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Dynamics and control of a multimode laser: Reduction of space-dependent rate equations
to a low-dimensional system

K. Pyragas,1,2,* F. Lange,1 T. Letz,1 J. Parisi,1 and A. Kittel1
1Department of Energy and Semiconductor Research, Faculty of Physics, University of Oldenburg, D-26111 Oldenburg, Germ

2Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania
~Received 30 June 2000; published 18 December 2000!

We suggest a quantitatively correct procedure for reducing the spatial degrees of freedom of the space-
dependent rate equations of a multimode laser that describe the dynamics of the population inversion of the
active medium and the mode intensities of the standing waves in the laser cavity. The key idea of that reduction
is to take advantage of the small value of the parameter that defines the ratio between the population inversion
decay rate and the cavity decay rate. We generalize the reduction procedure for the case of an intracavity
frequency doubled laser. Frequency conversion performed by an optically nonlinear crystal placed inside the
laser cavity may cause a pronounced instability in the laser performance, leading to chaotic oscillations of the
output intensity. Based on the reduced equations, we analyze the dynamical properties of the system as well as
the problem of stabilizing the steady state. The numerical analysis is performed considering the specific system
of a Nd:YAG ~neodymium-doped yttrium aluminum garnet! laser with an intracavity KTP~potassium titanyl
phosphate! crystal.
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I. INTRODUCTION

Intensive investigations of fundamental nonlinear d
namic phenomena in a solid-state laser with intracavity
quency doubling began with an observation of Baer@1#, who
reported large intensity pulsations in a multimode laser s
tem. The latter consisted of a diode-pumped Nd:YAG~yt-
trium aluminum garnet! laser and an optically nonlinear KT
~potassium titanyl phosphate!! crystal placed inside the lase
cavity. The KTP crystal is used to convert infrared~1064
nm! Nd:YAG laser radiation into visible green light~532
nm! by the process of second harmonic and sum freque
generation. In order to explain the dynamic instability o
served in experiment, Baer proposed a phenomenologica
of coupled rate equations for the mode intensities and ga
Mandel and Wu@2# subsequently carried out the stabili
analysis for Baer’s equations. A significant advance in
‘‘green problem’’ was made by Oka and Kubota@3#, who
recognized that the polarization of the cavity modes play
critical role in the laser dynamics and, therefore, used
intracavity quarter-wave plate to stabilize the laser outp
Their theoretical analysis, however, was limited to a mo
that includes only two orthogonally polarized cavity mode
The most impressive success with Baer’s model w
achieved by James, Harrel, Bracikowski, Wiesenfeld, a
Roy ~JHBWR! @4–6#, who adapted the model to include b
refringence of the active medium and the doubling crys
and demonstrated its behavior in an extensive set of dyna
regimes, including chaos, intermittency, and antiphase
namics. Liu et al. @7# recently developed a more gener
model of the laser system that includes both the amplitu
and the phases of the electric fields of the infrared light.

In our previous work@8#, we proposed that unstabl
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steady states of the multimode laser system can be stabi
by modulating the laser pump rate with a feedback sig
composed of two experimentally available quantitie
namely, the total intensities of the infrared light polarized
two different orthogonal directions. Using the JHBW
model, we have obtained promising prospects for experim
tal implementation. As a result of the analysis it follows th
stability of the steady state can be achieved for an arbitra
large number of modes and can be maintained for an a
trarily large pump rate. In a real-world experiment, howev
we @9# as well as Schenck and Dressler@10# were able to
stabilize the steady state only for a pump rate not too m
above the laser threshold and only for the case of a
oscillating modes. Such incompatibility of theoretical a
experimental results is probably related to a certain coa
ness of the JHBWR model. The problem of stabilizing t
laser output requires a more sophisticated model. In part
lar, the model should accurately describe the system dyn
ics close to the steady states.

The JHBWR model as well as other similar models
multimode solid-state lasers are derived from the spa
dependent coupled rate equations of Tang, Statz, and de
~TSM! @11# that describe the population inversion and mo
intensities of the standing waves in the laser cavity. Due
the complicated spatial distribution of the population inve
sion, the TSM model is difficult to analyze both analytical
and numerically. Therefore, various approximations
used, in order to simplify the model. The most popular a
proach is to expand the population inversion into Four
series and truncate it at the first harmonics of the las
modes@11#. Another scheme of reducing the spatial degre
of freedom is used in Ref.@6#, where an infinite set of ordi-
nary differential equations is also truncated artificially. Thu
both reduction procedures can be justified only qualitative
Moreover, the approximations used in the JHBWR mo
lead to phenomenological parameters that are difficult to
timate theoretically, e.g., the cross-saturation parameters

In this paper, we derive a reduced system of ordin
©2000 The American Physical Society04-1
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differential equations whose solutions are in good quant
tive agreement with those of the original TSM spac
dependent rate equations. In our reduction procedure,
take advantage of a small parameter that defines the
between the population inversion decay rate and the ca
decay rate. Depending on the structure of the laser sys
we are able to estimate all parameters of our reduced m
from theory. Like Viktorov, Klemer, and Karim@12#, we
take into account the fact that the laser cavity is not entir
filled with the active medium. On the basis of our actu
model we reconsider the problem of stabilizing the stea
state of the system originally looked at in our previous wo
@8#.

The rest of the paper is organized as follows. The n
section contains the description of the TSM model, the ch
acteristic values of the parameters used in the nume
analysis, and the model equations in dimensionless form
Sec. III, we describe the procedure of reducing the TS
space-dependent rate equations~without the KTP crystal! to
a finite set of ordinary differential equations. We start fro
the case of a single-mode laser and then generalize ou
proach to a multimode case. We estimate the steady s
solution of our model close to the laser threshold and ana
the transient dynamics of the system. In Sec. IV, the red
tion procedure is generalized for the case of an intraca
frequency doubled laser. We introduce the terms respons
for the nonlinear frequency conversion due to the KTP cr
tal placed inside the laser cavity and show that this can l
to a chaotic instability in the laser performance. Section V
devoted to the problem of stabilizing the unstable ste
state. We consider a proportional feedback technique wh
the pump rate of the laser is modulated by the output sig
composed of two total intensities of the infrared light pola
ized in two different orthogonal directions. In the appropria
parameter space, we numerically obtain the domains
stable laser performance. The results are summarized in
conclusions that are presented in Sec. VI.

II. SPACE-DEPENDENT RATE EQUATIONS

We begin with the well-known TSM coupled equatio
for the population inversion and mode intensities of t
standing waves of a multimode laser, given in an early pa
@11#:

d

dt
ñ~z,t !52

ñ~z,t !2ñ0

t f
2(

i
Dg̃i Ĩ iF12cos

2mip

L
zG ñ~z,t !,

~1a!

d Ĩ j

dt
52

a Ĩ j

tc
1Dg̃j Ĩ jE

0

L

ñ~z,t !F12cos
2mjp

L
zGdz.

~1b!

Here,ñ(z,t) is the spatially varying population inversion b
tween the upper and lower lasing levels,ñ0 the steady state
value of ñ(z) in the absence of stimulated emission, andt f

the upper level fluorescence decay time.Dg̃i denotes a
stimulated emission coefficient appropriate for thei th mode
01620
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andmi the number of half wavelengths along the laser c
ity. Ĩ i is the intensity of thei th mode anda the cavity loss
parameter, which we take the same for all modes.tc
52L/c is the cavity round-trip time, whereL is the optical
length of the cavity andc the speed of light.

System ~1! is usually considered for the case of homog
neous pumping, whenñ0 is independent of the space variab
z. Here, we take into account the effects of nonhomogene
pumping. We consider the usual experimental situation w
the YAG crystal is end-pumped by a phased array laser di
from the outside of the laser cavity. The pumping beam p
etrates the YAG crystal up to the characteristic lengthk21,
wherek is the absorption coefficient of the YAG. In order t
model nonhomogeneous pumping, we suppose thatñ0 de-
cays exponentially,ñ05p0 exp(2kz). Substituting this ex-
pression into Eqs. ~1! and using the ansatzñ(z,t)
5exp(2kz)p(z,t), we obtain the equations

d

dt
p~z,t !52

p~z,t !2p0

t f

2(
i

Dg̃i Ĩ iF12cos
2mip

L
zGp~z,t !, ~2a!

d Ĩ j

dt
52

a Ĩ j

tc
1Dg̃j Ĩ jE

0

L

p~z,t !e2kz

3F12cos
2mjp

L
zGdz, ~2b!

similar to Eqs.~1! with the only difference that the integran
in Eq. ~2b! is multiplied by an exponentially decaying facto
In the following, we suppose thatkL@1 and replace the
upper limit of the above integral by infinity. In a dimension
less form, these equations can be written as follows:

1

h

d

dq
n~x,q!5w2n~x,q!2n~x,q!(

i
I iui~x!, ~3a!

h
dI j

dq
5@211^n~x,q!uj~x!&#I j . ~3b!

The new variables and parameters are

x5z/L, q5t/T, T5Atct f /a, h5Atc /t fa,

w5p0tcDg̃0 /ak, n5ptcDg̃0 /ak, and I i5 Ĩ it fDg̃0 .

Here, Dg̃0 is the gain of the first lasing mode, which w
label by the subscripti 50. We describe the normalize
gains of the other modes with the Lorentzian

gi[g̃i /g̃05~11j i 2!21, j5~c/LDn!2, ~4!

whereDn is the full width at half maximum of the YAG gain
curve. The functionui(x) in Eqs.~3! is defined as

ui~x!5gi@12cos 2p~M1 i !x#, ~5!
4-2
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DYNAMICS AND CONTROL OF A MULTIMODE LASER: . . . PHYSICAL REVIEW E63 016204
where M@1 is the number of half wavelengths along t
laser cavity for the first lasing mode. For thei th mode, the
number of half wavelengths ismi5M1 i , i 50,61,
62, . . . . Theangular brackets in Eq.~3b! denote the integra

^ f ~x!&[kE
0

`

e2kxf ~x!dx, ~6!

wherek5kL.
The characteristic model parameters that we utilize be

for our numerical simulations are listed in Table I. From th
collection of parameters, it follows that the cavity round-tr
time tc is approximately 0.167 ns and the characteristic ti
scale of the intensity oscillationsT'2 ms. The dimension-
less parametersj and k in Eq. ~4! and Eq.~6! are j'0.01
and k'12.5. The cavity accommodatesM'53104 half
wavelengths of the first lasing mode. The pump parametew
in Eq. ~3a! is the main control parameter; it is scaled so th
the first laser threshold occurs atw51. The dimensionless
parameterh defining the square root of the ratio between t
inversion decay rate and the cavity decay rate is appr
mately 6.9631023. In the next section, we use the smallne
of this parameter to reduce the space-dependent Eqs.~3! to a
finite set of ordinary differential equations.

III. REDUCTION OF THE LASER EQUATIONS

A. Single-mode laser

For a single-mode laser,n(x,q) is a spatially periodic
function, whose periodl is equal to a half period of the firs
lasing mode,l 51/M . Thus, it is convenient to introduce
new space variables5x/ l 5xM normalized to this period
and consider the space dependence in only one characte
half-wavelength intervalsP@0,1#. Omitting, for simplicity,
the subscripti 50 on the variablesI 0 andu0, we obtain the
equations

1

h

d

dq
n~s,q!5w2n~s,q!2n~s,q!Iu~s!, ~7a!

h
dI

dq
5@211n~s,q!u~s!#I , ~7b!

where

u~s!5~12cos 2ps! ~8!

and the overbar denotes an integration over the whole sp
period,

f ~s![E
0

1

f ~s!ds. ~9!

TABLE I. Model parameters.

L (cm) k (cm21) t f (ms) Dn (GHz) a e g

2.5 5 240 120 0.01 231025 0.1
01620
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Here, we have replaced integral~6! with integral ~9! due to
the equalities

^ f ~x!&5k (
n50

` E
n

(n11)l

e2kxf ~x!dx'k (
n50

`

e2k lnE
0

l

f ~x!dx

'kE
0

`

e2k lydyE
0

l

f ~x!dx5
1

l E0

l

f ~x!dx5 f ~s! ~10!

that approximately hold for any periodic functionf (x)
5 f (x1 l ) providedk l !1. For the given values of the pa
rameters, we havel'231025 andk l'2.531024.

Denote the steady state solution of Eqs.~7! corresponding
to a fixed pump levelw0 by n0 and I 0 and consider the
dynamics of the system in the vicinity of that solution. Su
stituting

w5w01Dw, ~11a!

n~s,q!5n0~s!1hw~s,q! ~11b!

into Eq. ~7!, we obtain the equations for the variablesw and
I

d

dq
w~s,q!5Dw1

w0~ I 02I !u~s!

11I 0u~s!
2h@11Iu~s!#w~s,q!,

~12a!

dI

dq
5w~s,q!u~s!I , ~12b!

where the steady state valuesn0(s) and I 0 in a nonexplicit
form are defined by

w05w0~ I 0!5F S u

11I 0u
D G21

5
I 0A112I 0

A112I 021
, ~13a!

n0~s!5
w0~ I 0!

11I 0u~s!
. ~13b!

To find an approximate solution of the system~12!, we in-
troduce the moments of the functionw(s,q). The j th mo-
ment we define as

G( j )5w~s,q!uj~s!. ~14!

To derive equations for the moments, we multiply Eq.~12a!
by the functionuj (s) and integrate it over the whole interva
of the space variables:

dG( j )

dq
5Dwūj1w0~ I 02I !Jj 112hG( j )2hIG ( j 11),

j 51,2, . . . , ~15!

where the coefficients
4-3
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Jj5S uj

11I 0u
D ~16!

can easily be calculated from the iterative relation

Jj5~uj 212Jj 21!/I 0 ~17!

with the first term equal to

J05~112I 0!21/2. ~18!

The integralsū j in Eqs.~15! and~17! can be calculated ana
lytically; the first three values of these integrals areū051,
ū151, andū253/2.

Equation~15! for the j th moment contains the higher mo
ment j 11 and, hence, we have an infinite set of coup
ordinary differential equations that includes all orders of m
ments. We can, however, truncate this system owing to
smallness of the parameterh. Consider the equations for th
first two moments,

dG(1)

dq
5Dw1w0J2~ I 02I !2hG(1)2hIG (2), ~19a!

dG(2)

dq
5

3

2
Dw1w0J3~ I 02I !2hG(2)2hIG (3). ~19b!

To determine the variation rate ofG(1) with accuracyO(h),
it suffices to find the value ofG(2) with accuracyO(1).
Thus, theO(h) terms in Eq.~19b! are nonessential ones, an
we can omit the term containing the third momentG(3).
However, we do not omit the term2hG(2) to preserve the
stability of Eq.~19b!. After omitting the momentG(3) in Eq.
~19b!, the system~19! together with Eq.~12b!, which can be
presented in the formdI/dq5G(1)I , make up a closed sys
tem of ordinary differential equations for the variablesG(1),
G(2), and I. We can expect that the solution of this syst
will coincide with the solution of the original space
dependent rate equations~12! with accuracyO(h). Before
verifying this proposition numerically we simplify Eqs.~19!
further. The momentG(2) can be excluded from Eqs.~19! as
follows. Expressing variablew0(I 02I ) from Eq. ~19a!, sub-
stituting it into Eq.~19b!, and integrating the resulting equa
tion, we obtain

G(2)5
J3

J2
G(1)1S 3

2
2

J3

J2
D Eq

Dw~q8!dq81O~h!.

~20!

The integralP5*qDw(q8)dq8 in Eq. ~20! can be modeled
with accuracy O(1) by an additional equationdP/dq
5Dw2hP. Substituting Eq.~20! into Eq.~19a! and collect-
ing other required equations, we end up with the closed s
tem

dI

dq
5G(1)I , ~21a!
01620
d
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dG(1)

dq
5Dw1w0J2~ I 02I !2hS 11

J3

J2
I DG(1)

2hS 3

2
2

J3

J2
D IP, ~21b!

dP

dq
5Dw2hP ~21c!

that models the dynamics of the original space-depend
rate equations~12! with accuracyO(h).

In the case of a small additional pump rateDw, the sys-
tem can be simplified even more. The last term on the rig
hand side of Eq.~21b! can be omitted, sinceP is O(Dw) and
this term isO(hDw). Omitting the last term in Eq.~21b! and
simplifying the notationG(1)[G, we finally get the closed
system of two ordinary differential equations:

dI

dq
5GI, ~22a!

dG

dq
5Dw1w0J2~ I 02I !2hS 11

J3

J2
I DG. ~22b!

To verify the accuracy of Eqs.~22!, we analyzed numeri-
cally the transient dynamics of the single-mode laser. For
system initially in the steady state at the pump ratew0, we
applied an additional short pulseDw(t)5Ad(t), whered(t)
is the Dirac delta function, and considered the recurre
dynamics to the initial state. In Fig. 1, we compare the
sults of the simulation of the original space-dependent r
equations~12! and Eqs.~22! for w051.14, A51. To simu-
late Eqs.~12! we subdivided the fundamental interval of th
space variablesP@0,1# into Ms5103 equal discrete cells
and ascribed themMs variables w(si ,q), i 51, . . . ,Ms ,
wheresi is the value ofs associated with thei th cell. The
solution was obtained by integratingMs11 ordinary differ-

FIG. 1. Comparison of solutions of~a! the initial space-
dependent rate equations~12! and ~b! the reduced system~22! for
the pump ratew051.14 and the amplitude of the initial perturbatio
A51. In ~c! is shown the difference between these two solutio
The intensities are shown in arbitrary units.
4-4



i-

e-

q

e

e
le

ns

o
t

h
u

of

in

e

ero.
of

rate
de
b-

mo-

the

er

be

DYNAMICS AND CONTROL OF A MULTIMODE LASER: . . . PHYSICAL REVIEW E63 016204
ential equations for the variableI andMs variablesw(si ,q).
The initial conditions for Eqs.~22! are G(0)50 and I (0)
5I 0. For Eqs.~12!, we have chosen the same initial cond
tion I (0)5I 0 and tried various initial distributionsw(s,0),
satisfying the requirementw(s,0)u(s)50 compatible with
the conditionG(0)50. The result is independent of the d
tails of the initial distributionw(s,0), provided the condition
w(s,0)u(s)50 is fulfilled.

As expected, the difference between the solutions of E
~12! and Eqs.~22! is O(h) @Fig. 1~c!#. Thus, the reduced
system of two ordinary differential equations~22! quantita-
tively models the dynamics of the original space-depend
rate equations~12!.

We succeeded with our reduction procedure mainly du
a right choice of the characteristic scales for the variab
involved in Eqs.~2!. Upon transformation of these equatio
into the dimensionless form~12!, we were able to utilize the
smallness of the parameterh. We expanded the solution int
moments@see Eq.~14!# and derived for them an infinite se
of coupled ordinary differential equations~15!. Then these
equations were truncated at the small term containing hig
moments and a closed system of ordinary differential eq
tions was obtained@see Eq.~22!#. In the next section, we
generalize the above reduction procedure for the case
multimode laser.

B. Multimode laser

For the multimode case, we use the same substitution~11!
in Eqs.~3! and obtain a generalized version of Eqs.~12!:

d

dq
w~x,q!5Dw1

w0( i~ I i
02I i !ui~x!

11( i I i
0ui~x!

2hF11(
i

I iui~x!Gw~x,q!, ~23a!

dI j

dq
5GjI j , ~23b!

where

Gj5^w~x,q!uj~x!& ~24!

is the first moment of the functionw(x,q) corresponding to
the j th mode. The steady state values of the population
versionn0(x) and the intensitiesI i

0 , appropriate to a fixed
value of the pump ratew0, satisfy the equalities

w0K uj~x!

11( i I i
0ui~x!

L 2150, ~25a!

n0~x!5
w0

11( i I i
0ui~x!

. ~25b!

Equation~25a! defines the only nonvanishing intensitiesI i
0 .

This means that the indicesi and j in Eq. ~25a! are varied
only among the values corresponding to the lasing mod
01620
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i.e., the modes whose steady state intensities are not z
The problem of the mode configuration, i.e., the question
how many and which modes are present at a fixed pump
w0, will be discussed below. Now, we suppose that the mo
configuration is known and, for the given configuration, o
tain the reduced system of rate equations.

To derive the equations for the momentsGj , we multiply
Eq. ~23a! by the functionke2kxuj (x) and integrate it over
the space variablex:

dGj

dq
5Dw^uj~x!&1w0(

i
b i j ~ I i

02I i !2hGj2h(
i

M i j I i .

~26!

Here the coefficientsb i j are

b i j 5K ui~x!uj~x!

11(mI m
0 um~x!

L ~27!

and

Mi j 5^w~x,q!ui~x!uj~x!& ~28!

is the matrix element corresponding to the second-order
ments of the unknown functionw(x,q). Note that the matri-
cesb and M are both symmetric,b i j 5b j i and Mi j 5M ji .
Equation ~26! relates the first-order momentGj to the
second-order momentsMi j . However, the contribution of
the second-order moments in this equation is small, since
corresponding terms are proportional toh. Hereafter, we
suppose that the parameterDw is also small. To determine
the variation rate of the first-order momentsdGj /dq with
accuracyO(h,Dw), it suffices to estimate the second-ord
momentsMi j with accuracyO(1). The equations for the
second-order momentsMi j are obtained from Eq.~23a! by
multiplying it by the functionke2kxui(x)uj (x) and integrat-
ing over the space variablex:

dMi j

dq
5w0(

k
g i jk~ I k

02I k!, ~29!

where

g i jk5K ui~x!uj~x!uk~x!

11(mI m
0 um~x!

L . ~30!

Here, we omitted the terms that are proportional toh and
Dw. Equation ~29! for the second-order moments can
4-5
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PYRAGAS, LANGE, LETZ, PARISI, AND KITTEL PHYSICAL REVIEW E63 016204
solved analytically. To do this, we solve Eq.~26! with re-
spect to the variablesw0(I i

02I i). With accuracyO(1), we
obtain

w0~ I i
02I i !5(

k
~b21! i j

dGj

dq
, ~31!

whereb21 is the inverse of the matrixb. Substituting Eq.
~31! into Eq.~29! and integrating with respect to timeq, we
find the following relationship between the second- and fi
order moments:

Mi j 5(
j

Ti jkGk , ~32!

where

Ti jk5(
m

gmi j~b21!mk . ~33!

The relationship ~32! is valid with accuracyO(1). From
Eqs. ~23b!, ~26!, and ~32!, we finally obtain the closed sys
tem

dI j

dq
5GjI j , ~34a!

dGj

dq
5Dw^uj~x!&1w0(

i
b i j ~ I i

02I i !2hGj

2h(
im

Ti jmI iGm ~34b!

that represents the generalized version of Eqs.~22! for the
multimode case. The indicesi, j, and m in Eqs. ~34! are
varied only among the lasing modes whose steady state
tensities are not zero. Thus, in the case ofN lasing modes,
the space-dependent rate equations~23! can be reduced to
the system~34! of 2N ordinary differential equations.

1. Steady state solution

The steady state intensitiesI i
0 of the lasing modes satisf

Eq. ~25a!. To find out which modes are really present a
fixed value of the pump ratew0, we have to analyze the
steady state solutions of the system~3! at w5w0 in more
detail. All steady state solutions of this system are defined
the equationGj

0I j
050, where

Gj
05w0K uj~x!

11( i I i
0ui~x!

L 21 ~35!

is the steady state value of the expression in angular brac
that appears in Eq.~3b!. The equationGj

0I j
050 can be satis-

fied by setting eitherGj
050 or I j

050. The stable mode con
figurations must satisfy~I! Gj

050, if I j
0Þ0 and~II ! Gj

0,0, if
I j

050. The first condition is equivalent to Eq.~25a! and de-
fines the intensities of the lasing~nonvanishing! modes. The
01620
t-

in-

y

ets

second condition guarantees the stability of the given m
configuration with respect to all vanishing modes, i.e.,
modes whose steady state intensities are zero. This con
sion follows from the linearized Eq.~3b!. The small intensity
fluctuationsdI j of the vanishing modesI j

050, Gj
0Þ0 are

governed by the equationhddI j /dq5Gj
0dI j . Thus,Gj

0 has
the simple physical meaning that it defines the incremen
the j th vanishing mode. Condition~II ! guarantees that the
increments of all vanishing modes are negative and, he
small fluctuations related to these modes decay.

An analytical solution of Eq.~25a! is generally not avail-
able. However, we can find an approximate solution p
vided that the pump ratew0 is not too much above the
threshold value. Following Ref.@11#, we suppose that the
intensitiesI i

0 are small and use an approximation

1

11( i I i
0ui~x!

'12(
i

I i
0ui~x! ~36!

that transforms Eq.~25a! into a linear system. To find an
explicit solution of this system, we have to calculate t
following integrals:

^ui&'gi , ~37a!

^uiuj&'gigj~11Ki 2 j /2!, ~37b!

where

Km[^cos~2pmx!&5~11zm2!21, z5~2p/k!2.
~38!

In Eqs.~37!, we omitted small terms that are proportional
1/zM2'1.631029, whereM is the number of half wave-
lengths along the laser cavity. From Eqs.~35!, ~36!, and~37!,
we obtain

Gj
05gjw0F12(

i
S 11

Ki 2 j

2 DgiI i
0G21. ~39!

Now, we are ready to investigate the dependence of
steady state solution on the pump ratew0. The numerical
illustration of this dependence is presented in Fig. 2. We s

FIG. 2. Dependence of the steady state intensities on the p
ratew0. The dashed lines show almost the same dependence i
presence of an intracavity frequency doubling KTP crystal.
4-6
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with small values ofw0 when there exists only a single la
ing mode, I 0

0Þ0 and I i
050 for i 561,62, . . . . From the

conditionG0
050, we have

I 0
05

2

3 S 12
1

w0
D . ~40!

The intensityI 0
0 is positive atw0.1. This means that the

first laser threshold isw051. The increments of the vanish
ing modes are

Gj
05gjw0F12S 11

K j

2 D2

3 S 12
1

w0
D G21, j 561,62, . . . .

~41!

These increments are presented in Fig. 3 for various va
of the pump ratew0. They are negative,Gj

0,0, j 561,
62, . . . ,whenw0,w01, where

w015113j~111/z! ~42!

is the threshold of three-mode operation. The valuew01 is
defined by the conditionG1

05G21
0 50. Just above the thresh

old w0.w01, the incrementsG1
0 andG21

0 become positive.
This means that the single-mode configuration becomes
stable with respect to two symmetrical neighboring mod
that are labeled with the subscriptsi 561. Thus, for w0
.w01, we have to take into account three modes when
culating the sum in Eq.~39!.

For the three-mode configurationI 0
0Þ0, I 1

05I 21
0 Þ0, and

I i
050, i 562,63, . . . , the intensities I 0

0 and I 61
0 are ob-

tained from the conditionsG0
050, G61

0 50, which yield a
system of two linear equations with respect toI 0

0 and I 1
0.

Upon solving this system, we obtain

I 0
052

~w021!~122K11K2!12j~21K1!

w0~728K122K1
213K2!

, ~43a!

I 1
05I 21

0 52
~w021!~12K1!23j

g1w0~728K122K1
213K2!

. ~43b!

The intensityI 1
0 is equal to zero atw05w01 and is positive

whenw0.w01. Thus, the conditionI 1
050 gives an alterna-

FIG. 3. IncrementsGj
0 ( j 561,62) of the vanishing modes fo

the single-mode laser. The valuesGj
0 are calculated from Eq.~41! at

various values of the pump ratew0. The full squares, circles, an
triangles correspond tow051.1,w01, w05w01'1.149, andw0

51.2.w01, respectively.
01620
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tive possibility for determining the threshold of the thre
mode configuration. Above the thresholdw01, the intensities
I 1

0 andI 21
0 increase with increasingw0, while the intensityI 0

0

decreases and turns to zero atw05w02, where

w025w011j
17114z

122z
. ~44!

Inside the intervalw01,w0,w02, the vanishing modes hav
negative increments,Gj

0,0 for j 562,63, . . . . Thus, the
three-mode configuration~43! is stable with respect to the
vanishing modes in the whole intervalw01,w0,w02. For
given values of the parameters, the boundaries of the inte
arew01'1.149 andw02'1.564.

In a similar manner, the steady state solution can be c
tinued in the regionw0.w02; however, we cannot go to
much above the laser threshold, since we used approxima
~36!. In the subsequent discussion, we restrict ourselve
valuesw0,w02 and analyze the transient response of a thr
mode laser excited by a short pulse of the pump rate.

2. Transient dynamics

The dynamics of the system close to the steady st
defined by a fixed pump ratew0, is described by Eqs.~34!.
To solve Eqs.~34! we need to know the coefficientsb i j and
Ti jk . The latter is related to the coefficientsg i jk by Eq.~33!.
We exploited the already used approximation~36! in order
to estimate these coefficients. From Eqs.~27! and ~30!, we
obtain

b i j '^ui~x!uj~x!&2(
m

I m
0 ^um~x!ui~x!uj~x!&, ~45!

g i jk'^ui~x!uj~x!uk~x!&2(
m

I m
0 ^um~x!ui~x!uj~x!uk~x!&.

~46!

We have already calculated the integral^uiuj& in Eq. ~37b!.
Similarly, one can calculate the integrals involving the pro
ucts of three and fouru functions:

^uiujuk&'gigjgk@11~Ki 2 j1Ki 2k1K j 2k!/2#, ~47!

^uiujukum&'gigjgkgm@11~Ki 2 j1Ki 2k1Ki 2m1K j 2k

1K j 2m1Kk2m!/21~Ki 1 j 2k2m1Ki 2 j 2k1m

1Ki 2 j 1k2m!/8#, ~48!

where Km is defined in Eq.~38!. Here, as well as in Eqs
~37!, we omitted small terms that are proportional to 1/zM2.

In Fig. 4, we present the transient behavior of the thr
mode laser excited from a steady state by a short pulse o
pump rate Dw5Ad(t) with A51. The pump ratew0
51.25 is chosen inside the interval@w01,w02# so that Eqs.
~43! are valid for the steady state intensitiesI 0

0 and I 21
0 5I 1

0.
Equations~34! were integrated with the initial condition
I 0(0)5I 0

0, I 21(0)5I 1
0(0)5I 1

0, and G0(0)5G1(0)
5G21(0)50. It is seen from Fig. 4 that the total intensi
4-7
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displays a much smoother behavior than each partial in
sity. The total intensity relaxes to its steady state with
single characteristic frequency, while the partial intensit
have more characteristic frequencies. This effect is known
antiphase dynamics and is typical for multimode Fabry-Pe´rot
lasers@13#.

IV. DYNAMICS OF A FREQUENCY DOUBLED LASER

In this section, we derive the dynamical equations o
multimode laser in the presence of an intracavity freque
doubling crystal, made from KTP. The KTP crystal cause
nonlinear frequency conversion that has to be incorporate
Eq. ~3b! as a loss term for the infrared light. Following Re
@6#, we take into account the birefringence of optical e
ments in the cavity and the harmonic conversion efficien
of the fundamental intensity. Then, Eq.~3b! which describes
the variation rate of the intensity of thej th mode transforms
to

h
dI j

dq
5F211^n~x,q!uj~x!&2

e

a S gI j12(
iÞ j

m i j I i D G I j .

~49!

Here,g is a geometrical factor whose value depends on
optical phase delay through the amplifying and the doubl
crystals and on the angle between their fast axes. Both
Nd:YAG crystal and the KTP crystal are birefringent. Th
birefringence leads to two orthogonal directions of polari
tion as eigenstates of the cavity. Moreover, we havem i j 5g
if modes i and j have the same polarization, whilem i j 51
2g if these modes are orthogonally polarized.e is a nonlin-
ear coefficient whose value depends on the properties o
KTP crystal. The values of the parametersg and e used in
our numerical analysis are presented in Table I.

FIG. 4. Transient behavior of the intensities~in arbitrary units!
of the three-mode laser excited by a short pulse of the pump rat
w051.25 andA51. ~a!,~b!,~c! give the dynamics of the partia
intensities of different modes and~d! that of the total intensityS
5I 01I 11I 21.
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The system of space-dependent rate equations~3a! and
~49!, defining the dynamics of an intracavity frequen
doubled laser, can be reduced, following the same schem
described in Sec. III B. Using substitution~11! for the func-
tion w(x,q), we obtain the same equation~23a! as in the
case without the KTP crystal, while Eq.~23b!—for
intensities—changes to the form

dI j

dq
5H Gj2

e

ah Fg~ I j2I j
0!12(

iÞ j
m i j ~ I i2I i

0!G J I j .

~50!

The steady state intensities corresponding to a fixed valu
the pump ratew0 are now defined by the equations

w0K uj~x!

11( i I i
0ui~x!

L 212
e

a S gI j
012(

iÞ j
m i j I i

0D 50.

~51!

In the presence of the KTP crystal, Eq.~23a! remains un-
changed and the reduction procedure described in Sec.
can be exactly repeated in that case. As a result, we ob
the same Eq.~34b! as in the case without the KTP crystal fo
the momentsGj :

dGj

dq
5Dw^uj~x!&1w0(

i
b i j ~ I i

02I i !

2hGj2h(
im

Ti jmI iGm . ~52!

Equations~50! and ~52! form a closed system of ordinar
differential equations that describe the dynamics of an in
cavity frequency doubled multimode laser close to the ste
state defined by Eq.~51!.

In order to numerically analyze the possible influence
the KTP crystal on the steady state and the dynamical p
erties of the laser, we again employ approximation~36!.
Then Eq.~51! for the steady state intensitiesI j

0 transforms to

gjw0F12(
i

S11
Ki2j

2 Dgi I i
0G212

e

a SgI j
012(

iÞj
mij I i

0D50.

~53!

For the single-mode laserI 0
0Þ0 andI j

050, j 561,62, . . . ,
we obtain

I 0
05

w021

3w0/21eg/a
. ~54!

Without the KTP crystal, we havee50; this equation coin-
cides with Eq.~40!.

In the case of three-mode operationI 0
0Þ0, I 61

0 and I j
0

50, j 562,63, . . . ,Eqs.~53! transform to a system of two
linear equations

or
4-8
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F3

2
1

eg

aw0
G I 0

01F ~21K1!g11
4e~12g!

aw0
G I 1

0512
1

w0
,

~55a!

F11
K1

2
1

2e~12g!

aw0g1
G I 0

01F S 21
11K2

2 Dg11
3eg

aw0g1
G I 1

0

512
1

w0g1
~55b!

that define the intensitiesI 0
0 and I 1

0. The intensityI 21
0 satis-

fies the equalityI 21
0 5I 1

0. Here and below, we suppose th
the modesI 1

0 and I 21
0 have the same direction of polariza

tion, while the modesI 0
0 and I 61

0 have orthogonal direction
of polarizations, i.e., we takem0,05m21,15g and m0,1
5m0,21512g. In the casee50, the solution is defined by
Eqs. ~43!. Figure 2 illustrates how the KTP influences th
solution. The dotted lines correspond to the case when
KTP crystal is taken into account. The dependencies of
steady state intensities onw0 are calculated from Eqs.~54!
and~55! at e5231025. As is seen from the figure, the KT
crystal only slightly influences the steady state solution. T
is because the terms responsible for frequency doublin
Eqs.~54! and~55! are relatively small; they are proportion
to e/a50.002. The KTP crystal also slightly changes t
thresholdsw01 and w02 that define the boundaries of th
three-mode operation. We mark the corresponding thresh
determined with the KTP crystal by stars; they are appro
matelyw01* '1.153 andw02* '1.519.

Although the KTP crystal only slightly influences th
steady state solution, it essentially changes the dynam
properties of the system. The nonlinear conversion can ca
an instability of the steady state. As a result, the output
tensities can exhibit periodic or chaotic oscillations arou
the unstable steady state. These oscillations exist at a fi
value of the pump rate,w05const andDw50. An example
of the chaotic oscillations that the system exhibits in
three-mode operation atw051.25 is presented in Fig. 5. Th
results were obtained via numerical integration of Eqs.~50!
and ~52!. Here as well as in Fig. 4 a pronounced antiphas
dynamics is observed. Note that a chaotic antiphase dyn
ics was first reported and analyzed in the framework of
JHBWR model in Ref.@5#.

One part of the reason why the KTP crystal affects
dynamical properties much more than the steady state is
the terms responsible for frequency doubling have differ
weights in Eqs.~50! and ~51!. In Eq. ~50!, defining the dy-
namics of the intensities, these terms are proportiona
e/ah'0.287 and are 1/h times larger than the correspon
ing terms in Eq.~51!, defining the steady state solution.

In order to gain a better insight into the instability caus
by the KTP crystal, we performed a linear analysis of E
~50! and ~52!. The dynamics of the small deviationsdI j

5I j2I j
0 , dGj5Gj from the steady state is described by

linearized system of Eqs.~50! and ~52!:
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dI j

dq
5H dGj2

e

ah FgdI j12(
iÞ j

m i j dI i G J I j
0 , ~56a!

ddGj

dq
5Dw^uj&2w0(

i
b i j dI i2hdGj2h(

im
Ti jmI i

0dGm .

~56b!

For Dw50, this system can be solved by an exponen
substitutiondI j}exp(lq) and dGj}exp(lq), where l de-
fines the eigenvalues of the system. The eigenvaluesl sat-
isfy a characteristic equation that in the case ofN lasing
modes represents a 2N-order polynomial. The steady state
stable if the real parts of all roots of the characteristic po
nomial are negative, Rel j,0, j 51,2, . . . ,2N.

The results of a linear stability analysis for the three-mo
operation are presented in Fig. 6. Here, the maximum
part of the eigenvalues is plotted versus the pump ratew0. As

FIG. 5. Chaotic oscillations of the intensities~in arbitrary units!
of the three-mode laser with the KTP crystal at a fixed value of
pump rate,w051.25. ~a!,~b!,~c! give the dynamics of the partia
intensities of different modes and~d! that of the total intensityS
5I 01I 11I 21.

FIG. 6. The maximum real part of the eigenvalues of the line
ized Eq. ~56! versus the pump ratew0. The valuesw01* and w02*
define the boundaries of the three-mode operation, the valuesw01**
andw02** the thresholds of instability.
4-9
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is clearly seen from the figure, the three-mode configura
is stable only in small intervalsw01* ,w0,w01** and w02**
,w0,w02* close to the thresholdsw01* andw02* defining the
boundaries of this configuration. The intervalw01** ,w0

,w02** , corresponding to the unstable steady state solutio
relatively large. The thresholds of the instability are appro
matelyw01** '1.167 andw02** '1.445.

Note that, without the KTP crystal (e50), the three-mode
configuration is stable in the whole intervalw01,w0,w02.
Numerical analysis shows that the two last terms in Eq.~56b!
which are proportional toh provide the stability of the
steady state. Without these terms (h50), all eigenvalues are
purely imaginary and small deviations from the steady s
exhibit undamped oscillations. The terms that are prop
tional to h cause a small damping. Due to these terms,
eigenvalues gain small negative real parts proportional toh,
and the system approaches the steady state by slow r
ation oscillations~Fig. 4!. When the KTP crystal is taken
into account (eÞ0), the last two terms in Eq.~56a! that are
proportional toe/ah work in an opposite manner, i.e., the
destabilize the steady state. Thus, the result depends o
concurrence between the small terms in Eq.~56b! that are
proportional toh and those in Eq.~56a! that are proportiona
to e/ah. Because the stability problem is sensitive to sm
terms it is evident that the procedure of reducing the spa
degrees of freedom requires a high accuracy. In our
proach, we thoroughly performed this reduction taking in
account all terms down to and includingO(h).

V. STABILIZING THE STEADY STATE

In our previous work@8#, we considered the problem o
stabilizing the steady state of the multimode laser in
framework of the JHBWR model. We modulated the pum
rate of the laser by a feedback signal composed of two t
output intensities of infrared light polarized in two differe
orthogonal directions. Analyzing various control techniqu
we came to the conclusion that the most appropriate for
perimental application is the proportional feedback te
nique. Here, we apply this technique to our reduced sys
of Eqs.~50! and~52!. For the three-mode operation, the pr
portional feedback is defined by the equation

Dw5kxdI 01ky~dI 211dI 1!, ~57!

wheredI j5I j2I j
0 is the deviation of the intensity of thej th

mode from its steady state value andkx ,ky are the feedback
amplification coefficients. Recall that, in accordance with o
assumption, the modesj 51 and j 521 have the same po
larization, while the modesj 50 andj 561 have orthogona
polarizations. The feedback~57! does not change the stead
state solution of Eqs.~50! and ~52!; however, it can change
its stability.

First, we analyze the linear stability of the system und
the feedback signal~57!. We substitute Eq.~57! into the
linearized system~56! and calculate the dependence of
eigenvalues on the feedback parameterskx andky . The main
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goal is to find the stability domain in the (kx ,ky) plane that
corresponds to the negative real parts of all eigenvalue
the system under feedback control. The results of this an
sis are presented in Figs. 7 and 8.

Figure 7 illustrates the domains of stability for the pum
ratew0 close to the first thresholdw01** of the instability of
the three-mode configuration. The darker regions corresp
to the large values of the pump ratew0. As is seen from the
figure, the domain of stability decreases with increasingw0
and disappears atw0'1.173.

In Fig. 8, we start from a pump ratew0 close to the
second thresholdw02** of the instability of the three-mode
configuration and analyze how the domain of stability in t
(kx ,ky) plane varies on decreasing the pump ratew0. Here,
the darker regions correspond to the smaller values of
pump ratew0. Again, the domain of stability decreases wh

FIG. 7. The domains of stability in the (kx ,ky) parameter plane
for proportional feedback control at different values of the pum
ratew0 ~1.168, 1.170, 1.172! taken close to the first threshold of th
instability w01** . The darker regions correspond to the larger valu
of w0.

FIG. 8. The same as in Fig. 7, but the values ofw0

~1.400,1.300,1.250,1.245! are started close to the second thresh
of the instabilityw02** . The darker regions correspond to the smal
values ofw0.
4-10
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w0 moves away from the thresholdw02** and disappears a
w0'1.24. Thus, the three-mode configuration is uncontr
lable with proportional feedback in the interval of the pum
rate 1.173,w0,1.24.

We have verified the results of the linear analysis by
tegrating the system of nonlinear differential equations~50!
and~52!. The numerical analysis shows that the linear the
correctly predicts the location of the stability domains. F
ure 9 illustrates an example of the system dynamics un
proportional feedback control forw051.25 and (kx ,ky)
5(10,27.5). Note that, for the given valuew0, the uncon-
trolled system exhibits chaotic oscillations, as shown in F
5. Under the feedback signal, the system approaches an
tially unstable steady state. The control is successful o
when the initial conditions of the system are not too far fro
the steady state. This means that the stabilized steady
solution has only a finite domain of attraction in phase spa
The problem associated with the finite domain of attract
can be overcome by the tracking procedure that we discu
in Ref. @8#.

The application of proportional feedback control to t
reduced system of Eqs.~50! and~52! leads to results that ar
somewhat different from those obtained with the JHBW
model @8#. The qualitative difference is that the JHBW
model can be stabilized by proportional feedback for an
bitrarily large pump rate, whereas here, even in the are
relatively small values of the pump rate, we reveal so
interval where the system is uncontrollable. On the ot
hand, the domains of stability presented in Fig. 8 are surp
ingly similar to the domains derived from the JHBW
model, although the reduced system of Eqs.~50!,~52! and the
equations of the JHBWR model differ considerably. In bo
cases, the domains are bounded by two lines, located in
region of positive values ofkx and negative values ofky .
However, for the JHBWR model, the angle between the li
remains finite at any value of the pump ratew0, while here
these lines merge together at some finite valuew0 and the

FIG. 9. Transient behavior of the intensities~in arbitrary units!
of the three-mode laser with the KTP crystal under proportio
feedback control forw051.25 and (kx ,ky)5(10,27.5). ~a!,~b!,~c!
give the dynamics of the partial intensities of different modes a
~d! that of the total intensityS5I 01I 11I 21.
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domain of stability disappears. In general, one can concl
that stabilization of the steady state in our model as wel
in a real experiment@9# is much more difficult to achieve
than appears from the JHBWR model.

VI. CONCLUSIONS

In summary, we have proposed a quantitatively accur
procedure of reducing the spatial degrees of freedom i
model of space-dependent multimode laser rate equations
scribing the dynamics of the mode intensities and the po
lation inversion of the active medium. This reduction i
volves a small parameter that defines the ratio between
population inversion decay rate and the cavity decay r
which has also been used for spatially nonresolved la
equations by Oppoet al. in @14–17#. Unlike the usual con-
sideration, our model incorporates the effects of nonhom
geneous pumping of the active medium. On the basis of
reduced equations, we have numerically analyzed the t
sient dynamics of the system. For the case of a single-m
operation, we have demonstrated that the solutions of
reduced system are in good quantitative agreement with
solutions of the initial space-dependent rate equations.

We have generalized the reduction procedure for the c
of an intracavity frequency doubled Nd:YAG laser. Here, t
nonlinear frequency conversion performed by a KTP crys
placed inside the laser cavity was taken into account. O
numerical analysis of the reduced system in this case
shown that the steady state solution may lose its stability
chaotic oscillations of the intensities of different modes m
appear. The eigenvalues of the linearized system have
parts that are small compared to the imaginary parts a
thus, the stability of the steady state depends on small
rameters. It follows that the procedure of reducing the spa
degrees of freedom requires a high accuracy, in orde
correctly predict the stability of the steady state. That is w
we have primarily emphasized an accurate derivation of
reduced system.

On the basis of the reduced system, we have reconsid
the problem of controlling the steady state. Previously,
analyzed this problem in the context of the JHBWR mod
@8#. Here, as well as in Ref.@8#, we have shown that the
unstable steady state of the system can be stabilized
proportional feedback control technique, using the la
pump rate as the control parameter and the linear comb
tion of the sum intensities of the infrared laser modes po
ized in two different orthogonal directions as the feedba
signal. Comparing the results obtained from our reduced s
tem with those obtained from the JHBWR model, one c
conclude that our system is less controllable. From the
BWR model, it follows that the steady state can be stabiliz
for an arbitrarily large value of the pump rate, whereas o
model gives more complex and less optimistic results in
cating that it may be uncontrollable even in the area of re
tively small values of the pump rate.

Note that the reduced system of Eqs.~50! and~52! is valid
for any value of the pump rate. However, in our numeric
analysis, we have used approximation~36!, which holds only
for values that are not too much above the laser thresh

l

d
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This represents the only essential approximation that rest
the application area of our numerical analysis. Abandonm
of approximation~36!, in principle, makes possible the con
sideration of large values of the pump rate, but it consid
ably complicates the numerical analysis.

After this work was completed we discovered the rec
paper of Mandel@18# where similar ideas were used to an
lyze the space-dependent laser rate equations.
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