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Rotationally induced transitions in small clusters
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The dynamics of an Arcluster held together by Lennard-Jones forces is studied classically. The develop-
ment of chaotic dynamics is mainly followed by a calculation of the maximum Lyapunov exp@vieis).
Initial momentum vectors are chosen from the eigenvectors of the Hessian of the potential energy so that
rotating and nonrotating clusters can be studied systematically. It is found that the dependence of MLE on the
total energy is considerably different for rotational and vibrational excitations. As the magnitude of the angular
momentum increases, sharp transitions in MLE are observed. These transitions are explained in terms of the
changes of the topology of the effective rovibrational potential energy surface and the dynamic equilibration
between the global and local minima.
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[. INTRODUCTION potential function, a drop in MLE is observed, which is ex-
plained by the accessibility of the relatively flat saddle point
The dynamics of small clusters offers a powerful compu-of the trimer corresponding to linear structig9]. We also
tational laboratory tool for understanding several interestingbserved this unusual drop in our studies of.AAddition-
phenomena, such as isomerizations, phase transitions, aatly, we have reported that three-body terms in the potential
phase coexistendd—3|. Due to the relatively small number energy stabilize and reduce the MLED]. Berry has reported
of degrees of freedom, a detailed analysis of their dynamica similar observation for LJwhere a flat saddle regularizes
is feasible, at least in classical mechanical approaches. Utkhe dynamics. However, when the cluster size is increased,
like bulk materials, the local environment of individual at- the saddle points usually become sharper and no additional
oms shows a great deal of inhomogeneities which results iregularity is introduced into the syste®]. Obviously, since
very rich dynamic behavior. One of the basic reasons behinthe cluster spends so little time around these sharp saddle
this inhomogeneity is the presence of a large number of locgboints, the time averages of trajectories are hardly affected
minima and saddle points of the potential energy surfaceby their presence.
(PES with distinct geometrical structures. For a clear under- In studies of small clusters, it is especially important to
standing of the dynamics along the PES, one needs to knownderstand the relationship between the Lyapunov exponents
the connectivity between such minima and saddle points aand the phase transitions. In a detailed description of the
well as the topology of the surfaces close to them. Once thenelting process, it is explained that even for small clusters a
number of optimum structures reaches a certain level, statisiquidlike behavior is observed if there are stable isomers
tical interpretations of the PES topology become necessargther than the global minimuiii1]. The passage of the clus-
in order to elucidate the kinetidd]. ter between these global and local minima produces a less
In all these studies it has been observed that if sufficientigid structure where the time scales of the vibrational mo-
kinetic energy is stored in a cluster, its classical dynamicgion and switching between local isomers are distinguishable.
shows chaotic behavidb,6]. The extent of the irregularity Calculations on larger clusters up to,Aalso show that the
can be measured in terms of the Lyapunov exponent spetepography of the potential surface and the melting-freezing
trum or its components, such as the maximum Lyapunoyprocesses are closely relat¢ti2]. Again, the number of
exponent {) or Kolmogorov(K) entropy, which is the sum near-degenerate minima and saddle points and the rearrange-
of all positive exponents. The variation of such measures ament mechanisms connecting these optimum points play a
functions of the energyor average temperatyreisually  crucial role in the phase transitions. Since MLEKoentropy
points to qualitative changes in the dynamics of the systencan be used in the characterization of the qualitative changes
The earliest work on Lyapunov exponents of Lennard-Jonesf the dynamics, it is important to understand the behavior of
(LJ) systems belongs to Posch and Hoolé8|, where the these measures in the phase transition and/or coexistence re-
Lyapunov spectra of dense fluids have been studied undefime. Nayaket al. have reported a dramatic increase in MLE
different conditions. On the other hand, the majority of theof LJ, with respect to temperature in the phase transition
results on small, isolated clusters have been reported byegime forn=7,13,55[13]. Their explanation for this abrupt
Berry and co-workers. In early studies, the Ar trimer haschange is the sudden increase in the available phase-space
been analyzed extensively and it has been found that theéolume. They claim that the slope of the MLE with respect
maximum Lyapunov exponefiMLE) increases with energy to the energy is a more sensitive measure for the phase tran-
as in countless other Hamiltonian systems. Once the totalitions than the MLE itself14]. In bulk systems, the MLE
energy is around- 2/3¢, wheree is the well depth of the LJ and the energy show a jump at the same temperature, imply-
ing first-order transition§15].
On the other hand, extensive studies by Calvo and Labas-
*Email address: eyurtsev@ku.edu.tr tie on LJ systems as well as ionic clusters fail to produce
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such sharp changes in MLE upon meltirig,17). The varia- instability of rotations. The corrections to the spectroscopic
tion of MLE almost linearly increases with energy for LJ constants were also discussed by Lohr and HyB&h who
clusters smaller than=38. The only detectable change in studied rotating clusters in detail, including the heteroge-
the slope of MLE is the onset of the first isomerization for neous trimers and tetramef84] and noted the changes of
ionic clusters. Our simulations on LJ clusterss 20 also  the configurational space for rotating systems. In order to
did not show any significant change in MLE or its derivative detect the changes in the dynamics for rotating clusters, we
around the phase transition regime. proceed to define _the effgcuve rowb.ratlonal surface as in
culation of the MLE and characterization of the dynamics.2ngular momentum vector is conserved in time; however, the
We have reported a set of calculations on, here either Mmoment of inertia and the angular velocity are time-
the energy is stored randomly in bonds wiitk 0 or ordered ~ dependent observables.
rotations are imposed on the cluster with-0 [18,19. Our ..
conclusion was that the initial partitioning of the kinetic en- L=w(t)I(1), )
ergy in vibrational and rotational motion determines the gen- .
eral characterization of the dynamics. Specifically, the moravhere is the angular velocity antlis the moment of the
energy stored in the vibrational motion, the more chaotic thénertia tensor. Since the angular velocity can be written as
trajectories become. R R
In this work, we present our extensive results on rotating w(t)=1(t) "L, 2
and nonrotating Lgl It is our aim to characterize the dynam- ) ) o
ics by partitioning the phase space specifically in terms ofV€ can write the rotational kinetic energy as
angular momentum. For this purpose, the geometry of the 1
cluster, the direction, and the magnitude of the atomic mo- Erot="1"| 1. 3
mentum vectors are used to identify qualitatively different 2
regions of the phase space. Through specifically chosen ini- L )
tial momentum vectors, it is possible to generate conditions iNce the moment of the inertia tensoj (s a function of
where the cluster is given an initial rotational kick or a Spe_coorqmates only, th.e effective rovibrational potential energy
cific normal mode of the cluster is excited. In the case of thdunction can be defined as
former, the energy is redistributed in time due to various 1
coupling mechanisms between the rotational and vibrational Ver=Vi+ =LI 1L, (4)
motions. Here we present the variation of the MLE as a 2
function of the angular momentum and the total energy in ) ) )
order to study the relationships between these measures aldiereVy, is the potential energy of the nonrotating LJ clus-
the geometrical changes. In our earlier studies of wé ter. The trajectory lies on this effect_lve rowb(auonal poten-
have shown that the initial partitioning of the kinetic energytial surface and the number of optimum points as well as
between the vibrational and rotational motions was the domitheir characterization can be significantly different than the
nant factor determining the extent of the chaotic behavioflonrotating case. _ _ o
[10,18,19. That is, even though the angular velocity, the In qrder to find the optimum points of the rovibrational
inertia tensor, and the angular kinetic energy change continf2otential energy surface, we have used the progoamm,
ously as functions of tim20], the energy in the vibrational Which was kindly provided by D. J. Wales. Subroutines to
motion (att=0 only the kinetic energy is nonzero, since the calculate.the analynca! grad|ent. and the I—!essmn are added.
clusters rest at the minimundefines the extent of the irregu- 1he gradient in Cartesian coordinates is given as
larity. If a sufficient amount of energy cannot be transferred
to the vibrational motion, the dynamics remains regular. iErot: _ EI:
The phase space of Ars comparatively more difficult to o]y 2
map. However, we resolve that difficulty by systematically ) )
changing the total energy for each rotational and vibrationall "€ Hessian can then can be written as
excitation. In the case of the rotating clusters, there exists an

dl -
-1 -1
I ﬂqkl )L. (5)

additional complexity due to the changes of the potential i rot:l"( 71’9_||711 -1_ -1 A |1
energy surface by the centrifugal forces. A detailed discus- dq;90k 2 Jq 0k dq,90

sion of these changes in terms of the effective rovibrational al a1

potential energy is given by Li and Jelling¢R1]. They have NI SR S B 1) C. (6)
observed that centrifugal distortion due to nonzero angular dqx 99

momentum may significantly change the topology of the po- ) ) ]

tential surface and can even result in isomerizations or frag- "€ number of optimum points as well as their energy
mentations. Similarly the effects of such forces on the equidepend strongly on the magnitude of the angular momentum
librium geometry, rearrangements of the cluster,vectorL and, in a more subtle way, on its direction. In gen-
spectroscopic constants, and rate constants are presentedesgl, the energy differences between the minima&/of and
Miller and Wales22]. One of the important findings of their the effective potential are proportional itd for smallL val-
study was that nonrigidity of the clusters can lead to theues.
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For rotating clusters, variations in MLE can be studied asnust be zero, since the phase-space volume is conserved. For
functions of the total energy of the cluster, angular momenihe work reported here the sum of exponents is less than
tum L, or the energy relative to the global minimum for the 1078 bits/time (gu) when the complete spectrum is calcu-
specificL. These three parameters are closely related as |ated.

The tangent-space method, besides being a relatively
ETOL_\y=AV+ E 2 p?, 7) overflow-fre_e method, allows easy access to the MLE \_/vit_h-
2 ' out calculating the full Lyapunov exponent spectrum. Within
this methodology, it is possible to start with a single random
whereV, is the potential energy of the global minimum and axis which is usually a normalized eigenvector of lengith 6
AV is the potential energy difference between the minimumnstead of fully defining the initial conditions for the hyper-
geometry(function ofL) and the starting geometry. Initially - spheroid; this eigenvector eventually collapses into one cor-
p is proportional to a rotational eigenvectar=r x p; there-  responding to the maximum stretching, hence the MLE. This
fore, att=0, we can write that conjecture has been shown to be correct for Brownian mo-
tion [26] and was observed to be valid in our simulations.
When the dynamics is chaotic with large Lyapunov expo-
nents, MLE can be calculated by solving the linear equations
for a single trajectory(axis). Only for the regular regime,

For smallL, AV is very small andE"®'—V,, is propor- When MLE is nearly zero, calculation of the exact MLE re-
tional to the square of the angular momentum. IAsn-  quires not one but usually 2—-3 axes. However, this problem
creases,V, changes; howeverE™'—V, still remains can be solved with longer integration times.
roughly proportional td_2. Consequently, the plots of MLE ~ In this work we present results on Asimulations. The
versus any of these three functions give the same informaPES of nonrotating Ayrhas two minima and three first-order
tion, apart from a quadratic transformation. saddle points with energies of12.71206, —12.30293,

—12.07903,—-11.63031, and-11.33402. The initial condi-
Il CALCULATIONS tions are chosen such that t.he geometry of the cluster corre-
sponds to one of these optimal points. In order to span the

The dynamics of clusters is followed by the integration ofphase space systematically and analyze the effects of the
the Hamilton’s equations of motion in time. The four-step rotational motion, the following procedure has been applied.
Runge-Kutta integration is used to obtain the time evolutiornThe Hessian of the Lennard-Jones potential at the starting
of coordinates and momenta. Even though predictorgeometry is diagonalized to generati-B eigenvectors for
corrector-type integrators are more cost efficient, the use afiormal modes as well as three vectors for the translational
Runge-Kutta accurately guarantees the conservation of emnd three for the rotational motion. The eigenvectors corre-
ergy and momentum at the initial stages. The scaled versiogponding to the translational motion are identified as those
of the LJ potential is usedeE1,0=1); therefore, the re- with zero frequency and nonzero linear momentum. These
ported energy values are in termseoénd time, and angular modes are excluded from simulations. Three eigenvectors
momentum is in generalized unitgu). The time step is cho- with zero frequency and nonzero angular momentum de-
sen to be 0.0025 gu and the equations of motion are intescribe the rigid-body rotations of the chosen geometry.
grated for 16 steps. The Lyapunov exponents are calculated Initial conditions for the sample set of trajectories de-
by the tangent space meth¢8,25. When the differential scribe two distinct types of motion. One of these types mim-
equations driving the dynamics are known, the completdcks the photoexcitation of a normal mode. This is achieved
Lyapunov spectrum can be calculated within the tangenby choosing one of the normal-mode eigenvectors as the
space. An infinitesimal B-dimensional hyperspheroid is al- initial momentum vector. In this manner the energy is stored
lowed to evolve along with the cluster. The equations ofin a single specific mode and all other modes are initially
motion for the axes of the hyperspheroid can be cast intinactive. Similarly, when the eigenvectors are chosen from
linearized forms, since the distances between the initial poindbne of the three rotational modes, the initial conditions de-
and the surface of the hyperspheroid in the phase space aseribe a rotational kick given to a nonvibrating cluster. In
very small at the beginning but diverge exponentially. Bythese cases, as the system is nonrigid, the vibrational motion
tracking the lengths of the axes of the hyperspheroid, theets in very quickly. We denote two types of initial condi-
essential dynamics can be captured. Since the equations ftions: vibrational and rotational excitations, respectively. For
the axes are in linear form, it is not necessary to work withboth excitation types, the energy flows between the kinetic
infinitesimal lengths and any arbitrafpreferably orthogo- and potential energy. Additionally, there may be a strong
nal) matrix can be used to define the initial conditions. Theseenergy transfer between rotational and vibrational kinetic en-
axes in essence represent close-lying trajectories and theygy for the rotational excitations. The strength of the uni-
have to be orthonormalized periodically to prevent overflowsmolecular energy redistribution within various types of mo-
and underflows. In this work, Gram-Schmidt orthonormal-tion and modes defines the irregularity of the dynamics.
izations are applied at every 200 steps. MLE is very much Once the coordinates and momenta are selected, the ki-
independent of the frequency of the orthonormalization. Durnetic energy is scaled to cover a wide range of energy. The
ing the integration, the conservation of energy is on the ordesimulations are carried out in the energy range-df2.0e
of 10" "e. For Hamiltonian systems, the sum of all exponents<E=< —7.5¢. Within this energy regime, it is possible for

1. .
ETO'-V,=AV+ SLI L. (8)
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FIG. 1. MLE as a function of the total energy for the excitations 1.5
of the lowest-frequency normal mode.

some trajectories to result in evaporation, and when this hap (b)
pens the trajectory is discarded from the set.

I1l. MAXIMUM LYAPUNOV EXPONENTS

In Fig. 1 the MLE versus total energfelative to the
energy of the cluster at rggplot for the smallest frequency
vibrational normal mode is given for trajectories starting 05 P
from the global minimum of Ay. The dependence of MLE
on energy for other vibrational excitations as well as those - .
starting from local minima are very similar, especially at the
high-energy regime. The MLE increases smoothly with in- 0 A T T
creasing energy. A study of the convergence of trajectories ir 36 375 4 4256 45 475 6 65256 655
this region reveals that there exists a very low energy thresh
old below which the normal-mode description is accurately L (gu)
preserved. i

On the other hand, rotational excitations ingAshow FIG. 2. MLE dependence on angular momentug. Rotation
quite different characteristics. Out of three rotational mode&"oundCa. (b) Rotation aroundC,.
obtained from the Hessian, two are distinct. One of themyrational surface due to slight changes in the global mini-
corresponds to a rotation around t8g axis and the other ym with angular momentum. Hena&Y is nonzero and as
two are linear combinations of rotations around t@paxes.  the trajectory moves along the-dependent “rotationally
Since the eigenvalues corresponding to these axes are zefjjapatic potential surface,” the energy flows between
we obtain a random mixture of these g as eigenvectors; ETh ERot anq v, The dynamics is characterized by the
however, the general characteristics of the dynamics do n¢hagnitude of the energy transferred between these terms. In
change significantly. _ o fact, trajectories starting from the global minimum of the

In Figs. 2a and 2b), MLE for rotational excitations royiprational surface are regular with zero MLE, since the
starting from the global minimum of the nonrotating clusteryjprational kinetic energy remains zero.
are pIotEed for both rotation types as functions of the magni-  The topology of the adiabatic potential-energy surface can
tude ofL. Sharp “transitions” aroundL|=4.5 gu are ob- be studied through several approaches. Li and Jellinek do a
served in these figures. In order to understand the dynamicspecial thermal quenching where the angular momentum is
one needs to look at the partitioning of the total energypreserved so that the cluster collapses into the equilibrium
Following the notation of Li and Jellinek21], E™'=V  structures of the rotating system. We have utilized the eigen-
+E™+ER° where E™ is the remaining kinetic energy vector following an approach with the potential function be-
stored in vibrational motion. From the initial conditions, it ing defined as iV¢;. The gradient and Hessian in Cartesian
seems that all the kinetic energy is in the rotational motioncoordinates are calculated analytically and the minimum
and the thermalvibrationa) energy is zero. However, the structures of the rotating clusters farchanging between 0
cluster does not start at the minimum geometry of the roviand 7 (in generalized unijsare obtained. The minima and

A (bits/gu)
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FIG. 3. Energy of the global, local minimum and the lowest- t.(gu)
energy first-order saddle point of th&; as a function of the an-
gular momentungrotation aroundC,). FIG. 4. Pseudoquenched energy values and the bond distance

(Ryp) for two trajectories.(a) L=4.440 gu,E=—8.766; (b) L

first-order saddle points of thé, ; are used as initial struc- =4.455 gu,E=—8.73%.
tures for the optimization. The results of the optimization for
the rotation around thé&€, axis are given in Fig. 3. The along the rovibrational surfad®1,22 where the vibrational
lowest three optimum points of the nonrotating cluster bekinetic energy is extracted from clusters while keeping the
long to theO,,, C,,, and C,, symmetry groups. For the angular momentum constant. In our pseudo scheme, we
low-angular-momentum regime, the global minimum of thesample trajectories at fixed intervals to generate a set of ini-
rotating cluster switches t®,, symmetry(square bipyra- tial structures. These structures are subjected to optimization
mid); the local minimum and the lowest first-order saddleover thelL-dependent rotationally adiabatic surface. This pro-
point remain in theC,, group. AroundL =2.5 (correspond- cedure, though it may not be very efficient for finding all
ing to E= — 11.5¢) the energy ordering of these two minima isomers, is a reasonably accurate method for determining the
switches. This change in the global minimum of the potentiaimajor structural changes during the simulation. Besides this
energy is not really reflected in the dynamics due to theoptimization scheme, we also analyzed the bond length
still-high-energy barrier between the global and localvariations in order to extract additional evidence for the
minima. However, as the angular momentum increases, &omerization, and results from two trajectories are given in
second feature is observed where the energy difference b&ig. 4.
tween the saddle point and the local minimum decreases and The angular momentum for the first trajectory ks
becomes almost degenerate arouneg4.5 (E=—8.5€). =4.440 gu, which corresponds o= —8.766 and the sec-
This change in the topology of the effective potential-energyond one has =4.455 gu andE=—8.73%. They are in the
surface is more responsible for the sharp transition observeiiansition region between regular and chaotic motion with
in MLE. Trajectories starting at th®,, structure(now a  corresponding maximum Lyapunov exponents of 0.24 and
local minimum of the effective potentiahre able to switch 0.55 bits/gu, respectively. The initial structures obtained by
to the global minimum, since the energy barrier to the saddi€éampling the first trajectory are all optimized to square bipy-
point is very low. Thus, the sharp increase in the chaotidamidal form with an energy o¥,=—8.8944. The bond
behavior can be accounted for in terms of the differencedength shown in this figureR;,) corresponds to two atoms
between the potential-energy surfaces of the rotating antbrming one side of the square. The bond length fluctuates
nonrotating clusters. around the mean in a quasiperiodic manner. All the other

For a more detailed analysis of the dynamics, several trabond lengths display similar variations. The second trajec-
jectories in the transition regime f@@, rotation are selected tory with larger MLE has all the signatures of the isomeriza-
and various properties are calculated. The time-series anal§ion. With the coordinates sampled from the first one-third of
sis of individual coordinate and moment components such ahe simulation, the pseudoquenching procedure finds the
autocorrelation functions or power spectra show that the mosquare bipyramid as the minimum structure with enevgy
tion is definitely far from normal-mode description and not =—8.8693. For the remaining part of the trajectory, the
regular; however, they do not describe the mechanism. Toptimization locates the global minimum wi@y, symmetry
observe the structural changes and correlate with the transit E= —9.555%. The bond lengths show the appropriate
tion in MLE, we have carried out a “pseudoquenching.” change in the geometry. At the beginning, the average value
Jellinek and Wales have proposed methods for quenchingf R;, is around 1.1#, which corresponds to the bond
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length in the minimum-energy structure of the nonrotatingmotion is introduced, the dynamics changes its character and
cluster. Aroundt=900 gu, the average bond length jumpswe observe sharp transitions in MLE versus angular momen-
to 1.9 and remains there. The global minimum structuretum plots. The explanation lies in the changes in the topol-
obtained from optimization shows that the atoms forming theogy of the potential-energy surface of rotating clusters. The
square are distorted with the rotation such that they form @ffective potential now includes a new teri,| 1L, due to
trapezoid where one side is elongatedth C,, symmetry  the centrifugal forces and consequently the number of opti-
and the atoms above and below the plane move closer to thum points and their energy differences are strongly influ-
trapezoid. The bond length variations and optimum strucenced by the magnitude and direction of the angular momen-
tures shown in Fig. 4 correspond to exactly Dg,-to-Co,  tum. In Arg, upon rotating around th@, axis, the global and
change and occur at the same time. The results from lhigh |ocal minima cross around=2.5 gu, and the lowest saddle
and highE trajectories are generally similar, showing the point becomes energetically degenerate with the local
structural transition, except that the time for finding the glo-minima around.=4.5 gu. If the cluster starting &}, sym-
bal minimum is reduced as the energy is increased. At VerYnetry does not have enough energy to go over the saddle
high energy, we have observed several such transitiongoint and find the global minimum, the trajectory remains
within the same trajectory describing a dynamic equilibriumregular, since there is very little energy in the vibrational
between isomers. motion. Those clusters which isomerize to the global mini-
We have not carried out an exhaustive search to find thﬂqum have relatively large vibrational energy and the dynam-
actual number of distinct minima. As expected, the optimumcs becomes chaotic. We conclude by stating that sharp tran-
points strongly depend on the orientation of the angular mositions in MLE for finite size systems can occur only due to
mentum vector. When the angular momentum vector COi”quaIitative changes in the topology of the potential-energy
cides with one of the symmetry rotations of the cluster as iyrface.
is presented here, the number of local minima does not For higher energYor angular momentujrcases, the clus-
change very drastically. However, when the angular motiorer may visit more than one minimum or switch between two
destroys the symmetry, the number of local minima in-jsomers and result in larger MLE. On the other hand, the
creases. simulations starting from the global minimum of the effec-
Calculations of clusters of up to 20 atoms display similartive potential remain regular with zero Lyapunov exponents.
behavior for high-angular-momentum cases. However, thehe number of optimum points is affected by the magnitude
rise in the MLE is most pronounced for small sizes and asnd direction of the angular momentum vector. Symmetry-
the cluster gets larger, the transitions become more gradugdreaking rotations in particular induce an increase in the
number of local minima. Larger clusters also display similar
IV. CONCLUSION but more gradual transitions.

The maximum Lyapunov exponent of Ais studied for
initial conditions corresponding to rotating and nonrotating
clusters. It is known that in the case of the nonrotating clus- We would like to thank D. J. Wales, who kindly provided
ters, MLE is a monotonically increasing function of the total a copy of his progranopTim for the calculation of the opti-
energy for larger than triatomic clusters. When the rotationamum points of the rovibrational potential energy surface.
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