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Synchronization, re-entry, and failure of spiral waves in a two-layer discrete excitable system
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A three-dimensional structure composed of two coupled discrete excitable lattices is considered. Each lattice
~layer! is a discrete excitable subsystem and using alocal modelof excitation transfer and failure we have
estimated the sufficient conditions for it to exhibit spiral waves. Then we show how interlayer synchronization
of all motions is possible. Various effects of spiral wave synchronization, re-entry and failure are also inves-
tigated.
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I. INTRODUCTION

Spiral and scroll waves in two-dimensional~2D! and
three-dimensional~3D! excitable reaction–diffusion medi
have been intensively studied in recent years@1–20#. In par-
ticular, when studying fibrillation and arrythmicity in th
heart, it has been found that the appearance and intera
of spiral-like vortices giving rise to wave turbulence ph
nomena breaks normal rhythmicity@6–8#. In engineering, 3D
multilayer reaction–diffusion lattices have been used for
formation processing including information compressio
image recognition, secure communication, etc.@13–15#.

Various types of waves or coherent space-time patte
including rotating spirals, target and scroll waves can be
served in reaction–diffusion lattices@15–23#. A particularly
useful model is the FitzHugh–Nagumo reaction–diffusi
excitable medium used to mimic the dynamics of excitat
in mielinated nerve fibers, neural assemblies, heart tiss
etc. Although being a drastically simplified view of realit
yet it captures key features of the dynamics of the excita
medium~excitation threshold, relaxational pulses or spik
refractory period, etc.!. On the other hand, lattices of couple
local units or cells mimic the anatomy of biological fibe
and slices of tissue. The heart tissue, for example, is c
posed of a number interacting cells suitably distributed
space. The interaction is organized with gap junctions wh
may be approximated with nearest neighbors~weak! resistive
coupling. A simple model taking into account the archite
ture of such systems may be a reaction–diffusion lattice
excitable cells. At variance with the continuous models ‘‘h
mogenizing’’ or ‘‘averaging’’ the system at the characteris
spatial scale of the solutions, the lattice model may take
account ‘‘micro-inhomogeneities’’~of cell size order! of the
media which may lead, for example, to the phenomena
wave propagation failure studied in bistable and excita
media@24–26#.

In this paper we study spiral wave dynamics in a tw
layer lattice system of coupled FitzHugh–Nagumo eleme
In Sec. II we describe the model. Then, we investigate
onset and formation of spiral waves in a single layer. Atte
tion is paid to the effects of the discrete inhomogene
character of the medium. We introduce alocal model of
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excitation transfer. Section III is devoted to a study of t
effects of interlayer interaction in the synchronization a
re-entry of spiral waves. Using the local model we stu
excitation–re-entry mechanisms and show how termi
wave patterns are affected by the strength of the interla
coupling. In Sec. IV we allow imperfections in the interlay
coupling restricting it to only local or pin contacts betwe
layers. The Conclusion contains a short discussion of
results found.

II. MODEL

Let us consider the following two-layer excitable lattic
system:

u̇ j ,k
1 5 f ~uj ,k

1 !2v j ,k
1 1d~Du1! j ,k1hj ,k~uj ,k

2 2uj ,k
1 !,

v̇ j ,k
1 5«uj ,k

1 ,

u̇ j ,k
2 5 f ~uj ,k

2 !2v j ,k
2 1d~Du2! j ,k1hj ,k~uj ,k

1 2uj ,k
2 !, ~1!

v̇ j ,k
2 5«uj ,k

2 ,

j ,k51,2, . . . ,N,

where superscripts ‘‘1’’ and ‘‘2’’ denote the variables of th
first and the second layer, respectively; (Dw) j ,k is the dis-
crete Laplace operator (Dw) j ,k5wj 11,k1wj 21,k1wj ,k11
1wj ,k2124wj ,k ; the coefficientd accounts for the intra-
layer coupling; the matrixhj ,k characterizes the interlaye
interaction. We takef (w)5w(w2a)(12w) with 0,a,1.
The system~1! is considered with Neuman and hence no
flux boundary conditions.

With d50 and hj ,k50, Eqs. ~1! reduce to a two-
dimensional system describing the dynamics of the elem
cell or unit,

«
dz

dt
5 f ~z!2w,

~2!
dw

dt
5z.
©2000 The American Physical Society12-1
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For convenience we have rescaled the time,t5«t. With «
→0 the dynamics of~2! has both fast and slow features
illustrated in Fig. 1. The system has one stable albeit ex
able fixed pointO at the origin. This means that for som
finite perturbation a trajectoryG0 making a long excursion in
the phase plane is possible. AlongG0 we can define three
time intervals corresponding to different~metastable! states
of the cell: Theexcitedstate,Sex,

Sex:$@z~ t !,w~ t !#uzmax,z,zex%;

the refractory state,Sref

Sref :$@z~ t !,w~ t !#uzref,z,0%;

and therest state,S0, when the trajectory evolves in th
neighborhood of the fixed pointO. Note, that for nonvanish
ing although small«, 0,«!1 the slow dynamics does no
occur exactly on the curvef (z)5w but in its neighborhood
~on slow motion layers whose thickness is of order« @27#!.

With hj ,k50 the system~1! splits in two separate layers
Any of these layers, taken separately, represents a dis
excitable medium capable of sustaining spiral waves. Ty
cally to excitable media we obtain spiral wave in a sing
layer by breaking a plane wave front. The edge of the fr
starts to twist and after some time takes on a stationary
tion. The parameter region,Dsp, for spiral wave behavior is
shown in Fig. 2. The profile of the spiral wave for the p
rameters taken far enough from the boundaries is illustra
in Fig. 3~a!. The behavior of the tip of the spiral may b
rather complex. Depending on parameter values it for
various orbits in the lattice space but we shall not dwell
this issue here.

The boundary of region,Dsp, may be split into two parts
D1 ,D2. PartD2 corresponds to the growth of the spiral co
as illustrated in Fig. 3~b!. When the size of the core is abo
the lattice size the spiral dies away at its boundary.D1 is
associated with propagation failure caused by the discr
ness of the lattice. Upon approaching this boundary the sp
becomes narrower@Fig. 3~c!# and at the end stops propaga
ing.

III. LOCAL MODEL OF EXCITATION TRANSFER
AND FAILURE

If the intralayer excitation is strong enough,d@1, the
discrete system~1! behaves very much like a continuou
reaction–diffusion medium. The quasicontinuum approxim

FIG. 1. Phase portrait of the element, cell or unit~2!.
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tion of ~1! makes sense when the characteristic spatial s
of the solution is much longer than the lattice unit. Wav
propagating in such medium do not ‘‘feel’’ the local inho
mogeneities of the spatial architecture of the lattice. In ter
of equations the ODE system~1! can be approximated with a
PDE equation with the 2D Laplacian.

In the opposite case,d!1, the solutions are very sensitiv
to the ‘‘micro-inhomogeneities’’ of the lattice. This is th

FIG. 2. RegionDsp of spiral wave existence in a layer of 10
3100 cells. At the boundaryD2 the spiral wave disappears if i
approaches the edges of the layer and atD1 there is a propagation
failure related on the discreteness of the lattice.D1

0 andD1
« are the

approximations ofD1 obtained with the ‘‘local model.’’ Paramete
values:«50.005 andh50.

FIG. 3. Snapshots of spiral waves in a layer.~a! Spiral wave for
the parameter values («50.005,a50.08,d50.1) taken far from the
boundaries ofDsp ~Fig. 2!. ~b! Spiral wave near the boundar
D2 («50.005,a50.14,d50.1) of Dsp ~Fig. 2!. ~c! Spiral wave
near the boundaryD1 («50.005,a50.08,d50.022) ofDsp ~Fig. 2!.
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SYNCHRONIZATION, RE-ENTRY, AND FAILURE OF . . . PHYSICAL REVIEW E63 016212
case we consider here and hence we shall study the dyna
of ~1! near the edge of propagation failure~curveD1 in Fig.
2!. As illustrated in Fig. 3~c! the spiral waves in this cas
become very narrow. They have a squarelike shape c
posed of a number of interlinked plane-wave fronts. Our a
is to construct, ford!1, a drastically reduced albeit signifi
cant dynamical system describing the behavior of each lo
cell of the lattice where the influence of all other cells
adequately parametrized. The basic assumption for desig
such alocal modelis the following. As the spiral wave de
velops the excitation state of the units,Sex, is transmitted
sequentiallyfrom one cell row~column! to another. It is
schematically illustrated in Fig. 4~a! where excited and res
cells are shown with solid and open circles, respectively.
us consider the cell labeled withn from the open circle col-

FIG. 4. ‘‘Local model’’ of excitation transfer and failure in
layer. ~a! Spatial architecture of the layer. Open and solid d
correspond to the rest and excited states of the cells, respecti
Arrows show the direction of excitation transfer.~b! Phase plane
representation of the local model. The dashed trajectory,G0, corre-
sponds to the unperturbed cell.Gex indicates the excitation of the
cell taken from the lattice.~c! Enlarged region of the phase plan
near the rest state,O, for small nonzero«!1. Two possibilities of
genuine excitation,Gex, and its failure.
01621
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umn. From the system~1! we have

« żn5 f ~zn!2wn1d~zn11zn21zn31zn424zn!,
~3!

ẇn5zn .

where thezni ( i 51,2,3,4) denote theu variables of the four
neighboring cells ton. When excitation reaches this cell,n,
we neglect~up to terms of orderd2) the influence of the
three unexcited neighbors,zn15zn25zn350. At the same
time we take into account the excited celln4 with zn4
5zex, i.e., with the maximum value ofz at the excited state
~Fig. 1!. We take its value from the dynamics of the sing
cell ~2!. It is given by the largest root of the equation

f ~z!2 f ~zmin!50.

Thus, we have reduced~1! to the system

« żn5F~zn!2wn ,
~4!

ẇn5zn ,

with F(z)5 f (z)24 dz1dzex. The function F is shifted
relative to the unperturbed case,d50, as shown in Fig. 4~b!.
As the cell is in the rest state the initial conditions for~4!
must be taken in the neighborhood of the origin,O. Then, the
cell n will be excited if the trajectoryGex exists, i.e., the cell
exceeds the excitation threshold.

Let us consider first the case«50. Then, the trajectory
Gex exists if the inequalities

F~zmin
d !.0,

~5!

d,
12a1a2

12
,

with

zmin
d 5

~11a!2A12a1a2212d

3

are satisfied. In the parameter space (a,d) the inequalities~5!
define the boundary curveD1

0. As we take the maximum
value of the termd(Dzn) in ~3! the curveD1

0 estimates the
boundary of the spiral wave propagation failure~Fig. 2!. It
goes below the curveD1 obtained by direct numerical inte
gration of Eqs.~1!.

Let us now consider a small but nonzero«!1. As earlier
mentioned, now the slow motions occur in thin slow-moti
layers near the curveF(z)5w. Qualitatively the behavior of
system~4! is illustrated in Fig. 4~c!. Depending on the pa
rameter values there are various routes of the trajectory o
nated at pointO. The two trajectoriesG r and Gex shown
correspond to the failure of excitation and its transfer,
spectively. Thus, if the trajectoryG exists in system~4!,

G:$@z~ t !,w~ t !#uz~0!5w~0!50, z~ t !,zmax, ;t.0%
~6!

s
ly.
2-3
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the excitation fails to propagate. The boundary curve,D1
«

obtained with the condition~6! is shown in Fig. 2. A rather
good qualitative and quantitative agreement with the exp
mental curveD1 can be observed.

Note, that as we take the maximum value,zex, at the
excited state,Sex, of the cell what we find aresufficient
conditions for the propagation failure. For the paramet
taken in the neighborhood above the boundaryD1

« the cell is
‘‘less excited,’’ zmax<z,zex and the wave may fail at the
next grid of the lattice.

IV. SPIRAL WAVES IN THE TWO-LAYER
LATTICE SYSTEM

Let us first consider the system~1! with uniform inter-
layer coupling, and hence allhj ,k5hÞ0.

A. Global interlayer synchronization

By changing variables

xj ,k5uj ,k
1 2uj ,k

2 yj ,k5v j ,k
1 2v j ,k

2 ,

xj ,k
1 5uj ,k

1 1uj ,k
2 yj ,k

1 5v j ,k
1 1v j ,k

2 ,

the system~1! becomes

ẋ j ,k5G~xj ,k ,xj ,k
1 !2yj ,k1d~Dx! j ,k22hxj ,k ,

ẏ j ,k5«xj ,k ,
~7!

ẋ j ,k
1 5G1~xj ,k ,xj ,k

1 !2yj ,k
1 1d~Dx1! j ,k ,

ẏ j ,k
1 5«xj ,k

1 ,

with

j ,k51,2, . . . ,N,

G~xj ,k ,xj ,k
1 !5 f ~uj ,k

1 !2 f ~uj ,k
2 !,

G1~xj ,k ,xj ,k
1 !5 f ~uj ,k

1 !1 f ~uj ,k
2 !,

For ~7!, M5$xj ,k5yj ,k50% is the manifold of synchronou
motions or the interlayer synchronization manifold. Let
show thatM is globally asymptotically stable. Consider th
function

V5 (
j ,k51

N xj ,k
2

2
1

yj ,k
2

2«
.

Its derivative along the flow~7! is

V̇52 (
j ,k51

N

~Pj ,k1Qj ,k!

with
01621
i-

s

Pj ,k52d~xj ,kxj 21,k1xj ,kxj ,k21!1pxj ,k
2

2d~xj ,kxj 11,k1xj ,kxj ,k11!,

Qj ,k5xj ,k
2 F1

4
~xj ,k

2 13yj ,k
2 !2~11a!yj ,k1

~11a!2

3 G ,
and

p54d12h2
12a1a2

3
.

Then all Qj ,k are positive definite and, consequently, t
quantityP5( j ,k51

N Pj ,k is also positive definite. Indeed, con
sider the vector r 5(r 1 ,r 2 , . . . ,r N2), where r 15x11,r 2
5x12, . . . ,r N25xNN . Using these coordinates the functio
P becomes the quadratic form

P5 (
i , j 51

N2

ai , j r i r j5r TAr,

with ai j 5aji , the superscriptT denotes the transpose an
A5uuai , j uu is a square symmetricN23N2 matrix. The qua-
dratic form P will be positive definite if the eigenvalues o
the symmetric matrixA are positive@28#. Applying Gersh-
gorin theorem to the matrixA we find that ifp.4d then the
union of the Gershgorin disks corresponding to the matrixA
is located to the right of the imaginary axis@29#. Thus, the
inequality

h.h* 5
12a1a2

6
~8!

ensures the positiveness of all eigenvalues of the matriA
and, consequently, the formP is positive definite when con
dition ~8! is satisfied. Therefore,V̇,0 holds outside the
manifold M and V̇50 on the manifold, and henceV is a
Lyapunov potential function. Thus, the synchronizati
manifold M is globally asymptotically stable. Accordingly
whatever the initial conditions, all motions in the system~1!
synchronize if the parameters satisfy~8!.

B. Interlayer reentry and synchronization

Let the initial conditions for~1! be a spiral wave in the
first layer and the rest state in the other. When~8! is satisfied
and the interlayer coupling,h, is strong enough the layer
synchronize and each of them exhibits a spiral wave ident
to the initial one. Note that the threshold of excitation, a
counted in the model by parametera, is very low~Fig. 2! and
the cells of the second layer are easily excited and ensla
by the pattern existing in the first layer. This corresponds
a rather rigid interlayer interaction.

For values ofh lower than those of region~8! the inter-
action becomes more ‘‘elastic’’ and due to the bi-direction
interlayer coupling various re-entry phenomena are possi

In the parameter plane (h,d), for fixed a50.01, four sa-
lient regions exist where the interlayer dynamics is dra
cally different ~Fig. 5!.
2-4



ith

ke

g. 6
lls
yer
f-

off-
ay

u-
in-
er
o-
der
r

-

er

hr

ntry
on

SYNCHRONIZATION, RE-ENTRY, AND FAILURE OF . . . PHYSICAL REVIEW E63 016212
~i! In the region above the curveH1 the terminal~syn-
chronized! patterns represent identical spiral waves w
cores slightly shifted in the lattice space~Fig. 6!. Thus, the
spiral wave dominates the rest state preserving all its

FIG. 5. BoundariesH1 ,H2 ,H3 of various outcome of the inter
layer interaction obtained by numerical simulation of Eqs.~1!.
H1

« ,H2
« ,H3

« have been obtained with the ‘‘local model.’’ Paramet
values:«50.005 anda50.01.

FIG. 6. Sequence of snapshots illustrating spiral wave sync
nization in the region above the curveH1 ~Fig. 5!. Parameter val-
ues:«50.005, a50.01, d50.01, andh50.06.
01621
y

features~shape, period, and amplitude!. The perturbation of
the spiral core shown in the sequence of snapshots in Fi
is associated with the lower oscillation amplitude of the ce
at the tip of the spiral. Here the influence of the second la
~feedback! is stronger relative to all other cells and it is su
ficient to perturb the excited state in the first layer.

~ii ! In the region between the curvesH1 andH2 ~Fig. 5!,
as a result of the sequence of interlayer re-entries, two
spring wave patterns appear evolving in rather complex w
~Fig. 7!. This complexity comes from the cooperative infl
ence of intralayer collisions and interlayer excitation and
hibition. As earlier said, for the case of very low intralay
coupling one must take into account the micr
inhomogeneities of the lattice architecture. As we consi
squarelike connections@Fig. 4~a!#, or four nearest-neighbo

o-

FIG. 7. Sequence of snapshots illustrating spiral wave re-e
leading to the breakdown of the original stimulus in the regi
between the curvesH1 and H2 ~Fig. 5!. Parameter values:«
50.005, a50.01, d50.01, andh50.045.
2-5
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FIG. 8. ~a! Sequence of snapshots illustrating spiral wave re-entry leading to the disappearance of the original stimulus in th
between the curvesH2 and H3 ~Fig. 5!. Parameter values:«50.005, a50.01, d50.01, andh50.03. ~b! Corresponding sequence o
snapshots illustrating cyclic spiral wave re-entry in the region near the curveH3. Parameter values:«50.005, a50.01, d50.01, andh
50.01.
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coupling, the wave properties are anisotropic and henc
squarelike rough shape of the spiral waves appears@Fig.
3~c!#. Figure 7 illustrates that, as time proceeds, in the s
ond lattice a number of fronts appear and travel in the di
onal direction. Then, the fronts collide with the spiral a
disappear. The cells of the second layer come to the ref
tory state and this inhibits their companion cells in the fi
layer. As the result of such feedforward-feedback influen
two identical patterns appear and evolve synchronously
the two-layer lattice system.

~iii ! Further lowering the interlayer coupling strength,h,
brings us to the region located between the curvesH2 and
H3 ~Fig. 5! where the spiral wave stimulus can disappear
a consequence of inter-layer reentry@Fig. 8~a!#. At first, the
01621
a
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spiral wave perturbs the motionless elements of the sec
layer and forms a spiral wave shape excitation. Sub
quently, this excitation yields two spiral waves traveling
opposite directions. Then the two waves collide and dis
pear. Then almost all elements of the second layer com
their refractory states. Consequently, the feedback inhibits
motions in the first layer and both layers come to the r
state. However, for some parameter values~close to the
curveH3) the feedback is not strong enough to inhibit m
tions in the first layer and the original spiral is preserved
shown in Fig. 8~b!. We have are-entry cycleoperating with
approximately the period of the spiral wave.

~iv! Too low interlayer coupling in the region belowH3
~Fig. 5! does not permit excitation in the second layer. He
2-6
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the spiral wave is preserved evolving with slightly differe
shape and period.

Note that for high enough values ofd the lattice behavior
approaches that of the continuous medium. As mentione
Sec. II the shape of the spiral becomes smoother@Figs. 3~a!
and 3~b!# and hence there is negligible spatial anisotro
Then, the region~ii ! becomes smaller and disappears w
d@1. Such tendency can be seen in Fig. 5 where the cu
H1 andH2 approach each other. Further increase ofd makes
the ‘‘size’’ of the spiral about the size of the layers and t
outcome of the interlayer interaction becomes very sensi
to the boundary conditions. We do not consider their infl
ence here.

C. Local model of the interlayer reentry

Let us assume that both the intralayer and the interla
coupling are very weak,h!1 andd!1. Then, as done for a
single layer we can qualitatively divide the evolution of sy
tem~1! into a sequence of excitation transfer events from c
to cell. Let us apply the local model approach~3!,~4!,~5!,~6!
with both intralayer and interlayer interactions taken into
count.

~i! Let us first estimate the conditions for interlayer ex
tation failure, i.e. the boundaryH3 ~Fig. 5!. A schematic
representation is shown in Fig. 9~a!. Consider that a plane
wave front of excitation is propagating in the first layer wh
all the cells of the second one are at rest. When the interla
interaction is switched-on we can approximately describe
dynamics of the celln taken from the second layer by th
system~4! with the nonlinear function

F~z!5 f ~z!2~4d1h!z1hzex. ~9!

Then, for«→0 there is excitation failure when

F~zmin
h !,0,

~10!

~h14d!,
12a1a2

3
,

with

zmin
h 5

~11a!2A12a1a2212d23h

3
.

The inequalities~10! define the region below the bounda
curveH3

0 in the parameter plane (h,d) ~Fig. 10!. For «!1,
but nonzero, taking into account the dynamics in the sl
motion layers@Fig. 4~c!# we obtain for~4! with ~9! the con-
dition ~6!. The boundary curveH3

« is shown in Fig. 10.
Let the values ofh be high enough to excite the secon

layer.
~ii ! When the stimulus is a plane wave front traveling

the longitudinal direction, an excitation of identical shape
the second layer splits into two parts, one proceeding
ward synchronously with the original front and another mo
ing backward@Figs. 7 and 9~b!#. As the backward moving
01621
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front reaches the cells inhibited by the refractory ones of
first layer, it may fail to propagate. For the celln in Fig. 9~b!
we have system~4! with

F~z!5 f ~z!2~4d1h!z1dzex1hzref , ~11!

wherezref denotes the refractory state of the cell. We take
value from the dynamics of a single cell~2! ~Fig. 1!. It is
given by the lowest root of the equation

f ~z!2 f ~zmax!50.

Then, the boundaries of the region for the backward trav
ing front to be inhibited are defined by~10! with ~11! for «
50, and by~4! and ~6! with ~11! for «!1, respectively.
These inequalities are satisfied above the curvesH2

0 andH2
«

FIG. 9. Schematic representation of excitation re-entry in int
acting two-layer lattice system.~a! Entry of excitation to layer at
rest.~b! Inhibition of excitation along the longitudinal direction.~c!
Inhibition of excitation along the diagonal direction.
2-7
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KAZANTSEV, NEKORKIN, ARTYUHIN, AND VELARDE PHYSICAL REVIEW E 63 016212
shown in Fig. 10. At variance with the case of local exci
tion failure in a single layer the cell at restn @Fig. 9~b!# tends
to be excited by the neighboring cells of its own layer~with
the ‘‘strength’’ accounted byd) and to be inhibited by the
corresponding refractory cell from the first layer~accounted
by h). Hence, the curveH2 gives a criticalh/d ratio above
which only a forward traveling~synchronized! front appears
in the second lattice.

~iii ! Let us consider the wave front propagating in a dia
onal direction. As in case~ii ! we have for the celln @Fig.
9~c!# system~4! with

F~z!5 f ~z!2~4d1h!z12dzex1hzref . ~12!

Then, the regions of excitation failure in the diagonal dire
tion are defined by~10! with ~12! for «50 ~above the curve
H1

0) and by~4! and ~6! with ~12! for «!1 ~above the curve
H1

«), respectively.
As in the previous case the curveH1 provides the relation

between the interlayer and intralayer coupling above wh
only a synchronized front is possible in the diagonal dir
tion. The spiral wave for smalld @Fig. 3~c!# may be qualita-
tively divided into a number of plane fronts traveling in th
longitudinal ~horizontal or vertical! direction ‘‘intercon-
nected’’ with ‘‘portions’’ propagating in the diagonal direc
tion. Hence, above the curveH1 there is synchronization in
both directions and we end up with synchronized spir
~Fig. 6!. Between the curvesH1 and H2 the ‘‘diagonal’’
synchronization fails and there is a sequence of re-en
breaking the original spiral~Fig. 7!. Below H2 we obtain the
backward traveling spiral wave of continuous shape~Fig. 8!.

To compare the results predicted with the local mo
with data obtained with the numerical integration of Eqs.~1!
we put them together in Fig. 5. The curvesHi

« give a very
good approximation of the boundariesHi for low enough
values ofd andh. Note, that the curvesH2

« andH1
« intersect

when d5d2* . Thus, for d,d2* for all values of h taken
above the curveH3

« the original spiral wave cannot be com
pletely destroyed in the collision of the two secondary spir
with opposite ‘‘charges’’@Figs. 8~a! and 8~b!#. This phenom-
enon is verified numerically as the curveH2 ends up with

FIG. 10. ‘‘Local model’’ prediction for the excitation inhibition
in the parameter plane (h,d) for «50, H1

0 ,H2
0 ,H3

0 ~solid lines!,
and for«50.005, H1

« ,H2
« ,H3

« ~broken lines!.
01621
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d'0.015. For lower values ofd the outcome of the system i
wave patterns like those shown in Fig. 7.

V. RAREFIED INTERLAYER CONNECTIONS

In problems where lattice dynamics may have an appli
tion like in the study of heart fibrillation and failure there a
always domains, sites or bonds, which are ill-functioning
broken. Dynamically, such domains are not capable to p
vide a proper transfer of excitation in the tissue. Let us n
study how such rarefied coupling affects the synchroniza
and wave pattern replication processes when some bondshj ,k
are ill-functioning or broken.

Let now hj ,k be defined in the matrix form

FIG. 11. Sequence of snapshots illustrating the outcome of
functioning interlayer synchronization obtained with coupling m
trix hj ,k with D515. Parameter values:«50.005, a50.01, d
50.03, andh50.06.
2-8
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hj ,k5 (
j 8,k8

N

hdD j 8, jdDk8,k ,

j ,k51,2, . . . ,N,

whereD51,2,3, . . . denotes the spatial coupling grid andd
is Kroneker symbol. WhenD is much smaller than a char
acteristic space scale of the initial spiral wave, which d
pends ond, the interlayer interaction occurs as with a hom
geneous coupling. The increase ofD leads to the destruction
of the initial spiral wave even for high values ofh. Along the
well-functioning sites the excitation is transferred to t
layer at rest where it may yield a sequence of target wa
~Fig. 11!. Then, those target waves interfere in some co
plex way creating a new wave pattern. As shown in Fig.
collisions may create large areas or clusters of cells in
refractory state. At variance with the homogeneous case@Fig.
7~a!# the feedback from such cells cannot inhibit the origin
spiral wave in the first layer. The feedback is transfer
through a scarce number of well-functioning sites and he
only locally the spiral wave is perturbed. Subsequently,
wave recovers its form. Note, that when, for example, th
is a large cluster of well-functioning sites, the feedback m
destroy the original spiral. We do not consider this case h
-

ia

,

.A

d
o

01621
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s
-
1
e
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e
e
e
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VI. CONCLUSION

We have studied salient features of the dynamics o
two-layer discrete FitzHugh–Nagumo reaction–diffusion
chitecture. After finding, for a single layer, the region
existence of spiral waves, we have analytically predicted
numerically obtained the boundary of wave propagation f
ure originated in the discreteness of the medium. Then
the system composed of two interacting such layers we h
investigated the processes of spiral wave synchronizat
re-entry and failure. We have identified some re-entry loo
of excitation transfer from layer to layer resulting in the d
appearance of the spiral wave or its breaking into a se
ingly complex wave pattern. The interlayer interaction
lows a spiral wave stimulus to be replicated in another la
at rest, or yields a complex wave pattern breaking the or
nal ~‘‘normal’’ ! rhythmicity of the system, or it can be com
pletely destroyed bringing all cells to the rest state. As
pected, the spiral-wave dynamics in a two-layer latt
system drastically depends on the micro-inhomogeneitie
the discrete lattice architecture and its anisotropy.
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