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Synchronization, re-entry, and failure of spiral waves in a two-layer discrete excitable system
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A three-dimensional structure composed of two coupled discrete excitable lattices is considered. Each lattice
(layen is a discrete excitable subsystem and usirigcal modelof excitation transfer and failure we have
estimated the sufficient conditions for it to exhibit spiral waves. Then we show how interlayer synchronization
of all motions is possible. Various effects of spiral wave synchronization, re-entry and failure are also inves-
tigated.
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[. INTRODUCTION excitation transfer. Section Ill is devoted to a study of the
effects of interlayer interaction in the synchronization and
Spiral and scroll waves in two-dimension&D) and re-entry of spiral waves. Using the local model we study
three-dimensional3D) excitable reaction—diffusion media €xcitation—re-entry mechanisms and show how terminal
have been intensively studied in recent ygdrs20]. In par-  wave patterns are affected by the strength of the interlayer
ticular, when studying fibrillation and arrythmicity in the coupling. In Sec. IV we allow imperfections in the interlayer
heart, it has been found that the appearance and interactiG@uPling restricting it to only local or pin contacts between
of spiral-like vortices giving rise to wave turbulence phe- layers. The Conclusion contains a short discussion of the
nomena breaks normal rhythmicft§—8]. In engineering, 3D  results found.
multilayer reaction—diffusion lattices have been used for in-
formation processing including information compression, Il. MODEL
|mage_recogn|t|0n, secure communication, éltS—_lS. Let us consider the following two-layer excitable lattice
Various types of waves or coherent space-time patterngyst em:
including rotating spirals, target and scroll waves can be ob- '
served in reaction—diffusion lattic¢45—23. A particularly
useful model is the FitzHugh—Nagumo reaction—diffusion
excitable medium used to mimic the dynamics of excitation 1 1
in mielinated nerve fibers, neural assemblies, heart tissues, k= Uik
etc. Although being a drastically simplified view of reality, - 5 5 5 1 5
yet it captures key features of the dynamics of the excitable  Ujx= f(Uj ) vkt d(AU)j i+ hy e(uj—uip), (1)
medium (excitation threshold, relaxational pulses or spikes,

Ujl,k: f(ujl,k) - Ujl,k+ d(Aub); + hj,k(ujz,k_ Ujl,k),

refractory period, etg. On the other hand, lattices of coupled l'),-z,k= Sujz,k,
local units or cells mimic the anatomy of biological fibers _
and slices of tissue. The heart tissue, for example, is com- j,k=12,... N,

posed of a number interacting cells suitably distributed in s . .
space. The interaction is organized with gap junctions whicl}. here superscripts “1” and "2 denpte the Vaf'ab'es O.f the
may be approximated with nearest neighboveak resistive 'St and the second layer, respectivel§w); i is the dis-
coupling. A simple model taking into account the architec-Créte Laplace operator Aw); x=wj. 1+ Wj_ 1+ Wj cis
ture of such systems may be a reaction—diffusion lattice of” Wik-1—4W;; the coefficientd accounts for the intra-
excitable cells. At variance with the continuous models “ho-'@Y€r coupling; the matrbh; , characterizes the interlayer
mogenizing” or “averaging” the system at the characteristic Intéraction. We také(w) =w(w—a)(1-w) with 0<a<1.
spatial scale of the solutions, the lattice model may take intd N® System(1) is considered with Neuman and hence non-
account “micro-inhomogeneities(of cell size orderof the  1Ux boundary conditions.
media which may lead, for example, to the phenomena of With d=0 and h;,=0, Egs. (1) reduce to a two-
wave propagation failure studied in bistable and excitablélimensional system describing the dynamics of the element,
media[24—2§. cell or unit,

In this paper we study spiral wave dynamics in a two- dz
layer lattice system of coupled FitzHugh—Nagumo elements. e—=f(2)—w,
In Sec. Il we describe the model. Then, we investigate the dr
onset and formation of spiral waves in a single layer. Atten- 2
tion is paid to the effects of the discrete inhomogeneous dw

. . — =7z
character of the medium. We introducelaal model of dr
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For convenience we have rescaled the timegst. With ¢ 0.00 002 004 006 0.08 0.10 012 0.14 0.16 018
—0 the dynamics of2) has both fast and slow features as

illustrated in Fig. 1. The system has one stable albeit excit- a
able fixed pointO at the origin. This means that for some g 2 RegionDy, of spiral wave existence in a layer of 100

finite perturbation a trajectorlj, making a long excursion in - 5 100 cells. At the boundar, the spiral wave disappears if it
the phase plane is possible. Aloilg we can define three approaches the edges of the layer an® athere is a propagation
time intervals corresponding to differe(thetastablestates failure related on the discreteness of the latti§.andD? are the

of the cell: Theexcitedstate,S,,, approximations oD, obtained with the “local model.” Parameter

values:e =0.005 anch=0.
Sex:{[z(t) 1W(t)] | Zmax<z< ZEX};

tion of (1) makes sense when the characteristic spatial scale
the refractory state,S; 1) p

of the solution is much longer than the lattice unit. Waves

Seer:{[2(1),W(1)]|Z,e<z<O0}; propagating in such medium do not “feel” the local inho-
mogeneities of the spatial architecture of the lattice. In terms

and therest state,S,, when the trajectory evolves in the of equations the ODE syste(t) can be approximated with a

neighborhood of the fixed poif®. Note, that for nonvanish- PDE equation with the 2D Laplacian.

ing although smalk, 0<e<1 the slow dynamics does not In the opposite casé<1, the solutions are very sensitive

occur exactly on the curvi(z) =w but in its neighborhood to the “micro-inhomogeneities” of the lattice. This is the

(on slow motion layers whose thickness is of orddr27]).

With h; =0 the systentl) splits in two separate layers. '®
Any of these layers, taken separately, represents a discret .
excitable medium capable of sustaining spiral waves. Typi- .
cally to excitable media we obtain spiral wave in a single eo B Excited state
layer by breaking a plane wave front. The edge of the front Rest state
starts to twist and after some time takes on a stationary mo Refractory state
tion. The parameter regioly,, for spiral wave behavior is 2
shown in Fig. 2. The profile of the spiral wave for the pa-
rameters taken far enough from the boundaries is illustratec % %% 2% & 8 10

in Fig. 3(@). The behavior of the tip of the spiral may be (a)
rather complex. Depending on parameter values it forms
various orbits in the lattice space but we shall not dwell on 44 -
this issue here.
The boundary of regiorDg,, may be split into two parts ~ ® 80

D,,D,. PartD, corresponds to the growth of the spiral core |y
as illustrated in Fig. ®). When the size of the core is about
the lattice size the spiral dies away at its boundd@y.is 0 4
associated with propagation failure caused by the discrete "
ness of the lattice. Upon approaching this boundary the spira

60

20

becomes narrowdiFig. 3(c)] and at the end stops propagat- ol | 5 oy
H 0 20 40 60 80 100
|ng_ 0 20 40 60 80 100
(b) (c)
I1l. LOCAL MODEL OF EXCITATION TRANSFER
AND FAILURE FIG. 3. Snapshots of spiral waves in a lay@).Spiral wave for

the parameter values €0.005a=0.08d=0.1) taken far from the
If the intralayer excitation is strong enougti>1, the  boundaries ofDg, (Fig. 2. (b) Spiral wave near the boundary
discrete systentl) behaves very much like a continuous D, (e¢=0.005a=0.14d=0.1) of D, (Fig. 2. (c) Spiral wave
reaction—diffusion medium. The quasicontinuum approximanear the boundar, (¢ =0.005a=0.08d=0.022) ofD, (Fig. 2.

016212-2



SYNCHRONIZATION, RE-ENTRY, AND FAILURE OF ... PHYSICAL REVIEW B3 016212

umn. From the systertl) we have
) nzr\ z
) O ¢ £2,="1(2,) — W+ d(Zn1+ Zno+ Znz + Zna— 42,),
— 3
nlr\ nr\ n4 W =Z
N \J ’ n n-
n3| where thez,; (i=1,2,3,4) denote tha variables of the four
O O 9 neighboring cells tan. When excitation reaches this catl,
we neglect(up to terms of orded?) the influence of the
three unexcited neighborg,;=2z,,=2z,3=0. At the same

(@) time we take into account the excited cel) with z.,
=Zay, I.€., with the maximum value of at the excited state
(Fig. 1). We take its value from the dynamics of the single
cell (2). It is given by the largest root of the equation

f(2) = f(Zyin) = 0.

Thus, we have reduced) to the system

> S.anF(Zn)_an

4

Wn=12,,

with F(z)=f(z)—4dz+dz,. The functionF is shifted
relative to the unperturbed casks 0, as shown in Fig. ).
As the cell is in the rest state the initial conditions fdy
must be taken in the neighborhood of the origh,Then, the
cell n will be excited if the trajectory’, exists, i.e., the cell
exceeds the excitation threshold.

Let us consider first the case=0. Then, the trajectory
I' ey exists if the inequalities

F(z4,)>0,
5
z ” itati e i 1-a+a?

FIG. 4. “Local model” of excitation transfer and failure in a - - -
layer. (a) Spatial architecture of the layer. Open and solid dots 12
correspond to the rest and excited states of the cells, respectively..
Arrows show the direction of excitation transfgh) Phase plane with
representation of the local model. The dashed trajeciggycorre-
sponds to the unperturbed cel, indicates the excitation of the ¢ (1+a)—yl-at+a’-12d
cell taken from the lattice(c) Enlarged region of the phase plane Zmin~ 3
near the rest stat®, for small nonzera<1. Two possibilities of
genuine excitationl'e,, and its failure. are satisfied. In the parameter spaaglj the inequalitieg5)

define the boundary curvB9. As we take the maximum
case we consider here and hencg we ;hall study the d.ynamiaalue of the ternd(Az,) in (3) the curveDg estimates the
of (1) near the edge of propagation failu@irve D, in Fig.  boundary of the spiral wave propagation failufég. 2. It
2). As illustrated in Fig. &) the spiral waves in this case goes below the curv®; obtained by direct numerical inte-
become very narrow. They have a squarelike shape conyration of Eqs.(1).
posed of a number of interlinked plane-wave fronts. Our aim | et us now consider a small but nonzere1. As earlier
is to construct, fod<1, a drastically reduced albeit signifi- mentioned, now the slow motions occur in thin slow-motion
cant dynamical system describing the behavior of each locahyers near the curvie(z) =w. Qualitatively the behavior of
cell of the lattice where the influence of all other cells is system(4) is illustrated in Fig. 4c). Depending on the pa-
adequately parametrized. The basic assumption for designingmeter values there are various routes of the trajectory origi-
such alocal modelis the following. As the spiral wave de- nated at pointO. The two trajectoried”, and I's, Sshown
velops the excitation state of the uni,,, is transmitted correspond to the failure of excitation and its transfer, re-

sequentiallyfrom one cell row(column to another. It is  spectively. Thus, if the trajectorl} exists in systent4),
schematically illustrated in Fig.(d) where excited and rest

cells are shown with solid and open circles, respectively. LeT:{[z(t),w(t)]|z(0)=w(0)=0, z(t)<Zpa Vt>0}
us consider the cell labeled withfrom the open circle col- (6)

016212-3



KAZANTSEV, NEKORKIN, ARTYUHIN, AND VELARDE

the excitation fails to propagate. The boundary cué§, P,
obtained with the conditioi6) is shown in Fig. 2. A rather

good qualitative and quantitative agreement with the experi-
mental curveD, can be observed.

Note, that as we take the maximum valm,, at the
excited stateS,,, of the cell what we find aresufficient
conditions for the propagation failure. For the parameters
taken in the neighborhood above the boundaiythe cellis ~ and
“less excited,” z.,=2<Z.x and the wave may fail at the

Qj k=X

2 1 2 2
j,k Z(Xj‘k+ 3ijk) - (1+ a)ijk‘l'

PHYSICAL REVIEW E 63 016212

_ 2
k= A0 kX - 1T X kX k-1) T PX] i
= d(X) X+ 1kt X)X k1) s

(1+a)?
3|

next grid of the lattice.

IV. SPIRAL WAVES IN THE TWO-LAYER
LATTICE SYSTEM
Let us first consider the syste) with uniform inter-
layer coupling, and hence ail ,=h+0.

A. Global interlayer synchronization
By changing variables

1 2

_1 B
Xj k= Uj Yik=Uj k™ Vjk>

2
ik~ Uik

+ _ 1 2
Xj'k—u]"k'f' Uj,k

the system(1) becomes
kj,k:G(Xj,er;k)_yj,k+ d(AX)j = 2hX; «,
yj,k:‘?xj,ky
| @)
XjJr,k:G+(Xj,k,X:k)_yfk+d(AX+)J’,k,
ijkzsxr,k-
with
j k=12, ...N,

G(Xj k 1Xj+,k) = f(ujl,k) - f(UjZ,k),

G (X kX ) =F(ul ) +f(u?)),

For (7), M={x; x=Y; =0} is the manifold of synchronous

1-a+a?
p=4d+2h— ————
3
Then all Q;  are positive definite and, consequently, the
quantityP=EJN’k:1Pj,k is also positive definite. Indeed, con-
sider the vectorr=(rq,r,,...,rn2), where r;=Xq1,ro»
=Xq0, . .. FN2=Xnn- Using these coordinates the function
P becomes the quadratic form

N2
— —T
P—ijzl ajrirj=r"Ar,

with a;;=a;;, the superscripl denotes the transpose and
A=|a; j|| is a square symmetriti®x N? matrix. The qua-
dratic form P will be positive definite if the eigenvalues of
the symmetric matrixA are positive[28]. Applying Gersh-
gorin theorem to the matriA we find that ifp>4d then the
union of the Gershgorin disks corresponding to the marix
is located to the right of the imaginary aXi29]. Thus, the
inequality
1-a+a?

* —
h>h*= 6 (8)

ensures the positiveness of all eigenvalues of the matrix
and, consequently, the forRis positive definite when con-
dition (8) is satisfied. Thereforey<0 holds outside the
manifold M and V=0 on the manifold, and hencé is a
Lyapunov potential function. Thus, the synchronization
manifold M is globally asymptotically stable. Accordingly,
whatever the initial conditions, all motions in the systé&n
synchronize if the parameters sati$8).

B. Interlayer reentry and synchronization

Let the initial conditions for(1) be a spiral wave in the

motions or the interlayer synchronization manifold. Let usfirst layer and the rest state in the other. Wi@nis satisfied
show thatM is globally asymptotically stable. Consider the and the interlayer couplindy, is strong enough the layers

function
N 2
Yik
= —_ 4+ _"
v él 2 2¢e
Its derivative along the flow7) is
N
V= __2 (Pj kT Qj )
j,k=1

with

synchronize and each of them exhibits a spiral wave identical
to the initial one. Note that the threshold of excitation, ac-
counted in the model by parameteris very low(Fig. 2) and

the cells of the second layer are easily excited and enslaved
by the pattern existing in the first layer. This corresponds to
a rather rigid interlayer interaction.

For values oth lower than those of regiof(8) the inter-
action becomes more “elastic” and due to the bi-directional
interlayer coupling various re-entry phenomena are possible.

In the parameter planén(d), for fixed a=0.01, four sa-
lient regions exist where the interlayer dynamics is drasti-
cally different(Fig. 5).
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FIG. 5. Boundarie$i, ,H,,H; of various outcome of the inter-
layer interaction obtained by numerical simulation of E¢E).
H3,H3,H% have been obtained with the “local model.” Parameter
values:e =0.005 anda=0.01.

(i) In the region above the curvd; the terminal(syn-
chronized patterns represent identical spiral waves with
cores slightly shifted in the lattice spadéig. 6). Thus, the
spiral wave dominates the rest state preserving all its key

.
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FIG. 7. Sequence of snapshots illustrating spiral wave re-entry
leading to the breakdown of the original stimulus in the region
between the curve#d; and H, (Fig. 5. Parameter valuess
=0.005, a=0.01, d=0.01, andh=0.045.

features(shape, period, and amplituderhe perturbation of
the spiral core shown in the sequence of snapshots in Fig. 6
is associated with the lower oscillation amplitude of the cells
at the tip of the spiral. Here the influence of the second layer
(feedback is stronger relative to all other cells and it is suf-
ficient to perturb the excited state in the first layer.

(i) In the region between the curvel andH, (Fig. 5),
as a result of the sequence of interlayer re-entries, two off-
spring wave patterns appear evolving in rather complex way
(Fig. 7). This complexity comes from the cooperative influ-
ence of intralayer collisions and interlayer excitation and in-
hibition. As earlier said, for the case of very low intralayer
take into account the micro-
inhomogeneities of the lattice architecture. As we consider
squarelike connectiong=ig. 4(a)], or four nearest-neighbor
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FIG. 8. () Sequence of snapshots illustrating spiral wave re-entry leading to the disappearance of the original stimulus in the region
between the curvebl, and H; (Fig. 5. Parameter values:=0.005, a=0.01, d=0.01, andh=0.03. (b) Corresponding sequence of
shapshots illustrating cyclic spiral wave re-entry in the region near the ddigv€arameter values:=0.005, a=0.01, d=0.01, andh
=0.01.

coupling, the wave properties are anisotropic and hence spiral wave perturbs the motionless elements of the second
squarelike rough shape of the spiral waves appg@ig. layer and forms a spiral wave shape excitation. Subse-
3(c)]. Figure 7 illustrates that, as time proceeds, in the secquently, this excitation yields two spiral waves traveling in
ond lattice a number of fronts appear and travel in the diagepposite directions. Then the two waves collide and disap-
onal direction. Then, the fronts collide with the spiral andpear. Then almost all elements of the second layer come to
disappear. The cells of the second layer come to the refratheir refractory states. Consequently, the feedback inhibits all
tory state and this inhibits their companion cells in the firstmotions in the first layer and both layers come to the rest
layer. As the result of such feedforward-feedback influencestate. However, for some parameter valyebse to the
two identical patterns appear and evolve synchronously iurve Hj) the feedback is not strong enough to inhibit mo-
the two-layer lattice system. tions in the first layer and the original spiral is preserved as
(iii) Further lowering the interlayer coupling strength, shown in Fig. 8b). We have ae-entry cycleoperating with
brings us to the region located between the cutdgsand  approximately the period of the spiral wave.
Hj (Fig. 5 where the spiral wave stimulus can disappear as (iv) Too low interlayer coupling in the region belok¥,
a consequence of inter-layer reenBig. 8a)]. At first, the  (Fig. 5 does not permit excitation in the second layer. Here
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the spiral wave is preserved evolving with slightly different
shape and period.

Note that for high enough values dfthe lattice behavior
approaches that of the continuous medium. As mentioned ir
Sec. Il the shape of the spiral becomes smodthRis. 3a)
and 3b)] and hence there is negligible spatial anisotropy.
Then, the region(ii) becomes smaller and disappears with
d>1. Such tendency can be seen in Fig. 5 where the curve
H, andH, approach each other. Further increasd ofakes
the “size” of the spiral about the size of the layers and the
outcome of the interlayer interaction becomes very sensitive
to the boundary conditions. We do not consider their influ-
ence here.

C. Local model of the interlayer reentry

Let us assume that both the intralayer and the interlayel
coupling are very wealh<1 andd<1. Then, as done for a
single layer we can qualitatively divide the evolution of sys-
tem(1) into a sequence of excitation transfer events from cell
to cell. Let us apply the local model approa@,(4),(5),(6)
with both intralayer and interlayer interactions taken into ac-
count.

(i) Let us first estimate the conditions for interlayer exci-
tation failure, i.e. the boundarii; (Fig. 5. A schematic
representation is shown in Fig(eé). Consider that a plane
wave front of excitation is propagating in the first layer while
all the cells of the second one are at rest. When the interlaye

interaction is switched-on we can approximately describe the ,r"'h_ T~
dynamics of the celh taken from the second layer by the /,’ AN
system(4) with the nonlinear function '\ /1 \\\ s L
4
F(z)=f(z)—(4d+h)z+hz,. €) N F I kY b \‘n4I
Then, fore —0 there is excitation failure when T \:F % T\‘ ;I[/'ﬁ %
F(zh.)<0,
(10 (©)
1-a+a?
(h+4d)<T’ FIG. 9. Schematic representation of excitation re-entry in inter-
acting two-layer lattice systenta) Entry of excitation to layer at
_ rest.(b) Inhibition of excitation along the longitudinal directioft)
with Inhibition of excitation along the diagonal direction.
n (1+a)- J1—a+a®—12d—3h front reaches the cells inhibited by the refractory ones of the
Zmin= 3 . first layer, it may fail to propagate. For the celin Fig. 9(b)
we have systeni) with
The inequalitieg10) define the region below the boundary F(2)=f(2)— (4d+h)z+dze+ hze, (11)

curve HJ in the parameter planéh(d) (Fig. 10. For e<1,
but nonzero, taking into account the dynamics in the slowwherez,; denotes the refractory state of the cell. We take its
motion layergFig. 4(c)] we obtain for(4) with (9) the con-  value from the dynamics of a single cé®) (Fig. 1). It is

dition (6). The boundary curvélf is shown in Fig. 10. given by the lowest root of the equation
Let the values oh be high enough to excite the second
layer. f(z2) = f(Zmay =0.

(i) When the stimulus is a plane wave front traveling in
the longitudinal direction, an excitation of identical shape inThen, the boundaries of the region for the backward travel-
the second layer splits into two parts, one proceeding foring front to be inhibited are defined k0) with (11) for &
ward synchronously with the original front and another mov-=0, and by(4) and (6) with (11) for e<1, respectively.
ing backward[Figs. 7 and &)]. As the backward moving These inequalities are satisfied above the curgsandH}
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I Excited state
Rest state
Refractory state
100 100
80 20
60 60
t=0
" 40
2 20
001 d 0.02 0.03 20 40 60 80 100 20 4 6 8 100
lﬂﬂ

tion failure in a single layer the cell at res{Fig. 9b)] tends
to be excited by the neighboring cells of its own layeith
the “strength” accounted byl) and to be inhibited by the
corresponding refractory cell from the first lay@ccounted 100 100
by h). Hence, the curvél, gives a criticalh/d ratio above

100
FIG. 10. “Local model” prediction for the excitation inhibition 00
in the parameter planeh(d) for e=0, HY,H3,HS (solid lines, % 5 o -
and fore =0.005, Hj,H5,H3 (broken line$. =70 © 60
W 4 20
shown in Fig. 10. At variance with the case of local excita- ? a O
20 20

20 40 60 80 100 20 40 60 80 100

80

which only a forward travelingsynchronizeg front appears
in the second lattice. =210 %
(iii) Let us consider the wave front propagating in a diag- %
onal direction. As in caséii) we have for the celh [Fig.
9(c)] system(4) with 2 20
F(z)=f(z)— (4d+h)z+2dz,+ hze. (12 2% e 0o %%
100 100
Then, the regions of excitation failure in the diagonal direc- % N W o o °
tion are defined by10) with (12) for =0 (above the curve -
H?) and by(4) and (6) with (12) for e<1 (above the curve (=340 © « -
H?), respectively. ) " OO ’
As in the previous case the curkh provides the relation % » o 0
between the interlayer and intralayer coupling above which o O
only a synchronized front is possible in the diagonal direc- 0 4 6 8 100 - 0 4 6 80 100

tion. The spiral wave for smadl [Fig. 3(c)] may be qualita-
tively divided into a number of plane fronts traveling in the ~ FIG. 11. Sequence of snapshots illustrating the outcome of ill-
longitudinal (horizontal or vertical direction “intercon-  functioning interlayer synchronization obtained with coupling ma-
nected” with “portions” propagating in the diagonal direc- trix h;x with A=15. Parameter values:=0.005, a=0.01, d
tion. Hence, above the cunié, there is synchronization in =0.03, anch=0.06.
both directions and we end up with synchronized spirals
(Fig. 6). Between the curve$i; and H, the “diagonal”  d~0.015. For lower values af the outcome of the system is
synchronization fails and there is a sequence of re-entriegave patterns like those shown in Fig. 7.
breaking the original spirdFig. 7). BelowH, we obtain the
backward traveling spiral wave of continuous shépig. 8).

To compare the results predicted with the local model V. RAREFIED INTERLAYER CONNECTIONS
with data obtained With the. numerical integratipn of E(s. In problems where lattice dynamics may have an applica-
we put them together in Fig. 5. The curvil§ give a very iion Jike in the study of heart fibrillation and failure there are
good approximation of the boundariét for low enough  ajways domains, sites or bonds, which are ill-functioning or
values ofd andh. Note, that the curvesl; andHj intersect  proken. Dynamically, such domains are not capable to pro-
when d=dj . Thus, ford<dj for all values ofh taken vide a proper transfer of excitation in the tissue. Let us now
above the curvéi§ the original spiral wave cannot be com- study how such rarefied coupling affects the synchronization
pletely destroyed in the collision of the two secondary spiralsand wave pattern replication processes when some dgnds
with opposite “charges’[Figs. §a) and &b)]. This phenom- are ill-functioning or broken.
enon is verified numerically as the curt, ends up with Let now h; , be defined in the matrix form

016212-8
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N VI. CONCLUSION

hj = > hoajr i Oakr ko
'/'k/

J We have studied salient features of the dynamics of a

two-layer discrete FitzZHugh—Nagumo reaction—diffusion ar-
chitecture. After finding, for a single layer, the region of
j,k=12,...N, existence of spiral waves, we have analytically predicted and
numerically obtained the boundary of wave propagation fail-
ure originated in the discreteness of the medium. Then for
whereA=1,2,3 ... denotes the spatial coupling grid aAd the system composed of two interacting such layers we have
is Kroneker symbol. Wher is much smaller than a char- investigated the processes of spiral wave synchronization,
acteristic space scale of the initial spiral wave, which deJe-entry and failure. We have identified some re-entry loops
pends ord, the interlayer interaction occurs as with a homo-Of excitation transfer fr_om layer to I_ayer resu_ltlng in the dis-
geneous coupling. The increase/ofeads to the destruction aPpearance of the spiral wave or Its breakln_g Into a seem-
of the initial spiral wave even for high valueslafAlong the ingly com_plex wave pattern. The |nt<_arlayer.|nteract|on al-
well-functioning sites the excitation is transferred to theIOWS a spqul wave stimulus to be replicated in a}nother Iaygr
layer at rest where it may yield a sequence of target wave@l €St Or yields a complex wave pattern breaking the origi-
(Fig. 11). Then, those target waves interfere in some com—nal( normal” ) rhythmlc_lty of the system, or it can be com-
plex way creating a new wave pattern. As shown in Fig. 11Pletely destroye_d bringing all cel!s to the rest state. As ex-
collisions may create large areas or clusters of cells in tthCted’ the .splral—wave dynamics na two-layer Ila}tnce
refractory state. At variance with the homogeneous fisp system drasuca]ly depe.nds on the m|cro—|.nhomogene|t|es of
7(a)] the feedback from such cells cannot inhibit the original € discrete lattice architecture and its anisotropy.
spiral wave in the first layer. The feedback is transferred
through a scarce number of well-functioning sites and hence
only locally the spiral wave is perturbed. Subsequently, the This research has been supported by the BBV Foundation,
wave recovers its form. Note, that when, for example, therdyy the Russian Foundation for Basic Research under Grant
is a large cluster of well-functioning sites, the feedback mayNo. 00-02-16400(Russia, and by DGICYT (Spain under
destroy the original spiral. We do not consider this case hereGrant No. PB96-0599.
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