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Rotationally induced transitions in small clusters
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The dynamics of an Ar6 cluster held together by Lennard-Jones forces is studied classically. The develop-
ment of chaotic dynamics is mainly followed by a calculation of the maximum Lyapunov exponent~MLE!.
Initial momentum vectors are chosen from the eigenvectors of the Hessian of the potential energy so that
rotating and nonrotating clusters can be studied systematically. It is found that the dependence of MLE on the
total energy is considerably different for rotational and vibrational excitations. As the magnitude of the angular
momentum increases, sharp transitions in MLE are observed. These transitions are explained in terms of the
changes of the topology of the effective rovibrational potential energy surface and the dynamic equilibration
between the global and local minima.
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I. INTRODUCTION

The dynamics of small clusters offers a powerful comp
tational laboratory tool for understanding several interest
phenomena, such as isomerizations, phase transitions,
phase coexistence@1–3#. Due to the relatively small numbe
of degrees of freedom, a detailed analysis of their dynam
is feasible, at least in classical mechanical approaches.
like bulk materials, the local environment of individual a
oms shows a great deal of inhomogeneities which result
very rich dynamic behavior. One of the basic reasons beh
this inhomogeneity is the presence of a large number of lo
minima and saddle points of the potential energy surfa
~PES! with distinct geometrical structures. For a clear und
standing of the dynamics along the PES, one needs to k
the connectivity between such minima and saddle points
well as the topology of the surfaces close to them. Once
number of optimum structures reaches a certain level, st
tical interpretations of the PES topology become neces
in order to elucidate the kinetics@4#.

In all these studies it has been observed that if suffic
kinetic energy is stored in a cluster, its classical dynam
shows chaotic behavior@5,6#. The extent of the irregularity
can be measured in terms of the Lyapunov exponent s
trum or its components, such as the maximum Lyapun
exponent (l) or Kolmogorov~K! entropy, which is the sum
of all positive exponents. The variation of such measures
functions of the energy~or average temperature! usually
points to qualitative changes in the dynamics of the syst
The earliest work on Lyapunov exponents of Lennard-Jo
~LJ! systems belongs to Posch and Hoover@7,8#, where the
Lyapunov spectra of dense fluids have been studied u
different conditions. On the other hand, the majority of t
results on small, isolated clusters have been reported
Berry and co-workers. In early studies, the Ar trimer h
been analyzed extensively and it has been found that
maximum Lyapunov exponent~MLE! increases with energy
as in countless other Hamiltonian systems. Once the t
energy is around22/3e, wheree is the well depth of the LJ
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potential function, a drop in MLE is observed, which is e
plained by the accessibility of the relatively flat saddle po
of the trimer corresponding to linear structure@5,9#. We also
observed this unusual drop in our studies of Ar3. Addition-
ally, we have reported that three-body terms in the poten
energy stabilize and reduce the MLE@10#. Berry has reported
a similar observation for LJ4 where a flat saddle regularize
the dynamics. However, when the cluster size is increas
the saddle points usually become sharper and no additi
regularity is introduced into the system@9#. Obviously, since
the cluster spends so little time around these sharp sa
points, the time averages of trajectories are hardly affec
by their presence.

In studies of small clusters, it is especially important
understand the relationship between the Lyapunov expon
and the phase transitions. In a detailed description of
melting process, it is explained that even for small cluster
liquidlike behavior is observed if there are stable isom
other than the global minimum@11#. The passage of the clus
ter between these global and local minima produces a
rigid structure where the time scales of the vibrational m
tion and switching between local isomers are distinguisha
Calculations on larger clusters up to Ar14 also show that the
topography of the potential surface and the melting-freez
processes are closely related@12#. Again, the number of
near-degenerate minima and saddle points and the rearra
ment mechanisms connecting these optimum points pla
crucial role in the phase transitions. Since MLE orK entropy
can be used in the characterization of the qualitative chan
of the dynamics, it is important to understand the behavio
these measures in the phase transition and/or coexistenc
gime. Nayaket al.have reported a dramatic increase in ML
of LJn with respect to temperature in the phase transit
regime forn57,13,55@13#. Their explanation for this abrup
change is the sudden increase in the available phase-s
volume. They claim that the slope of the MLE with respe
to the energy is a more sensitive measure for the phase
sitions than the MLE itself@14#. In bulk systems, the MLE
and the energy show a jump at the same temperature, im
ing first-order transitions@15#.

On the other hand, extensive studies by Calvo and Lab
tie on LJ systems as well as ionic clusters fail to produ
©2000 The American Physical Society02-1
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such sharp changes in MLE upon melting@16,17#. The varia-
tion of MLE almost linearly increases with energy for L
clusters smaller thann538. The only detectable change
the slope of MLE is the onset of the first isomerization f
ionic clusters. Our simulations on LJ clusters onn<20 also
did not show any significant change in MLE or its derivati
around the phase transition regime.

The initial conditions may be very important for the ca
culation of the MLE and characterization of the dynami
We have reported a set of calculations on LJ3 where either
the energy is stored randomly in bonds withL50 or ordered
rotations are imposed on the cluster withL.0 @18,19#. Our
conclusion was that the initial partitioning of the kinetic e
ergy in vibrational and rotational motion determines the g
eral characterization of the dynamics. Specifically, the m
energy stored in the vibrational motion, the more chaotic
trajectories become.

In this work, we present our extensive results on rotat
and nonrotating LJ6. It is our aim to characterize the dynam
ics by partitioning the phase space specifically in terms
angular momentum. For this purpose, the geometry of
cluster, the direction, and the magnitude of the atomic m
mentum vectors are used to identify qualitatively differe
regions of the phase space. Through specifically chosen
tial momentum vectors, it is possible to generate conditi
where the cluster is given an initial rotational kick or a sp
cific normal mode of the cluster is excited. In the case of
former, the energy is redistributed in time due to vario
coupling mechanisms between the rotational and vibratio
motions. Here we present the variation of the MLE as
function of the angular momentum and the total energy
order to study the relationships between these measures
the geometrical changes. In our earlier studies of LJ3 we
have shown that the initial partitioning of the kinetic ener
between the vibrational and rotational motions was the do
nant factor determining the extent of the chaotic behav
@10,18,19#. That is, even though the angular velocity, t
inertia tensor, and the angular kinetic energy change cont
ously as functions of time@20#, the energy in the vibrationa
motion ~at t50 only the kinetic energy is nonzero, since t
clusters rest at the minimum! defines the extent of the irregu
larity. If a sufficient amount of energy cannot be transferr
to the vibrational motion, the dynamics remains regular.

The phase space of Ar6 is comparatively more difficult to
map. However, we resolve that difficulty by systematica
changing the total energy for each rotational and vibratio
excitation. In the case of the rotating clusters, there exist
additional complexity due to the changes of the poten
energy surface by the centrifugal forces. A detailed disc
sion of these changes in terms of the effective rovibratio
potential energy is given by Li and Jellinek@21#. They have
observed that centrifugal distortion due to nonzero ang
momentum may significantly change the topology of the
tential surface and can even result in isomerizations or fr
mentations. Similarly the effects of such forces on the eq
librium geometry, rearrangements of the clust
spectroscopic constants, and rate constants are present
Miller and Wales@22#. One of the important findings of thei
study was that nonrigidity of the clusters can lead to
01620
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instability of rotations. The corrections to the spectrosco
constants were also discussed by Lohr and Huben@23#, who
studied rotating clusters in detail, including the heterog
neous trimers and tetramers@24# and noted the changes o
the configurational space for rotating systems. In order
detect the changes in the dynamics for rotating clusters,
proceed to define the effective rovibrational surface as
@21,22#. If a cluster is rotating around its center of mass,
angular momentum vector is conserved in time; however,
moment of inertia and the angular velocity are tim
dependent observables.

LW 5vW ~ t !I ~ t !, ~1!

wherevW is the angular velocity andI is the moment of the
inertia tensor. Since the angular velocity can be written a

vW ~ t !5I ~ t !21LW , ~2!

we can write the rotational kinetic energy as

Erot5
1

2
LW I 21LW . ~3!

Since the moment of the inertia tensor (I ) is a function of
coordinates only, the effective rovibrational potential ener
function can be defined as

Ve f f5VLJ1
1

2
LW I 21LW , ~4!

whereVLJ is the potential energy of the nonrotating LJ clu
ter. The trajectory lies on this effective rovibrational pote
tial surface and the number of optimum points as well
their characterization can be significantly different than
nonrotating case.

In order to find the optimum points of the rovibration
potential energy surface, we have used the programOPTIM,
which was kindly provided by D. J. Wales. Subroutines
calculate the analytical gradient and the Hessian are ad
The gradient in Cartesian coordinates is given as

]

]qk
Erot52

1

2
LW S I 21

]I

]qk
I 21DLW . ~5!

The Hessian can then can be written as

]2

]ql]qk
Erot5

1

2
LW S I 21

]I

]ql
I 21

]I

]qk
I 212I 21

]2I

]ql]qk
I 21

1I 21
]I

]qk
I 21

]I

]ql
I 21DLW . ~6!

The number of optimum points as well as their ener
depend strongly on the magnitude of the angular momen
vectorLW and, in a more subtle way, on its direction. In ge
eral, the energy differences between the minima ofVLJ and
the effective potential are proportional toL2 for smallL val-
ues.
2-2
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For rotating clusters, variations in MLE can be studied
functions of the total energy of the cluster, angular mom
tum L, or the energy relative to the global minimum for th
specificL. These three parameters are closely related as

ETot2V05DV1
1

2 ( pi
2 , ~7!

whereV0 is the potential energy of the global minimum an
DV is the potential energy difference between the minim
geometry~function ofL) and the starting geometry. Initially
pW is proportional to a rotational eigenvector:LW 5rW3pW ; there-
fore, att50, we can write that

ETot2V05DV1
1

2
LW I 21LW . ~8!

For smallL, DV is very small andETot2V0 is propor-
tional to the square of the angular momentum. AsL in-
creases, V0 changes; however,ETot2V0 still remains
roughly proportional toL2. Consequently, the plots of MLE
versus any of these three functions give the same infor
tion, apart from a quadratic transformation.

II. CALCULATIONS

The dynamics of clusters is followed by the integration
the Hamilton’s equations of motion in time. The four-st
Runge-Kutta integration is used to obtain the time evolut
of coordinates and momenta. Even though predic
corrector-type integrators are more cost efficient, the us
Runge-Kutta accurately guarantees the conservation of
ergy and momentum at the initial stages. The scaled ver
of the LJ potential is used (e51,s51); therefore, the re-
ported energy values are in terms ofe and time, and angula
momentum is in generalized units~gu!. The time step is cho-
sen to be 0.0025 gu and the equations of motion are i
grated for 106 steps. The Lyapunov exponents are calcula
by the tangent space method@5,25#. When the differential
equations driving the dynamics are known, the compl
Lyapunov spectrum can be calculated within the tang
space. An infinitesimal 6N-dimensional hyperspheroid is a
lowed to evolve along with the cluster. The equations
motion for the axes of the hyperspheroid can be cast
linearized forms, since the distances between the initial p
and the surface of the hyperspheroid in the phase spac
very small at the beginning but diverge exponentially.
tracking the lengths of the axes of the hyperspheroid,
essential dynamics can be captured. Since the equation
the axes are in linear form, it is not necessary to work w
infinitesimal lengths and any arbitrary~preferably orthogo-
nal! matrix can be used to define the initial conditions. The
axes in essence represent close-lying trajectories and
have to be orthonormalized periodically to prevent overflo
and underflows. In this work, Gram-Schmidt orthonorm
izations are applied at every 200 steps. MLE is very mu
independent of the frequency of the orthonormalization. D
ing the integration, the conservation of energy is on the or
of 1027e. For Hamiltonian systems, the sum of all expone
01620
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must be zero, since the phase-space volume is conserved
the work reported here the sum of exponents is less t
1028 bits/time ~gu! when the complete spectrum is calc
lated.

The tangent-space method, besides being a relati
overflow-free method, allows easy access to the MLE wi
out calculating the full Lyapunov exponent spectrum. With
this methodology, it is possible to start with a single rando
axis which is usually a normalized eigenvector of length 6N,
instead of fully defining the initial conditions for the hype
spheroid; this eigenvector eventually collapses into one c
responding to the maximum stretching, hence the MLE. T
conjecture has been shown to be correct for Brownian m
tion @26# and was observed to be valid in our simulation
When the dynamics is chaotic with large Lyapunov exp
nents, MLE can be calculated by solving the linear equati
for a single trajectory~axis!. Only for the regular regime
when MLE is nearly zero, calculation of the exact MLE r
quires not one but usually 2–3 axes. However, this prob
can be solved with longer integration times.

In this work we present results on Ar6 simulations. The
PES of nonrotating Ar6 has two minima and three first-orde
saddle points with energies of212.71206, 212.30293,
212.07903,211.63031, and211.33403e. The initial condi-
tions are chosen such that the geometry of the cluster co
sponds to one of these optimal points. In order to span
phase space systematically and analyze the effects of
rotational motion, the following procedure has been appli
The Hessian of the Lennard-Jones potential at the star
geometry is diagonalized to generate 3N-6 eigenvectors for
normal modes as well as three vectors for the translatio
and three for the rotational motion. The eigenvectors co
sponding to the translational motion are identified as th
with zero frequency and nonzero linear momentum. Th
modes are excluded from simulations. Three eigenvec
with zero frequency and nonzero angular momentum
scribe the rigid-body rotations of the chosen geometry.

Initial conditions for the sample set of trajectories d
scribe two distinct types of motion. One of these types mi
icks the photoexcitation of a normal mode. This is achiev
by choosing one of the normal-mode eigenvectors as
initial momentum vector. In this manner the energy is sto
in a single specific mode and all other modes are initia
inactive. Similarly, when the eigenvectors are chosen fr
one of the three rotational modes, the initial conditions d
scribe a rotational kick given to a nonvibrating cluster.
these cases, as the system is nonrigid, the vibrational mo
sets in very quickly. We denote two types of initial cond
tions: vibrational and rotational excitations, respectively. F
both excitation types, the energy flows between the kine
and potential energy. Additionally, there may be a stro
energy transfer between rotational and vibrational kinetic
ergy for the rotational excitations. The strength of the u
molecular energy redistribution within various types of m
tion and modes defines the irregularity of the dynamics.

Once the coordinates and momenta are selected, the
netic energy is scaled to cover a wide range of energy.
simulations are carried out in the energy range of212.0e
<E<27.5e. Within this energy regime, it is possible fo
2-3
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ERSIN YURTSEVER PHYSICAL REVIEW E 63 016202
some trajectories to result in evaporation, and when this h
pens the trajectory is discarded from the set.

III. MAXIMUM LYAPUNOV EXPONENTS

In Fig. 1 the MLE versus total energy~relative to the
energy of the cluster at rest! plot for the smallest frequenc
vibrational normal mode is given for trajectories starti
from the global minimum of Ar6. The dependence of MLE
on energy for other vibrational excitations as well as tho
starting from local minima are very similar, especially at t
high-energy regime. The MLE increases smoothly with
creasing energy. A study of the convergence of trajectorie
this region reveals that there exists a very low energy thre
old below which the normal-mode description is accurat
preserved.

On the other hand, rotational excitations in Ar6 show
quite different characteristics. Out of three rotational mod
obtained from the Hessian, two are distinct. One of th
corresponds to a rotation around theC4 axis and the other
two are linear combinations of rotations around twoC2 axes.
Since the eigenvalues corresponding to these axes are
we obtain a random mixture of these twoC2 as eigenvectors
however, the general characteristics of the dynamics do
change significantly.

In Figs. 2~a! and 2~b!, MLE for rotational excitations
starting from the global minimum of the nonrotating clus
are plotted for both rotation types as functions of the mag
tude of LW . Sharp ‘‘transitions’’ arounduLu54.5 gu are ob-
served in these figures. In order to understand the dynam
one needs to look at the partitioning of the total ener
Following the notation of Li and Jellinek@21#, ETot5V
1ETh1ERot, where ETh is the remaining kinetic energ
stored in vibrational motion. From the initial conditions,
seems that all the kinetic energy is in the rotational mot
and the thermal~vibrational! energy is zero. However, th
cluster does not start at the minimum geometry of the ro

FIG. 1. MLE as a function of the total energy for the excitatio
of the lowest-frequency normal mode.
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brational surface due to slight changes in the global m
mum with angular momentum. Hence,DV is nonzero and as
the trajectory moves along theL-dependent ‘‘rotationally
adiabatic potential surface,’’ the energy flows betwe
ETh, ERot, and V. The dynamics is characterized by th
magnitude of the energy transferred between these term
fact, trajectories starting from the global minimum of th
rovibrational surface are regular with zero MLE, since t
vibrational kinetic energy remains zero.

The topology of the adiabatic potential-energy surface
be studied through several approaches. Li and Jellinek d
special thermal quenching where the angular momentum
preserved so that the cluster collapses into the equilibr
structures of the rotating system. We have utilized the eig
vector following an approach with the potential function b
ing defined as inVe f f . The gradient and Hessian in Cartesi
coordinates are calculated analytically and the minim
structures of the rotating clusters forL changing between 0
and 7 ~in generalized units! are obtained. The minima an

FIG. 2. MLE dependence on angular momentum.~a! Rotation
aroundC4. ~b! Rotation aroundC2.
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first-order saddle points of theVLJ are used as initial struc
tures for the optimization. The results of the optimization
the rotation around theC4 axis are given in Fig. 3. The
lowest three optimum points of the nonrotating cluster
long to theOh , C2v , and C2v symmetry groups. For the
low-angular-momentum regime, the global minimum of t
rotating cluster switches toD4h symmetry ~square bipyra-
mid!; the local minimum and the lowest first-order sadd
point remain in theC2v group. AroundL52.5 ~correspond-
ing to E5211.5e) the energy ordering of these two minim
switches. This change in the global minimum of the poten
energy is not really reflected in the dynamics due to
still-high-energy barrier between the global and loc
minima. However, as the angular momentum increase
second feature is observed where the energy difference
tween the saddle point and the local minimum decreases
becomes almost degenerate aroundL54.5 (E528.5e).
This change in the topology of the effective potential-ene
surface is more responsible for the sharp transition obse
in MLE. Trajectories starting at theD4h structure~now a
local minimum of the effective potential! are able to switch
to the global minimum, since the energy barrier to the sad
point is very low. Thus, the sharp increase in the chao
behavior can be accounted for in terms of the differen
between the potential-energy surfaces of the rotating
nonrotating clusters.

For a more detailed analysis of the dynamics, several
jectories in the transition regime forC4 rotation are selected
and various properties are calculated. The time-series an
sis of individual coordinate and moment components suc
autocorrelation functions or power spectra show that the
tion is definitely far from normal-mode description and n
regular; however, they do not describe the mechanism.
observe the structural changes and correlate with the tra
tion in MLE, we have carried out a ‘‘pseudoquenching
Jellinek and Wales have proposed methods for quenc

FIG. 3. Energy of the global, local minimum and the lowe
energy first-order saddle point of theVe f f as a function of the an-
gular momentum~rotation aroundC4).
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along the rovibrational surface@21,22# where the vibrational
kinetic energy is extracted from clusters while keeping
angular momentum constant. In our pseudo scheme,
sample trajectories at fixed intervals to generate a set of
tial structures. These structures are subjected to optimiza
over theL-dependent rotationally adiabatic surface. This p
cedure, though it may not be very efficient for finding a
isomers, is a reasonably accurate method for determining
major structural changes during the simulation. Besides
optimization scheme, we also analyzed the bond len
variations in order to extract additional evidence for t
isomerization, and results from two trajectories are given
Fig. 4.

The angular momentum for the first trajectory isL
54.440 gu, which corresponds toE528.766e and the sec-
ond one hasL54.455 gu andE528.739e. They are in the
transition region between regular and chaotic motion w
corresponding maximum Lyapunov exponents of 0.24 a
0.55 bits/gu, respectively. The initial structures obtained
sampling the first trajectory are all optimized to square bip
ramidal form with an energy ofV0528.8944e. The bond
length shown in this figure (R12) corresponds to two atom
forming one side of the square. The bond length fluctua
around the mean in a quasiperiodic manner. All the ot
bond lengths display similar variations. The second traj
tory with larger MLE has all the signatures of the isomeriz
tion. With the coordinates sampled from the first one-third
the simulation, the pseudoquenching procedure finds
square bipyramid as the minimum structure with energyV0
528.8693e. For the remaining part of the trajectory, th
optimization locates the global minimum withC2v symmetry
at E529.5555e. The bond lengths show the appropria
change in the geometry. At the beginning, the average va
of R12 is around 1.17s, which corresponds to the bon

FIG. 4. Pseudoquenched energy values and the bond dist
(R12) for two trajectories.~a! L54.440 gu,E528.766e; ~b! L
54.455 gu,E528.739e.
2-5
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ERSIN YURTSEVER PHYSICAL REVIEW E 63 016202
length in the minimum-energy structure of the nonrotat
cluster. Aroundt5900 gu, the average bond length jum
to 1.9s and remains there. The global minimum structu
obtained from optimization shows that the atoms forming
square are distorted with the rotation such that they form
trapezoid where one side is elongated~with C2v symmetry!
and the atoms above and below the plane move closer to
trapezoid. The bond length variations and optimum str
tures shown in Fig. 4 correspond to exactly theD4h-to-C2v
change and occur at the same time. The results from higL
and highE trajectories are generally similar, showing th
structural transition, except that the time for finding the g
bal minimum is reduced as the energy is increased. At v
high energy, we have observed several such transit
within the same trajectory describing a dynamic equilibriu
between isomers.

We have not carried out an exhaustive search to find
actual number of distinct minima. As expected, the optim
points strongly depend on the orientation of the angular m
mentum vector. When the angular momentum vector co
cides with one of the symmetry rotations of the cluster a
is presented here, the number of local minima does
change very drastically. However, when the angular mot
destroys the symmetry, the number of local minima
creases.

Calculations of clusters of up to 20 atoms display simi
behavior for high-angular-momentum cases. However,
rise in the MLE is most pronounced for small sizes and
the cluster gets larger, the transitions become more grad

IV. CONCLUSION

The maximum Lyapunov exponent of Ar6 is studied for
initial conditions corresponding to rotating and nonrotati
clusters. It is known that in the case of the nonrotating cl
ters, MLE is a monotonically increasing function of the to
energy for larger than triatomic clusters. When the rotatio
e
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motion is introduced, the dynamics changes its character
we observe sharp transitions in MLE versus angular mom
tum plots. The explanation lies in the changes in the top
ogy of the potential-energy surface of rotating clusters. T
effective potential now includes a new term,1

2 LW I 21LW , due to
the centrifugal forces and consequently the number of o
mum points and their energy differences are strongly in
enced by the magnitude and direction of the angular mom
tum. In Ar6, upon rotating around theC4 axis, the global and
local minima cross aroundL52.5 gu, and the lowest saddl
point becomes energetically degenerate with the lo
minima aroundL54.5 gu. If the cluster starting atOh sym-
metry does not have enough energy to go over the sa
point and find the global minimum, the trajectory remai
regular, since there is very little energy in the vibration
motion. Those clusters which isomerize to the global mi
mum have relatively large vibrational energy and the dyna
ics becomes chaotic. We conclude by stating that sharp t
sitions in MLE for finite size systems can occur only due
qualitative changes in the topology of the potential-ene
surface.

For higher energy~or angular momentum! cases, the clus-
ter may visit more than one minimum or switch between t
isomers and result in larger MLE. On the other hand,
simulations starting from the global minimum of the effe
tive potential remain regular with zero Lyapunov exponen
The number of optimum points is affected by the magnitu
and direction of the angular momentum vector. Symmet
breaking rotations in particular induce an increase in
number of local minima. Larger clusters also display simi
but more gradual transitions.
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