, in the ab-
sence of throughflow,Re50. Then m5e5r /r c21 with
r c(Re50,c50)51. Here we compare the front propertie
of stationary roll convection perturbations growing under
fronts obtained from the field equations with those from
GLE. The latter yields according to Eq.~5.6! in the absence
of throughflow for a stationary pattern the well known resu
@1#

j0K6* 56Ae; k6* 5kc , ~5.7a!

v6* 572
j0

t0
Ae; g6* 52

e

t0
; v6* 50 ~5.7b!

since c05c15vg5vc50 for pure fluids without through-
flow. For this system one hasj050.385 and t05(s
10.5117)/19.65s for rigid horizontal boundary condition
@1#.

This GLE result~thin lines in Fig. 4! is in reasonable good
agreement with the linear front properties that we evalua
for a wide range of Prandtl numberss from the dispersion of
the full field equations by a shooting method~thick lines in
Fig. 4!. Corrections to ther-independent GLE values ofk6*
5kc andv6* 50 are of higher order that are not captured
the GLE. Sincej0 is independent ofs so is K* . But v*
depends ons via t0.

Note that according to the full field equations the pert
bation~5.5! that is growing under the moving front shows
phase propagation with phase velocityv* /k* that is in gen-
eral nonzero while the GLE yieldsv* 50. The question of
whether there is a phase propagation under a convec
01630
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front of perturbations that grow beyond the stationary ins
bility of pure fluids seems to be a somewhat open ques
@62#.

E. Fronts in mixtures without throughflow

In Fig. 5~a! we compare front properties in a mixture wit
c520.25 ~dashed and full lines! with those in pure fluid
convection,c50 ~dash-dotted lines!, both without through-
flow. In Fig. 6~a! this comparison is made forc520.01.
These results were obtained by evaluating the disper
s(Q) of the full linear field equations with a many-mod
Galerkin expansion~Appendix!.

1. Symmetries

Invariance of the field equations underx→2x for Re
50 implies that stationary perturbations withvc50 under a
1 front are mirror images of those under a2 front. This
implies for Re50 the symmetry relations

~K,v,v !1
S* 52~K,v,v !2

S* ; k1
S* 5k2

S* . ~5.8!

This symmetry property of the two front types o
S-perturbations withvc50 can be seen in Fig. 5~a! and in
Fig. 6~a! for the casec50 of pure fluid convection~dashed
dotted lines!.

Now consider TWD and TWU perturbations. Here th
invariance of the field equations~2.12! under x→2x for
Re50 implies first of all that a spatially extended TWD wit
uniform amplitude is the mirror image of a spatially e
tended TWU. Furthermore, a TWD under a1 front with
positive K is symmetry degenerate with a TWU under a2

FIG. 4. Comparison of front properties in pure fluids (c50) in
the absence of throughflow (Re50) resulting from the GLE and
from the full field equations. Shown are the selected wave num
k6* , velocity v2* 52v1* , spatial growth rateK2* 52K1* , and fre-
quencyv6* versus reduced Rayleigh numberr for different Prandtl
numberss as indicated. Thick lines refer to saddle properties of
dispersion of the full field equations obtained with a shooti
method. Thin lines refer to the result~5.7! obtained from the GLE.
7-11
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front with negativeK. Similarly a TWU under a1 type front
is the mirror image of a TWD under a2 front ~cf. Fig. 3!.
This implies forRe50 the symmetry relations

~K,v,v !1
D* 52~K,v,v !2

U* ; k1
D* 5k2

U* , ~5.9a!

FIG. 5. Front properties in systems with and without throug
flow, Re, as indicated. Saddle point results for wave numberk* ,
velocity v* , spatial growth rateK* , and frequencyv* obtained
from the dispersion of the full field equations are shown versur.
Dash-dotted lines refer to fronts in pure fluids (c50). Full lines
refer to TWU fronts and dashed lines to TWD fronts in mixtur
with c520.25. In each case a thick line denotes a1 front and a
thin line a2 front. Parameters ares510,L50.01.
01630
~K,v,v !1
U* 52~K,v,v !2

D* ; k1
U* 5k2

D* . ~5.9b!

They can be seen to be realized in Fig. 5~a! and in Fig. 6~a!
~cf. dashed and full lines!.

- FIG. 6. Front properties in systems with and without throug
flow, Re, as indicated. Saddle point results for wave numberk* ,
velocity v* , spatial growth rateK* , and frequencyv* obtained
from the dispersion of the full field equations are shown versur.
Dash-dotted lines refer to fronts in pure fluids (c50). Full lines
refer to TWU fronts, dashed lines to TWD fronts, and dotted lin
in ~c! to TWS fronts occurring in mixtures withc520.01. In each
case a thick line denotes a1 front and a thin line a2 front.
Parameters ares510,L50.01.
7-12
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The GLE approximation yields beyond Eq.~5.9! addi-
tional symmetry relations forRe50 that follow from the
fact that,t0

D5t0
U ,j0

D5j0
U , and c1

D52c1
U @63# for Re50.

This then implies according to Eq.~5.6! that within the GLE
approximation, for example,

K1
D* 5K1

U* 52K2
D* 52K2

U* , ~5.10a!

v1
D* 2vg

D5v1
U* 2vg

U ~5.10b!

holds. Herevg
U52vg

D for Re50.
Inspecting Figs. 5~a! and 6~a! shows, however, that fron

solutions of the field equations have this additional G
symmetry ~5.10! only close to onset,r c

D(Re50)5r c
U(Re

50)5r osc. Further awayK1
D* ÞK1

U* and K2
D* ÞK2

U* so
that GLE fronts deviate from those of the full field equation

2. Dependence on Rayleigh number

For r 5r osc the saddle point analysis reproduces the
sults of the linear stability analysis. The latter yields that
r osc only an extended, spatially uniform plane wave pert
bation with the critical wave number can grow. Cons
quently the saddle point analysis shows that the spa
growth rates of all four fronts vanish,K6

D* 5K6
U* 50 at

r osc. And the front velocitiesv6
D* andv6

U* start atr osc with
the group velocitiesvg

D andvg
U52vg

D of the respective criti-
cal waves forRe50.

For r values abover osc spatially localized perturbation
consisting of wave packets with wave numbers from the
stable band can grow, thus allowing the formation of puls
The spatial growth rates of their fronts increase with grow
r so that the pulses are getting steeper. Also the temp
growth rates increase with growingr. In the top row of Fig.
7 we show the temporal growth rategD ~left column! andgU

~right column! with a combination of contour- and gray-sca
plot over the complexQ-plane forc520.25, Re50, and
r 51.65. AtK50, i.e., along the realk-axis one can read of
the k-variation of the real parts of the two Hopf eigenvalu
gD(k)5gU(k) that are symmetry degenerate forK50, Re
50. Away from the realk-axis the Hopf bifurcation symme
try for Re50 implies the relation

gD~k,K;r ,Re50!5gU~k,2K;r ,Re50! ~5.11!

that is obvious from comparing the top left with the top rig
plots of Fig. 7. Thus, forRe50 the intersection of the two
surfaces ofgD(Q) and gU(Q) over the complexQ-plane
occurs atK50.

The paths of the saddle positionsQ6
D* (Q6

U* ) as a func-
tion of r are marked by thick dashed~thick full! lines in the
complexQ plane. Atr osc all saddles lie on the realk-axis at
kc . Increasing the Rayleigh number abover osc the saddles
Q1

D* and Q1
U* move towards positiveK while Q2

D* and
Q2

U* move towards negativeK. For r 51.65 the positions of
these four saddles are marked in Fig. 7 by open squa
Since this r-value is close to the borderr c2a

D (Re50)
5r c2a

U (Re50) between convective and absolute instabil
the temporal growth ratesg1

D* (Re50) andg2
U* (Re50) are
01630
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almost zero at the respective saddle positions in the top
of Fig. 7. If one increasesr further, thenQ1

D* and Q2
U*

return to the real axis,K50, and vanish there in a collision
This is linked with the fact that forRe50 the TW eigenval-
ues,sD(k,r ) andsU(k,r ), depending on the real wave num
ber k undergo a transformation from a complex conjuga
pair (gD5gU, vD52vU) to a pair of two distinct real ei-
genvalues (gDÞgU, vD52vU50) at sufficiently larger
@32,40#.

The variations of the saddle values ofg* and of K*
change the front velocities: the velocity of those fronts
wards which the phase of the pattern is propagating incre
in magnitude while the opposite holds for fronts from whi
the phase is moving away. This can be seen in Fig. 5~a! and
in Fig. 6~a! by comparingv2

D* ~thin dashed line! with v1
D*

~thick dashed line! and uv1
U* u ~thick full line! with uv2

U* u
~thin full line!. At the boundaryr c2a

D between absolute an
convective instabilityv1

D* changes sign and a TWD pertu
bation can spread into the entire system against the gr
velocity. In the absence of throughflowr c2a

D 5r c2a
U so that

also v2
U* changes sign and also the TWU perturbation c

expand into the entire system.
Note, that in contradistinction to the GLE result the tw

fronts of a pulse-like perturbation show also in the abse

FIG. 7. Temporal growth ratesgD ~left column! andgU ~right
column! for Re50 ~top row! and forRe50.25 ~bottom row! over
the complexQ-plane. Other parameters ares510, L50.01, c5
20.25, and r 51.65. In the white regions with thin dashe
g-isolinesg is negative whileg.0 in the grey regions. Thereing
decreases with increasing darkness so that the black boundary
between the grey and the white regions is theg50 isoline. The
open square in the top~bottom! region of each plot marks the loca
tion of the saddleQ1* (Q2* ) for both theD and theU case when
r 51.65. The dashed~full ! lines with arrows in the left~right! col-
umn show how theD ~U! saddles move as a function ofr.
7-13
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of a throughflow different spatiotemporal properties: T
spatial growth rateK1

D* 5uK2
U* u is bigger than uK2

D* u
5K1

U* and the wave numbersk1
D* 5k2

U* differ from k2
D*

5k1
U* . Also the oscillation frequenciesv1

D* 52v2
U* differ

from v2
D* 52v1

U* . Therefore our analysis predicts a com
petition of two different selection processes for convect
structures in binary mixtures that grow out of the left and
right front of a pulse-like perturbation being different
wave number, frequency, and spatial envelope profile.

F. Fronts in mixtures with throughflow

The throughflow breaks the symmetry relations that
Hopf bifurcation symmetry imposes forRe50 on the dis-
persion relationssD(Q) andsU(Q) of TWD and TWU per-
turbations, respectively. Hence the symmetry relations~5.9!
between the saddle properties forRe50 and the ensuing
relations between properties of TWD fronts and of TW
fronts do not longer hold forRe.0. However, the influence
of a finite throughflow on the front properties can be und
stood to a large extent on the basis of the GLE prediction
the throughflow-induced changes. Therefore, we first rev
the latter briefly.

The Re dependence of the coefficients in the GLE f
TWD and TWU perturbations@61# shows that the frequen
ciesvc

D,U and the group velocitiesvg
D,U are changed most b

a small throughflow. These quantities increase linearly
small Re,

vc
D,U~Re!56vH1aRe,

vg
D,U~Re!56vg

01bRe, ~5.12a!

with vH ,vg
0 ,a, and b all being positive. This behavior to

gether with the GLE result~5.6! for the front velocitiesv*
and the front frequenciesv* explains much of the upward
shift of v* and v* , respectively, that results from the fie
equations when the throughflow is switched on: A compa
son of the plots in Figs. 5 and 6 forv* andv* at Re50 in
~a! with the plots atRe.0 in ~b! and ~c! shows that the
throughflow shifts the front velocitiesv* and the phase ve
locities v* /k* upwards towards more positive values.

Compared to the large throughflow-induced changes
vc ,v* ,vg , and v* the changes predicted by the GLE a
proximation~5.6! for k* andK* are relatively small coming
only from the small variations ofj0 ,kc , and c1 with Re.
Thus, in Figs. 5 and 6 also the front values ofk* and K*
obtained for the full field equations do not change mu
when switching on the throughflow while, however, the
pology of the curves of the front properties versusr changes
somewhat.

Since the throughflow breaks the symmetry relations~5.9!
holding for Re50 one finds, e.g., that wave numbers a
intensity profiles of aD1 front and of aU2 front differ when
Re.0. This holds in particular also for the vicinity of th
bifurcation thresholdsr c

U(Re)Þr c
D(Re) for TWU and TWD

patterns, respectively, that are located at different inters
tions of the respectiveK* -curves with ther-axis. They mark
fronts with spatial growth ratesK* →0 that become possibl
01630
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right at the bifurcation thresholdsr c
U and r c

D with critical
onset wave numberskc

U and kc
D , respectively. The critical

thresholds and wave numbers are for TWU and TWD p
terns different whenRe.0 while they are symmetry degen
erate forRe50.

Besides that and in addition to it one has above the
spective thresholds that, e.g.,K1

D* Þ2K2
D* and K1

U* Þ
2K2

U* . Hence the two fronts of a TWD or of a TWU pulse
like perturbation are different. This difference occurs, ho
ever, already in the absence of throughflow~cf. the discus-
sion at the end of Sec. V E 2!.

To understand the variation of the growth rat
gD,U(k,K;Re) over the complexQ-plane and its change
with increasingRe ~bottom row in Fig. 7! one can again
invoke the GLE approximation~4.11! for the dispersion. It
yields

g52vgK1
m

t0
2

j0
2

t0
@~k2kc!

22K212c1~k2kc!K#.

~5.13!

Now t0
D,U(Re), j0

D,U(Re), and c1
D,U(Re) do not deviate

much from their respectiveRe50 values whereas
vg

D,U(Re)56vg
01bRevaries linearly inRe as noted in Eq.

~5.12a!. Thus, the throughflow tilts theRe50 surfaces of
gD,U over theQ-plane by the common term}2ReKsuch as
to increase~decrease! g for negative~positive! K. This leads
for the parameters of Fig. 7 to an almost symmetric variat
of gU with K aroundK50 while gD becomes negative fo
almost all positiveK and the intersection line wheregD(Q)
5gU(Q) is no longer located at the real axisK50. Also the
saddle positions change. In particularK1

D* and K2
U* do no

longer merge at largerr with the realQ axis above onset o
convection~cf. bottom row of Fig. 7!.

The influence of the Soret coupling strength on the sad
points can be seen by comparing the results forc520.25 in
Fig. 5 with those forc520.01 in Fig. 6. In the absence o
throughflow, Re50, one observes in Fig. 6~a! for c5
20.01 atr'1.21 the transition (K,v)1

D* 52(K,v)2
U* →0

of a complex conjugate pair of eigenvalues to two distin
real eigenvalues@32,40# that was mentioned already in Se
V E 2. There theD1 saddle and theU2 saddle collide and
disappear@40# yielding a formal divergence ofv. Any finite
throughflow lifts the symmetry degeneration and preve
this saddle collision with the associated transition to r
eigenvalues. Then theD1 and theU2 saddles do not end on
the realk-axis but keep moving separately with increasingr.

However, betweenRe50 and Re50.2 @Figs. 6~a! and
6~b!, respectively# there does occur a collision of theD2 and
theU2 saddles at negativeK after which the identification of
these saddles becomes interchanged@40#. Thus in Fig. 6~a!
the thin full lines identifying theU2 saddle properties ap
proach for larger the properties of the2 saddle in pure
fluids ~thin dash-dotted lines!. Whereas in Fig. 6~b! it is the
D2 saddle properties~thin dashedlines! that approach for
large r the pure fluid limiting behavior. These saddle col
sion properties are somewhat involved@40# and will there-
fore not be discussed further here. We also mention o
7-14
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briefly that at largeRe in Fig. 6~c! there appear the TWS
saddles~dotted lines!. They have moved with increasingRe
first downwards inr thereby approaching the TWD saddle
Then, upon increasingRe further the TWD and TWS saddle
move—after an interval with more complex behavior@40#—
upwards inr and thus lose their experimental relevance.

For strong throughflow rates the TWU saddle propert
~full lines in Figs. 5 and 6! approach at larger those of pure
fluid convection~dashed-dotted lines in Figs. 5 and 6!. This
is especially visible for the smaller Soret coupling stren
c520.01. It reflects the physical property that with increa
ing throughflow and with increasing heating not only t
nonlinear behavior of well mixed binary fluids@18# but also
the linear properties of perturbations@32# become more and
more similar to those of pure fluids. For stronger Soret c
pling this happens at larger and largerRe,r .

VI. SIMULATIONS OF THE NONLINEAR FIELD
EQUATIONS

In order to check and to compare the spatiotemporal pr
erties of fronts and pulses that were obtained in the prev
section from the saddle point analysis of the dispersion r
tion of the linear field equations we present here some re
resentative results that were obtained from a numerical s
tion of the full nonlinearhydrodynamical field equations.

A. System

In order to study the structural dynamics of fronts a
pulses we performed numerical simulations of convection
a long and narrow rectangular convection channel of len
G580 in x-direction. To that end we used a finite-differen
code~Appendix! to solve the time dependent nonlinear fie
equations ~2.1!. In such channels that are narrow
y-direction convection occurs in the form of straight paral
rolls with axes aligned iny-direction. The field variations in
y-direction may be ignored for our purposes since these c
vection structures are effectively 2D so that a description
the x2z midplane perpendicular to the roll axes suffices.

In our simulations the channel was closed atx50 andx
5G by rigid impermeable lateral sidewalls, each of whi
had a thickness of 2. However, when simulating convect
in the presence of throughflow we imposed the plane h
zontal Poiseuille profileU(z) ~2.10! as a boundary condition
at x50 andx5G. The ratio of the heat diffusivities of the
sidewallskw and of the binary fluidk was chosen to be
kw /k50.43 andLw /L51.23 was the ratio of the respectiv
heat conductivities. Thus we solved the diffusion equatio

] tTw5kw~]x
21]z

2!Tw ~6.1!

for the temperatureTw in the sidewalls subject to the bound
ary conditions

Tw5T and ]xTw5
L

Lw
]xT at x50, G, ~6.2a!

]xTw50 at x522, G12. ~6.2b!
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Hence the temperature and the lateral heat current vary
tinuously at the inner sidewall surface so that convect
temperature variations generated in the fluid penetrate
some extent the sidewalls. At the outside surface of the s
walls we imposed the lateral heat flux to vanish.

B. Results

The simulations discussed here were done for fluid
rameterss510, L50.01, andc520.25. Each run was
started from a spatially localized initial perturbation in th
temperature field that was perfectly symmetric around
middle of the cell. The center of gravity of the initial pertu
bation of the homogeneous conductive state was exactl
x540. The resulting evolution of the lateral profiles of th
temperature field at midheight,z50, of the cell is shown
with so-called hidden line plots for different supercritic
Rayleigh numbers in Figs. 8 and 9 forRe50 and Re
50.05, respectively.

1. Absence of throughflow

The above described symmetric initial perturbation gen
ates in the absence of throughflow,Re50, two pulses shown
in Fig. 8 that are mirror images of each other. The left~right!
one consists of TWU~TWD! perturbations whose phase
propagating to the left~right!. If the initial perturbation is not
mirror symmetric but of some arbitrary generic, albeit loc
ized form then it still generates TWU and TWD pulse
However, their amplitudes are generically different depe
ing on the magnitude of the overlap of the initial perturbati
with the critical TWU and TWD eigenfunctions, respe
tively. Only in the nongeneric case of an initial perturbati
being a pure wave packet in the sense that it consists
TWU or TWD excitations only can one observe the grow
of only one pulse, TWU or TWD@66#.

In the top part of Fig. 8 we show the pulse evolutio
betweent50 andt510 for r 51.341 which is very close to
the oscillatory bifurcation thresholdr osc for c520.25. The
group velocities of the TW perturbations in Fig. 8 are in t
same directions as the respective phase velocities. Thus
TWU ~TWD! pulse moves to the left~right!. Because of the
vicinity to the Hopf threshold the phase velocities of t
waves and the group velocities of the pulses are large and
wave amplitudes grow exponentially in time. Furthermo
the pulse shape remains almost Gaussian as the impose
tial perturbation. The latter is shown in the lowest profile
the top part of Fig. 8.

A perfectly symmetric Gaussian behavior around the
spective pulse center would result from the GLE approxim
tion. Therein the spatial growth rates of all four fronts wou
be the same. Also the front velocities relative to the velo
ties of the two pulse centers,vg

U52vg
D , would be the same

according to~5.6!, ~5.10!. While the pulse centers separate
the top part of Fig. 8 with twice the group velocity of TWD
or TWU perturbations the velocities of the four fronts are n
the same. They agree, however, very well with the resu
v1

D* 52v2
U* 52.97 and v2

D* 52v1
U* 53.93, that we ob-

tained from the saddle point analysis of the linear field eq
tions and that are displayed in Fig. 5~a! ~with the line con-
7-15
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ventionD: dashed,U: full, 1: thick, and2: thin!. Note that
the four fronts of the two pulses in Fig. 8 obey the mirr
symmetry relations~5.9! in the absence of throughflow be
tween the two trailing fronts,D1 andU2 , and between the
two leading fronts,D2 andU1 , respectively. Here trailing
and leading refers to the direction of phase propagation
the underlying waves.

With the Rayleigh number so close to the Hopf bifurc
tion the conductive state of the top part of Fig. 8 is on
convectively unstable~cf. lower right corner of Fig. 1!.
Therefore both, the1 as well as the2 front of each pulse,
move into the same direction as the pulse center. He
behind the two trailing convection fronts,D1 andU2 , the
system returns to the basic conductive state and the re
between these fronts with quiescent fluid in the center of
cell grows. In a finite cell, however, the pulses are reflec
off the sidewalls@14# and propagate inwards with some r
duced amplitude@11,12,40#. For the setup of the top part o
Fig. 8 the fronts had reached the sidewalls at about 10
tical thermal diffusion times.

If one increases the Rayleigh number tor 51.518~middle
part of Fig. 8! which is shortly below the border betwee

FIG. 8. Direct numerical simulation of convection pulses ori
nating in the absence of throughflow from a symmetrical localiz
initial perturbation. Shown are hidden-line plots of equidistan
spaced snapshots, staggered one above the other, of the l
variation of the temperature at midheight,z50. They cover inter-
vals of length 10 (r 51.342, top part!, 5 (r 51.518, middle part!,
and 5 thermal diffusion times (r 51.671, bottom part!, respectively.
Parameters ares510, L50.01, c520.25, andRe50. Grey ver-
tical stripes locate thermally conducting sidewalls that close
convection cell laterally~cf. text for details!.
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convective and absolute instability~triangle in the lower
right corner of Fig. 1 atRe50) then the trailingD1 andU2

fronts that are oriented towards the center of the cell m
much slower, their front velocities are reduced tov1

D* 5

2v2
U* 50.77. The velocities of the two leading fronts,D2

andU1 , have increased tov2
D* 52v1

U* 56.62@cf. also Fig.
5~a!#. Therefore we show in the middle part of Fig. 8 on
the time interval fromt50 to t55 to avoid front collisions
with the walls.

The asymmetry of the pulse shapes that is predicted
the saddle point analysis is reproduced by our nonlinear
merical simulations: the trailing fronts with spatial grow
ratesK1

D* 52K2
U* 50.95 have become significantly steep

than the leading fronts withK2
D* 52K1

U* 520.83, cf. Fig.
5~a!. Also the wave amplitudes increase there more rapi
in time.

During an initial period in time one can see in the midd
part of Fig. 8 a transient behavior where TWD and TW
perturbations are superimposed to form a standing wave
der the two overlapping trailing fronts before they fully sep
rate. Such behavior can also be seen for a longer time in
bottom part of Fig. 8. There the Rayleigh number has b

d

eral

e

FIG. 9. Direct numerical simulation of convection pulses orig
nating in the presence of a small throughflow from a symmetr
localized initial perturbation. Shown are hidden-line plots of eq
distantly spaced snapshots, staggered one above the other, o
lateral variation of the temperature at midheight,z50. They cover
intervals of length 10 (r 51.342, top part!, 5 (r 51.518, middle
part!, and 5 thermal diffusion times (r 51.671, bottom part!, respec-
tively. Parameters ares510, L50.01, c520.25, andRe50.05.
Grey vertical stripes locate thermally conducting sidewalls t
close the convection cell laterally~cf. text for details!.
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increased tor 51.671. Here the leading front velocities ha
increased tov2

D* 52v1
U* 58.08 @cf. also Fig. 5~a!#. But,

more importantly, the trailingD1 and U2 fronts that are
oriented towards the center of the cell have reversed t
propagation direction. According to the saddle point analy
one has herev1

D* 52v2
U* 520.24, cf. Fig. 5~a!, so that one

has entered here the absolute instability range of the con
tive state, cf. Fig. 1, where the two fronts of a pulse move
opposite direction.

Thus, the TWD state in the right part of the cell wou
expand also to the left and the TWU in the left part of t
cell would expand also to the right if these fronts were free
move into quiescent fluid. Instead, these two counterpro
gatingD1 andU2 fronts collide and thereby they first gen
erate a longer lasting initial transient with standing wav
than at the smallerr in the middle part of Fig. 8. However
the time interval during which TWD and TWU perturbation
combine linearly to a standing wave is restricted by
growth of nonlinear interactions between TWD and TW
that become relevant when their amplitudes have grown
ficiently. They cause a destructive interference of the t
colliding fronts in the center region thereby creating a sou
defect. This defect connection between the developed T
and TWD patterns with left moving phase in the left part
the cell and right moving phase in the right part of the cel
stable and stationary for our perfectly symmetric setup
initial conditions. Source and sink defects have been inv
tigated experimentally by Kolodner@65# and Kaplan and
Steinberg@46,64#.

2. Finite throughflow

A finite throughflow breaks the mirror symmetry betwe
TWD and TWU pulses as can be seen in Fig. 9 for the sm
throughflowRe50.05. The respective three parts of Fig.
and of Fig. 9 refer to the same Rayleigh numbers so that
can immediately see the effect of the throughflow on
spatiotemporal evolution of localized perturbations. First
all it shifts all velocities of convective perturbations upwar
to more positive values. This holds for the velocities of t
centers of the two pulses in Fig. 9 as well as for the veloci
of the two fronts of each pulse. For example, the leadingD2

front of the right TWD pulse is now moving faster down
stream to the outlet atx5G than without throughflow and
faster than the leadingU1 front of the left TWU pulse is
moving upstream towards the inlet,x50.

Also the velocitiesv1
D* and v2

U* of the trailing D1 and
U2 fronts, respectively, are now different. Hence the bord
r c2a

D and r c2a
U between convective and absolute instabil

against TWD and TWU perturbations wherev1
D* andv2

U* ,
respectively, change sign are now different~cf. downwards
and upwards pointing triangles in Fig. 1!. In the top part of
Fig. 9 the conductive state is well within the range of co
vective instability ~Fig. 1! against TWD as well as TWU
perturbations with both fronts of each pulse moving into
same direction. In the middle part of Fig. 9 atr 51.518,
however, wherev2

U* is almost zero the TWU perturbation
of the left pulse are about to expand also in downstre
direction — the boundaryr c2a

U ~upwards pointing triangles
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in the lower right corner of Fig. 1! decreases upon switchin
on the throughflow. On the other hand, the TWD perturb
tions are more easily blown out of the system — the bou
ary r c2a

D ~downwards pointing triangles in the lower righ
corner of Fig. 1! increases withRe and so doesv1

D* .
As an aside we mention here that one can at a sufficie

large Re ~of about 0.5 according to Fig. 1! enter again the
convectively unstable range by crossing the right part of
r c2a

U curve when the throughflow becomes so large that
leadingU1 front of the left TWU pulse reverts its motion
into downstream direction — then the TWU pulse moves
of the system; this time however in downstream direction

At r 51.671 andRe50.05 in the lower part of Fig. 9 the
boundaryr c2a

D ~downwards pointing triangles in the lowe
right corner of Fig. 1! has just been crossed, the conducti
state is absolutely unstable both against TWD as well
against TWU perturbations, the front velocitiesv1

D* andv2
U*

have changed their signs, and consequently theD1 front and
the U2 front collide thereby creating a source defect in t
center of the cell. Now, however, withRe.0 this defect
moves downstream with the throughflow.

Finally we would like to stress that the analysis presen
here refers to the spatiotemporal growth behavior ofsmall
TW perturbations of the conductive state only. The analy
of the bifurcation properties of spatially extended, nonl
early saturated TW solutions shows, for example, that
sufficiently large throughflow stable nonlinear TWU stat
are not available for linear TWU perturbations to grow t
Then, a nonlinear transformation from an intermediate TW
to a final saturated TWD state occurs that is accompanied
a somewhat spectacular reversal of the phase propag
@67#.

VII. CONCLUSION

Spatiotemporal properties of spatially localized structu
have been analyzed that consist of convective perturbat
of the basic conductive state of a horizontal binary fluid lay
heated from below and the effect of a plane horizontal P
seuille flow on them has been determined. To that end
behavior of linear fronts and of pulse-like wave packe
formed out of the three different perturbations — two osc
latory ones and a stationary one — that are relevant in bin
mixture convection has been investigated. This was done
analyzing the appropriate saddle points of the complex
persion relationss(Q). The latter are obtained numericall
as functions of the complex wave numberQ5k2 iK from
the full linearized field equations for the three different pe
turbations in question. We also determined these functi
within a Ginzburg-Landau amplitude equation approxim
tion to compare with its predictions for the front and pul
behavior in pure fluids (c50) and in mixtures (cÞ0) as a
function of the throughflow.

We first briefly reviewed the linear bifurcation propertie
of different spatiallyextendedconvective patterns that hav
spatially homogeneous amplitudes and how they are in
enced by a lateral throughflow thereby providing the ba
ground and the frame for discussing our findings on the
havior of spatiallylocalizedperturbations. The results of thi
7-17
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P. BÜCHEL AND M. LÜCKE PHYSICAL REVIEW E63 016307
earlier study that are most important for understanding
behavior of spatiallylocalizedperturbations are that the sym
metry degeneracy of the Hopf bifurcation of the conduct
state atr osc into two left or right propagating TW’s with
frequencies6vH is broken: In the presence of a throughflo
the dispersion relations,sU(Q) andsD(Q), and thus the bi-
furcation thresholds and the spatiotemporal behavior of
upstream traveling wave~TWU! and of the downstream trav
eling wave ~TWD! are different. Furthermore, in mixture
with negative Soret coupling the bifurcation thresho
r c

S(Re) for TWS structures, which become a stationary p
tern whenRe50 but propagate whenRe.0, gets strongly
depressed by a small throughflow. These findings allow
understand also to a large extent the variation of the tra
tion boundaries between the parameter regions in which
conductive state is convectively or absolutely unsta
against TWD, TWU, or TWS perturbations, repectively.

We have determined these boundaries where one of
fronts of a pulse-like wave packet reverts its propagat
direction in the laboratory frame by a saddle point analy
of the respective dispersion relationssD(Q), sU(Q), and
sS(Q) as functions of Re for different Soret coupling
strengths. Furthermore and in addition to it we have de
mined the general front behavior of TWD, TWU, and TW
patterns each under an intensity envelope with a spa
variation of type1 ~growth in positivex-direction! or an
envelope with a spatial variation of type2 ~growth in nega-
tive x-direction!. Our interest was focused on small Reynol
numbers since for largeRe the externally imposed shea
flow effectively eliminates the Soret-induced coupling e
fects between the convective concentration field and
other fields by suppressing vertical convective transpor
Soret driven concentration perturbations.

The combination of the three different dynamics of t
constituent perturbations~TWD, TWU, TWS! and the two
different spatial profiles (1, 2) leads to six different fronts
of the form f (x,t);ei (k* x2v* t)eK* (x2v* t) in laboratory
space. Their velocityv* , spatial growth rateK* , wave num-
ber k* , and frequencyv* as determined via a saddle poi
analysis of the respective dispersion relations differ in g
eral from each other in the presence of a throughflow.
Re50, however, the invariance of the field equations un
x→2x implies symmetry relations like, e.g., stationary pe
turbations withvc50 under a1 front are mirror images of
those under a2 front, a TWD under a1 front with positive
K is symmetry degenerate with a TWU under a2 front with
negativeK, and a TWU under a1 type front is the mirror
image of a TWD under a2 front. However, the two fronts
of a pulse-like perturbation show also in the absence o
throughflow different spatiotemporal properties: The spa
growth rateK1

D* 5uK2
U* u is bigger thanuK2

D* u5K1
U* and the

wave numbersk1
D* 5k2

U* differ from k2
D* 5k1

U* . Also the
oscillation frequenciesv1

D* 52v2
U* differ from v2

D* 5

2v1
U* and the velocity of those fronts (D2 ,U1) towards

which the phase of the pattern is propagating grows w
increasing Rayleigh number while the opposite holds for
fronts (D1 ,U2) from which the phase is moving away
Hence our analysis predicts a competition of two differe
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selection processes for convection structures in binary m
tures that grow out of the left and the right front of a puls
like perturbation being different in wave number, frequen
and spatial envelope profile.

A finite throughflow breaks the relations that the Ho
bifurcation symmetry imposes forRe50 on the dispersion
relationssD(Q) andsU(Q) of TWD and TWU perturbations,
respectively. Hence the symmetry relations between
saddle properties forRe50 and the ensuing relations be
tween properties of TWD fronts and of TWU fronts n
longer hold for Re.0. In particular there is an overa
throughflow induced upwards shift of front velocitiesv* and
of phase velocitiesv* /k* towards more positive values.

Finally we compared the spatiotemporal properties
fronts that were obtained from the saddle point analysis
the dispersion relation of thelinear field equations with nu-
merical solutions of the fullnonlinearhydrodynamical field
equations. To that end we simulated pulses not only in
convectively unstable parameter regimes, where both, th1
and the2 front propagate~with different front velocities!
into the same direction as the pulse center, but also in
absolutely unstable regime where the two fronts of the pu
move into opposite directions. These results agree forRe
50 as well as for finiteRe with the spatiotemporal proper
ties of fronts obtained from the saddle point analysis.
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APPENDIX: NUMERICAL METHODS

To determine the dispersion relationss(Q) of the linear
field equations, i.e., the three eigenvaluessS,sU, and sD of
the eigenvalue problem~2.18! as functions of the complex
wave numberQ5k2 iK we used a shooting method that
described in Ref.@32# and/or a Galerkin method. Therein w

expanded the complexz dependent eigenfunctionsF̂
5(ŵ,û,ẑ) that have positive parity underz→2z as follows:

ŵ~z!5 (
n51

ŵnCn~z!, ~A1a!

û~z!5 (
n50

ûnA2 cos@~2n11!pz#, ~A1b!

ẑ~z!5 (
n50

ẑnA22dn,0 cos~2npz!. ~A1c!

HereCn(z) are Chandrasekhar functions@68#. Inserting Eq.
~A1! into Eq. ~2.18! yields after projection onto the norma
modes an algebraic system of equations for the comp
mode amplitudesŵn ,ûn , and ẑn . The solvability condition
D(s,L,c,Re,r ,Q,s)50 that requires the determinantD of
this system of equations to vanish yields the three disper
relations as the roots ofD50.
7-18
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In particular in the presence of a finite throughflow w
found the Galerkin method to be significantly faster a
more robust than the shooting method. The advantages o
former are that it does not require explicit integrations, say
Runge-Kutta type, and that the solvability conditio
D(s,L,c,Re,r ,Q,s)50 can be written in terms of analyti
cal expressions.

For the sake of comparison and crosscheck we also i
grated thenonlinear field equations~2.1! using a modifica-
tion of the SOLA code that is based on the MAC meth
en

f

in

in

c-

s,

g.,

n

v.

s

01630
he
f

e-

@69,70#. This is a finite-difference method of second order
space formulated on staggered grids for the different fie
with a uniform spatial resolution for which we tookDx
5Dz50.025. An explicit first-order Euler step in time wa
used in the balance equations of heat~2.1b! and concentra-
tion ~2.1c! and a second order DuFort-Frankel-scheme
time was used in the momentum balance equation~2.1d!.
The Poisson equation for the pressure field that results f
taking the divergence of Eq.~2.1d! was solved iteratively
using the artificial viscosity method@70#.
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