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Dynamics and control of a multimode laser: Reduction of space-dependent rate equations
to a low-dimensional system
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We suggest a quantitatively correct procedure for reducing the spatial degrees of freedom of the space-
dependent rate equations of a multimode laser that describe the dynamics of the population inversion of the
active medium and the mode intensities of the standing waves in the laser cavity. The key idea of that reduction
is to take advantage of the small value of the parameter that defines the ratio between the population inversion
decay rate and the cavity decay rate. We generalize the reduction procedure for the case of an intracavity
frequency doubled laser. Frequency conversion performed by an optically nonlinear crystal placed inside the
laser cavity may cause a pronounced instability in the laser performance, leading to chaotic oscillations of the
output intensity. Based on the reduced equations, we analyze the dynamical properties of the system as well as
the problem of stabilizing the steady state. The numerical analysis is performed considering the specific system
of a Nd:YAG (neodymium-doped yttrium aluminum garhé&ser with an intracavity KTRpotassium titanyl

phosphatgcrystal.
DOI: 10.1103/PhysReVE.63.016204 PACS nuner05.45-a
[. INTRODUCTION steady states of the multimode laser system can be stabilized

by modulating the laser pump rate with a feedback signal
Intensive investigations of fundamental nonlinear dy-composed of two experimentally available quantities,
namic phenomena in a solid-state laser with intracavity freamely, the total intensities of the infrared light polarized in
quency doubling began with an observation of Biddr who two different orthogonal directions. Using the JHBWR
reported large intensity pulsations in a multimode laser sys[n()del’ we have obtained promising prospects for experimen-

tem. The latter consisted of a diode-pumped Nd:YAG tal implementation. As a result of the analysis it follows that

. . ) . stability of the steady state can be achieved for an arbitrarily
trium aluminum garngtaser and an optically nonlinear KTP 5146 number of modes and can be maintained for an arbi-
(potassium titanyl phosphajecrystal placed inside the laser trarily large pump rate. In a real-world experiment, however,

cavity. The KTP crystal is used to convert infrar€tD64 e [9] as well as Schenck and Dress[d0] were able to
nm) Nd:YAG laser radiation into visible green light632  stabilize the steady state only for a pump rate not too much
nm) by the process of second harmonic and sum frequencgbove the laser threshold and only for the case of a few
generation. In order to explain the dynamic instability ob-oscillating modes. Such incompatibility of theoretical and
served in experiment, Baer proposed a phenomenological séxperimental results is probably related to a certain coarse-
of coupled rate equations for the mode intensities and gain§ess of the JHBWR model. The problem of stabilizing the
Mandel and Wu[2] subsequently carried out the stability laser output requires a more sophlstlcated model. In particu-
analysis for Baer’'s equations. A significant advance in théar’ the model should accurately describe the system dynam-

“ " ics close to the steady states.
green problem” was made by Oka and Kubdl, who The JHBWR model as well as other similar models of

recognized that the polarization of the cavity modes plays anitimode solid-state lasers are derived from the space-
critical role in the laser dynamics and, therefore, used aRependent coupled rate equations of Tang, Statz, and deMars
intracavity quarter-wave plate to stabilize the laser output(TSM) [11] that describe the population inversion and mode
Their theoretical analysis, however, was limited to a modeintensities of the standing waves in the laser cavity. Due to
that includes only two orthogonally polarized cavity modes.the complicated spatial distribution of the population inver-
The most impressive success with Baer's model wasion, the TSM model is difficult to analyze both analytically
achieved by James, Harrel, Bracikowski, Wiesenfeld, ancdind numerically. Therefore, various approximations are
Roy (JHBWR) [4-6], who adapted the model to include bi- used, in order to simplify the model. The most popular ap-
refringence of the active medium and the doubling crystaproach is to expand the population inversion into Fourier
and demonstrated its behavior in an extensive set of dynamieries and truncate it at the first harmonics of the lasing
regimes, including chaos, intermittency, and antiphase dymodes[11]. Another scheme of reducing the spatial degrees
namics. Liuet al. [7] recently developed a more general of freedom is used in Ref6], where an infinite set of ordi-
model of the laser system that includes both the amplitudesary differential equations is also truncated artificially. Thus,
and the phases of the electric fields of the infrared light.  both reduction procedures can be justified only qualitatively.
In our previous work[8], we proposed that unstable Moreover, the approximations used in the JHBWR model
lead to phenomenological parameters that are difficult to es-
timate theoretically, e.g., the cross-saturation parameters.
*Electronic address: pyragas@kes0.pfi.lt In this paper, we derive a reduced system of ordinary
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differential equations whose solutions are in good quantitaandm; the number of half wavelengths along the laser cav-

tive agreement with those of the original TSM space-ity. T, is the intensity of théth mode andu the cavity loss
dependent rate equations. In our reduction procedure, Wgarameter, which we take the same for all modes.
take advantage of a small parameter that defines the ratio 3| /¢ s the cavity round-trip time, wherk is the optical
between the population inversion decay rate and the cavitjangth of the cavity ane the speed of light.

decay rate. Depending on the structure of the laser system, System (1) is usually considered for the case of homoge-

we are able to estimate all parameters of our reduced model : ~ .
from theory. Like Viktorov, Klemer, and Karini12], we Reous pumping, whem, is independent of the space variable

take into account the fact that the laser cavity is not entirelyz' Here, we take into account the effects of nonhomogeneous
filed with the active medium. On the basis of our actuaih. b We consider the usual experimental situation when

. g the YAG crystal is end-pumped by a phased array laser diode
model we recon3|der_tr_1e problem of s_tab|||z|ng t_he Steald3from the ou){side of the I{I)aselfcavit)g/. Tphe pumpingbeam pen-
state of the system originally looked at in our previous Worketrates the YAG crystal up to the characteristic lenth

[8]. ¥vherek is the absorption coefficient of the YAG. In order to

The rest of the paper is organized as follows. The nex . ~
section contains the description of the TSM model, the char™0del nonhomogeneous pumping, we suppose figate-

acteristic values of the parameters used in the numericalays exponentiallyn,=poexp(—k2). Substituting this ex-
analysis, and the model equations in dimensionless form. Ipression into Egs.(1) and using the ansatmn(zt)

Sec. lll, we describe the procedure of reducing the TSM=exp(—k2)p(zt), we obtain the equations
space-dependent rate equatiowithout the KTP crystalto

a finite set of ordinary differential equations. We start from d _ p(z,t)—po

the case of a single-mode laser and then generalize our ap- ap(z,t)— - T

proach to a multimode case. We estimate the steady state

solution of our model close to the laser threshold and analyze ~S pglil1-co 2mi7TZ (z1) 24
the transient dynamics of the system. In Sec. IV, the reduc- i giti L piz.b,

tion procedure is generalized for the case of an intracavity

frequency doubled laser. We introduce the terms responsible dl. al.  __ [L

for the nonlinear frequency conversion due to the KTP crys- d_tJ =——14 Dg;l Jf p(z,t)e ¥

tal placed inside the laser cavity and show that this can lead Te 0

to a chaotic instability in the laser performance. Section V is oM

devoted to the problem of stabilizing the unstable steady X 1—cosTJz dz, (2b)

state. We consider a proportional feedback technique where

the pump rate of the Ia_ser s _n_10du|ated by the output signakijar to Eqgs.(1) with the only difference that the integrand
composed of two total intensities of the infrared light polar—in Eq. (2b) is multiplied by an exponentially decaying factor.

ized in two different orthogonal directions. In the appropriatelfn the following, we suppose thatL>1 and replace the

parameter space, we numerically obtain the domains OUé)per limit of the above integral by infinity. In a dimension-

stable Igser performance. The rgsults are summarized in tq ss form, these equations can be written as follows:
conclusions that are presented in Sec. VI.

1d
Il. SPACE-DEPENDENT RATE EQUATIONS 7 @n(x,ﬁ)IW—n(X,ﬁ)—n(X,ﬂ)Ei liui(x), (39
We begin with the well-known TSM coupled equations di
for the population inversion and mode intensities of the 9 _ _
standing waves of a multimode laser, given in an early paper KT} == 1N DY 00N (3b)
[11]:

The new variables and parameters are

d. n(zt)-n —— 2mim |-
iz =- (0 > Dgil{l—cosT'Wz n(zt), x=zIL, 9=UT, T=\rerila, n=\rlra,
I
(16) W= poTCDaolak, nzprcDao/ak, and Ii:TinDBO'
%: _ a—|j+D§-TfLT1(z t) 1—coszmj7rz dz. Here, DE]O is the gain of the first lasing mode, which we
dt Te e ™7 L label by the subscript=0. We describe the normalized
(1b) gains of the other modes with the Lorentzian
Here,n(z,t) is the spatially varying population inversion be- 0i=0i/0o=(1+&? 7,  £=(c/LAv)? (4)

tween the upper and lower lasing levets, the steady state
value ofn(z) in the absence of stimulated emission, and

the upper level fluorescence decay tini2gg;, denotes a
stimulated emission coefficient appropriate for thie mode Ui(X)=gi[ 1—cos 2m(M +i)x], 5)

whereA v is the full width at half maximum of the YAG gain
curve. The functionu;(x) in Egs.(3) is defined as
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TABLE I. Model parameters. Here, we have replaced integr@) with integral (9) due to
the equalities
L (cm) k (em™) 7 (us) Av (GHz) « € g
. * (n+1)l - I
25 5 240 120 001 210° 01 (f(y)y=, ) f e () dx=r S emef F(x)dx
n=0 Jn n=0 0

where M>1 is the number of half wavelengths along the
laser cavity for the first lasing mode. For thih mode, the

o I 11l _
~Kfo e”"ydyfof(x)dx= I—fof(x)dx=f(s) (10)

number of half wavelengths ismj=M+i, i=0,£1,
*2,.... Theangular brackets in E43b) denote the integral that approximately hold for any periodic functiof(x)
=f(x+I) provided kl<1. For the given values of the pa-
% -5 —4
fF(x))= —XE (X)X, 6 rameters, we have=2Xx10"> and«l~2.5<10"".
(FO) Kfo € (x)dx © Denote the steady state solution of EG%.corresponding

to a fixed pump levelw, by n® and I° and consider the
wherex=KkL. dynamics of the system in the vicinity of that solution. Sub-
The characteristic model parameters that we utilize belovstituting
for our numerical simulations are listed in Table I. From this

collection of parameters, it follows that the cavity round-trip W=Wg+Aw, (11a
time 7. is approximately 0.167 ns and the characteristic time
scale of the intensity oscillatiornB~2 us. The dimension- n(s,9)=n°s)+ ne(s,9) (11b

less parameter§ and « in Eq. (4) and Eq.(6) are ¢£~0.01

and k~12.5. The cavity accommodatdd ~5x10* half  into Eq.(7), we obtain the equations for the variablesand
wavelengths of the first lasing mode. The pump parameter |

in Eq. (33 is the main control parameter; it is scaled so that

the first laser threshold occurs wt=1. The dimensionless d wo(1°=1u(s)
parameter; defining the square root of the ratio between the ﬁq’(s’a) —aw W_ LU0,
inversion decay rate and the cavity decay rate is approxi- (123

mately 6.96< 10" 3. In the next section, we use the smallness
of this parameter to reduce the space-dependent(Bgw a

finite set of ordinary differential equations. :_1;: o(s,u(s)l, (12b)
Ill. REDUCTION OF THE LASER EQUATIONS where the steady state valueYs) and1° in a nonexplicit
A. Single-mode laser form are defined by
For a single-mode lasen(x,d) is a spatially periodic -1,
function, whose periodlis equal to a half period of the first Womwo(1%) = _'vi+al (134
lasing mode| =1/M. Thus, it is convenient to introduce a oo 1+1%% 1+219—1’
new space variable=x/l =xM normalized to this period
and consider the space dependence in only one characteristic Wq(19)
half-wavelength intervabe[0,1]. Omitting, for simplicity, n%(s) = 7 (13b)
the subscript =0 on the variable$, andugy, we obtain the 1+10(s)

equations
1 q To find an approximate solution of the systét®), we in-
+ o o B troduce the moments of the functias(s,). The jth mo-
7 dﬁn(s,ﬁ)—w n(s, &) =n(s, lu(s), 73 ment we define as

dl _ GW=p(s,9)ul(s). 14
ngy =L~ 10U, (7 P 1
To derive equations for the moments, we multiply EtRa
where by the functionu!(s) and integrate it over the whole interval

of the space variable

u(s)=(1-cos 2rs) (8) i
dc® u 0 () (i+1)
i NI — _ j
and the overbar denotes an integration over the whole spatial gy~ AW +Wo(I"—1)Jj 1= GV = 7IGV™Y,
period,
) =12, ..., (15
KEJ’ f(s)ds. 9
s 0 (®) © where the coefficients
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Uj — 0,6 [ T T T ]

Pol1+10 302l . @ ]

s | U wnvﬁnm“““ ]

. . . . - 010 C 1 1 17
can easily be calculated from the iterative relation 0 1 2

5 06! ' ' ' ]

== )N° (17) S oaf o)

E 0,2 B wum“““ 7

with the first term equal to = 00 -(I) 1| é_

Jo=(1+21%)712 (18) 3 00 [ ;

x 0,2 | ]

— B -0,4F (© 1

The integralau’ in Egs.(15) and(17) can be calculated ana- T 06F . , . e
lytically; the first three values of these integrals afe=1, ] 1 2

ul=1, andu?=3/2. t(ms)

Equation(15) for the jth moment contains the higher mo- k|G, 1. Comparison of solutions ofa) the initial space-
ment j+1 and, hence, we have an infinite set of coupledgependent rate equations2) and (b) the reduced syster{22) for
ordinary differential equations that includes all orders of mo-the pump ratev,= 1.14 and the amplitude of the initial perturbation
ments. We can, however, truncate this system owing to th@=1. In (c) is shown the difference between these two solutions.
smallness of the parameter Consider the equations for the The intensities are shown in arbitrary units.
first two moments,

dgW det AW+ Wody(19-1) (1+J3|)G(l>
=Aw+w. —1)— -
5 =AW Wed,(19-1) = G- 4IG), (193 dd 0z KA
3_Js)p (21b)
dc® 3 SN2
T3 = 5 AWHWols(1°=1) = 7GP—5IG®. (19D ’
dpP
To determine the variation rate 6f with accuracyO(7), qo _AwW— 7P (elo

it suffices to find the value o65(® with accuracyO(1).

Thus, theO(#) terms in Eq(19b) are nonessential ones, and that models the dynamics of the original space-dependent
we can omit the term containing the third momeat®. rate equation$12) with accuracyO( 7).

However, we do not omit the term »G(® to preserve the In the case of a small additional pump ratev, the sys-
stability of Eq.(19b). After omitting the momen6®) in Eq.  tem can be simplified even more. The last term on the right-
(19b), the systen{19) together with Eq(12b), which can be hand side of Eq(21b) can be omitted, since is O(Aw) and
presented in the forrd1/d9=G®™)I, make up a closed sys- this term isO(7Aw). Omitting the last term in E¢21b) and

tem of ordinary differential equations for the variab@$", simplifying the notationGY=G, we finally get the closed
G®, and I. We can expect that the solution of this systensystem of two ordinary differential equations:

will coincide with the solution of the original space-

dependent rate equatio$2) with accuracyO( 7). Before ﬂzGl (223
verifying this proposition numerically we simplify Eq€L9) do '

further. The momenG(? can be excluded from Eq6l9) as

follows. Expressing variable/,(1°—1) from Eq. (198, sub- dG 0 J3

stituting it into Eq.(19b), and integrating the resulting equa- G~ Awtwedy(I7=1) = 7| 1+ E' G. (22h

tion, we obtain
To verify the accuracy of Eq$22), we analyzed numeri-
cally the transient dynamics of the single-mode laser. For the
system initially in the steady state at the pump natge we
(20 applied an additional short pulgew(t) =Ad(t), whered(t)
is the Dirac delta function, and considered the recurrence
The integralP=[?Aw(9")d 9’ in Eq. (20) can be modeled dynamics to the initial state. In Fig. 1, we compare the re-
with accuracy O(1) by an additional equatiordP/dd  sults of the simulation of the original space-dependent rate
=Aw— »P. Substituting Eq(20) into Eq.(193 and collect-  equations12) and Egs.(22) for wy=1.14, A=1. To simu-
ing other required equations, we end up with the closed sydate Eqs.(12) we subdivided the fundamental interval of the

J3

2

G<1>+<§‘J_3> JﬁAww’)dﬂ%ow).

(2)—
G 2 3,

tem space variablese[0,1] into M=10° equal discrete cells
and ascribed thenMg variables ¢(s;,9), i=1,... Mg,
ﬂ—G(l)I (218 wheres; is the value ofs associated with théth cell. The
do ' solution was obtained by integratifd+ 1 ordinary differ-
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ential equations for the variableand M variablese(s; ,9).
The initial conditions for Eqs(22) are G(0)=0 and|(0)

PHYSICAL REVIEW E63 016204

i.e., the modes whose steady state intensities are not zero.
The problem of the mode configuration, i.e., the question of

=1°. For Egs.(12), we have chosen the same initial condi- how many and which modes are present at a fixed pump rate

tion 1(0)=1° and tried various initial distributiong(s,0),
satisfying the requiremeng(s,0)u(s)=0 compatible with

Wy, will be discussed below. Now, we suppose that the mode
configuration is known and, for the given configuration, ob-

the conditionG(0)=0. The result is independent of the de- tain the reduced system of rate equations.

tails of the initial distributiong(s,0), provided the condition

¢(s,0)u(s)=0 is fulfilled.

To derive the equations for the momef@s, we multiply
Eq. (2339 by the functionke™ “*u;(x) and integrate it over

As expected, the difference between the solutions of Eqdhe space variable:
(12) and Egs.(22) is O(#%) [Fig. 1(c)]. Thus, the reduced
system of two ordinary differential equatio22) quantita- td G
tively models the dynamics of the original space-dependent” 2 _ _ (19— 1V e — .
rate equation$l12). do Aw(u](x)>+wozi Ayli—1)=nG, 772i Ml
We succeeded with our reduction procedure mainly due to
a right choice of the characteristic scales for the variables
involved in Eqgs.(2). Upon transformation of these equations o
into the dimensionless forif12), we were able to utilize the Here the coefficients;; are
smallness of the parameter We expanded the solution into
momentg see Eq.(14)] and derived for them an infinite set
of coupled ordinary differential equatior{45). Then these
equations were truncated at the small term containing higher
moments and a closed system of ordinary differential equa-
tions was obtainedsee Eq.(22)]. In the next section, we
generalize the above reduction procedure for the case of gyq
multimode laser.

(26)

ui(X)u;(x) > -

e < 1+ 30l S um(X)

B. Multimode laser Mij = (@ (X, D) ui(X)u;j(x)) (28)

For the multimode case, we use the same substittibn

in Eqs.(3) and obtain a generalized version of EqE2): is the matrix element corresponding to the second-order mo-

ments of the unknown functioa(x, 9). Note that the matri-
cesB andM are both symmetricg;;=B; and M;;=M;; .
Equation (26) relates the first-order momer; to the
second-order momentsl;; . However, the contribution of
the second-order moments in this equation is small, since the
corresponding terms are proportional ip Hereafter, we
suppose that the parametew is also small. To determine
the variation rate of the first-order momemt§; /d¢ with
accuracyO(7,Aw), it suffices to estimate the second-order
momentsM;; with accuracyO(1). The equations for the
second-order momentd;; are obtained from Eq239 by
multiplying it by the functionke™**u;(x)u;(x) and integrat-
ing over the space variable

WoSi(17=1)u;(x)
1+ 212u;(x)

d
ﬁgo(x,19)=Aw+

— 91+ 2 Lui(x) |e(x,9), (233

di,

a9 ©

i, (23b)

where

Gj=(e(x,Mu;j(x)) (24
is the first moment of the functioa(x,d) corresponding to

the jth mode. The steady state values of the population in- dM;,

versionn’(x) and the intensitie$”, appropriate to a fixed —=W02 yi-k(lﬁ—lk), (29
. . do ra
value of the pump ratev,, satisfy the equalities
u;(x
W #o) —1=0, (259  where
1+ u(x)
W, Ui (X) U} (X)U(X)
n°(x)= ——(a——. (25b) Yig={ ————). (30)
1+Ei|iui(X) 1+Em|mum(X)

Equation(259 defines the only nonvanishing intensitigs
This means that the indicésandj in Eq. (259 are varied Here, we omitted the terms that are proportionalzt@and
only among the values corresponding to the lasing modes\w. Equation(29) for the second-order moments can be
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solved analytically. To do this, we solve E(6) with re- ' ' '
spect to the variablew/y(1°—1;). With accuracyO(1), we 0121 i
obtain z
‘E 0.08 i
=S
dG, g
0_ )= -1y~ kS i .
wo(IP=10=2 (B i g (31) Soos " L
-1 ; . o 0.00 l Ly l
where 3! is the inverse of the matriy. Substituting Eq. 1.0 [12 14 | 16
(31) into Eqg.(29) and integrating with respect to tim#, we W, Woz
find the following relationship between the second- and first- Wo

order moments: FIG. 2. Dependence of the steady state intensities on the pump

ratew,. The dashed lines show almost the same dependence in the
= E Tijkav (32 presence of an intracavity frequency doubling KTP crystal.
i

second condition guarantees the stability of the given mode
where configuration with respect to all vanishing modes, i.e., the
modes whose steady state intensities are zero. This conclu-
TiJKIE Ynii( B Ymic (33  sion foII'ows from the Iinearize'd Eq3b). Tge small)intensity
m fluctuationsdl; of the vanishing modes;=0, G;#0 are
governed by the equationdsl;/d9=GPsl;. Thus,G{ has
the simple physical meaning that it defines the increment of
the jth vanishing mode. Conditiofll) guarantees that the
increments of all vanishing modes are negative and, hence,
small fluctuations related to these modes decay.
1, (349 An analytical solution of Eq(259 is generally not avail-
able. However, we can find an approximate solution pro-
vided that the pump ratev, is not too much above the
threshold value. Following Ref.11], we suppose that the
intensitiesli0 are small and use an approximation

The relationship (32) is valid with accuracyO(1). From
Egs. (23b), (26), and(32), we finally obtain the closed sys-
tem

d,

dv ©

j
dG;
d_ﬁ]:AW(Uj(X»JFWoZ Bij(l?_li)_ 7G;

-7 Tijm!iGm (34b) 1 1 0,

o %00 > 1ux) (36)
that represents the generalized version of Eg8) for the ] _ i
multimode case. The indices j, and m in Egs. (34) are that transforms Eq(253 into a linear system. To find an
varied only among the lasing modes whose steady state if£XPlicit solution of this system, we have to calculate the
tensities are not zero. Thus, in the caseNofasing modes, following integrals:
the space-dependent rate equati@®3 can be reduced to
the systen(34) of 2N ordinary differential equations. (u)~g;, (373

1. Steady state solution (uju)~gig;(1+K;_;/2), (37b

The steady state intensitide% of the lasing modes satisfy
Eqg. (253. To find out which modes are really present at a
fixed value of the pump ratevy, we have to analyze the
steady state solutions of the systé® at w=w, in more
detail. All steady state solutions of this system are defined by
the equatiorG}I17=0, where

where

Kn=(cog2mmx))=(1+{m?) "1, (=(2n/k)>.
(38

In Egs.(37), we omitted small terms that are proportional to
1/{M?~1.6x10"°, whereM is the number of half wave-
0w < u;j(x) > 1 (35 lengths along the laser cavity. From E(35), (36), and(37),

) - —

J 1+ 31 %u;(x) we obtain

is the steady state value of the expression in angular brackets
that appears in Eq3b). The equatiorG?17=0 can be satis-
fied by setting eitheG=0 or I7=0. The stable mode con-
figurations must satisfgl) szo, if IIQ;&O and(ll) G?<O, if Now, we are ready to investigate the dependence of the
19=0. The first condition is equivalent to E(25a and de- steady state solution on the pump ratg. The numerical
fines the intensities of the lasifgonvanishing modes. The illustration of this dependence is presented in Fig. 2. We start

0_
Gy=g;wq

1-> (l+%)gil?}—l. (39)
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FIG. 3. Increment@? (j==1,%=2) of the vanishing modes for
the single-mode laser. The vah@? are calculated from Eq41) at
various values of the pump rate,. The full squares, circles, and

triangles correspond twvg=1.1<wg;, Wo=Wqg~1.149, andw,
=1.2>wy,, respectively.

with small values ofwg when there exists only a single las-

ing mode,13+#0 and1?=0 fori=+1,=2,....From the
conditionG3=0, we have
0212 40
=3\ 17w,/ (40)

The intensitylg is positive atwy>1. This means that the
first laser threshold is/o=1. The increments of the vanish-

ing modes are
GO=gwo| 1-| 14 )2 ( 1= 1) -1, -
j = 9jWo >3 Wo v 1=

(41)

PHYSICAL REVIEW E63 016204

tive possibility for determining the threshold of the three-
mode configuration. Above the threshelg;, the intensities
19 and!?, increase with increasing, while the intensityl J
decreases and turns to zerongf=wg,, where

17+ 14¢

127 “d

Woo=Wo1+ &

Inside the intervalvy;<wy<wg,, the vanishing modes have
negative incrementsG?<O for j==2,=£3,....Thus, the
three-mode configuratiofd3) is stable with respect to the
vanishing modes in the whole interval,;<wgo<wg,. For
given values of the parameters, the boundaries of the interval
arewg~1.149 andwgy~1.564.

In a similar manner, the steady state solution can be con-
tinued in the regiorwy>wg,; however, we cannot go to
much above the laser threshold, since we used approximation
(36). In the subsequent discussion, we restrict ourselves to
valueswy<wg, and analyze the transient response of a three-
mode laser excited by a short pulse of the pump rate.

2. Transient dynamics

The dynamics of the system close to the steady state,
defined by a fixed pump rate,, is described by Eq<34).
To solve Eqs(34) we need to know the coefficieng;; and
Tijx - The latter is related to the coefficiengg, by Eq.(33).
We exploited the already used approximati86) in order
to estimate these coefficients. From E&7) and (30), we
obtain

These increments are presented in Fig. 3 for various values

of the pump ratew,. They are negativeG?<0, j=%1,
*+2,...,whenwyg<wg,, where

Wog=1+3&(1+1/0) (42)

is the threshold of three-mode operation. The valyg is
defined by the conditio{=G® ;=0. Just above the thresh-
old wo>wy,, the increment&! andG® ; become positive.

Bij~<ui(x)uj(x)>_% 12 (Un(X)U;(X)Uj(X)),  (45)

yijk~<ui<x>uj(x>uk<x>>—§ 12 (Um0 U OO U (X)U(X))-
(46)

We have already calculated the integfaju;) in Eq. (37b).

This means that the single-mode configuration becomes ursimilarly, one can calculate the integrals involving the prod-
stable with respect to two symmetrical neighboring modesicts of three and fouu functions:

that are labeled with the subscriptss =1. Thus, forwg

>Wwgyq, We have to take into account three modes when cal-

culating the sum in E¢(39).

For the three-mode configuratiof=0, 19=1°,+0, and
19=0, i=*+2,+3,..., theintensities!] and 12, are ob-
tained from the condition€5=0, G%,=0, which yield a
system of two linear equations with respectlﬁ)and I(l’.
Upon solving this system, we obtain

0 (W0~ D(1= 2Ky +Ky) +26(2+Ky)
0 Wo(7— 8K, — 2K2+3K,)

. (433

(Wo—1)(1—-K;)—3¢

19=1% . =2
1= '—-1— 2 .
g1Wo(7— 8K, — 2K+ 3K,)

(43b)

The intensityl‘f is equal to zero atvy=wg; and is positive
whenwy>Wwo,. Thus, the condition=0 gives an alterna-

(Uiuju=gig;al 1+ (Ki_; +Ki_+ K;_,)/2],  (47)

(UiUjUUm) ~ 00 9kOm[ 1+ (K j+ K _+ Kj_m+ Kj
TKjomt K m) 2+ (Ki g j-m K- ok m

Ky okm)/8], (48)

whereK,, is defined in Eq.(38). Here, as well as in Egs.
(37), we omitted small terms that are proportional tgNI?.

In Fig. 4, we present the transient behavior of the three-
mode laser excited from a steady state by a short pulse of the
pump rate Aw=A4(t) with A=1. The pump ratew,
=1.25 is chosen inside the intervialy;,wy,] so that Egs.
(43) are valid for the steady state intensitigsand1® ;=19.
Equations(34) were integrated with the initial conditions
10(0)=lg,  1-4(0)=17(0)=17, and  Go(0)=G4(0)
=G_4(0)=0. It is seen from Fig. 4 that the total intensity
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0.3 - . : ™ The system of space-dependent rate equati{8as and
. g-f: (a) ] (49), defining the dynamics of an intracavity frequency

ool W ] doubled laser, can be reduced, following the same scheme as
' '('J ' ' described in Sec. Il B. Using substitutidfl) for the func-
04 ' ' ™) tion ¢(x,9), we obtain the same equatid@3a as in the
— 02} MMMU\M)W (b} 4 case without the KTP crystal, while Eq(23b—for
¢

ook Lt ] intensities—changes to the form

03 T R
-02f © ] af _ G——|g(.—1° +2> =10 |
_0-1}mmmw“mm ], . do |7 ay 9t =1 i;ej'uij(i D
0.0 £ W . . ]
0 1 2 (50

ool the pump ratev, are now defined by the equations

0.8 : T T T
oot WMMMMWW ()] The steady state intensities corresponding to a fixed value of
0

t (ms) ui(X €
w0<—1(0) >— -—|gl%+2> Mijh"):o.
FIG. 4. Transient behavior of the intensiti@s arbitrary unit$ 1+ Zl7ui(x) « 1#]
of the three-mode laser excited by a short pulse of the pump rate for (51
wo=1.25 andA=1. (a),(b),(c) give the dynamics of the partial
intensities of different modes and) that of the total intensitys In the presence of the KTP crystal, E@3a remains un-
=lotlg+log. changed and the reduction procedure described in Sec. Il B
can be exactly repeated in that case. As a result, we obtain
displays a much smoother behavior than each partial interthe same Eq34b) as in the case without the KTP crystal for
sity. The total intensity relaxes to its steady state with athe momentss; :
single characteristic frequency, while the partial intensities

have more characteristic frequencies. This effect is known as dG.
antiphase dynamics and is typical for multimode FabryePe d—ﬁleMuj(x)}eroz Bij(l io_ [;)
lasers[13]. '

IV. DYNAMICS OF A FREQUENCY DOUBLED LASER N 77Gj_ 7/% Tijml iGm- (52)

In this section, we derive the dynamical equations of a
multimode laser in the presence of an intracavity frequencyequations(50) and (52) form a closed system of ordinary
doubling crystal, made from KTP. The KTP crystal causes dlifferential equations that describe the dynamics of an intra-
nonlinear frequency conversion that has to be incorporated igavity frequency doubled multimode laser close to the steady
Eq. (3b) as a loss term for the infrared light. Following Ref. state defined by Eq51).
[6], we take into account the birefringence of optical ele- In order to numerically analyze the possible influence of
ments in the cavity and the harmonic conversion efficiencythe KTP crystal on the steady state and the dynamical prop-
of the fundamental intensity. Then, E@b) which describes erties of the laser, we again employ approximati@e).
the variation rate of the intensity of tjéh mode transforms Then Eq.(51) for the steady state intensitié%transforms to
to

Ki*j 0 €
gjwo[l—iz (1+ T)gi I }—1—;

€
Urris —1+(n(x,Mu;(x))— .

(49)
For the single-mode lasé§#0 andI?=0, j=*1,+2,...,

Here,g is a geometrical factor whose value depends on thgye obtain
optical phase delay through the amplifying and the doubling
crystals and on the angle between their fast axes. Both the Wae 1
Nd:YAG crystal and the KTP crystal are birefringent. The |8:°—_
birefringence leads to two orthogonal directions of polariza- 3wo/2+ egla
tion as eigenstates of the cavity. Moreover, we haye=g
if modesi andj have the same polarization, whig;=1  Without the KTP crystal, we have=0; this equation coin-
—g if these modes are orthogonally polarizeds a nonlin-  cides with Eq.(40).
ear coefficient whose value depends on the properties of the In the case of three-mode operatiodw0, 19, and IJQ
KTP crystal. The values of the parametgrand e used in =0, j=*2,%£3,...,Egs.(53) transform to a system of two
our numerical analysis are presented in Table I. linear equations

(54)
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3 €9 |, 4e(1-9)| , 1 0.2 . T . N
R T LS ot i B
(55a 0.0F, . 4 =
0.2 2 ! 2
M SAUANAVANRY
Ki 2e(1- 1+K 3e [ ]
1+—1+Q|8+ 2+ 2 gpt —9Jjo 00t ' ' : =
2 aWog 2 aWogq 0.2 Y 1 2
a1l ©]
T (55b) - :MWMU_'
= - 00 C_1 n 1 n 1
o 9 ! .
021 (I
. . » 0 . .0 . » A ]
that define the intensitiel§ and19. The intensityl® ; satis- 01}, . 5
fies the equality® ,=19. Here and below, we suppose that 0 ' ] ' >
the moded { and 1° ; have the same direction of polariza- t (ms)
tion, while the modes and 19 ; have orthogonal directions
of polarizations, i.e., we takeuoo=p_1:=9 and ug1 FIG. 5. Chaotic oscillations of the intensitiéa arbitrary unit$

=uo_1=1—0. In the casee=0, the solution is defined by of the three-mode laser with the KTP crystal at a fixed value of the

Egs. (43). Figure 2 illustrates how the KTP influences this PUMP rate,wo=1.25. (a),(b),(c) give the dynamics of the partial
solution. The dotted lines correspond to the case when thigtensities of different modes arfd) that of the total intensitys
KTP crystal is taken into account. The dependencies of thg lotlatl-s

steady state intensities am, are calculated from Eq$54)

and(55) ate=2x10"°. As is seen from the figure, the KTP sl

crystal only slightly influences the steady state solution. This o _ € 0

is because the terms responsible for frequency doubling in dﬁ_( oG, an{g‘s'i”; '“”&‘“ Iy, (569
Egs.(54) and(55) are relatively small; they are proportional

to e/«=0.002. The KTP crystal also slightly changes the 456

thresholdswgy; and wg, that define the boundaries of the i 0
three-mode operation. We mark the corresponding thresholdsd§ Aw(u;) _WOZ Bijoli=n8G; = ’7% Tijm!7 0Gm.
determined with the KTP crystal by stars; they are approxi- (56b)
mately wg,~1.153 andwg,~1.519.

Although the KTP crystal only slightly influences the For Aw=0, this system can be solved by an exponential
steady state solution, it essentially changes the dynamicaubstitution sl;cexp(9) and 5G;<exph9), wherex de-
properties of the system. The nonlinear conversion can causies the eigenvalues of the system. The eigenvalueat-
an instability of the steady state. As a result, the output inisfy a characteristic equation that in the caseNbfasing
tensities can exhibit periodic or chaotic oscillations aroundmodes represents aR2order polynomial. The steady state is
the unstable steady state. These oscillations exist at a fixaglable if the real parts of all roots of the characteristic poly-
value of the pump ratey,=const andAw=0. An example  nomial are negative, Re<0,j=12,...,AN.
of the chaotic oscillations that the system exhibits in the The results of a linear stability analysis for the three-mode
three-mode operation aty=1.25 is presented in Fig. 5. The operation are presented in Fig. 6. Here, the maximum real

results were obtained via numerical integration of H§S)  part of the eigenvalues is plotted versus the pumpwgteds
and (52). Here as well as in Figd a pronounced antiphase

dynamics is observed. Note that a chaotic antiphase dynam- —— T T

ics was first reported and analyzed in the framework of the 0.008 | i

JHBWR model in Ref[5]. :

One part of the reason why the KTP crystal affects the —_ |

dynamical properties much more than the steady state is that 5 0004r w* w7
. . . [a | 1 02 |

the terms responsible for frequency doubling have different % f 1

weights in Eqs(50) and (51). In Eq. (50), defining the dy- g 0.000

namics of the intensities, these terms are proportional to [ W WN T

el an~0.287 and are % times larger than the correspond- 0004 ", o, P T

ing terms in Eq.(51), defining the steady state solution. 1.1 1.2 1.3 1.4 1.5

In order to gain a better insight into the instability caused
by the KTP crystal, we performed a linear analysis of EQs. FG. 6. The maximum real part of the eigenvalues of the linear-

(50 a%d (52). The dynamics of the small deviationsl; ized Eq.(56) versus the pump rater,. The valuesws, and w,
=1j—1j, 6G;=G; from the steady state is described by adefine the boundaries of the three-mode operation, the vaifjgs
linearized system of Eq$50) and (52): andw}s the thresholds of instability.
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is clearly seen from the figure, the three-mode configuration 2+
is stable only in small intervalsvg,<wy<wg; and wgy
<wWo<Wwj, close to the thresholdsg, andwg, defining the
boundaries of this configuration. The intervals; <w,
<wg; , corresponding to the unstable steady state solution is
relatively large. The thresholds of the instability are approxi-
matelywg; ~1.167 andwgy ~1.445.

Note that, without the KTP crystak& 0), the three-mode
configuration is stable in the whole intervah;<wy<wqs.
Numerical analysis shows that the two last terms in(E6b)
which are proportional ton provide the stability of the
steady state. Without these termg=<0), all eigenvalues are
purely imaginary and small deviations from the steady state T
exhibit undamped oscillations. The terms that are propor- 10 8 6 4 -2 0 2
tional to » cause a small damping. Due to these terms, the K,
eigenvalues gain small negative real parts proportiona,to _ _
and the system approaches the steady state by slow relax- FIG. 7. The domains of stability in t_hek,(,ky) parameter plane
ation oscillations(Fig. 4. When the KTP crystal is taken for proportional feedback control at different .values of the pump
into account €+ 0), the last two terms in Eq56a that are _ratewq _(1.1??, 1.170, 1.17)Zake_n close to the first threshold of the

- . . . instability wg; . The darker regions correspond to the larger values
proportional toe/ @ » work in an opposite manner, i.e., they fw
destabilize the steady state. Thus, the result depends on the™Vo
concurrence between the small terms in Egpb) that are
proportional to and those in Eq(564) that are proportional goal is to find the stability domain in thex(,k,) plane that
to e/ an. Because the stability problem is sensitive to smallcorresponds to the negative real parts of all eigenvalues of
terms it is evident that the procedure of reducing the spatisihe system under feedback control. The results of this analy-
degrees of freedom requires a high accuracy. In our apSis are presented in Figs. 7 and 8.

proach, we thoroughly performed this reduction taking into  Figure 7 illustrates the domains of stability for the pump
account all terms down to and includi@y 7). ratew, close to the first threshold§; of the instability of

the three-mode configuration. The darker regions correspond
to the large values of the pump ratg. As is seen from the
figure, the domain of stability decreases with increasing
and disappears aty~1.173.

In our previous work 8], we considered the problem of In Fig. 8, we start from a pump rate; close to the
stabilizing the steady state of the multimode laser in thesecond thresholdvg; of the instability of the three-mode
framework of the JHBWR model. We modulated the pumpconfiguration and analyze how the domain of stability in the
rate of the laser by a feedback signal composed of two totalk, ,k,) plane varies on decreasing the pump nate Here,
output intensities of infrared light polarized in two different the darker regions correspond to the smaller values of the
orthogonal directions. Analyzing various control techniquespump ratew,. Again, the domain of stability decreases when
we came to the conclusion that the most appropriate for ex-
perimental application is the proportional feedback tech-
nique. Here, we apply this technique to our reduced system
of Egs.(50) and(52). For the three-mode operation, the pro-
portional feedback is defined by the equation

V. STABILIZING THE STEADY STATE

AW:kxb‘Io“l‘ky(b‘I,l"_ ol 1), (57)

wheredl;=1;—17 is the deviation of the intensity of thigh
mode from its steady state value akgdk, are the feedback
amplification coefficients. Recall that, in accordance with our
assumption, the modgs=1 andj=—1 have the same po-
larization, while the modeg=0 andj= *1 have orthogonal
polarizations. The feedbadk7) does not change the steady
state solution of Eq9450) and (52); however, it can change
its stability.

First, we analyze the linear stability of the system under F|G. 8. The same as in Fig. 7, but the values wf
the feedback signal57). We substitute Eq(57) into the  (1.400,1.300,1.250,1.24%re started close to the second threshold
linearized systen{56) and calculate the dependence of its of the instabilitywZs . The darker regions correspond to the smaller
eigenvalues on the feedback paramekgrandk, . The main  values ofwy,.
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08FT ' ™ domain of stability disappears. In general, one can conclude
o4 hdMMMWWWWWWf)Q that stabilization of the steady state in our model as well as
00L! X ) X ] in a real experimenf9] is much more difficult to achieve
0.4 80 05 1.0 than appears from the JHBWR model.
0.2 h (b)-
0.0k, sl VI. CONCLUSIONS
0.0 0.5 1.0
02}’ ' ' ' "] In summary, we have proposed a quantitatively accurate
0.1 ;thWWNM: procedure of reducing the spatial degrees of freedom in a
0.0k X L . 4 model of space-dependent multimode laser rate equations de-
0.8 0.0 0.5 10 scribing the dynamics of th_e mode .intensiti.es and the popu-
* 0'4 i (@] lation inversion of the active medium. This reduction in-
ol h MMM A A - ] volves a small parameter that defines the ratio between the
o-0E : : : " population inversion decay rate and the cavity decay rate,
0.0 0.5 1.0 ; .
¢ (ms) which has also been used for spatially nonresolved laser

equations by Oppet al. in [14—17. Unlike the usual con-
FIG. 9. Transient behavior of the intensitigs arbitrary unity  Sideration, our model incorporates the effects of nonhomo-
of the three-mode laser with the KTP crystal under proportionalgeneous pumping of the active medium. On the basis of the
feedback control fow,=1.25 and k, ,k,)=(10,—7.5). (a),(b),(c) ~ reduced equations, we have numerically analyzed the tran-
give the dynamics of the partial intensities of different modes andsient dynamics of the system. For the case of a single-mode
(d) that of the total intensitys=1g+1,+1_;. operation, we have demonstrated that the solutions of the
reduced system are in good quantitative agreement with the
wo moves away from the thresholdl; and disappears at solutions of the initial space-dependent rate equations.
Wo~1.24. Thus, the three-mode configuration is uncontrol- We have generalized the reduction procedure for the case
lable with proportional feedback in the interval of the pump of an intracavity frequency doubled Nd:YAG laser. Here, the
rate 1.173wy<<1.24. nonlinear frequency conversion performed by a KTP crystal
We have verified the results of the linear analysis by in-placed inside the laser cavity was taken into account. Our
tegrating the system of nonlinear differential equatiG®d numerical analysis of the reduced system in this case has
and(52). The numerical analysis shows that the linear theoryshown that the steady state solution may lose its stability and
correctly predicts the location of the stability domains. Fig-chaotic oscillations of the intensities of different modes may
ure 9 illustrates an example of the system dynamics undesppear. The eigenvalues of the linearized system have real
proportional feedback control fow,=1.25 and K,,k,) parts that are small compared to the imaginary parts and,
=(10,—7.5). Note that, for the given valugg, the uncon- thus, the stability of the steady state depends on small pa-
trolled system exhibits chaotic oscillations, as shown in Figrameters. It follows that the procedure of reducing the spatial
5. Under the feedback signal, the system approaches an irdegrees of freedom requires a high accuracy, in order to
tially unstable steady state. The control is successful onlgorrectly predict the stability of the steady state. That is why
when the initial conditions of the system are not too far fromwe have primarily emphasized an accurate derivation of the
the steady state. This means that the stabilized steady stateduced system.
solution has only a finite domain of attraction in phase space. On the basis of the reduced system, we have reconsidered
The problem associated with the finite domain of attractiorthe problem of controlling the steady state. Previously, we
can be overcome by the tracking procedure that we discussethalyzed this problem in the context of the JHBWR model
in Ref.[8]. [8]. Here, as well as in Ref8], we have shown that the
The application of proportional feedback control to theunstable steady state of the system can be stabilized by a
reduced system of Eq&0) and(52) leads to results that are proportional feedback control technique, using the laser
somewhat different from those obtained with the JHBWRpump rate as the control parameter and the linear combina-
model [8]. The qualitative difference is that the JHBWR tion of the sum intensities of the infrared laser modes polar-
model can be stabilized by proportional feedback for an arized in two different orthogonal directions as the feedback
bitrarily large pump rate, whereas here, even in the area dfignal. Comparing the results obtained from our reduced sys-
relatively small values of the pump rate, we reveal somaem with those obtained from the JHBWR model, one can
interval where the system is uncontrollable. On the otheronclude that our system is less controllable. From the JH-
hand, the domains of stability presented in Fig. 8 are surprisBWR model, it follows that the steady state can be stabilized
ingly similar to the domains derived from the JHBWR for an arbitrarily large value of the pump rate, whereas our
model, although the reduced system of E§§),(52) and the  model gives more complex and less optimistic results indi-
equations of the JHBWR model differ considerably. In bothcating that it may be uncontrollable even in the area of rela-
cases, the domains are bounded by two lines, located in thévely small values of the pump rate.
region of positive values ok, and negative values &, . Note that the reduced system of E¢s0) and(52) is valid
However, for the JHBWR model, the angle between the linesor any value of the pump rate. However, in our numerical
remains finite at any value of the pump ratg, while here  analysis, we have used approximati@6), which holds only
these lines merge together at some finite valyeand the for values that are not too much above the laser threshold.
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