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Multifractality of drop breakup in the air-blast nozzle atomization process
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The multifractal nature of drop breakup in the air-blast nozzle atomization process has been studied. We
apply the multiplier method to extract the negative and the positive parts df(thecurve with the data of
drop-size distribution measured using dual particle dynamic analyzer. A random multifractal model with the
multiplier triangularly distributed is proposed to characterize the breakup of drops. The agreement of the left
part of the multifractal spectra between the experimental result and the model is remarkable. The cause of the
distinction of the right part of thé(«) curve is argued. The fact that negative dimensions arise in the current
system means that the spatial distribution of the drops yielded by the high-speed jet fluctuates from sample to
sample. In other words, the spatial concentration distribution of the disperse phase in the spray zone fluctuates
momentarily, showing intrinsic randomness.
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[. INTRODUCTION plicative cascade process. Let a cascade begin with mass
equal to 1, uniformly spread ové®,1], and let thenth cas-
The transformation of bulk liquid into sprays and othercade stage share at random the mass in a cell of ldmngth
physical dispersions of small droplets in a gaseous atmoamongb subcells of lengttb "~ with multipliers M; (1
sphere is of importance in many agricultural and industrial<i=<b). Since mass is conserved while it is spread around
processes, which includes applying agricultural chemicals tavithin a cell, strong conservation rules constrain the multi-
crops, paint spraying, spray drying, food processing, coolingliers. Here the multiplieraM; are identically distributed
of nuclear cores, combustion, gasification, and some othewith probability density function PNl) and independent.
fields. Due to the complexity of the atomization process, it isFrom Cramer’s theorem of large deviatidi$,17, the mass
too difficult to disclose clearly the mechanism and also im-exponent, which is defined by an annealed averaging of mo-
possible to combine in one model all the influence factorsments of the multipliers, namely
which include equipment dimensions, size and geometry of
nozzle, physical properties of the dispersed phase and the _ In(M)
continuous phase, and operating mode. Hence, a lot of em- 7(Q)=~Do~ Inb ’ @
pirical and semiempirical models have been established so
far to describe atomization proces$é$ To elaborate on the is linked with the multifractal spectrumi(a) by the Leg-
distortion and breakup mechanisms of a single liquid dropleendre and inverse Legendre transfdit8]. Here, the fractal
injected into a transverse high-velocity air jet, diverse re-dimensionDg is equal to 1. Therefore, we have
gimes were presentel®—6] that ignore the interaction of
multiple droplets. D= (q)= — (M9InM) )
According to Mandelbrof7], there exists a scaling prin- a(l)=7"(q)= (M%Inb @
ciple of drop-size distribution in many physical systems. In
Ref.[8], the fractal facet of drop-size distribution was stud-and
ied with two characteristic parameters, namely the textural
and structural fractal dimensiofi§]. However, it is not suf- B ~ o AMBIn(M ) —(MTIn M) D
ficient that only two fractal dimensions are investigated to (@(@)=ga(q) = (@)= (M%Inb 0
characterize the singularities of size distribution. The distri- ©)]
bution of singularities on the geometry support, which is
described by the multifractal spectruiti), should be con- In this paper, we will investigate the multifractal nature of
sidered[10,11). Moreover, since intrinsic or practically in- the drop breakup in the process of air-blast nozzle atomiza-
duced randomness exists in many real systems, the applicon, which is a follow-up to the work of Ref8].
tion of the theory of random multifractals, such as turbulence
[12] and diffusion-limited aggregatigri 3], is indispensable. Il. MULTIFRACTAL NATURE OF DROP BREAKUP
Negative dimensions appear in these cdddsly, which is
a brand of randomness in many cadés.fact, negative di-
mensions may be absent in random multifractal measures. The measurement of the drop-size distribution is carried
As always, the measure considered in the theory of raneut using the 58N81 dual particle dynamic analyzeual
dom multifractals is constructed through a randomly multi-PDA), which is based on the Doppler effect. The focus of the
lens used in the experiment is 500 mm. The power of the
argon-ion laser generator is 5 W, which generates three pairs
*Corresponding author. Email address: wxzhou@ecust.edu.cn of laser beams of green, blue, and purple. The minimal in-
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1063-651X/2000/6@)/0163026)/$15.00 63016302-1 ©2000 The American Physical Society



WEI-XING ZHOU AND ZUN-HONG YU PHYSICAL REVIEW E 63 016302

Flow 5
q
Ar-lon Beamsplitter Gas Collecting Lens
Frequency Shift Liquid Photodetecter 0
Focussing Lens
ALETEEE @)
-5
Signal Proivr
FFT-Processor -10
Computer Covariance-Processor
FIG. 1. Schematic chart of the dual PDA system. 15

-4 -2 0 2 4 6 8
crement of the movement of the measurement point is 0.02 q
mm. The angle included between the two arms is 63°. The

. . . FIG. 3. Comparison between the mass exponents obtained from
schematic chart of the measurement system is illustrated e P P

multiplier methoddotted line$ and from the randomly multi-

Fig. 1. ) licative cascade modébolid lineg for drop breakup in the atomi-
The diameter of the central passage of the selected n0zzlggion process.

is 3 mm, while the width of the annular space is 11.5 mm.
The rake angle of the nozzle is 10°. The liquid phase wate
passes through the central passage with a flow rate of O.
m/h, while the continuous-phase air speeds through the an- In order to extract the spectrum of the singulariti¢s)

nular space with a flow rate of 115%h. The measurementis from the experimental data, one can use the procedure from
carried out at different spatial positions throughout the sprayhe scaling of histograms of multifractal measures, which is
zone, which covers 324 points with distances of 10—440 mmessentially a box-counting meth¢#i9]. This method works

The number of validated samples is up to 2000. well when the scaling range is wide, and useful statistical

A record with 525 287 data points was obtained using thénformation, such as lacunarity, on the iacset can be ob-
dual PDA sketched in Fig. 1. A portion of the diameter sig-tained. However, if the scaling range is small, corrections of
nals of the droplets in the spray zone is illustrated in Fig. 2high order become necessary, which leads to exponentially
The Hurst exponent of the total record is abélit=0.81, more work. In order to improve the accuracy and reduce the
which show a relatively strong persistence. Therefore, thavork when computing thef(«) function, the multiplier
mass change of the adjacent drops is not large and one camethod should be utilizef20-23. This approach is based
expect PrM) to have a relatively great proportion nedr ~ on the viewpoint that the scaling properties reflecting the
=0.5. self-similar structure of the measure can be described in
terms of a repeated composition of a level-independent dis-
tribution of multipliers that defines the rearrangement of the
measure into small piecé$2,18. By suitably manipulating
these distributions, one can compute the comdiétg func-
tion from Eq.(3). Hence, to compute thB, 7(q), or f(a)
function is to obtain the multiplier density R).

The random multifractal measure measured in the experi-
ment is composed of 525 287 pieces with equal scale on the
interval (0,1). The mass distributed on thiéh piece is equal
to the mass of the corresponding dmop. The simplest way
of computing PriM) is to cover the measure at thé¢h gen-
eration with boxes of size=2(~" and evaluate the mass in
each box, then subdivide each of these boxes into pieces and
compute the ratios of the masddsn the original box to any
one of the two subdivided pieces. A relatively accurate way
is to evaluate the averaging in Eqd)—(3) in a discrete

. Multifractal nature obtained by using the multiplier method
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FIG. 2. Portion of the diameter signals of the droplets in the (g(M))=21"n > [g(M)+g(1—M))]. (4)
spray zone. Note that the signals are unilateral and the Hurst expo- =1
nent is about 0.81. Hence, the mass change of the adjacent drops is
not large and one can expect that ) have a relatively great
proportion neaM =0.5. The dotted lines shown in Figs. 3—6 are the mass expo-
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FIG. 4. Comparison between the generalized dimensions ob- FIG. 6. Comparison between the multifractal spectra obtained
tained from the multiplier methottotted lineg and from the ran-  from the multiplier methoddotted lineg and from the randomly

domly multiplicative cascade modéolid lines for drop breakup multiplicative cascade modésolid lineg for drop breakup in the
in the atomization process. atomization process. The two results agree remarkably with each

other forq=0. However, wherg approaches-1, the discrepancy
between the two methods becomes more and more notable. The

nents eneralized dimensior3,, singularity strength
(@), g q» SINY Y 9 dashed line is from the random model with RI(=1.

«a(q), and multifractal spectruni(«), respectively.

probability distribution of multipliers. Since the multipliers
C. Randomly multiplicative cascade model for drop breakup from the same mother box aM and 1-M, the resulting

in the atomization process multiplier distribution must be symmetrical, that is,
Let N(dM) denotes the number of multipliers lying in the
interval[M—3dM, M+ 3dM]. The probability density of P(M)=Pr(1—M). ©

th Itipli b Iculated b
© multipliers can be calcliated by We find that the empirical probability density Ri] is

N(dM) roughly consistent with the triangular form
—3.671M +1.1875, 6<KM=0.16
Note thatXN(dM)=2". In Fig. 7, we plot all Pr!) at ] 2647M+0.1765,  0.16M<0.5
different spatial positions in the spray zone withM P(M) = —2.647M+2.8235, 0.5M=0.84 (7)
=0.001. One can find that these p.d.f.s of multipliers at dif-
ferent positions agree with each other and are hence stable in 3.671M—2.4844, 0.84M<1
the spray zone, which implies that drop breakup is homoge- 55
neous throughout the spray zone from the viewpoint of the T
8
14 £ 20
AAAAAAAAAAAAAAAAA g
12 =
1.5
10 g
g
a(q) 8 E 1.04
4t £
O L ! n " L s L L L
2 0 02 04 06 08 1
Multiplier

0-8-6~4—202 4 6 8
q FIG. 7. The probability density Pk{) of the multiplier mea-
sured from the experiment of atomization. The multiplier distribu-
FIG. 5. Comparison between the strengths of singularities obtion is symmetrical to the lindl=0.5. The unit intervak0,l) is
tained from the multiplier methoHotted line$ and from the ran-  divided uniformly in 1000 subintervals. One can fit FIf( roughly
domly multiplicative cascade modé&tolid lineg for drop breakup  with a piecewise triangular function, which leads to the analytic
in the atomization process. results of scaling properties.
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Hence, the averagegtorder moments are in the form 1 _ 1 _
f MI*TdM=lim f Ma+idM
0 5507 S
1 .
(M%) = q+—2[—6-3189><0.16“2+5.294]><O.5GI+2 I' 1_ sa+i+t
im——————, g<-—(x+1),
—6.3189%< 0.8472+3.6719 _) oo qt+it+l
1 lim In g, 4= — (x+1)
T g Lot 0.16""1-2.6471x0.5"** 50"

(13)
+5.3079<0.84"1—2.4844. (8)

. _ . ~ We find that(M9) is undefined forg<—(i+1), since the
It is obvious thatQyeon= —1. The reason is presented in jimit in Eq. (11) tends to=. By a transformation ofl =€, it
Sec. lll. Similarly, we obtain the functions characterizing ;g easy to show thatM®In M) is only defined forq> — (i
scaling properties that are shown in Figs. 3—6 as solid Iines+1) as well
The two results agree remarkably with each otherdfer0. Now consider the case represented in &g. The integral

However, whenq approaches—1", the discrepancy be- ; q _ P ;
tween the two methods becomes more and more notable. th]:é)ncernlng(M ) has a spot aM =0 and it is obvious that

dashed line in Fig. 6 is from the random multifractal model' = 0. Hencedpoom is identical to—1.
with Pr(M)=1.

B. The case ofg=0 and comparison with uniform distribution

l1l. DISCUSSION We can find that, in Figs. 3—6, the agreement between the
experiment and the model is perfectly good fpe0. We
o also presented an alternative model withN\®j& 1 as shown
_In the randomly multiplicative cascade model presented, rig. 6. The cause is from the breakup mechanism of drops.
in Sec. IIC, we find that there exists a lower liniforor=  \We have estimated the Weber numbers of drops throughout
—1 of parameter. As a matter of fact, for most of the ¢ gray region according to the experiments. A majority of
random multifractal Procesporom EXISS and IS a finite drops in the spray have Weber numbers lower than the criti-
value that may .b.e e|_the.r negative or zero, wh|ch dependéal value of 12, indicating that these drops lie in the vibra-
upon the probability distribution of multipliers. For instance, tional breakup regimé2]. Meanwhile, the rest drops have
consider a multiplicatively generated random measure Whos\?\/eber numbgrs %etweén 12 and 2’1 5. falling ir? the bag
probability density of r)rgultipliers satisfies a power law, breakup regime. In the vibrational brea.kl,Jp regime, one drop
namely PriM)=(x+1)M*, wherex>—1. The lower limit o ‘ . . ' :

y Pri)=( ) splits into two droplets with the mass ratio of droplet to its

is a negative number1—x, and whenx tends to—1", her d q hile in the bag break .
Gbottom @PProaches 0. Recall thalyogonmis also zero in left-  Mother drop at around 0.5, while in the bag breakup regime,

sided multifractals|24,25. However, these two cases are °N€ drop splits into several relatively bigger droplets and

A. The lower limit of g in the model

essentially different. many smaller droplets. Therefore, vibrational breakup domi-
Assuming that Pif1) can be expanded into the Taylor Nates and bag breakup also arises. In the case of bag breakup,
series atM =0, we have we can regard the mother drop as several dummy drops.

These breakup regimes conform to the probability distribu-
tion of multipliers. Since a triangular distribution is more

precise than the uniform distribution, the multifractal spec-
trum of the former coincides with that of the experimental
+ iplm(o)M3+_“ _ 9) result bgtter than the latter. _ .

3! Consider the case af=1. Since the first-order moment
(M)=0.5, we fine that(1)=0, and consequentlj(a(1))
=a(1). Therefore, thef (a) curve is tangent to the diagonal
f(a) =« of the first quadrant. This is a universal nature of
the f(a) curve extracted via the multiplier method. The
probability density of the multiplier satisfies E) for the

PF(M)zPr(O)+Pr’(O)M+%Pr”(O)MZ

Suppose that Pt(0)=0 fori<n and PfV(0)#0. Then, the
averaged moment can be expressed in the form

o PO (1o base 2. Hence, we hayt)=(1—M). Thus(M)=((M)
<Mq>:;n i fo M dM. (10 +(1—M))/2=0.5 andr(1)=0. More generally{M)=1/b
for any fixed basd, which results in the property mentioned
above.
Since[$M9"1dM has a spot am =0 for q<—(i+1), one Forq=0, we haver(0)=—1 andf(a(0))=Dy=1. This
can evaluate the spot integral as the limit of the corresponds an inevitable ending of the construction that distributes
ing normal integral, namely measure everywhere in the geometric supos).
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C. The asymptotic behavior nearoom and « section. It is also necessary to say some words about the
In the tail of the right part of the multifractal spectrum log-normal distribution, since it is natural for readers to as-

the decay of the experimental curve is much faster than thagume that the multipliersl; fluctuate according to_log-
from the model. This is also universal when comparing mul-"ormal distribution as in the turbulence mod2r,28. The

tifractal spectra arising from continuous and discrete multi/°9-normality hypothesis comes from the application of the

plier probability distribution. When one deals with the ex- central-limit theorem to argue that M; should have Gauss-
perimental data using the multiplier method, the rules ofidn distributions. However, the central-limit theorem cannot

construction that one can choose is finite. Henegj,= be applied to rare events, which are the ones that contribute
—In (MaxM1)/Inb=1.48<10~* and = —IN(Min{M.})/ most to high—order mgmenl[sLZ]. From. the log-normality
Inb=13.25. However, this is far from being the case whenYPOthesis, one may find that the multifractal functida)

Pr(M) exists and is continuous. We find that (0,+ ). is parabolic in the central “bell” near the maximum and
From Eq.(8), (M%~1.1875/(+1) whengq——1* or symmetric toa= a(0) [15,29. We may find that the multi-
q—+. Thus we obtain the asymptotic behaviors of thefractal function with log-normal distribution fits those in Fig.

; ; . 6 nearq=0 remarkably, but the central-limit theorem does
scaling properties ne and ofgq— +o0 as follows: i o .
g prop oottom g not say anything about their form away from the maximum.

7(q)~log,(q+1), (12 Moreover, it is easy to see these points in Fig. 7.
Dy~ —logx(g+1)72, (13 IV. CONCLUSIONS
1 In this paper, the multifractal nature of drop breakup in
a(Qq) (14 the air-blast nozzle atomization process has been studied. We

(a+1)in; applied the multiplier method to extract the negative and the

(15) positive parts of thef (a) curve with the data of drop-size
distribution measured using the dual PDA, which is based on
Obviously, @(q) behaves like a hyperbolic function when Taylor's frozen-flow hypothesis. On the other hand, we pro-
g— + or g— — 1. Meanwhile, thef (@) curve behaves like Posed a random multifractal model with the multiplier trian-
a logarithmic function neagpm and like a straight line gularly distributed to characterize thg breakup of drops. The
with slope—1 wheng— + . On the other hand(a) has a agdreement of the left part of the multifractal spectra between
maximum and a minimum when utilizing the discrete multi- the experimental result and the model is remarkable. The
plier method, which relates to the refineménaf the con- ~ cause of the distinction of the right part of théa) curve,
struction and mapM;} or min{M;}. which is due to the essence of the multiplier method, was
As proved by Mandelbrot and Evert§26], a conse- discussed. Comparisons with uniform and log-normal distri-
quence ofa = is that guymy=0, Meaning that foy ~ bution were performed, respectively.
<0 the summation ofj-order moments fails to scale like  The fact that negative dimensions arise in the current sys-
£™@ and the functionr(q) fails to be defined. Moreover, a t€m, namely that of («) <0, means that the spatial distribu-
consequence Ofry,=0 is thatq,,,=1. It seems that the tion of the drops yielded by the high-speed jet fluctuates
resultant definition domain af in our random multifractal ToM sample to sample. In other words, the spatial concen-
model is in contradiction to the consequences mentioned jugfation distribution of the disperse phase in the spray zone
now. In fact, a latent condition is used in the proof given influctuates randomly momentarily and shows intrinsic ran-
Ref. [26]. The presupposition is that(0)=c for the first domness. The randomness comes also from the experimental
consequence and(1)=0 for the second consequence. TheProcedure, since the measurement of drop-size distribution
proofs can be extended to more general cases. If there exigiat‘y tge cog&d&red 3_3 ranc_iomlly oriented one-dlmfe?hsmln?l
Ubottom and qtop that SatiSfyOZ(qbotton‘)=oo and a(Qtop)zoa cuts through a ree__ |menS|ona_ .Sp.ray Zone, even | € lat-
one can Show thayeor< q< oy, Which leads directly to ter comes from a strictly deterministic process.
the result in the present case.

f(a)~log, a— «a.
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