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Multifractality of drop breakup in the air-blast nozzle atomization process

Wei-Xing Zhou* and Zun-Hong Yu
East China University of Science and Technology, P.O. Box 272, Shanghai 200237, People’s Republic of China

~Received 1 June 2000; published 18 December 2000!

The multifractal nature of drop breakup in the air-blast nozzle atomization process has been studied. We
apply the multiplier method to extract the negative and the positive parts of thef (a) curve with the data of
drop-size distribution measured using dual particle dynamic analyzer. A random multifractal model with the
multiplier triangularly distributed is proposed to characterize the breakup of drops. The agreement of the left
part of the multifractal spectra between the experimental result and the model is remarkable. The cause of the
distinction of the right part of thef (a) curve is argued. The fact that negative dimensions arise in the current
system means that the spatial distribution of the drops yielded by the high-speed jet fluctuates from sample to
sample. In other words, the spatial concentration distribution of the disperse phase in the spray zone fluctuates
momentarily, showing intrinsic randomness.
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I. INTRODUCTION

The transformation of bulk liquid into sprays and oth
physical dispersions of small droplets in a gaseous at
sphere is of importance in many agricultural and indust
processes, which includes applying agricultural chemical
crops, paint spraying, spray drying, food processing, coo
of nuclear cores, combustion, gasification, and some o
fields. Due to the complexity of the atomization process, i
too difficult to disclose clearly the mechanism and also i
possible to combine in one model all the influence facto
which include equipment dimensions, size and geometry
nozzle, physical properties of the dispersed phase and
continuous phase, and operating mode. Hence, a lot of
pirical and semiempirical models have been established
far to describe atomization processes@1#. To elaborate on the
distortion and breakup mechanisms of a single liquid drop
injected into a transverse high-velocity air jet, diverse
gimes were presented@2–6# that ignore the interaction o
multiple droplets.

According to Mandelbrot@7#, there exists a scaling prin
ciple of drop-size distribution in many physical systems.
Ref. @8#, the fractal facet of drop-size distribution was stu
ied with two characteristic parameters, namely the textu
and structural fractal dimensions@9#. However, it is not suf-
ficient that only two fractal dimensions are investigated
characterize the singularities of size distribution. The dis
bution of singularities on the geometry support, which
described by the multifractal spectrumf (a), should be con-
sidered@10,11#. Moreover, since intrinsic or practically in
duced randomness exists in many real systems, the app
tion of the theory of random multifractals, such as turbulen
@12# and diffusion-limited aggregation@13#, is indispensable
Negative dimensions appear in these cases@14,15#, which is
a brand of randomness in many cases.~In fact, negative di-
mensions may be absent in random multifractal measure!

As always, the measure considered in the theory of r
dom multifractals is constructed through a randomly mu
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plicative cascade process. Let a cascade begin with m
equal to 1, uniformly spread over@0,1#, and let thenth cas-
cade stage share at random the mass in a cell of lengthb2n

amongb subcells of lengthb2n21 with multipliers Mi (1
< i<b). Since mass is conserved while it is spread arou
within a cell, strong conservation rules constrain the mu
pliers. Here the multipliersMi are identically distributed
with probability density function Pr(M ) and independent
From Cramer’s theorem of large deviations@16,17#, the mass
exponent, which is defined by an annealed averaging of
ments of the multipliers, namely

t~q!52D02
ln^Mq&

ln b
, ~1!

is linked with the multifractal spectrumf (a) by the Leg-
endre and inverse Legendre transform@18#. Here, the fractal
dimensionD0 is equal to 1. Therefore, we have

a~1!5t8~q!52
^Mq ln M &

^Mq& ln b
~2!

and

f „a~q!…5qa~q!2t~q!5
^Mq& ln^Mq&2^Mq ln Mq&

^Mq& ln b
1D0 .

~3!

In this paper, we will investigate the multifractal nature
the drop breakup in the process of air-blast nozzle atom
tion, which is a follow-up to the work of Ref.@8#.

II. MULTIFRACTAL NATURE OF DROP BREAKUP

A. Experiment

The measurement of the drop-size distribution is carr
out using the 58N81 dual particle dynamic analyzer~dual
PDA!, which is based on the Doppler effect. The focus of t
lens used in the experiment is 500 mm. The power of
argon-ion laser generator is 5 W, which generates three p
of laser beams of green, blue, and purple. The minimal
©2000 The American Physical Society02-1
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crement of the movement of the measurement point is 0
mm. The angle included between the two arms is 63°. T
schematic chart of the measurement system is illustrate
Fig. 1.

The diameter of the central passage of the selected no
is 3 mm, while the width of the annular space is 11.5 m
The rake angle of the nozzle is 10°. The liquid phase wa
passes through the central passage with a flow rate of
m3/h, while the continuous-phase air speeds through the
nular space with a flow rate of 115 m3/h. The measurement i
carried out at different spatial positions throughout the sp
zone, which covers 324 points with distances of 10–440 m
The number of validated samples is up to 2000.

A record with 525 287 data points was obtained using
dual PDA sketched in Fig. 1. A portion of the diameter s
nals of the droplets in the spray zone is illustrated in Fig
The Hurst exponent of the total record is aboutH50.81,
which show a relatively strong persistence. Therefore,
mass change of the adjacent drops is not large and one
expect Pr(M ) to have a relatively great proportion nearM
50.5.

FIG. 1. Schematic chart of the dual PDA system.

FIG. 2. Portion of the diameter signals of the droplets in
spray zone. Note that the signals are unilateral and the Hurst e
nent is about 0.81. Hence, the mass change of the adjacent dro
not large and one can expect that Pr(M ) have a relatively grea
proportion nearM50.5.
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B. Multifractal nature obtained by using the multiplier method

In order to extract the spectrum of the singularitiesf (a)
from the experimental data, one can use the procedure f
the scaling of histograms of multifractal measures, which
essentially a box-counting method@19#. This method works
well when the scaling range is wide, and useful statisti
information, such as lacunarity, on the iso-a set can be ob-
tained. However, if the scaling range is small, corrections
high order become necessary, which leads to exponent
more work. In order to improve the accuracy and reduce
work when computing thef (a) function, the multiplier
method should be utilized@20–23#. This approach is base
on the viewpoint that the scaling properties reflecting
self-similar structure of the measure can be described
terms of a repeated composition of a level-independent
tribution of multipliers that defines the rearrangement of
measure into small pieces@12,18#. By suitably manipulating
these distributions, one can compute the completef (a) func-
tion from Eq.~3!. Hence, to compute theDq , t(q), or f (a)
function is to obtain the multiplier density Pr(M ).

The random multifractal measure measured in the exp
ment is composed of 525 287 pieces with equal scale on
interval ~0,1!. The mass distributed on thei th piece is equal
to the mass of the corresponding dropmi . The simplest way
of computing Pr(M ) is to cover the measure at thenth gen-
eration with boxes of sizel 52(12n) and evaluate the mass i
each box, then subdivide each of these boxes into pieces
compute the ratios of the massesM in the original box to any
one of the two subdivided pieces. A relatively accurate w
is to evaluate the averaging in Eqs.~1!–~3! in a discrete
form. Thus we have

^g~M !&5212n (
i 51

2n21

@g~Mi !1g~12Mi !#. ~4!

The dotted lines shown in Figs. 3–6 are the mass ex

o-
s is

FIG. 3. Comparison between the mass exponents obtained
the multiplier method~dotted lines! and from the randomly multi-
plicative cascade model~solid lines! for drop breakup in the atomi-
zation process.
2-2
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nentst(q), generalized dimensionsDq , singularity strength
a(q), and multifractal spectrumf (a), respectively.

C. Randomly multiplicative cascade model for drop breakup
in the atomization process

Let N(dM) denotes the number of multipliers lying in th
interval @M2 1

2 dM, M1 1
2 dM#. The probability density of

the multipliers can be calculated by

Pr~M !5
N~dM!

(N~dM!Y dM. ~5!

Note that SN(dM)52n. In Fig. 7, we plot all Pr(M ) at
different spatial positions in the spray zone withdM
50.001. One can find that these p.d.f.s of multipliers at d
ferent positions agree with each other and are hence stab
the spray zone, which implies that drop breakup is homo
neous throughout the spray zone from the viewpoint of

FIG. 4. Comparison between the generalized dimensions
tained from the multiplier method~dotted lines! and from the ran-
domly multiplicative cascade model~solid lines! for drop breakup
in the atomization process.

FIG. 5. Comparison between the strengths of singularities
tained from the multiplier method~dotted lines! and from the ran-
domly multiplicative cascade model~solid lines! for drop breakup
in the atomization process.
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probability distribution of multipliers. Since the multiplier
from the same mother box areM and 12M , the resulting
multiplier distribution must be symmetrical, that is,

Pr~M !5Pr~12M !. ~6!

We find that the empirical probability density Pr(M ) is
roughly consistent with the triangular form

Pr~M !55
23.6719M11.1875, 0,M<0.16

2.6471M10.1765, 0.16,M<0.5

22.6471M12.8235, 0.5,M<0.84

3.6719M22.4844, 0.84,M,1

. ~7!

b-

-

FIG. 6. Comparison between the multifractal spectra obtai
from the multiplier method~dotted lines! and from the randomly
multiplicative cascade model~solid lines! for drop breakup in the
atomization process. The two results agree remarkably with e
other forq>0. However, whenq approaches21, the discrepancy
between the two methods becomes more and more notable.
dashed line is from the random model with Pr(M )51.

FIG. 7. The probability density Pr(M ) of the multiplier mea-
sured from the experiment of atomization. The multiplier distrib
tion is symmetrical to the lineM50.5. The unit interval~0,1! is
divided uniformly in 1000 subintervals. One can fit Pr(M ) roughly
with a piecewise triangular function, which leads to the analy
results of scaling properties.
2-3
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Hence, the averagedq-order moments are in the form

^Mq&5
1

q12
@26.318930.16q1215.294130.5q12

26.318930.84q1213.6719#

1
1

q11
@1.011030.16q1122.647130.5q11

15.307930.84q1122.4844#. ~8!

It is obvious thatqbottom521. The reason is presented
Sec. III. Similarly, we obtain the functions characterizin
scaling properties that are shown in Figs. 3–6 as solid lin
The two results agree remarkably with each other forq>0.
However, whenq approaches211, the discrepancy be
tween the two methods becomes more and more notable.
dashed line in Fig. 6 is from the random multifractal mod
with Pr(M )51.

III. DISCUSSION

A. The lower limit of q in the model

In the randomly multiplicative cascade model presen
in Sec. II C, we find that there exists a lower limitqbottom5
21 of parameterq. As a matter of fact, for most of the
random multifractal process,qbottom exists and is a finite
value that may be either negative or zero, which depe
upon the probability distribution of multipliers. For instanc
consider a multiplicatively generated random measure wh
probability density of multipliers satisfies a power law
namely Pr(M )5(x11)Mx, wherex.21. The lower limit
is a negative number212x, and whenx tends to211,
qbottom approaches 02. Recall thatqbottom is also zero in left-
sided multifractals@24,25#. However, these two cases a
essentially different.

Assuming that Pr(M ) can be expanded into the Taylo
series atM50, we have

Pr~M !5Pr~0!1Pr8~0!M1
1

2!
Pr9~0!M2

1
1

3!
Pr-~0!M31¯ . ~9!

Suppose that Pr( i )(0)50 for i ,n and Pr(n)(0)Þ0. Then, the
averaged moment can be expressed in the form

^Mq&5(
i 5n

`
Pr~ i !~0!

i ! E
0

1

Mq1 idM. ~10!

Since*0
1Mq11dM has a spot atM50 for q<2( i 11), one

can evaluate the spot integral as the limit of the correspo
ing normal integral, namely
01630
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Mq1 idM5 lim
d→01

E
d

1

Mq1 idM

55 lim
d→01

12dq1 i 11

q1 i 11
, q,2~x11!,

lim
d→01

ln d,
q52~x11!

.

~11!

We find that^Mq& is undefined forq<2( i 11), since the
limit in Eq. ~11! tends tò . By a transformation ofM5ex, it
is easy to show that̂Mq ln M& is only defined forq.2( i
11) as well.

Now consider the case represented in Eq.~7!. The integral
concerninĝ Mq& has a spot atM50 and it is obvious that
i 50. Henceqbottom is identical to21.

B. The case ofqÐ0 and comparison with uniform distribution

We can find that, in Figs. 3–6, the agreement between
experiment and the model is perfectly good forq>0. We
also presented an alternative model with Pr(M )51 as shown
in Fig. 6. The cause is from the breakup mechanism of dro
We have estimated the Weber numbers of drops through
the spray region according to the experiments. A majority
drops in the spray have Weber numbers lower than the c
cal value of 12, indicating that these drops lie in the vib
tional breakup regime@2#. Meanwhile, the rest drops hav
Weber numbers between 12 and 21.5, falling in the b
breakup regime. In the vibrational breakup regime, one d
splits into two droplets with the mass ratio of droplet to
mother drop at around 0.5, while in the bag breakup regim
one drop splits into several relatively bigger droplets a
many smaller droplets. Therefore, vibrational breakup do
nates and bag breakup also arises. In the case of bag bre
we can regard the mother drop as several dummy dro
These breakup regimes conform to the probability distrib
tion of multipliers. Since a triangular distribution is mor
precise than the uniform distribution, the multifractal spe
trum of the former coincides with that of the experimen
result better than the latter.

Consider the case ofq51. Since the first-order momen
^M &50.5, we fine thatt(1)50, and consequentlyf „a(1)…
5a(1). Therefore, thef (a) curve is tangent to the diagona
f (a)5a of the first quadrant. This is a universal nature
the f (a) curve extracted via the multiplier method. Th
probability density of the multiplier satisfies Eq.~6! for the
base 2. Hence, we havêM &5^12M &. Thus ^M &5(^M &
1^12M &)/250.5 andt(1)50. More generally,̂ M &51/b
for any fixed baseb, which results in the property mentione
above.

For q50, we havet(0)521 andf „a(0)…5D051. This
is an inevitable ending of the construction that distribu
measure everywhere in the geometric support~0,1!.
2-4
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C. The asymptotic behavior nearqbottom and `

In the tail of the right part of the multifractal spectrum
the decay of the experimental curve is much faster than
from the model. This is also universal when comparing m
tifractal spectra arising from continuous and discrete mu
plier probability distribution. When one deals with the e
perimental data using the multiplier method, the rules
construction that one can choose is finite. Hence,amin5
2ln (max$Mi%)/ln b51.4831024 and amax52ln(min$Mi%)/
ln b513.25. However, this is far from being the case wh
Pr(M ) exists and is continuous. We find thataP(0,1`).

From Eq. ~8!, ^Mq&;1.1875/(q11) when q→211 or
q→1`. Thus we obtain the asymptotic behaviors of t
scaling properties nearqbottom and ofq→1` as follows:

t~q!; log2~q11!, ~12!

Dq;2 log2~q11!/2, ~13!

a~q!;
1

~q11!ln2
, ~14!

f ~a!; log2 a2a. ~15!

Obviously, a(q) behaves like a hyperbolic function whe
q→1` or q→21. Meanwhile, thef (a) curve behaves like
a logarithmic function nearqbottom and like a straight line
with slope21 whenq→1`. On the other hand,f (a) has a
maximum and a minimum when utilizing the discrete mu
plier method, which relates to the refinementl of the con-
struction and max$Mi% or min$Mi%.

As proved by Mandelbrot and Evertsz@26#, a conse-
quence ofamax5` is that qbottom50, meaning that forq
,0 the summation ofq-order moments fails to scale lik
«t(q) and the functiont(q) fails to be defined. Moreover,
consequence ofamin50 is that qtop51. It seems that the
resultant definition domain ofq in our random multifractal
model is in contradiction to the consequences mentioned
now. In fact, a latent condition is used in the proof given
Ref. @26#. The presupposition is thata(0)5` for the first
consequence anda(1)50 for the second consequence. T
proofs can be extended to more general cases. If there
qbottom and qtop that satisfya(qbottom)5` and a(qtop)50,
one can show thatqbottom,q,qtop, which leads directly to
the result in the present case.

D. Comparison with log-normal distribution

Deviation of the triangular distribution model from th
uniform distribution model is argued in the preceding su
01630
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section. It is also necessary to say some words about
log-normal distribution, since it is natural for readers to a
sume that the multipliersMi fluctuate according to log-
normal distribution as in the turbulence model@27,28#. The
log-normality hypothesis comes from the application of t
central-limit theorem to argue that lnMi should have Gauss
ian distributions. However, the central-limit theorem cann
be applied to rare events, which are the ones that contrib
most to high-order moments@12#. From the log-normality
hypothesis, one may find that the multifractal functionf (a)
is parabolic in the central ‘‘bell’’ near the maximum an
symmetric toa5a(0) @15,29#. We may find that the multi-
fractal function with log-normal distribution fits those in Fig
6 nearq50 remarkably, but the central-limit theorem do
not say anything about their form away from the maximu
Moreover, it is easy to see these points in Fig. 7.

IV. CONCLUSIONS

In this paper, the multifractal nature of drop breakup
the air-blast nozzle atomization process has been studied
applied the multiplier method to extract the negative and
positive parts of thef (a) curve with the data of drop-size
distribution measured using the dual PDA, which is based
Taylor’s frozen-flow hypothesis. On the other hand, we p
posed a random multifractal model with the multiplier tria
gularly distributed to characterize the breakup of drops. T
agreement of the left part of the multifractal spectra betwe
the experimental result and the model is remarkable. T
cause of the distinction of the right part of thef (a) curve,
which is due to the essence of the multiplier method, w
discussed. Comparisons with uniform and log-normal dis
bution were performed, respectively.

The fact that negative dimensions arise in the current s
tem, namely that off (a),0, means that the spatial distribu
tion of the drops yielded by the high-speed jet fluctua
from sample to sample. In other words, the spatial conc
tration distribution of the disperse phase in the spray z
fluctuates randomly momentarily and shows intrinsic ra
domness. The randomness comes also from the experim
procedure, since the measurement of drop-size distribu
may be considered as randomly oriented one-dimensio
cuts through a three-dimensional spray zone, even if the
ter comes from a strictly deterministic process.
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