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Bounds on the convective heat transport in a rotating layer

N. K. Vitanov and F. H. Busse
Theoretical Physics IV, University of Bayreuth, D-95440 Bayreuth

~Received 17 March 2000; published 18 December 2000!

Previous bounds on the convective heat transport in a horizontal layer heated from below and rotating about
a vertical axis have been improved through the use of separate energy balances for the poloidal and toroidal
components of the velocity field. Because the additional constraint imposed for the solution of the variational
problem for the extremalizing vector field leads to Euler-Lagrange equations which can no longer be solved
analytically, numerical methods must be employed. A Galerkin scheme is introduced and the variational
problem is solved in the case when stress-free conditions are assumed at the upper and lower boundaries.
Results are presented as a function of the Rayleigh number and the rotation parameter for the Prandtl numbers
P57, 0.7, 0.1, and 0.025.

DOI: 10.1103/PhysRevE.63.016303 PACS number~s!: 47.27.Te, 47.20.Ky
in
t o

-
b

as
o
u
n
n
e

th
id

a
e

o
om
th

c
ay
o

ri
et
ar
I

nd
ly
m
l
or
ra
b

u-

the
di-

f

of

d in
he
q.

ress

l

I. INTRODUCTION

The theory of bounds on the convective heat transport
layer heated from below was first formulated, to the bes
our knowledge, in mathematical terms by Howard@1# fol-
lowing earlier ideas of Malkus@2#. Later the theory was ex
tended to bounds on other transports in turbulent fluids
Busse@3# and general solutions were obtained in the c
when the constraint of continuity is applied. For reviews
the theory of upper bounds or the optimum theory of turb
lence we refer to@4# and@5#. Considerable efforts have bee
expanded to tighten the bounds through the imposition o
the extremalizing vector fields of additional constraints d
rived from the basic equations. Although the proposal for
use of the separate energy balances for poloidal and toro
components of the velocity field was already made by@5#,
the solution of the corresponding variational problem w
hindered by the lack of appropriate asymptotic techniqu
Moreover, Kerswell and Soward@6# have demonstrated in
the special case of plane Couette flow that the imposition
the separate energy balances for poloidal and toroidal c
ponents as constraints will not lead to improvements of
upper bound on the momentum transport.

In recent years the increasing available computer capa
has allowed to approach asymptotic regimes of high R
leigh or Reynolds numbers through numerical solutions
the Euler-Lagrange equations of the variational problems@7#.
The success in the numerical treatment of the simple va
tional problem has motivated us to use computational m
ods for the solution of the more complex problems which
obtained through the imposition of additional constraints.
order to avoid the negative result of@6# we have chosen the
problem of convection in a rotating layer where poloidal a
toroidal components of the velocity field are intimate
coupled even in the linearized description of the proble
Since the Prandtl numberP enters the variational functiona
in addition to the rotation parameter when poloidal and t
oidal energy balances are introduced separately, the pa
eter space becomes much enlarged. Results have thus
obtained only for selected values ofP and of the Taylor
number.
1063-651X/2000/63~1!/016303~8!/$15.00 63 0163
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II. MATHEMATICAL FORMULATION
OF THE PROBLEM

We consider a horizontal fluid layer of heighth heated
from below and rotating about a vertical axis with the ang
lar velocity V. Using h as length scale,h2/k as time scale,
where k is the thermal diffusivity of the fluid, and (T2
2T1)/R as temperature scale, whereT1 andT2 are the tem-
peratures at top and bottom boundaries, we can write
basic equations of motion and the heat equation for the
mensionless deviationQ from the temperature distribution o
pure conduction in the form

P21S ]

]t
u1u•¹uD1tk3u52¹p1kQ1¹2u, ~1a!

¹•u50, ~1b!

]

]t
Q1u•¹Q5Rk•u1¹2Q, ~1c!

wherek is the vertical unit vector opposite to the direction
gravity and where the Rayleigh numberR, the Prandtl num-
ber P and the rotation parametert are defined by

R5
g~T22T1!gh3

nk
, P5

n

k
, t5

2Vh2

n
. ~2!

Hereg denotes the coefficient of thermal expansion,g is the
acceleration of gravity andn is the kinematic viscosity of the
fluid. The Boussinesq approximation has been assume
that the variation of density is taken into account only in t
gravity term. All terms that can be written as gradients in E
~1a! have been combined in¹ p. Using a Cartesian system
of coordinates with thez-coordinate in the direction ofk we
can prescribe the conditions at the upper and lower st
free boundaries in the form

]

]z
u3k50, u•k5Q50 at z56

1

2
. ~3!

In order to eliminate the constraint~1b! we use the genera
representation for solenoidal vector fields,
©2000 The American Physical Society03-1
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u5¹3~¹ f3k!1¹ c3k[df1ec ~4!

in the absence of a mean flow. Equations for the scalar fu
tions f andc are obtained in the form of thez-components
of the ~curl! 2 and of the curl of Eq.~1a!,

P21S ]

]t
¹2D2f1d•~u•¹u! D1tk•¹D2c

52RD2Q1¹4D2f, ~5a!

P21S ]

]t
D2c1e•~u•¹u! D2tk•¹D2f5¹2D2c, ~5b!

where D2 denotes the horizontal Laplacian,D25]2/]x2

1]2/]y2. The heat equation~1c! can be separated into it
horizontally averaged part and its fluctuating part,

]

]t
Q̄2

]

]z
~QD2f!5

]2

]z2
Q̄, ~5c!

]

]t
Q̌1~df1ec!•¹~Q̄1Q̌!1

]

]z
~Q̌D2f!

52RD2f1¹2Q̌, ~5d!

where the bar indicates the horizontal average andQ̌ is de-
fined byQ̌[Q2Q̄.

Since we are interested in turbulent convection under
tionary conditions we define this state by the property t
horizontally averaged quantities are time independent. T
property allows us to integrate~5c! with respect toz,

]

]z
Q̄52Q̌D2f1^Q̌D2f&, ~6!

where the constant of integration has been determi
through the use of the boundary condition~3! for Q and
o
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where the angular brackets denote the average over the
layer. By multiplying Eqs.~5a!, ~5b!, and~5d! by f, c, and
Q̌, respectively, and averaging the result over the fluid la
we obtain

^uk3¹¹2fu&1t K D2f
]

]z
c L

1P21^df•@~df1ec!•¹#ec&

52^Q̌D2f& ~7a!

^uk3¹¹cu2&2t K D2f
]

]z
c L

2P21^df•@~df1ec!•¹#ec&50 ~7b!

^u¹Q̌u2&1^~^Q̌D2f&2Q̌D2f!2&52R^Q̌D2f&. ~7c!

These energy relationships or power integrals are the sam
those used by@1# and @8# except that the relationships fo
poloidal and toroidal components have been written se
rately. When Eqs.~7a! and~7b! are added, the parameterst
and P drop from the problem as has been the case in
earlier work. Here we wish to satisfy Eqs.~7a! and ~7b!
separately and therefore must introduce the additional c
straint with the Lagrange multiplying factorl into the varia-
tional problem. The variational problem to be considered
the following can thus be formulated:

For given values of the parameters P, t and m.0 find
the minimum R(m,P,t) of the variational functional

R~f* ,c* ,u* ;m,P,t![R11lS R21
Am

P
R3D ~8!

among all fieldsf* ,c* ,u* satisfying the conditionsf*
5]2f* /]z25]c* /]z5u* 50 at z56 1

2 .
In expression~8! the definitions
R1[
~^uk3¹¹c* u2&1^uk3¹¹2f* u2&!^u¹u* u2&1m^~u* D2f* 2^u* D2f* &!2&

^u* D2f* &2
, ~9a!
n

R2[

^uk3¹¹c* u2&2t^D2f* ]c* /]z&

^uk3¹¹c* u2&1^uk3¹¹2f* u2&
, ~9b!

R3[
^ec* •@~ec* 1df* !•¹#df* &

@^uk3¹¹c* u2&1^uk3¹¹2f* u2&#3/2
~9c!

have been used. The variational functional is homogene
in u* as well as in the fieldsf* ,c* . In the casec* [0 the
functional considered in@1# and @8# is recovered. After the
us

minimum of the functional~8! has been determined one ca
fix the amplitude of the minimizing fieldsu* ,f* ,c* by set-
ting

m52^u* D2f* &5^uk3¹¹c* u2&1^uk3¹¹2f* u2&.
~10!

Through this normalization one satisfies the sum of Eqs.~7a!
and~7b! while the vanishing of the bracket multiplyingl in
expression~8! corresponds to Eq.~7b! and relationship~8!
yields ~7c! with the Rayleigh numberR as the minimizing
valueR(m,P,t).
3-2
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BOUNDS ON THE CONVECTIVE HEAT TRANSPORT IN . . . PHYSICAL REVIEW E63 016303
It may be illuminating to interpret the variational proble
in a different way.l can be considered as a parameter of
problem and the minimumRl(m,P,t) can be determined fo
fixed values ofl. The Euler-Lagrange equations~11! derived
below determine the maximum among the minim
Rl(m,P,t). This maximum ofRl obviously yields the bes
bound on the functional in the case of a finite value of^uk
3¹¹c* u2&. The difficulty of the formulation~8! of the
variational problem is that the lowest value ofR is obtained
in the case^uk3¹¹c* u2&50 corresponding to the uppe
bound derived in@8#. But this solution is not possible a
solution of the Euler-Lagrange equations given below fo
given valuetÞ0 unlessl50 and it would not correspond t
a maximum ofRl . To avoid the mathematical difficulty with
the singular casêuk3¹¹c* u2&50 it is convenient to dis-
regard this possibility as unphysical since any physically
alized convection will havêuk3¹¹c* u2&Þ0 for tÞ0.

As in earlier formulations@1,8# of the variational problem,
the minimum of~8! for a given value ofm is equivalent to
the maximumm for a given value ofR as long as the rela
tionshipR(m,P,t) is monotonous for fixed values ofP,t. In
analyzing the variational problem~9! we shall restrict our-
selves to those regions where such a monotony holds.

III. EULER-LAGRANGE EQUATIONS AND NUMERICAL
METHODS

The Euler-Lagrange equations corresponding to a stat
ary value of the functional~8! can be written in the form

¹4D2fS 2h1lR213
lAm

2P
R3D 1D2u~R11uD2f

2^uD2f&!1
l

2 F2tD2

]

]z
c1

1

P
$d•~ec•d!¹f

2d•@~ec1df!•¹#ec %G50 ~11a!

¹2D2cFh1lS 12R223
Am

2P
R3D G1

l

2 Ft ]

]z
D2f

2
1

P
$e•~ec•d!¹f1e•@~ec1df!•¹#df %G50

~11b!

¹2u2D2f~R11uD2f2^uD2f&!50, ~11c!

where the normalization conditions~10! have been used
whereh denotes the ratiôu¹uu2&/m and whereR1 ,R2 ,R3
refer to the values of the functionals~9a!,~9b!,~9c!, respec-
tively, for the fields that satisfy the Euler-Lagrange equ
tions. To simplify the notation the superscript* on the vari-
ablesf, c, andu has been dropped. From the variation
the functional with respect tol one obtains

^uk3¹¹cu2&5t^D2f]c/]z&2
1

P
^ec•@~ec1df!•¹#df&.

~11d!
01630
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A consequence of Eqs.~11a! and~11b! is the simple integral
balance

~^uk3¹¹cu2&1^uk3¹¹2fu2&!h

1^uD2f~R11uD2f2^uD2f&!&50 ~12!

which is equivalent to the power integrals corresponding
~7c! and the sum of~7a! and ~7b!.

In order to solve equations~11! numerically we introduce
the general Galerkin ansatz suggested by the form of
equations

f5 (
p51

N

wp~x,y!Ap~z!, c5 (
p51

N

wp~x,y!Bp~z!,

u5 (
p51

N

wp~x,y!Tp~z!, ~13a!

where the boundary conditions forf, c andu can be satis-
fied through the choice

Ap5 (
q51

M

apqsinqpS z1
1

2D ,

Bp5 (
q50

M

bpqcosqpS z1
1

2D , Tp5 (
q51

M

tpqsinqpS z1
1

2D
~13b!

for the z-dependence. The summation limitsN,M should
tend to infinity in order to approximate the exact solution
Eqs. ~11!. In reality finite values are required by the finit
capacity of computers. But through a comparison of res
obtained for differentM andN the quality of approximation
can readily be checked. The Euler-Lagrange equations~11!
determine those fields for which the variational function
~8! assumes a stationary value with respect to small va
tions. There will be an infinite manifold of these solutions
general, but only those corresponding to lowest minim
R(m,P,t) for given values ofm,P,t are of interest. Since it
appears to be impossible to scan the entire infinite mani
of solutions for the absolute minimum it seems justified
choose certain types of solutions which appear to be m
likely to correspond to the extremal value of the function
One of these is the two-dimensional type of solution which
distinguished by its simplicity. The two-dimensional solutio
corresponds closely to the solution in the case without se
rate toroidal and poloidal energy balances in which case
horizontal structure of the extremalizing vector field rema
unspecified. The horizontal pattern remains unspecified e
in the special limitP→` where the equation of motion be
comes linear and can be included as constraint for the ex
malizing vector field. In this way asymptotic solutions of th
variational problem in which the rotation parameter has
tered have been produced in@9#, @10#, and@11#.

For the two-dimensional solution the terms proportion
to P21 in Eqs. ~11! vanish and thus theP-dependence of
extremum of the functional~8! disappears. It is sufficient in
this case to consider the caseN51 with w1(x,y) satisfying
3-3
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N. K. VITANOV AND F. H. BUSSE PHYSICAL REVIEW E63 016303
D2w152a2w1 and the main task is to find the minimum o
R as function of the wave numbera for various values oft.
These single-a-solutions are known to provide the upp
bound at low values ofR. At higher values ofR multi-
a-solutions must also be admitted for the competition@7#,
but we shall not consider those in this paper.

In order to include theP-dependence three-dimension
solutions must be considered. Because of the horizontal
ropy of the problem it is reasonable to restrict the attention
those solutions which do not exhibit a single preferred dir
tion in the x,y-plane. Among these solutions those with
hexagonal symmetry will give maximal contributions fro
the quadratic terms characterized by the factorP21. We are
thus led to the ansatz

wp~x,y!5dp (
j ,l ,m

cos~Kj lm•r! ~14!

with uKj lmu5a~p!,

where the three basic wave vectors

k15~a,0,0!, k25~2a/2,b,0!, k35~2a/2,2b,0!
~15!

of the hexagonal lattice have been introduced withb
5aA3/2 and whereKj lm anda(p) are defined by

Kj lm5 j k11 lk21mk3 , ~16!

a~p!5
1

2
$~p11!2a21@11~21!p#2b2%1/2. ~17!

The subscriptsj ,l ,m run through positive and negative inte
gers, but cases for whichKj lm56Kqrs with either j Þq or
rÞ l or mÞs are excluded in the summation of expressi
~14!. With the expressiona(p) all possible vectorsKj lm with
Kj lm<a(5) can be collected. This property will be sufficie
for the numerical analysis since the summation in expr
sions~13! will be truncated atN<5.

After the Galerkin representation~13! has been intro-
duced into the Euler-Lagrange equations~11! and these
equations have been projected onto the set of expan
functions, a system of nonlinear algebraic equations for
unknown coefficientsapq , bpq and tpq is obtained which
can be solved by a Newton-Raphson iteration method o
the parametersR, P, t and a have been prescribed. Th
preferred wave numbera is determined through a maxim
zation of the convective heat transport,m52^uD2f&, as a
function of a.

IV. EXTREMALIZING SOLUTIONS
OF THE EULER-LAGRANGE EQUATIONS

The structure of the solution space shows some simila
with the Rayleigh-Be´nard problem of physically realize
convection in a layer heated from below. In this case flows
the form of rolls or hexagonal cells also compete with t
difference that the relevant triple integrals arise from dev
tions from the Boussinesq approximation@12#. In both, the
01630
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non-Boussinesq and the upper-bound problem, the h
transport of rolls always exceeds the heat transport by h
agonal flows for sufficiently high values ofR.

There is another interesting relationship between
variational problem~8! and the physically realized convec
tion. In the limitm→0 equations~11! reduce to the linear se
of equations which determine the onset of convection in
rotating layer and the minimum value ofR is given by the
relationship

Rc5R~0,P,t!5@t2p21~p21ac
2!3#/ac

2 ~18a!

where the minimizing valueac
2 is determined as the rea

solution of the cubic equation

~2a22p2!~p21a2!25t2p2. ~18b!

The corresponding extremalizing fieldsf* ,c* ,u* in the
two-dimensional case are given by

f5cosax cospz, c5
2tp

p21a2
cosax sinpz,

u5
a2

p21a2
cosax cospz. ~19!

Tables forRc ,ac as a function oft2 can be found in Chan-
drasekhar’s book@13#.

The result~18a! seems to be in contradiction with the fa
that oscillatory convection can set in at Rayleigh numb
less than the critical value~18a! if only the Prandtl numberP
is low enough@13#. The resolution of this paradox arise
from the fact that a potential coherent time dependence
the extremalizing fields of the variational problem has be
neglected in the derivation of the Euler-Lagrange equati
~11!. In particular, the correlation between]zc and D2f
could be much less than determined by Eqs.~11! if a time
dependence with phase shift between the two quantitie
permitted. The analogy with the known solutions of the ba
equations of convection suggests that the oscillatory form
convection carries only a low amount of heat and is sup
seded by subcritical finite amplitude convection at values
R slightly beyond its onset~see, for example,@14#!. We thus
feel satisfied to neglect extremalizing fields which exhibi
coherent time dependence. Instead we shall continue to
the time independent Euler-Lagrange equations~11! which
provide the upper bound of the heat transport carried by
tionary convection or by turbulent convection with an inc
herent time dependence.

We start our discussion of the extremalizing solutions
the variational problem~8! by considering solutions of the
roll type. In Figs 1~a! and 1~b!, such solutions are plotted fo
various values oft2 for a given value ofR. Since for t2

51500 the critical valueRc of R is 2007, the extremalizing
solution does not differ yet very much from the form~19! of
the trigonometric functions assumed atR5Rc . For lower
values oft2 the fixed value ofR represents a higher multipl
of the critical valueRc and a gradual evolution towards
boundary layering form of the solution can be noticed. E
3-4
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BOUNDS ON THE CONVECTIVE HEAT TRANSPORT IN . . . PHYSICAL REVIEW E63 016303
pecially the maximum ofT1(z) which resides atz50 for
t251500, splits into two maxima which move towards t
boundaries ast2 decreases. This same feature is apparen
a fixed value oft2 whenR increases as shown in Fig. 2~a!.

In order to maximize the convective heat transport
function P(z)[uD2f/^uD2f& must approach a constan
value in the interior of the layer while keeping its rise fro
zero at the boundaries sufficiently smooth such that the
sipation of the fluctuating variables does not contribute
much in the functional~8!. This tendency can already b

FIG. 1. ~a! The z-dependences of the extremalizing fieldsu
~thick lines, left ordinate! and f ~thin lines, right ordinate! of the
roll solutions for R55000 in the casest25500 ~solid lines!, t2

51000~dotted lines! andt251500~dashed lines!. ~b! The function
P(z)[uD2f/^uD2f& ~thick lines! and thez-dependence ofc for
the same parameters as in Fig. 1~a!.
01630
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noticed in Fig. 1~b!, but is clearly exhibited in Fig. 2~b!. As
the boundary layers develop with increasingR the horizontal
length scale of the roll-like solutions decreases as is evid
from the increasing value of the wave numbera shown in
Fig 3. A power law dependence onR can be discerned a
high values ofR similar to the dependencea;R3/8 found in
the nonrotating case@1,7#.

The main results of the analysis is the upper boundm for
the heat transport by convection as a function oft2 andR. In
Fig. 4 results for the upper bound obtained on the basis of

FIG. 2. ~a! The z-dependences of the extremalizing fieldsu
~solid lines, left ordinate! andc ~dashed lines, right ordinate! of the
roll solution for t25500 in the casesR523103, 33103,
43103, 53103, 7.53103, 104, 1.253104 ~from top to bottom!. ~b!
The function P(z)[uD2f/^uD2f& ~solid lines! and the
z-dependence ofc for the same parameters as in Fig 2~a!.
3-5
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N. K. VITANOV AND F. H. BUSSE PHYSICAL REVIEW E63 016303
FIG. 3. The wave numbera of the extremalizing roll solution in
the casest25250 000, 40 000, 2500, 1500, 1000, and 500~thin
solid lines, from top to bottom! and the wave number of the extre
malizing solution in the caset2 for P50.7 ~dotted line! and for
P57 ~thick solid line! and in the caset2540 000, P50.025
~dashed-dotted line!.

FIG. 4. The upper boundm for the convective heat transport a
a function ofR in the case of the extremalizing roll solution~solid
lines! for t25500,1500,2500,43104,253104 ~from top to bottom!.
Also shown ism for the extremalizing hexagon solution forP57
~dash-double-dotted line fort25500 and dotted line fort2

51500) and forP51 ~dashed line fort25500 and dash-dotted
line for t251500). The values ofRc are 1275, 2007, 2564, 12 135
37 915 fort25500,1500,2500,43104,253104, respectively.
01630
roll solutions have been plotted in the form of thin solid lin
which from top to bottom correspond to increasing values
t2. It is evident from the figure that for an intermediate ran
of Rayleigh numbers the bound is significantly lowered
the case of strongly rotating layers. This result is remarka
in that it holds as a function ofR2Rc which implies that the
inhibiting effect of the Coriolis force included in the linea
theory has already been subtracted. For high values ofR the
upper bounds tend to converge as is clearly apparent in
figure. Since only single-a-solutions have been considered
must be expected that these upper bounds are replace
those corresponding to two-a-solutions forR of the order
106 and higher@7#.

Also included in Fig. 4 are upper bounds obtained on
basis of the hexagon solutions. For the Prandtl numbers u
in the figure the hexagon bounds are always lower than
bounds obtained for the roll solution and they are thus
physically relevant. The upper bound for the heat transpo
given by the hexagon solutions only for Prandtl number l
than unity and only for a limited range of Rayleigh numbe
These properties are demonstrated in Fig. 5 where up
bounds provided by the hexagon solutions are shown for
Prandtl numbers 0.1 and 0.0247. The example oft25104

and P50.0247 is particularly instructive since the hexag
upper bound extends to Rayleigh numbers much below
critical valueRc . The latter value is indicated by the vanis
ing of the maximum convective heat transport of the r
solution. At Rayleigh numbers not far beyond the critic
value the latter transport already exceeds the hexagon v
and thus provides the upper bound. For lower values oft2

FIG. 5. The upper boundm for the convective heat transport b
the hexagon solution forP50.1(0.0247) indicated by a dash
double-dotted ~dash-dotted! line for t25500 and a short-
~long! dashed line fort251500. The thin solid line indicates th
upper bound forP50.0247 andt25104. For comparison the uppe
bounds given by rolls fort25500,1500,104 are indicated by the
thin dotted line, the thick dotted line and the thick solid line, r
spectively.
3-6
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BOUNDS ON THE CONVECTIVE HEAT TRANSPORT IN . . . PHYSICAL REVIEW E63 016303
the subcritical extent of the hexagon upper bound is not q
as dramatic. But the range of Rayleigh numbers for wh
the hexagon upper bound exceeds the maximum conve
heat transport of rolls is larger.

Because of its three-dimensional nature and its dep
dence on the Prandtl numberP as additional parameter, th
hexagon solutions of the Euler-Lagrange equations~11! are
more difficult to investigate than the roll solutions and t
range ofR for which numerically converged solutions can

FIG. 6. ~a! The z-dependencesT1(z) ~solid lines, left ordinate!
andA1(z) ~dashed lines, right ordinate! of the extremalizing hexa-
gon solution in the case R52500, t25500 for P
50.0247,0.1,0.7,7~from bottom to top!. ~b! The functionsP(z)
[uD2f/^uD2f& ~thick lines, left ordinate! and B1(z) ~thin lines,
right ordinate! in the same cases as in Fig 6~a!. Solid, dashed,
dash-dotted and dotted lines correspond toP50.0247,0.1,0.7,7, re-
spectively.
01630
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obtained is more limited. There are always two hexagon
lutions corresponding to an extremum of the functional~8!.
They differ by the sign of their asymmetric components. T
asymmetry is clearly evident in thez-dependences ofA1(z),
T1(z) andP(z) shown in Fig. 6. The functionc which for
rolls is antisymmetric with respect toz50 acquires a sym-
metric part in the case of the hexagon solution as is dem
strated by the plots of its dominant contributionB1(z) in Fig.
6~b!. The asymmetry increases with decreasing Prandtl n

FIG. 7. ~a! The z-dependencesT1(z) ~solid lines, left ordinate!
andA1(z) ~dashed lines, right ordinate! for the extremalizing hexa-
gon solution in the caseR53000, P51 for t25500, 750, 1000,
1250, 1500, 2000~from top to bottom!. ~b! The functionsP(z)
[uD2f/^uD2f& ~solid lines, left ordinate! and B1(z) ~thin lines,
right ordinate! for the same parameters as in Fig. 7~a! ~from bottom
to top atz50).
3-7
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ber P and with increasingR, at least in the range wher
computations have been done@Fig. 7#.

V. CONCLUDING REMARKS

The upper bound problem for the turbulent heat transp
considered in this paper is unusual in several respects.
the first time, to the best of our knowledge, it has be
shown that extremalizing vector fields with a thre
dimensional structure are required to provide the up
bound. It has not been possible to prove in any rigorous w
that the vector fields with hexagonal symmetry studied
this paper are indeed the extremalizing ones. But from
structure of the variational functional~8! it appears that this
hypothesis is probably true since otherwise the triple in
grals in functional~8! do not contribute in a most symmetr
way. From the formulation of the upper-bound problem
had to except the possibility of coherent oscillation in tim
since otherwise the assumption of the time independenc
spatially averaged quantities does not hold. It will be of
terest to attempt in the future different formulations of t
upper-bound problem which would include the coherent c
vection oscillations of a rotating fluid layer. Of course, t
01630
rt
or
n

r
y

n
e

-

of
-

-

general upper bounds of Howard@1# and Busse@8# which
hold independent of the rotation rate of the layer also hold
the case of coherent oscillations.

The analysis of the present paper should be clearly dis
guished from energy bounds on the Rayleigh number for
onset of convection in a rotating layer~@15#; see also@16#!.
In this latter work bounds from below as a function of th
amplitude of disturbances are found for the Rayleigh num
beyond which growing disturbances become possible.
must be expected because of the possibility of subcrit
onset of convection, the bounds decrease rapidly with gr
ing amplitude of the disturbance.

The main result of the present paper is that for high ro
tion rate significantly lower bounds on the convective h
transport can be obtained through the consideration of s
rate energy balances for poloidal and toroidal component
the velocity field. For given values of the rotation parame
t2 the upper bound tends to approach the bound in the c
t250 when the Rayleigh number becomes sufficiently lar
This feature agrees with the geophysical and astrophys
evidence that strongly convecting systems are not much
fluenced by the effects of rotation if only the Rayleigh num
ber is high enough.
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