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Bounds on the convective heat transport in a rotating layer
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Previous bounds on the convective heat transport in a horizontal layer heated from below and rotating about
a vertical axis have been improved through the use of separate energy balances for the poloidal and toroidal
components of the velocity field. Because the additional constraint imposed for the solution of the variational
problem for the extremalizing vector field leads to Euler-Lagrange equations which can no longer be solved
analytically, numerical methods must be employed. A Galerkin scheme is introduced and the variational
problem is solved in the case when stress-free conditions are assumed at the upper and lower boundaries.
Results are presented as a function of the Rayleigh number and the rotation parameter for the Prandtl numbers
P=7, 0.7, 0.1, and 0.025.
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I. INTRODUCTION Il. MATHEMATICAL FORMULATION
OF THE PROBLEM
The theory of bounds on the convective heat transport in a
layer heated from below was first formulated, to the best Offro

our knowledge, in mathematical terms by Howdfd fol- |5 yelocity . Usingh as length scaleh?/« as time scale,
lowing earlier ideas of Malkuf2]. Later the theory was ex- \\here « is the thermal diffusivity of the fluid, andTp
tended to bounds on other transports in turbulent fluids by_ T,)/R as temperature scale, wheFg and T, are the tem-
Busse[3] and general solutions were obtained in the casgeratures at top and bottom boundaries, we can write the
when the constraint of continuity is applied. For reviews ofpasic equations of motion and the heat equation for the di-

the theory of upper bounds or the optimum theory of turbu-mensionless deviatio® from the temperature distribution of
lence we refer t¢4] and[5]. Considerable efforts have been pure conduction in the form

expanded to tighten the bounds through the imposition onto
the extremalizing vector fields of additional constraints de-

rived from the basic equations. Although the proposal for the

use of the separate energy balances for poloidal and toroidal
components of the velocity field was already made[By V.u=0, (1b)
the solution of the corresponding variational problem was

hindered by the lack of appropriate asymptotic techniq_ues. i®+u~V®=Rk~ u+v2e, (10
Moreover, Kerswell and SowarfB] have demonstrated in at

the special case of plane Couette flow that the imposition of , . , ) o
the separate energy balances for poloidal and toroidal ConWherek is the vertical unit vector opposite to the direction of

ponents as constraints will not lead to improvements of th%ra\gty ag?hwhef[et_the RaylelgP numt;@rf_the dPt;andtI num-
upper bound on the momentum transport. er and the rotation parameterare defined by

In recent years the increasing available computer capacity Y(T,—Ty1)ghd v 20 h2
has allowed to approach asymptotic regimes of high Ray- R= o PmooTm— 2
leigh or Reynolds numbers through numerical solutions of

the Euler-Lagrange equations of the variational problEfhs  Here y denotes the coefficient of thermal expansigiis the

The success in the numerical treatment of the simple variaacceleration of gravity and is the kinematic viscosity of the
tional problem has motivated us to use computational methfiuid. The Boussinesq approximation has been assumed in
ods for the solution of the more complex problems which arehat the variation of density is taken into account only in the
obtained through the imposition of additional constraints. Ingravity term. All terms that can be written as gradients in Eq.
order to avoid the negative result [ we have chosen the (1a) have been combined i 7. Using a Cartesian system
problem of convection in a rotating layer where poloidal andof coordinates with the-coordinate in the direction df we
toroidal components of the velocity field are intimately can prescribe the conditions at the upper and lower stress
coupled even in the linearized description of the problemfree boundaries in the form

Since the Prandtl numbé? enters the variational functional

in addition to the rotation parameter when poloidal and tor- d 1

oidal energy balances are introduced separately, the param- 79%k=0, u-k=0=0atz=*7. )

eter space becomes much enlarged. Results have thus been

obtained only for selected values &f and of the Taylor In order to eliminate the constraiftb) we use the general
number. representation for solenoidal vector fields,

We consider a horizontal fluid layer of heightheated
m below and rotating about a vertical axis with the angu-

Jd
—u+u-Vu|+7kxXu=-Va7+k®+V?, (1a

-1
P ot
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u=VX(V ¢pXK)+V yXk=bp+ e (4)  where the angular brackets denote the average over the fluid
. _ layer. By multiplying Egs(5a), (5b), and(5d) by ¢, , and
in the absence of a mean flow. Equations for the scalar funcg | respectively, and averaging the result over the fluid layer
tions ¢ and ¢ are obtained in the form of thecomponents  \ye optain
of the (curl)? and of the curl of Eq(1a),

> 9 >
v <2+ o{ 320 20

P—l(iva ¢+ 6-(u-Vu)
at 2

+P Yo [(5p+ ep)-Vew)
=—(0A,¢) (78

:_RA2®+V4A2¢, (53)

P1(%A2¢+6-(U'VU))_Tk'VA2¢:V2A2¢1 (Sb) J
(kX VV g2y — T<A2¢E¢>

where A, denotes the horizontal Laplacia,= /x>

+8%/9y?. The heat equatiofilc) can be separated into its —P Y60 [(6p+ep)-V]ep)=0 (7b)
horizontally averaged part and its fluctuating part,

P 2 (IVOI2)+(((0424)=OA2¢)%) = ~R(OA2¢). (70

EG a 5(®A2¢) N E& 9 These energy relationships or power integrals are the same as

those used by1] and[8] except that the relationships for
poloidal and toroidal components have been written sepa-
i@+(5¢+6¢) : V((§+®)+i((§)A2¢>) rately. When Eqs(7a) and(7b) are added, the parameters
at Jz and P drop from the problem as has been the case in the
. earlier work. Here we wish to satisfy Egéra) and (7b)
=—RA;¢$+V70, (5d) separately and therefore must introduce the additional con-
o i - straint with the Lagrange multiplying factar into the varia-
where the bar indicates the horizontal average @ni$ de-  tjona| problem. The variational problem to be considered in

fined by®=0-0. the following can thus be formulated:
Since we are interested in turbulent convection under sta- For given values of the parameters Pr and x>0 find

tionary conditions we define this state by the property thathe minimum Ru,P,) of the variational functional
horizontally averaged quantities are time independent. This
property allows us to integrat®c) with respect tc,

R(p*, %, 0% ;u,P,7)=R1+ A\ (8)

Jd — ~ v
0=—02,6+(04,0), (®)
among all fields¢*,*,0* satisfying the conditionsp*
where the constant of integration has been determineet 3?¢p*/9z%=dy*/dz=6* =0 atz=+ 3.
through the use of the boundary conditi¢) for ® and In expression8) the definitions

_— (kX VV§* [2) +([kX VV2*[2)(|V 6% %) + u{(6* A" — (6" A,0*))?)

1 <0* A2¢*>2 (ga)
|
(KX TV 7 |2 — (A pb* a1 92) minimum of the functional8) has been determined one can
Ro= , (9b)  fix the amplitude of the minimizing field8*, ¢*,y* by set-
(kX VVy*|2) +(|kx VVZ*|?) tin

g

p=— (0" 2,¢* )= ([kXVV*|?) +([kx VVZ*|?).
_ (e -[(ey* + 6¢*)-V]op™) @ 1
3

[([kXVVg*[2) +(|kx VVZp*|?)]3? Through this normalization one satisfies the sum of EZ@.
and(7b) while the vanishing of the bracket multiplyingin
have been used. The variational functional is homogeneousxpression8) corresponds to Eq.7b) and relationshig8)
in 6* as well as in the fieldg*,* . In the casg/* =0 the yields (7¢) with the Rayleigh numbeR as the minimizing
functional considered ifil] and[8] is recovered. After the valueR(u,P,7).
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It may be illuminating to interpret the variational problem A consequence of Eq§l1g and(11b) is the simple integral
in a different way\ can be considered as a parameter of thebalance
problem and the minimur®, (x, P, 7) can be determined for

fixed values of\. The Euler-Lagrange equatiofil) derived ([kxVV§[?) +(|kxVV?¢|?)
below determine the maximum among the minima —
R, (u,P,7). This maximum ofR, obviously yields the best T(0020(Ri+ 0420 (0A24)))=0 (12

bound on the functional in the case of a finite valug( |&f I . . :
XVVy*|?). The difficulty of the formulation(8) of the which is equivalent to the power integrals corresponding to

variational problem is that the lowest value Rfis obtained (7c) and the sum of7a) ar_ld (70). . .
in the case(|kx VVy#*|2)=0 corresponding to the upper In order to solve equationd1) numerically we introduce

bound derived in[8]. But this solution is not possible as the general Galerkin ansatz suggested by the form of the

solution of the Euler-Lagrange equations given below for &2d4ations
given valuer# 0 unless\ =0 and it would not correspond to

N

a maximum ofR, . To avoid the mathematical difficulty with ¢= 21 Pp(XY)AN(2), = 21 @p(X,Y)By(2),

the singular casé/kx VV*|?)=0 it is convenient to dis- - N -

regard this possibility as unphysical since any physically re-

alized convection will havé|kx VV 4* |2)#0 for 7#0. 6= pzl Pp(X,Y) Tp(2), (133

As in earlier formulation$1,8] of the variational problem, \\here the boundary conditions far, ¢ andé can be satis-
the minimum of(8) for a given value ofu is equivalent to  fjog through the choice

the maximumgu for a given value oRR as long as the rela-

tionshipR(u, P, 7) is monotonous for fixed values &, 7. In M

. . . . _ 1
analyzing the varla_tlonal problert®) we shall restrict our A — 2 a_sinqm| z+ =,
selves to those regions where such a monotony holds. Prgsy rd 2
Ill. EULER-LAGRANGE EQUATIONS AND NUMERICAL M 1 M 1

METHODS .
B,= 20 bpacosqm| z+5 |, Tp= 2‘1 tpgsing | z+ 5
The Euler-Lagrange equations corresponding to a station- ! (13b

ary value of the functional8) can be written in the form

for the zdependence. The summation limisM should
+A20(R1+6A—2¢> tend to infinity in order to approximate the exact solution of
Egs. (12). In reality finite values are required by the finite
P 1 capacity of computers. But through a comparison of results
—1A,—y+ =16 (e- )V obtained for differentM andN the quality of approximation
Iz P can readily be checked. The Euler-Lagrange equatitfs
determine those fields for which the variational functional
=0 (119 (8) assumes a stationary value with respect to small varia-
tions. There will be an infinite manifold of these solutions in
general, but only those corresponding to lowest minimum
R(u,P,7) for given values ofu,P, 7 are of interest. Since it
appears to be impossible to scan the entire infinite manifold
1 of solutions for the absolute minimum it seems justified to
- 5{6'(9#' SHVo+e[(ep+ 5¢).V]5¢}}:0 Ic_hoose certain types of solutions which appear to be most
ikely to correspond to the extremal value of the functional.
(11  One of these is the two-dimensional type of solution which is
distinguished by its simplicity. The two-dimensional solution
V20—A2¢(R1+M—(0A2¢))=0, (119  corresponds closely to the solution in the case without sepa-
rate toroidal and poloidal energy balances in which case the
where the normalization conditiond0) have been used, horizontal structure of the extremalizing vector field remains
where 7 denotes the ratig|V 6/?)/u and whereR,,R,,R;  unspecified. The horizontal pattern remains unspecified even
refer to the values of the functiona(9a),(9b),(9¢), respec- in the special limitP— where the equation of motion be-
tively, for the fields that satisfy the Euler-Lagrange equa-comes linear and can be included as constraint for the extre-
tions. To simplify the notation the superscripton the vari-  malizing vector field. In this way asymptotic solutions of the
ables¢, ¢, and# has been dropped. From the variation of variational problem in which the rotation parameter has en-
the functional with respect th one obtains tered have been produced|i@y], [10], and[11].
. Forlthe two-dimensional solution the terms proportional
o to P77 in Egs. (11 vanish and thus th@-dependence of
(kX VVy|%) = (A, ¢4l oz)— E<€¢'[(6¢+ 9¢)-V]5¢). extremum of the functionalB) disappears. It is sufficient in

(11d)  this case to consider the cae=1 with ¢4(X,y) satisfying

M

2P Rs

V4A2¢( — p+\R,+3

A
_<9A2¢>)+§

—o-[(ep+6¢)-V]ey}

Vi

2P

A
V2A,4 N 1-R,—3-—=R3 +5

aA
TE2¢
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A,p;=—a?p; and the main task is to find the minimum of non-Boussinesq and the upper-bound problem, the heat
R as function of the wave number for various values of.  transport of rolls always exceeds the heat transport by hex-
These singlex-solutions are known to provide the upper agonal flows for sufficiently high values &

bound at low values oR. At higher values ofR multi- There is another interesting relationship between the
a-solutions must also be admitted for the competitj@h ~ variational problem(8) and the physically realized convec-
but we shall not consider those in this paper. tion. In the limit wu— 0 equationg11) reduce to the linear set

In order to include theP-dependence three-dimensional of equations which determine the onset of convection in a
solutions must be considered. Because of the haorizontal isotetating layer and the minimum value & is given by the
ropy of the problem it is reasonable to restrict the attention taelationship
those solutions which do not exhibit a single preferred direc- by 5 s 230, 2
tion in the x,y-plane. Among these solutions those with a Re=R(OP,7)=[m"7"+(7m°+ a5)"la; (188
hexagonal symmetry will give maximal contributions from
the quadratic terms characterized by the fa&or. We are
thus led to the ansatz

where the minimizing valuey? is determined as the real
solution of the cubic equation

2 (20%— 72) (7% + a®)?= P72, (18b
ep(x,y)=d cogKijim-r) (14
P PiTm Jim The corresponding extremalizing fields* ,4*,6* in the
_ two-dimensional case are given by
with |Kjm|=a(p),

where the three basic wave vectors ¢=cosax cosmz, = % coSsax sin 7z,
Tt a
ki=(a,0,0), ko=(—al2,8,0), kz3=(—al2,—B,0)
(15 a2
§= ——— COsax cosmz. (29
of the hexagonal lattice have been introduced wgh T ta

= a+/3/2 and wher&;,, anda are defined b
a3 Jim (P) y Tables forR., . as a function ofr? can be found in Chan-

Kjim= jky+1ka+mks, (16) drasekhar’s book13].
The result(183 seems to be in contradiction with the fact
1 that oscillatory convection can set in at Rayleigh numbers
a(p)=5i(p+ D2+ [1+(=DPPB%. (17)  |ess than the critical valug8a if only the Prandtl numbeP
is low enough[13]. The resolution of this paradox arises
The subscriptg,|,m run through positive and negative inte- from the fact that a potential coherent time dependence of
gers, but cases for whickj,,= = Kqs with either j#q or the extrem.alizing fie!ds _of the variational problem has been
r+| or m#s are excluded in the summation of expressionneglected in the derivation of the Euler-Lagrange equations
(14). With the expressioa(p) all possible vector&, with ~ (11). In particular, the correlation betweef)y and A,¢
Kjm=a(5) can be collected. This property will be sufficient could be much less than determined by Edd) if a time
for the numerical analysis since the summation in expresdependence with phase shift between the two quantities is
sions(13) will be truncated aN<5. permitted. The analogy with the known solutions of the basic
After the Galerkin representatiofl3) has been intro- €duations of convection suggests that the oscillatory form of
duced into the Euler-Lagrange equatiofsl) and these COnvection carries only a low amount of heat and is super-
equations have been projected onto the set of expansicifded by subcritical finite amplitude convection at values of
functions, a system of nonlinear algebraic equations for th& slightly beyond its onsesee, for exampld,14]). We thus
unknown coefficientsa,q, by, andt,q is obtained which feel satisfied to neglect extremalizing fields which exhibit a
can be solved by a Newton-Raphson iteration method oncgoherent time dependence. Instead we shall continue to use
the parameter®, P, 7 anda have been prescribed. The the time independent Euler-Lagrange equatith® which
preferred wave numbeg is determined through a maximi- provide the upper bound of the heat transport carried by sta-

zation of the convective heat transpaut= — ( #A, ), as a tionary gonvection or by turbulent convection with an inco-
function of a. herent time dependence.

We start our discussion of the extremalizing solutions of
the variational problen{8) by considering solutions of the
roll type. In Figs 1a) and 1b), such solutions are plotted for
various values ofr? for a given value ofR. Since for 72

The structure of the solution space shows some similarity= 1500 the critical valudr, of R is 2007, the extremalizing
with the Rayleigh-Beard problem of physically realized solution does not differ yet very much from the fof&®) of
convection in a layer heated from below. In this case flows irthe trigonometric functions assumed R&R;. For lower
the form of rolls or hexagonal cells also compete with thevalues ofr? the fixed value oR represents a higher multiple
difference that the relevant triple integrals arise from devia-of the critical valueR. and a gradual evolution towards a
tions from the Boussinesq approximatift?]. In both, the  boundary layering form of the solution can be noticed. Es-

IV. EXTREMALIZING SOLUTIONS
OF THE EULER-LAGRANGE EQUATIONS

016303-4
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FIG. 1. (&) The z-dependences of the extremalizing fields
(thick lines, left ordinateand ¢ (thin lines, right ordinateof the
roll solutions for R=5000 in the cases?=500 (solid lineg, 72
=1000(dotted line$ and 7= 1500(dashed lines (b) The function
I1(z)=60A,p/{ A, ¢) (thick lines and thez-dependence of for
the same parameters as in Figa)l

pecially the maximum ofT,(z) which resides az=0 for
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FIG. 2. (&) The z-dependences of the extremalizing fields
(solid lines, left ordinateand ¢ (dashed lines, right ordingtef the
roll solution for 72=500 in the casesR=2x10°, 3x1C°,
4x10° 5%x10° 7.5x10°% 10%, 1.25< 10" (from top to botton. (b)
The function TI(z)=0A,¢/(0A,¢) (solid lineg and the
z-dependence ofs for the same parameters as in Fi@)2

noticed in Fig. 1b), but is clearly exhibited in Fig.(®). As

72=1500, splits into two maxima which move towards the the boundary layers develop with increasRghe horizontal

boundaries as? decreases. This same feature is apparent dength scale of the roll-like solutions decreases as is evident

a fixed value ofr?> whenR increases as shown in Fig(al

from the increasing value of the wave numhkeishown in

In order to maximize the convective heat transport theFig 3. A power law dependence dd can be discerned at
function I1(z)=0A,4/{#A,¢) must approach a constant high values ofR similar to the dependence~ R%8 found in
value in the interior of the layer while keeping its rise from the nonrotating casl,7].
zero at the boundaries sufficiently smooth such that the dis- The main results of the analysis is the upper bounfbr
sipation of the fluctuating variables does not contribute tocthe heat transport by convection as a functionroéndR. In

much in the functional8). This tendency can already be Fig. 4 results for the upper bound obtained on the basis of the
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FIG. 3. The wave numbet of the extremalizing roll solution in
the casesr?=250000, 40000, 2500, 1500, 1000, and 5€fin
solid lines, from top to bottognand the wave number of the extre-
malizing solution in the case? for P=0.7 (dotted ling and for
P=7 (thick solid line and in the caser’=40 000, P=0.025
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100 o
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107! +

1072
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FIG. 5. The upper boung for the convective heat transport by
the hexagon solution folP=0.1(0.0247) indicated by a dash-
double-dotted (dash-dottedd line for 72=500 and a short-
(long) dashed line forr?=1500. The thin solid line indicates the
upper bound folP=0.0247 andr?=10*. For comparison the upper
bounds given by rolls for?=500,1500,16 are indicated by the

(dashed-dotted line

107"

( R- Rc)3/2

0.05F

.00l ! L L !

10° 10*

10° 10°

thin dotted line, the thick dotted line and the thick solid line, re-
spectively.

roll solutions have been plotted in the form of thin solid lines
which from top to bottom correspond to increasing values of
2. It is evident from the figure that for an intermediate range
of Rayleigh numbers the bound is significantly lowered in
the case of strongly rotating layers. This result is remarkable
in that it holds as a function d®— R, which implies that the
inhibiting effect of the Coriolis force included in the linear
theory has already been subtracted. For high valuésthg
upper bounds tend to converge as is clearly apparent in the
figure. Since only singlex-solutions have been considered it
must be expected that these upper bounds are replaced by
those corresponding to twe-solutions forR of the order

10° and highel7].

Also included in Fig. 4 are upper bounds obtained on the
basis of the hexagon solutions. For the Prandtl numbers used
in the figure the hexagon bounds are always lower than the
bounds obtained for the roll solution and they are thus not
physically relevant. The upper bound for the heat transport is
given by the hexagon solutions only for Prandtl number less
than unity and only for a limited range of Rayleigh numbers.
These properties are demonstrated in Fig. 5 where upper

R-R,

FIG. 4. The upper boung for the convective heat transport as
a function ofR in the case of the extremalizing roll solutigsolid
lines) for 7?=500,1500,2500,4 10%,25% 10* (from top to botton.
Also shown isu for the extremalizing hexagon solution fer=7
(dash-double-dotted line forr?=500 and dotted line fors?

bounds provided by the hexagon solutions are shown for the
Prandtl numbers 0.1 and 0.0247. The examplerof 104

and P=0.0247 is particularly instructive since the hexagon
upper bound extends to Rayleigh numbers much below the
critical valueR, . The latter value is indicated by the vanish-
ing of the maximum convective heat transport of the roll

=1500) and forP=1 (dashed line forr’=500 and dash-dotted solution. At Rayleigh numbers not far beyond the critical
line for 72=1500). The values dR, are 1275, 2007, 2564, 12 135, value the latter transport already exceeds the hexagon value

37915 for7?=500,1500,2500 % 10%,25% 10%, respectively.
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FIG. 6. (a) The zzdependences,(z) (solid lines, left ordinate FIG. 7. (a) The z-dependence$,(z) (solid lines, left ordinate

andA;(z) (dashed lines, right ordinatef the extremalizing hexa- andA;(z) (dashed lines, right ordinatéor the extremalizing hexa-
gon solution in the case R=2500, 7?=500 for P gon solution in the casB®=3000, P=1 for =500, 750, 1000,
=0.0247,0.1,0.7,@from bottom to top. (b) The functionsII(z) 1250, 1500, 200@from top to bottom. (b) The functionsIl(2)
=0A,¢/{0A,¢) (thick lines, left ordinateand By(2) (thin lines, = 0A,¢/(0A,¢) (solid lines, left ordinateand By(2) (thin lines,
right ordinat¢ in the same cases as in Figap Solid, dashed, right ordinatg for the same parameters as in Figa)Afrom bottom
dash-dotted and dotted lines correspon®t0.0247,0.1,0.7,7, re- to top atz=0).

spectively.

the subcritical extent of the hexagon upper bound is not quitebtained is more limited. There are always two hexagon so-
as dramatic. But the range of Rayleigh numbers for whichutions corresponding to an extremum of the functiof@l
the hexagon upper bound exceeds the maximum convectivEhey differ by the sign of their asymmetric components. The
heat transport of rolls is larger. asymmetry is clearly evident in thedependences & 4(z),
Because of its three-dimensional nature and its depenF,(z) andII(z) shown in Fig. 6. The functiogy which for
dence on the Prandtl numbEras additional parameter, the rolls is antisymmetric with respect =0 acquires a sym-
hexagon solutions of the Euler-Lagrange equatidris are  metric part in the case of the hexagon solution as is demon-
more difficult to investigate than the roll solutions and thestrated by the plots of its dominant contributiBg(z) in Fig.
range ofR for which numerically converged solutions can be 6(b). The asymmetry increases with decreasing Prandtl num-
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ber P and with increasingR, at least in the range where general upper bounds of Howafd] and Buss€g8] which
computations have been doffég. 7]. hold independent of the rotation rate of the layer also hold in
the case of coherent oscillations.

The analysis of the present paper should be clearly distin-
guished from energy bounds on the Rayleigh number for the

The upper bound problem for the turbulent heat transporbnset of convection in a rotating layér5]; see alsd16]).
considered in this paper is unusual in several respects. Fdn this latter work bounds from below as a function of the
the first time, to the best of our knowledge, it has beeramplitude of disturbances are found for the Rayleigh number
shown that extremalizing vector fields with a three-beyond which growing disturbances become possible. As
dimensional structure are required to provide the uppemust be expected because of the possibility of subcritical
bound. It has not been possible to prove in any rigorous wapnset of convection, the bounds decrease rapidly with grow-
that the vector fields with hexagonal symmetry studied ining amplitude of the disturbance.
this paper are indeed the extremalizing ones. But from the The main result of the present paper is that for high rota-
structure of the variational functioné) it appears that this tion rate significantly lower bounds on the convective heat
hypothesis is probably true since otherwise the triple intetransport can be obtained through the consideration of sepa-
grals in functional8) do not contribute in a most symmetric rate energy balances for poloidal and toroidal components of
way. From the formulation of the upper-bound problem wethe velocity field. For given values of the rotation parameter
had to except the possibility of coherent oscillation in time 72 the upper bound tends to approach the bound in the case
since otherwise the assumption of the time independence af=0 when the Rayleigh number becomes sufficiently large.
spatially averaged quantities does not hold. It will be of in-This feature agrees with the geophysical and astrophysical
terest to attempt in the future different formulations of theevidence that strongly convecting systems are not much in-
upper-bound problem which would include the coherent confluenced by the effects of rotation if only the Rayleigh num-
vection oscillations of a rotating fluid layer. Of course, theber is high enough.

V. CONCLUDING REMARKS
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