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Logistic map with a delayed feedback: Stability of a discrete time-delay control of chaos
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The logistic map with a delayed feedback is studied as a generic model. The stability of the model and its
bifurcation scheme is analyzed as a function of the feedback amplitude and of the delay. Stability analysis is
performed semianalytically. A relation between the delay and the periodicity of the orbit, which explains why
some terms used in chaos control are ineffective, was found. The consequences for chaos control are discussed.
The structure of bifurcations is found to depend strongly on the parity and on the length of the delay. Boundary
crisis, the tangent, the Neimark, as well as the period-doubling bifurcations occur in this system. The effective
dimension of the model is also discussed.
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I. INTRODUCTION Il. MEMORY IN DYNAMICAL SYSTEMS

o . . Typically, in dynamical systems, we assume that the state
In recent years a growing interest in delayed equauonsc.)f the svstem at the mometit dt depends onlv on its state
both differential[1-8] and differencg9—-12], may be ob- y P y

. g at the moment, i.e., that all causes have an instantaneous
served. They not only offer new modeling possibilities but ffect. This condition seems to be met in a large humber of
also give efficient methods of chaos control requiring nearl ' . . large nu
no a priori knowledge about the controlled systdifDAS systems thaf[ may be described by dnfferenf[lal equgtlons. But
[13], ETDAS [14], as well as their various extensiofs— prol_)lem_s arise if We_have a system in whi¢h) the infor-
18]). However a number of open problems still exists in thismation is fed back with a measurable delay, e.g., due to the
area. One of them, the aim of this paper, is to show how thspatial e>_<ten5|v_eness of the system and the f|n_|te_ vglocny of
introduction of the delay alters the properties of the phas®ropagation of information, an®) the characteristic times-
space of a simple discrete dynamical system. As the delagale of the system is smaller than the delay time so that we
introduces new dimensions to the phase space of the systegfnnot simply model all the changes as instantaneous. The
the question arises does it affect also the effective dimendelayed equations were used for modeling purposes in optics
sionality of the system? Note also that, as pointed out by Oti1,2], chemistry[3], and biological systemg4,5]. Also in a
[19], for an irreversible discrete system introducing new di-number of problems of statistical physics, the so-called sys-
mensions to the systefas done by means of the delay t¢rm tems with memory emerge as important and yet directly un-
enables reversibility. The boundary between the one andolvable(see Ref[9] and references thergin
two-dimensional systems has already been studied in the Apart from modeling, time delays are used in different
Henon mag20], which may be considered a form of delayed applications. A delayed feedback loop is used in digital filter
logistic map(see below. design[28]. As negative feedback without a delay is able to

Another problem of interest is the theoretical descriptionstapilize the system in control engineerifeyg., Ref.[29]),
of the methods of chaos control by delayed feedback. Iqne control of chaos by the delayed feedbft8—18 seems
particular, in relation to the TDAS and ETDAS chaos controly patyral extension. In the analysis of the stability of chaos,

methods, how does the stabi!ity range depend on the delay, o) giscrete maps have been used as test cases for their
length and the feedback amplitude and what may actually b implicity [30]

the mechanism of the chaos control by delayed feedbac In continuous-time systems, the delay formally introduces

[21-2§7? Lo ; . ) :
As the base map. we used the ogistio rfag] butthe 20 TR T e i the
model of the one-dimensional map with delay used here Idelay[31,33. On the other hand, the metric entropy, being a

generic. ) .
The organization of the paper is as follows. Section |jmeasure of the complexity of the system, is nearly a constant

introduces the delayed systems, cites known results aboffnction of the delay timg31,33. Also the largest Lyapunov
them, and poses some questions. Section Il describes tif&PONent is an exponentially decreasing function of the delay
system and the way in which stability analysis was Ioer_tlme[31]. So what actually is the effective dimension of this
formed. The results of the numerical stability analysis aresystem? Is it rising linearly with the delay—as the dimension
presented and discussed in Sec. IV. Section V shows thef the attractor does, or is it constant—as indicated by the
results interesting for chaos control. Section VI is devoted teconstant entropy?
the problem of the effective dimension of the system, In discrete-time systems, the number of dimensions is
whereas Sec. VII contains the conclusions. equal to the length of the deld9] so the phase space of the
system may be formally high dimensional but finite. This
makes calculation of the Lyapunov exponents much easier. It
*Electronic address: buchner@if.pw.edu.pl seems that a delayed discrete system, being much simpler to
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analyze, provides a good model to resolve these contradic- As det()=K the system is dissipative fdiK|<1. The

tions. interesting case dK|>1 when the system expands in phase
As the delayed feedback may serve as a method of chaapace will not be discussed in this papav]. Note that the

control, does it really increase the effective dimension of thelissipation rate of the system depends only on the feedback

system? As pointed out by Ch¢g4], the delayed feedback amplitudeK—not on the parameters of the map itself. Note

introduced for the suppression of chaos indeed introduceslso that a matrix with zeros on the main diagonal and ones

unwanted new bifurcations, typical for multidimensional sys-on the next diagonal is a rotation operator.

tems(e.g., Neimark bifurcatiof35,11,38). However, as we For x,=Xxj the parameteb(r) is given by

look at the delayed systems from the point of view of chaos

control, the feedback seems to act rather as a stabilizing fac- _dfy
tor than as new degrees of freedom. b(r)—d—xl =(2-1(1-K). )
11l. THE MODEL AND ITS STABILITY If different maps as well as the TDAS control scheme were
o used only the functio(r) would change.
A. Description of the model The characteristic equation is of the ordzr
We implement the memory term into the logistic map in (A=b)AK=K =0, )

the form of an additional “echo type” feedback loop:

_ _ _ Exact analytical solution of Eq5) exists only fork=0 and
X(n+1)=(1=K)yrx(m [1=x(m]+Kx(n=k), (D) k=1, i.e., f>c/)r the Henon map.qFor higher vglues of the delay
whereK is the feedback amplitude atds the delay length. k. EQ. (5) must be solved numerically. One special case of

This way of introduction of the delayed term seems the mosP=(K—1), when for oddk, Eq. (5) is satisfied byx = —1,

general. will be mentioned below. As the coefficientsand K are
The map(1) may be formally expandefP] to a set of real, the eigenvalues are real or complex-conjugate pairs.

D=k+1 coupled equations spannim@dimensional phase The free term of the characteristic equation is related to the
space: product of the eigenvalud88|:

X1(N+1)=(1—=K) rxy(n) [1—x;(n)]+Kxx(n), (-1)°TID A =K. (6)
i=1

Xo(N+1)=X3(Nn),
2) Knowing that the Lyapunov exponents in the direction of the
eigenvectors are defined as|Njh [39] and putting A
=|\|e'¢ into Eq.(6), we derive
Xk+1(N+1)=x4(N). b b
Note that only in one oD dimensions the variablg, Z«l |n|7\i|+'24l @i=In[(—1)°K]. )
undergoes nonlinear stretching and folding. The other vari-
ablesx; to X1 are simply mapped onto one another. This isNote thatK in the right-hand side of Eq7) may also be
equivalent to a rotation around the axis of the coordinate negative, which may be put into E¢f) asK=|K|e'™; then
system. The change of variables=2x;—1 and n=KX,,  Im(InK)=. From the real part of the left-hand side of Eq.
for k equal to 1, transforms E@2) to the Henon map. (7) we see that the sum of Lyapunov exponents is equal to

As the delayed system is a multidimensional system, inin|K| and is not dependent on the deleyFrom the imagi-
stead of the one initial condition, a vector should be intro-nary part of Eq(7) we conclude that

duced[31]. If the system were multistable, the choice of the
initial condition would be important. The multistability of a D 0==(-1)PK=0
certain type of delayed map was indeed repofted] but for Z ¢~ 7= (—1)°PK<0. 8
the equation studied here it has not been shown so far. =1

The fixed-point solutions of Eq2) are the same as for the s implies the existence of two types of solutions of Eq.
nondelayed logistic map: a nontrivial one 8f=x3=1  (5) Note that the parity of the delay has emerged as an
—1/r and a trivial one aky =x3 =0. The Jacobi matrix has important parameter of the system. The change of the parity
the simple form of the delay is in some sense equivalent to the change of the
- sign of the feedback.

[b(r) K 0
0 0 1 B. Stability conditions
6 0 o . 0 O For k>4 the logistic map undergoes a global bifurcation,
I(r.K)= T 3 namely, boundary crisis &€0.5)>1. By assuming that Eq.
(1) for x(n)=0.5 should be less than or equal to 1, and
0 0 0 1 neglectingx(n—k) we obtain the following approximate
1 0 0 .. 0 Q0 global stability constraint:
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FIG. 2. The threshold delay for Neimark instabiliky as a
function of K for even delay.
is odd is shown in Fig. 1a) with the corresponding bifurca-
o k=12 tion Q|agram[F|g.. 1(b)]. The.lnsets present a blowup of the
= vicinity of the point of the first period doubling fdk=12.
The results, presented here fid=0.1, are generic for all
y K>0.
Forr<3.2 there exists a real eigenvalue i@ complex-
conjugate pairs. Far~3.2 a tangent bifurcation takes place
o |/ in which a pair of complex-conjugate eigenvalues is con-
= ' > ' 3 ' ) verted into a pair of real eigenvalues. When the paranreter

r increases further, the modulus of one of these real eigenval-
ues exceeds 1, which is a period-doubling bifurcation, and,
asr—4, asymptotically reachdb(r)| [marked as the dotted
line in Fig. 1(a)]. For the nondelayed map, i.e., fidr=0, the
regime of stability of the fixed-point solution ends at
=3.0. Thus the stability region of that solution has been
extended by the delayed feedback.

The above described bifurcation scenario is valid for all
evenk=<10.
Better approximations may be obtained by settifig— k) to For k>10 and even, the pair of the complex-conjugate
Xmin (the minimumx for a givenr). Requiring that Eq(1)  eigenvalues crosses the unit circle before the tangent bifur-
should be greater than or equal to 0, we find a rather unexsation occurs and a Neimark bifurcation takes place, as
pected constraint that the system is stable for all positiveéhown fork=12 in the inset in Fig. @®. Then, as increases
feedbacksK=0 [40]. For K<O0, for all values ofr, there further, the quasiperiodic state resulting from Neimark bifur-

exists a region ok for which the image ok is negative and ~ cation [broadening dark region in inset of Fig(bl] looses
the boundary crisis occurs. stability and a period 2 orbit is found.

For different values oK the Neimark bifurcation at the
point of the first period-doubling bifurcation occurs at differ-
ent values of the threshold delay. This threshold delay, de-
noted asky, may be determined from the observation of the
bifurcation diagrams. Figure 2 shows the dependendg,of
on K for even delays andK>0. Using the terms with
k>ky with the feedback amplitud& too large may intro-
duce instability in chaos control. Fortunately in the ETDAS
X .~ scheme[14] the terms with larger delays have smaller am-
holds also for odd delays witK>0 and even delays with jit,de K so the impact of the above-mentioned effect on the
K<O. _ stability is diminished.

We repeated our calculations also for the TDAS method  Fork slightly belowky andr in the neighborhood of the
of chaos control and found them qualitatively identical topoint of the first bifurcation, an extremely long quasiperiodic
those presented above. transient of the order of 10 000 iterations appears.

FIG. 1. The modules of eigenvalués and bifurcation diagram
(b) as function of the parameterfor even delayk=10 andk=12
(inlay), K=0.1.

r<——. 9

IV. RESULTS OF THE STABILITY ANALYSIS

We have verified numerically that the structure of the nu-
merical solutions of Eq(5) is different for even and for odd
values of the delay lengtk. The behavior of the largest
eigenvalue for even delays and &0 is the same as that
for K<0 and odd delays, as implied by E@). The same

A. Properties of eigenvalues for even delays B. Properties of eigenvalues for odd delays

A typical dependence of the eigenvalues on the control
parameter for an even delak= 10 (note that in this casB

A typical dependence of the eigenvalues on the control
parameter for odd values ok is shown in Fig. 8) with the
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genvalue of the largest modulusin variables K,r) (b) for the
delayk=1. In (a) gray denotes the period 1 solution while slashed
and crosshatched denote period 2 and period 4 solutions, respec-
tively. White color means instability whereas black is for high-
° periodic or chaotic solutions. Ifb) in the white region\>1 or
S " 5 ! 3 ' 4 A<-—1. In the back-slashed regions=[0,1]. In the gray regions

r N e[—1,0]. The boundary of tangency crisis is marked as dia-

FIG. 3. The modules of eigenvalué® and bifurcation diagram monds in both parts.

(b) as functions of the parameterfor odd delayk=13, K=0.1.
Inlay presents the largest eigenvalue in the vicinity of the critical
point for K=0.1, 0.3, 0.4, an=0.5.

delay. As the parameté{ increases, if the upper range of
stability of any solution moves towards larger values ¢dis
for period 2 solutiol, the stability region of that solution is
extended. The white regions for negatkare the regions of
the boundary crisis. The diamonds mark the approximate
boundary of one of these regions given by EQ). It may be
een that the stability boundary in Fig(a}# exceeds the
ough approximation given by E¢9). In Fig. 4(b) the solid
lines are the contours of constant
The shape of the stability region of a fixed-point solution,

fas seen in Fig. @) is a result of two independent mecha-
nisms:

corresponding bifurcation diagraffig. 3b)]. For allr there
now exists a pair of real eigenvalues am-{ 2)/2 complex-
conjugate pairs. At a critical value of= 3.0, the modulus of
one of the real eigenvalues exceeds 1 and tends to infini
along the skew asymptotéd(r)|. The locus of the critical
point does not depend on the value Kf as shown in the
inset in Fig. 3a).

Presence of the Neimark bifurcation at the points o
higher-order period-doubling bifurcations-igs. 1b) and . ) . . e .
3(%)] for somepvalues of thegdelay Ieng:E s%em]s( t)o be gov- (i) _The f_|rst mgchamsm of instability is the Iocal_perlod-
erned by some simple rules that may be deduced from thg.OUbl.Ing .b|furcat|on ar =3 [lower bognd of the white re-
observation of bifurcation diagram. For instance the Neimarl?'on in Fig. 4b)]. We may refer to this effect as a loss of

: T - ; L e ocal stability.
?r:tjltri(;)?goor} |25n|nh|b|ted in thenth period doubling ifD is & (i) The second mechanism is such that the solution is

locally stable but due to the boundary crisis the whole attrac-
tor becomes unstableipper- and lower-left corner in Fig.
4(a)]. This may be called a loss of global stability.

We have found the results of the linear stability analysis Those two mechanisms are quite independent. Local sta-
of a fixed-point solution in good agreement with the phasebility is more sensitive to changes of the delay tiknerhe
diagrams of the delayed map. Let us look at the followingglobal stability depends mainly on the properties of the non-
example. delayed map function.

Figure 4 depicts the phase diagram of the delayed map Note that the only way in which the exact form of the
(part @ and the eigenvalue of the largest modulus, denoted adelayed magl) affects the eigenvalues is through the func-
\, (part b—in the variables,r) for k=1. The fill patterns tion b(r). So for any one-dimensional map, the structure of
in Fig. 4(a) distinguish the regions of: instabilityvhite), the  the Jacobi matrix remains the same. Thus one may expect
fixed point, the period 2, 4, 8, and 16 solutiof@fferent  that the results obtained here are representative for a wider
pattern$, and chaos or solutions with a period larger thanclass of iterated maps and the effects found here may also be
128 (black). The vertical line ak=0 marks the case of no found for other systems. A convincing example is that, when

C. Mechanisms of instability and structure of the phase space
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FIG. 6. The phase diagram of the delayed map in varialdg9 (
for K=0.1. All markings as in Fig. @).

2.0

equation(5) has the solutiorh=—1. The constant limit of
stability is the locus of points that satisfy the condition
b(r)=(K—1) [see Fig. 4b) and inset in Fig. @&)]. For a
fixed point this condition is fulfilled for = 3.
K The consequence of pinning is such that the delays of odd

FIG. 5. The phase diagram of the delayed map in variableéen_g_th are not suitable for Stabili_zing the or_bits of even peri-
(K,r) for the delayk=2 (a), k=4 (b), k=3 (c), andk=>5 (d). odicity. For even delays gnd orbits of a pgnod-doublmg cas-
Arrows mark pinned boundaries of stability. All other markings ascad_e{ for eachr there: exists suclK for which t'he desired
in Fig. 4a). orbit is stable. Thus in the ETDAS scheifit], if only the
even delays were taken into account, the stability region of

i . the orbits of even periodicity as well as the convergence rate
the TDAS type control, which changes only the function .4 pe improved. From this it may be conjectured that

b(r), was compared with the echo type feedback, used hergyaly chosen odd delays extend the stability range of or-
no qualitative difference between the stability ranges wasyits of odd periodicity.

found. N . . Figure 6 shows the phase diagram in the variabkes)(

_ As may be seen in Fig.(d) the period-doubling cascade for constant coupling<=0.1. It may be seen that far

is present regardless of the valuek)fThQ presence of the. >3.5 only the even delays extend the stability region of the
delay changes only the locus of the stability limits of certalnperiod 2 solution. Note, that also the onset of the period 2
solutions of Eq.(1). Also the shape of the boundary of the o tion occurs at different values of the control parameter
global bifurcation regions are approximately constant as thg,. oqq and for even delays. The black elliptic region be-
delay timek gha_nges(see Fig. 3 In this sense we may S8 tween the period 1 and period 2 solutions for the even delays
Fhat the qualitative properties of the phase Space are retaln_ the Neimark bifurcation region. The regular square-wave
in the presence of the delay. A symbolic dynamics analysigctyre seen near the onset of chaos is the result of the
of this effect is being developed1]. Neimark bifurcations at the points of higher-order period

doubling(as in Fig. 3 and of the low horizontal resolution of
V. STABILITY OF THE CHAOS CONTROL the plot.

o

10 0.0 1.0

Figure 5 depicts the phase diagrams of the delayed map in
the variablegK,r) for k=2 (part 9, k=4 (part b, k=3 (part
c), andk=5 (part d. The most interesting effect visible in There is no strict measure of the dimension of the attrac-
Fig. 5 is a pinning of the boundary of stability of some so-tor based on the Lyapunov exponenf?2]. The Kaplan-
lutions. Namely, for odd delayk, if D=k+1 is a multiple  Yorke dimension is proved to give the upper bound, while
of the period of the orbit of even perioch2the onset of the the lower bound is given by the number of positive
stability range for this orbit is constant regardless of the couLyapunov exponents of the systethyapunov dimension
pling strengthK [arrows in Fig. 4a) and Figs. bc) and 8d)].  [32]. Figure 7 shows the Kaplan-Yorke dimensialxy
Thus the stability range of the periodic orbit of period Lyapunov dimensiond,, standard deviation of the
cannot be extended. Lyapunov dimensiord; , and metric entropyh, calculated

The reason for the pinning of the fixed-point solution is along the trajectory of the system fior=4.0 andK=0.1 as a
that, for b(r)=(K—1) and odd delays, the characteristic function of the dimension of the phase spdzelLinear fit

VI. EFFECTIVE DIMENSION

016210-5



T. BUCHNER AND J. J. EBROWSKI PHYSICAL REVIEW E63 016210

rections is compensated by the growing rate of contraction
along the stable directions.

One may argue if the system is characterized better by its
dimension or by its complexity. But it seems reasonable to
state that the effective dimension of the delayed equation is
lower than the dimension of the attractor, as the rising di-
mension of the phase space does not enlarge the initial com-
plexity of the underlying nondelayed system.

o
<

30

20

VII. CONCLUSIONS

Linear stability of the delayed logistic map was analyzed.
The results are generic for one-dimensional delayed maps.

A pinning of the stability onset of periodic orbits for odd
delays was found. It is a result of certain properties of the
characteristic equation. Consequently the enhancement of the
ETDAS method of chaos control was proposed.

The model studied exhibits a bifurcation structure that
depends on a combination of the parity of the delay and the
sign of the feedback. The Neimark bifurcations at the points
of period doubling may take place for the lengths of the

FIG. 7. The Kaplan-Yorke dimensiom,, (upper curvg  delay larger than a threshold value. This threshold value de-
Lyapunov dimensiord, (middle curve, standard deviation ofi, pends on the amplitude of the feedback. The Neimark bifur-
(lower curve, and the metric entroply (bold curvg for r=4.0 and  cation may also appear at the points of higher period dou-
K=0.1 as the function of the dimension of the phase sjiace bling.

Global and local stability of the delayed system was stud-

ied. Global stability depends more on the properties of the
gave the slope equal to 0.9¥P.002 for dcy and 0.51 phase space of the nondelayed map than on the properties of
+0.01 ford, . Thus the dimension of the attractor indeedthe delay itself. Stability conditions for global stability were
grows linearly, however slower than the dimension of thefound. The properties of the phase space, such as the exis-
phase space. Note also that the growthdpfis nonmono-  tence of the period-doubling cascade and the shape of the
tonic. The similar nonmonotonic growth df was also re- region of the boundary crisis, are retained in the presence of
ported for the Mackey-Glass equatif8i]. This might sug- the delay. _ ,
gest a nonmonotonic growth of the dimension of the. It was found tha§ the dimension of the attractor grows
attractor. Ilnea_lrly, howev_er this growth may _be nonmonotonic. Also

The standard deviation af, was calculated as the mea- the inhomogenity of the attractor rises as there appear re-

sure of the inhomogenity of the attractor. It grows Iinearly,g'ons of a large number of unstable directions. The introduc-

although nonmonotonically, with slope equal to O 094tipn of the delay embeds the system ilnto the muItidime_n-

+0.006. sliahtly f h 'h Thus for | ) q _S|onal phase space and extends the region of_stable solutions,
+0.006, slightly faster than the entropy. Thus for larger de-,q \ye|| as enlarges the number of unstable directions for the
lays, in .certaln. regions of the attractor, the dynam|cs_ bethaotic trajectories. However, the effective dimension of the
comes highly dimensional, with a number of unstable direcysiem is lower than the dimension of the attractor as the

tions, whereas in other regions it remains relatively lowintroduction of the delay does not enlarge the strength of

10

dimensional. _ _ nonlinearity of the system.
The metric entropyn is nearly a constant function of the
delay time, approximately equal to 2, with the rate of growth ACKNOWLEDGMENTS
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