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Logistic map with a delayed feedback: Stability of a discrete time-delay control of chaos
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The logistic map with a delayed feedback is studied as a generic model. The stability of the model and its
bifurcation scheme is analyzed as a function of the feedback amplitude and of the delay. Stability analysis is
performed semianalytically. A relation between the delay and the periodicity of the orbit, which explains why
some terms used in chaos control are ineffective, was found. The consequences for chaos control are discussed.
The structure of bifurcations is found to depend strongly on the parity and on the length of the delay. Boundary
crisis, the tangent, the Neimark, as well as the period-doubling bifurcations occur in this system. The effective
dimension of the model is also discussed.
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I. INTRODUCTION

In recent years a growing interest in delayed equatio
both differential @1–8# and difference@9–12#, may be ob-
served. They not only offer new modeling possibilities b
also give efficient methods of chaos control requiring nea
no a priori knowledge about the controlled system~TDAS
@13#, ETDAS @14#, as well as their various extensions@15–
18#!. However a number of open problems still exists in th
area. One of them, the aim of this paper, is to show how
introduction of the delay alters the properties of the ph
space of a simple discrete dynamical system. As the d
introduces new dimensions to the phase space of the sys
the question arises does it affect also the effective dim
sionality of the system? Note also that, as pointed out by
@19#, for an irreversible discrete system introducing new
mensions to the system~as done by means of the delay term!
enables reversibility. The boundary between the one
two-dimensional systems has already been studied in
Henon map@20#, which may be considered a form of delaye
logistic map~see below!.

Another problem of interest is the theoretical descript
of the methods of chaos control by delayed feedback
particular, in relation to the TDAS and ETDAS chaos cont
methods, how does the stability range depend on the d
length and the feedback amplitude and what may actually
the mechanism of the chaos control by delayed feedb
@21–26#?

As the base map, we used the logistic map@27# but the
model of the one-dimensional map with delay used her
generic.

The organization of the paper is as follows. Section
introduces the delayed systems, cites known results a
them, and poses some questions. Section III describes
system and the way in which stability analysis was p
formed. The results of the numerical stability analysis
presented and discussed in Sec. IV. Section V shows
results interesting for chaos control. Section VI is devoted
the problem of the effective dimension of the syste
whereas Sec. VII contains the conclusions.

*Electronic address: buchner@if.pw.edu.pl
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II. MEMORY IN DYNAMICAL SYSTEMS

Typically, in dynamical systems, we assume that the s
of the system at the momentt1dt depends only on its stat
at the momentt, i.e., that all causes have an instantaneo
effect. This condition seems to be met in a large numbe
systems that may be described by differential equations.
problems arise if we have a system in which:~1! the infor-
mation is fed back with a measurable delay, e.g., due to
spatial extensiveness of the system and the finite velocit
propagation of information, and~2! the characteristic times
cale of the system is smaller than the delay time so that
cannot simply model all the changes as instantaneous.
delayed equations were used for modeling purposes in op
@1,2#, chemistry@3#, and biological systems@4,5#. Also in a
number of problems of statistical physics, the so-called s
tems with memory emerge as important and yet directly
solvable~see Ref.@9# and references therein!.

Apart from modeling, time delays are used in differe
applications. A delayed feedback loop is used in digital fil
design@28#. As negative feedback without a delay is able
stabilize the system in control engineering~e.g., Ref.@29#!,
the control of chaos by the delayed feedback@13–18# seems
a natural extension. In the analysis of the stability of cha
control discrete maps have been used as test cases for
simplicity @30#.

In continuous-time systems, the delay formally introduc
an infinite number of dimensions@31#. The dimension of the
attractor@32# is, however, finite and rises linearly with th
delay@31,33#. On the other hand, the metric entropy, being
measure of the complexity of the system, is nearly a cons
function of the delay time@31,33#. Also the largest Lyapunov
exponent is an exponentially decreasing function of the de
time @31#. So what actually is the effective dimension of th
system? Is it rising linearly with the delay—as the dimens
of the attractor does, or is it constant—as indicated by
constant entropy?

In discrete-time systems, the number of dimensions
equal to the length of the delay@9# so the phase space of th
system may be formally high dimensional but finite. Th
makes calculation of the Lyapunov exponents much easie
seems that a delayed discrete system, being much simpl
©2000 The American Physical Society10-1
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T. BUCHNER AND J. J. Z˙EBROWSKI PHYSICAL REVIEW E63 016210
analyze, provides a good model to resolve these contra
tions.

As the delayed feedback may serve as a method of ch
control, does it really increase the effective dimension of
system? As pointed out by Chen@34#, the delayed feedbac
introduced for the suppression of chaos indeed introdu
unwanted new bifurcations, typical for multidimensional sy
tems~e.g., Neimark bifurcation@35,11,36#!. However, as we
look at the delayed systems from the point of view of cha
control, the feedback seems to act rather as a stabilizing
tor than as new degrees of freedom.

III. THE MODEL AND ITS STABILITY

A. Description of the model

We implement the memory term into the logistic map
the form of an additional ‘‘echo type’’ feedback loop:

x~n11!5~12K ! rx~n! @12x~n!#1Kx ~n2k!, ~1!

whereK is the feedback amplitude andk is the delay length.
This way of introduction of the delayed term seems the m
general.

The map~1! may be formally expanded@9# to a set of
D5k11 coupled equations spanningD-dimensional phase
space:

x1~n11!5~12K ! rx1~n! @12x1~n!#1Kx2~n!,

x2~n11!5x3~n!,
~2!

¯

xk11~n11!5x1~n!.

Note that only in one ofD dimensions the variablex1
undergoes nonlinear stretching and folding. The other v
ablesx2 to xk11 are simply mapped onto one another. This
equivalent to a rotation around the axisx1 of the coordinate
system. The change of variables:j52x121 andh5Kx2 ,
for k equal to 1, transforms Eq.~2! to the Henon map.

As the delayed system is a multidimensional system,
stead of the one initial condition, a vector should be int
duced@31#. If the system were multistable, the choice of t
initial condition would be important. The multistability of
certain type of delayed map was indeed reported@12# but for
the equation studied here it has not been shown so far.

The fixed-point solutions of Eq.~2! are the same as for th
nondelayed logistic map: a nontrivial one atx1* 5x2* 51
21/r and a trivial one atx1* 5x2* 50. The Jacobi matrix has
the simple form

J~r ,K !53
b~r ! K 0 ... 0 0

0 0 1 ... 0 0

0 0 0 .. 0 0

... ... ... ... ... ...

0 0 0 ... 0 1

1 0 0 ... 0 0

4 . ~3!
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As det(J)5K the system is dissipative foruKu,1. The
interesting case ofuKu.1 when the system expands in pha
space will not be discussed in this paper@37#. Note that the
dissipation rate of the system depends only on the feedb
amplitudeK—not on the parameters of the map itself. No
also that a matrix with zeros on the main diagonal and o
on the next diagonal is a rotation operator.

For x15x1* the parameterb(r ) is given by

b~r !5
d f1

dx1
U5~22r !~12K !. ~4!

If different maps as well as the TDAS control scheme we
used only the functionb(r ) would change.

The characteristic equation is of the orderD:

~l2b!lk2K50. ~5!

Exact analytical solution of Eq.~5! exists only fork50 and
k51, i.e., for the Henon map. For higher values of the de
k, Eq. ~5! must be solved numerically. One special case
b5(K21), when for oddk, Eq. ~5! is satisfied byl521,
will be mentioned below. As the coefficientsb and K are
real, the eigenvalues are real or complex-conjugate pa
The free term of the characteristic equation is related to
product of the eigenvalues@38#:

~21!D)
i 51

D l i5K. ~6!

Knowing that the Lyapunov exponents in the direction of t
eigenvectors are defined as lnuliu @39# and putting l
5ulueiw into Eq. ~6!, we derive

(
i 51

D

lnul i u1 i(
i 51

D

w i5 ln@~21!DK#. ~7!

Note thatK in the right-hand side of Eq.~7! may also be
negative, which may be put into Eq.~7! asK5uKueip; then
Im(ln K)5p. From the real part of the left-hand side of E
~7! we see that the sum of Lyapunov exponents is equa
lnuKu and is not dependent on the delayk. From the imagi-
nary part of Eq.~7! we conclude that

(
i 51

D

w i5 H05⇒~21!D K>0
p⇒~21!D K,0. ~8!

This implies the existence of two types of solutions of E
~5!. Note that the parity of the delay has emerged as
important parameter of the system. The change of the pa
of the delay is in some sense equivalent to the change of
sign of the feedback.

B. Stability conditions

For k.4 the logistic map undergoes a global bifurcatio
namely, boundary crisis asf (0.5).1. By assuming that Eq
~1! for x(n)50.5 should be less than or equal to 1, a
neglecting x(n2k) we obtain the following approximate
global stability constraint:
0-2
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LOGISTIC MAP WITH A DELAYED FEEDBACK: . . . PHYSICAL REVIEW E63 016210
r<
4

12K
. ~9!

Better approximations may be obtained by settingx(n2k) to
xmin ~the minimumx for a given r!. Requiring that Eq.~1!
should be greater than or equal to 0, we find a rather un
pected constraint that the system is stable for all posi
feedbacksK>0 @40#. For K,0, for all values ofr, there
exists a region ofx for which the image ofx is negative and
the boundary crisis occurs.

IV. RESULTS OF THE STABILITY ANALYSIS

We have verified numerically that the structure of the n
merical solutions of Eq.~5! is different for even and for odd
values of the delay lengthk. The behavior of the larges
eigenvalue for even delays and forK.0 is the same as tha
for K,0 and odd delays, as implied by Eq.~8!. The same
holds also for odd delays withK.0 and even delays with
K,0.

We repeated our calculations also for the TDAS meth
of chaos control and found them qualitatively identical
those presented above.

A. Properties of eigenvalues for even delays

A typical dependence of the eigenvalues on the con
parameterr for an even delayk510 ~note that in this caseD

FIG. 1. The modules of eigenvalues~a! and bifurcation diagram
~b! as function of the parameterr for even delayk510 andk512
~inlay!, K50.1.
01621
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is odd! is shown in Fig. 1~a! with the corresponding bifurca
tion diagram@Fig. 1~b!#. The insets present a blowup of th
vicinity of the point of the first period doubling fork512.
The results, presented here forK50.1, are generic for all
K.0.

For r ,3.2 there exists a real eigenvalue andk/2 complex-
conjugate pairs. Forr'3.2 a tangent bifurcation takes plac
in which a pair of complex-conjugate eigenvalues is co
verted into a pair of real eigenvalues. When the parametr
increases further, the modulus of one of these real eigen
ues exceeds 1, which is a period-doubling bifurcation, a
asr→4, asymptotically reachesub(r )u @marked as the dotted
line in Fig. 1~a!#. For the nondelayed map, i.e., forK50, the
regime of stability of the fixed-point solution ends atr
53.0. Thus the stability region of that solution has be
extended by the delayed feedback.

The above described bifurcation scenario is valid for
evenk<10.

For k.10 and even, the pair of the complex-conjuga
eigenvalues crosses the unit circle before the tangent b
cation occurs and a Neimark bifurcation takes place,
shown fork512 in the inset in Fig. 1~a!. Then, asr increases
further, the quasiperiodic state resulting from Neimark bifu
cation @broadening dark region in inset of Fig. 1~b!# looses
stability and a period 2 orbit is found.

For different values ofK the Neimark bifurcation at the
point of the first period-doubling bifurcation occurs at diffe
ent values of the threshold delay. This threshold delay,
noted askN , may be determined from the observation of t
bifurcation diagrams. Figure 2 shows the dependence okN
on K for even delays andK.0. Using the terms with
k.kN with the feedback amplitudeK too large may intro-
duce instability in chaos control. Fortunately in the ETDA
scheme@14# the terms with larger delays have smaller a
plitudeK so the impact of the above-mentioned effect on
stability is diminished.

For k slightly belowkN and r in the neighborhood of the
point of the first bifurcation, an extremely long quasiperiod
transient of the order of 10 000 iterations appears.

B. Properties of eigenvalues for odd delays

A typical dependence of the eigenvalues on the con
parameterr for odd values ofk is shown in Fig. 3~a! with the

FIG. 2. The threshold delay for Neimark instabilitykN as a
function of K for even delay.
0-3
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corresponding bifurcation diagram@Fig. 3~b!#. For all r there
now exists a pair of real eigenvalues and (D22)/2 complex-
conjugate pairs. At a critical value ofr 53.0, the modulus of
one of the real eigenvalues exceeds 1 and tends to infi
along the skew asymptoteub(r )u. The locus of the critical
point does not depend on the value ofK, as shown in the
inset in Fig. 3~a!.

Presence of the Neimark bifurcation at the points
higher-order period-doubling bifurcations@Figs. 1~b! and
3~b!# for some values of the delay length seems to be g
erned by some simple rules that may be deduced from
observation of bifurcation diagram. For instance the Neim
bifurcation is inhibited in thenth period doubling ifD is a
multiple of 2n.

C. Mechanisms of instability and structure of the phase space

We have found the results of the linear stability analy
of a fixed-point solution in good agreement with the pha
diagrams of the delayed map. Let us look at the followi
example.

Figure 4 depicts the phase diagram of the delayed m
~part a! and the eigenvalue of the largest modulus, denote
l, ~part b!—in the variables (K,r ) for k51. The fill patterns
in Fig. 4~a! distinguish the regions of: instability~white!, the
fixed point, the period 2, 4, 8, and 16 solutions~different
patterns!, and chaos or solutions with a period larger th
128 ~black!. The vertical line atK50 marks the case of no

FIG. 3. The modules of eigenvalues~a! and bifurcation diagram
~b! as functions of the parameterr for odd delayk513, K50.1.
Inlay presents the largest eigenvalue in the vicinity of the criti
point for K50.1, 0.3, 0.4, andK50.5.
01621
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delay. As the parameterK increases, if the upper range o
stability of any solution moves towards larger values ofr ~as
for period 2 solution!, the stability region of that solution is
extended. The white regions for negativeK are the regions of
the boundary crisis. The diamonds mark the approxim
boundary of one of these regions given by Eq.~9!. It may be
seen that the stability boundary in Fig. 4~a! exceeds the
rough approximation given by Eq.~9!. In Fig. 4~b! the solid
lines are the contours of constantl.

The shape of the stability region of a fixed-point solutio
as seen in Fig. 4~a! is a result of two independent mech
nisms:

~i! The first mechanism of instability is the local perio
doubling bifurcation atr 53 @lower bound of the white re-
gion in Fig. 4~b!#. We may refer to this effect as a loss o
local stability.

~ii ! The second mechanism is such that the solution
locally stable but due to the boundary crisis the whole attr
tor becomes unstable@upper- and lower-left corner in Fig
4~a!#. This may be called a loss of global stability.

Those two mechanisms are quite independent. Local
bility is more sensitive to changes of the delay timek. The
global stability depends mainly on the properties of the n
delayed map function.

Note that the only way in which the exact form of th
delayed map~1! affects the eigenvalues is through the fun
tion b(r ). So for any one-dimensional map, the structure
the Jacobi matrix remains the same. Thus one may ex
that the results obtained here are representative for a w
class of iterated maps and the effects found here may als
found for other systems. A convincing example is that, wh

l

FIG. 4. The phase diagram of the delayed map~a! and the ei-
genvalue of the largest modulusl in variables (K,r ) ~b! for the
delayk51. In ~a! gray denotes the period 1 solution while slash
and crosshatched denote period 2 and period 4 solutions, res
tively. White color means instability whereas black is for hig
periodic or chaotic solutions. In~b! in the white regionl.1 or
l,21. In the back-slashed regionslP@0,1#. In the gray regions
lP@21,0#. The boundary of tangency crisis is marked as d
monds in both parts.
0-4



on
e
a

e

in
e
th
y
in
s

p

n
o

ou

is
tic

n

odd
ri-

as-

of
rate
at
or-

the
d 2
r
e-

lays
ve
the

od
f

ac-

ile
e

le

as

LOGISTIC MAP WITH A DELAYED FEEDBACK: . . . PHYSICAL REVIEW E63 016210
the TDAS type control, which changes only the functi
b(r ), was compared with the echo type feedback, used h
no qualitative difference between the stability ranges w
found.

As may be seen in Fig. 4~a! the period-doubling cascad
is present regardless of the value ofk. The presence of the
delay changes only the locus of the stability limits of certa
solutions of Eq.~1!. Also the shape of the boundary of th
global bifurcation regions are approximately constant as
delay timek changes~see Fig. 5!. In this sense we may sa
that the qualitative properties of the phase space are reta
in the presence of the delay. A symbolic dynamics analy
of this effect is being developed@41#.

V. STABILITY OF THE CHAOS CONTROL

Figure 5 depicts the phase diagrams of the delayed ma
the variables~K,r! for k52 ~part a!, k54 ~part b!, k53 ~part
c!, andk55 ~part d!. The most interesting effect visible i
Fig. 5 is a pinning of the boundary of stability of some s
lutions. Namely, for odd delaysk, if D5k11 is a multiple
of the period of the orbit of even period 2n, the onset of the
stability range for this orbit is constant regardless of the c
pling strengthK @arrows in Fig. 4~a! and Figs. 5~c! and 5~d!#.
Thus the stability range of the periodic orbit of periodn
cannot be extended.

The reason for the pinning of the fixed-point solution
that, for b(r )5(K21) and odd delays, the characteris

FIG. 5. The phase diagram of the delayed map in variab
(K,r ) for the delayk52 ~a!, k54 ~b!, k53 ~c!, and k55 ~d!.
Arrows mark pinned boundaries of stability. All other markings
in Fig. 4~a!.
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equation~5! has the solutionl521. The constant limit of
stability is the locus of points that satisfy the conditio
b(r )5(K21) @see Fig. 4~b! and inset in Fig. 3~a!#. For a
fixed point this condition is fulfilled forr 53.

The consequence of pinning is such that the delays of
length are not suitable for stabilizing the orbits of even pe
odicity. For even delays and orbits of a period-doubling c
cade, for eachr there exists suchK for which the desired
orbit is stable. Thus in the ETDAS scheme@14#, if only the
even delays were taken into account, the stability region
the orbits of even periodicity as well as the convergence
could be improved. From this it may be conjectured th
properly chosen odd delays extend the stability range of
bits of odd periodicity.

Figure 6 shows the phase diagram in the variables (k,r ),
for constant couplingK50.1. It may be seen that forr
.3.5 only the even delays extend the stability region of
period 2 solution. Note, that also the onset of the perio
solution occurs at different values of the control parameter
for odd and for even delays. The black elliptic region b
tween the period 1 and period 2 solutions for the even de
is the Neimark bifurcation region. The regular square-wa
structure seen near the onset of chaos is the result of
Neimark bifurcations at the points of higher-order peri
doubling~as in Fig. 3! and of the low horizontal resolution o
the plot.

VI. EFFECTIVE DIMENSION

There is no strict measure of the dimension of the attr
tor based on the Lyapunov exponents@32#. The Kaplan-
Yorke dimension is proved to give the upper bound, wh
the lower bound is given by the number of positiv
Lyapunov exponents of the system~Lyapunov dimension!
@32#. Figure 7 shows the Kaplan-Yorke dimensiondKY
Lyapunov dimension dL , standard deviation of the
Lyapunov dimensiondL , and metric entropyh, calculated
along the trajectory of the system forr 54.0 andK50.1 as a
function of the dimension of the phase spaceD. Linear fit

s

FIG. 6. The phase diagram of the delayed map in variables (k,r )
for K50.1. All markings as in Fig. 4~a!.
0-5
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gave the slope equal to 0.97260.002 for dKY and 0.51
60.01 for dL . Thus the dimension of the attractor inde
grows linearly, however slower than the dimension of t
phase space. Note also that the growth ofdL is nonmono-
tonic. The similar nonmonotonic growth ofdL was also re-
ported for the Mackey-Glass equation@31#. This might sug-
gest a nonmonotonic growth of the dimension of t
attractor.

The standard deviation ofdL was calculated as the mea
sure of the inhomogenity of the attractor. It grows linear
although nonmonotonically, with slope equal to 0.0
60.006, slightly faster than the entropy. Thus for larger d
lays, in certain regions of the attractor, the dynamics
comes highly dimensional, with a number of unstable dir
tions, whereas in other regions it remains relatively lo
dimensional.

The metric entropyh is nearly a constant function of th
delay time, approximately equal to 2, with the rate of grow
equal to 0.02460.002. Metric entropy is a measure of com
plexity or strength of nonlinearity of the system. It is defin
as the sum of positive Lyapunov exponents: i.e., the total
of expansion along all of the unstable directions@31#. Ac-
cording to Eq.~7!, the sum of all Lyapunov exponents
constant, dependent only onK. Thus also the sum of nega
tive Lyapunov exponents grows at the same rate as the
tropy. The growing rate of expansion along the unstable

FIG. 7. The Kaplan-Yorke dimensiondKY ~upper curve!,
Lyapunov dimensiondL ~middle curve!, standard deviation ofdL

~lower curve!, and the metric entropyh ~bold curve! for r 54.0 and
K50.1 as the function of the dimension of the phase spaceD.
s.
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rections is compensated by the growing rate of contrac
along the stable directions.

One may argue if the system is characterized better by
dimension or by its complexity. But it seems reasonable
state that the effective dimension of the delayed equatio
lower than the dimension of the attractor, as the rising
mension of the phase space does not enlarge the initial c
plexity of the underlying nondelayed system.

VII. CONCLUSIONS

Linear stability of the delayed logistic map was analyze
The results are generic for one-dimensional delayed map

A pinning of the stability onset of periodic orbits for od
delays was found. It is a result of certain properties of
characteristic equation. Consequently the enhancement o
ETDAS method of chaos control was proposed.

The model studied exhibits a bifurcation structure th
depends on a combination of the parity of the delay and
sign of the feedback. The Neimark bifurcations at the poi
of period doubling may take place for the lengths of t
delay larger than a threshold value. This threshold value
pends on the amplitude of the feedback. The Neimark bif
cation may also appear at the points of higher period d
bling.

Global and local stability of the delayed system was st
ied. Global stability depends more on the properties of
phase space of the nondelayed map than on the properti
the delay itself. Stability conditions for global stability wer
found. The properties of the phase space, such as the
tence of the period-doubling cascade and the shape of
region of the boundary crisis, are retained in the presenc
the delay.

It was found that the dimension of the attractor gro
linearly, however this growth may be nonmonotonic. Al
the inhomogenity of the attractor rises as there appear
gions of a large number of unstable directions. The introd
tion of the delay embeds the system into the multidime
sional phase space and extends the region of stable solut
as well as enlarges the number of unstable directions for
chaotic trajectories. However, the effective dimension of
system is lower than the dimension of the attractor as
introduction of the delay does not enlarge the strength
nonlinearity of the system.
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