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Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising
model in an oscillating field
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We study the two-dimensional kinetic Ising model below its equilibrium critical temperature, subject to a
square-wave oscillating external field. We focus on the multidroplet regime, where the metastable phase decays
through nucleation and growth ofmany droplets of the stable phase. At a critical frequency, the system
undergoes a genuine nonequilibrium phase transition, in which the symmetry-broken phase corresponds to an
asymmetric stationary limit cycle for the time-dependent magnetization. We investigate the universal aspects
of this dynamic phase transition at various temperatures and field amplitudes via large-scale Monte Carlo
simulations, employing finite-size scaling techniques adopted from equilibrium critical phenomena. The criti-
cal exponents, the fixed-point value of the fourth-order cumulant, and the critical order-parameter distribution
all are consistent with the universality class of the two-dimensionalequilibrium Ising model. We also study the
cross-over from the multidroplet regime to the strong-field regime, where the transition disappears.
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I. INTRODUCTION

Metastability and hysteresis are widespread phenomen
nature. Ferromagnets are common systems that exhibit t
behaviors@1–5#, but there are also numerous other examp
ranging from ferroelectrics@6,7# to electrochemical adsor
bate layers@8,9# to liquid crystals@10#. A simple model for
many of these real systems is the kinetic Ising model~in
either the spin- or lattice-gas representation!. For example, it
was shown to be appropriate for describing magnetiza
dynamics in highly anisotropic single-domain nanopartic
and uniaxial thin films@11–14#.

The system response to a single reversal of the ‘‘exte
field’’ is fairly well understood@15#. In sufficiently large
systems below the equilibrium critical temperatureTc , the
order parameter changes its value through the nucleation
growth of manydroplets, inside which it has an equilibrium
value consistent with the value of the applied field, as sho
in Fig. 1. This is the multidroplet regime of phase transf
mation @15,16#. The well-known Avrami’s law @17# de-
scribes this process of homogeneous nucleation followed
growth quite accurately up to the time when the growi
droplets coalesce and the stable phase becomes the ma
phase@18#. The intrinsic time scale of the system is given
the metastable lifetimêt&, which is defined as the averag
first-passage time to zero magnetization. This is a measu
the time it takes for the system to escape from the metast
region of the free-energy landscape. In this paper we will
the magnetic language in which the order parameter is
magnetizationm, and its conjugate field is the external ma
netic fieldH. Analogous interpretations, e.g., using the ter

*Permanent address: Department of Physics, Applied Physics
Astronomy, Rensselaer Polytechnic Institute, Troy, NY 1218
3590.
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‘‘polarization’’ and ‘‘electric field’’ for ferroelectric systems
@6,7#, and ‘‘coverage’’ and ‘‘chemical potential’’ for adsorp
tion problems@8,9#, are straightforward.

It is natural next to ask, ‘‘what is the response to an o
cillating external field?’’ The hysteretic behavior in ferro
magnets has attracted significant experimental inter
mainly focused on the characteristic behavior of the hys
esis loop and its area. Its dependence on the field ampli
and frequency was intensively studied, and its scaling beh
ior ~power law versus logarithmic! is still under investiga-
tion, both experimentally@11–13# and theoretically@19–27#.
For a kinetic Ising ferromagnet in two dimensions it w
recently shown@25–27# that the true behavior is in fact
crossover, approaching a logarithmic frequency depende
only for extremely low frequencies.

An important aspect of hysteresis in bistable system
which is the focus of the present paper, is the dynamic co
petition between the two time scales in the system: the h
period of the external fieldt1/2 ~proportional to the inverse o

nd
-

FIG. 1. Metastable decay in the multidroplet regime atT
50.8Tc for an L5128 square-lattice kinetic Ising system evolvin
under Glauber dynamics. The system is initialized with all sp
si51, and an applied fieldH520.3J is set att50. Snapshots of
the spin configurations are given at~a! t530 Monte Carlo steps pe
spin ~MCSS!, ~b! t560 MCSS, and~c! t574 MCSS. The meta-
stable lifetime~the average first-passage time to zero magnet
tion! at this temperature and field iŝt&574.5 MCSS. Stables
521 ~metastables511) spins are represented by black~white!.
©2000 The American Physical Society20-1
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KORNISS, WHITE, RIKVOLD, AND NOVOTNY PHYSICAL REVIEW E63 016120
the driving frequency!, and the metastable lifetimêt&. For
low frequencies, a complete decay of the metastable ph
almost always occurs in each half-period, just as it does a
a single field reversal. Consequently, the time-depend
magnetization reaches a limit cycle which is symmet
about zero@Fig. 2~a!#. For high frequencies, however, th
system does not have enough time to switch during one h
period, and the symmetry of the hysteresis loop is brok
The magnetization then reaches an asymmetric limit cy
@Fig. 2~b!#. Avrami’s law @17,18# is a good approximation
when the majority of the droplets do not overlap. Thus it c
be employed to estimate the time-dependent magnetiza
and the dynamic order parameter~period-averaged magnet
zation! in the low-frequency~see the Appendix! and high-
frequency@27# limits. However, it cannot describe the ‘‘criti
cal regime’’ where t1/2 becomes comparable tôt&, and
which is dominated by coalescing droplets.

This symmetry breaking between the symmetric a
asymmetric limit cycles has been the subject of intens
research over the last decade. It was first observed du
numerical integration of a mean-field equation of motion

FIG. 2. Monte Carlo magnetization time series~solid lines! in
the presence of a square-wave external field~dashed lines! for an
L5128 system atT50.8Tc and field amplitudeH050.3J. (Tc is
the two-dimensional equilibrium Ising critical temperature.! The
metastable lifetime at this temperature and field is^t&574.5
MCSS. ~a! Dynamically disordered phase at dimensionless h
period Q[t1/2/^t&52.7. ~b! Dynamically ordered phase atQ
50.27.
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the magnetization of a ferromagnet in an oscillating fie
@21,22#. Since then, it was observed and studied in numer
Monte Carlo ~MC! simulations of kinetic Ising system
@24,27–33#, as well as in further mean-field studie
@23,29,31,32,34#. It may also have been experimentally o
served in ultrathin films of Co on Cu~001! @12#. The results
of these studies suggest that this symmetry breaking co
sponds to a genuine continuous nonequilibrium phase tra
tion. For recent reviews, see Refs.@35,36#. Associated with
the transition is a divergent time scale~critical slowing
down! @31# and, for spatially extended systems, a diverg
correlation length@27,28#. Estimates for the critical expo
nents and the universality class of the transition recently
came available@27,28,37# after the successful application o
finite-size scaling techniques borrowed from equilibriu
critical phenomena@38–41#.

The purpose of the present paper is to extend prelimin
results@37#, and to provide more accurate estimates of
exponents for two-dimensional kinetic Ising systems in
square-wave oscillating field. The use of the square-w
field tests the universality of the dynamic phase transit
~DPT! @27,28#, and it also significantly increases comput
tional speed, compared to the more commonly used s
soidal field. We further explore the universal aspects of
transition by varying the temperature and field amplitu
within the multidroplet regime, and we study the crossov
to the strong-field regime where the transition disappears
obtaining our results, we rely on dynamic MC simulation
Computational methods are always helpful, especially wh
theoretical ideas are largely missing. There are cases, h
ever, when even the use of standard equilibrium techniq
such as finite-size scaling, requires some insight and build
of analogies between equilibrium and nonequilibrium s
tems@27,28#. This is the case for our present study. To o
knowledge, no effective ‘‘Hamiltonian’’ was known befor
the completion of this work for the dynamic order parame
~in the coarse-grained sense!, from which the long-distance
behavior of the model could be derived. This is a typic
difficulty when dealing with systems far from equilibrium
@42,43#. Recently, however, a coarse-grained Hamilton
was derived@44# for the dynamic order parameter, suppo
ing our results for the DPT. Similar to the previous work f
sinusoidally oscillating fields@27,28#, we perform large-scale
simulations and finite-size scaling to investigate the unive
properties of the DPT.

The remainder of the paper is organized as follows.
Sec. II we define the model and the observables of inter
Section III contains the Monte Carlo results and analys
Conclusions and an outlook are given in Sec. IV.

II. MODEL AND RELEVANT OBSERVABLES

To model spatially extended bistable systems in two
mensions, we study a nearest-neighbor kinetic Ising fe
magnet on anL3L square lattice with periodic boundar
conditions. The model is defined by the Hamiltonian

H52J(̂
i j &

sisj2H~ t !(
i

si , ~1!

-

0-2
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DYNAMIC PHASE TRANSITION, UNIVERSALITY, AND . . . PHYSICAL REVIEW E63 016120
wheresi561 is the state of thei th spin,J.0 is the ferro-
magnetic interaction,(^ i j & runs over all nearest-neighbo
pairs,( i runs over allL2 lattice sites, andH(t) is an oscil-
lating, spatially uniform applied field. The magnetization p
site,

m~ t !5
1

L2 (
i 51

L2

si~ t !, ~2!

is the density conjugate toH(t). The temperatureT is fixed
below its zero-field critical valueTc @J/kBTc5 ln(11A2)/2
@45#, wherekB is Boltzmann’s constant#, so that the magne
tization for H50 has two degenerate spontaneous equi
rium values,6msp(T). For nonzero fields the equilibrium
magnetization has the same sign asH, while for H not too
strong, the opposite magnetization direction ismetastable
and decays slowly towards equilibrium with time, as d
scribed in Sec. I.

The dynamic used in this study, as well as in Re
@27,28#, is the Glauber single-spin-flip MC algorithm wit
updates at randomly chosen sites. Note that the random
quential update scheme corresponds to independent Po
arrivals for the update attempts~discrete events! at each site.
Thus the arrival pattern is strongly asynchronous. The t
unit is one MC step per spin~MCSS!. Each attempted spin
flip from si to 2si is accepted with probability

W~si→2si !5
exp~2bDEi !

11exp~2bDEi !
. ~3!

Here DEi is the energy change resulting from acceptan
andb51/kBT. For the largest system studied (L5512) we
used a scalable massively parallel implementation of the
gorithm for thisasynchronousdynamics@46–49#. The paral-
lel discrete-event scheme ensures that the underlying
namic is not changed~that is, the update attempts a
identical, independent Poisson arrivals at each site!, while a
substantial amount of parallelism is exploited. The para
implementation@47# was carried out on a Cray T3E, emplo
ing up to 256 processing elements.

The dynamic order parameter is the period-averaged m
netization@21#

Q5
1

2t1/2
R m~ t !dt, ~4!

where t1/2 is the half-period of the oscillating field, and th
beginning of the period is chosen at a time whenH(t)
changes sign. Although the phase of the field does not in
ence the results reported in this paper, the choice made
is convenient in studies of the hysteresis loop-area distr
tions and consistent with Refs.@25–28#. Analogously we
also define the local order parameter

Qi5
1

2t1/2
R si~ t !dt, ~5!

which is the period-averaged spin at sitei. For slowly vary-
ing fields the probability distribution ofQ is sharply peaked
01612
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at zero @27,28#. We shall refer to this as thedynamically
disordered phase. It is illustrated by the evolution of the
magnetization in Fig. 2~a! and by theQ'0 time series in
Fig. 3. For rapidly oscillating fields the distribution ofQ
becomes bimodal with two sharp peaks near6msp(T), cor-
responding to the broken symmetry of the hysteresis lo
@27,28#. We shall refer to this as thedynamically ordered
phase. It is illustrated in Fig. 2~b! and by the Q'msp
;O(1) time series in Fig. 3. Near the DPT we use finite-s
scaling analysis of MC data to estimate the critical expone
that characterize the transition. We also keep track of
normalized period-averaged internal energy~in units of J)
@31#,

E52
1

2t1/2
R 1

L2 (̂
i j &

si~ t !sj~ t !dt, ~6!

since it also exhibits important characteristics of the DPT
Previous studies of the DPT used an applied field wh

varies sinusoidally in time. While sinusoidal or linear sa
tooth fields are the most common in experiments, and
necessary to obtain a vanishing loop area in the lo
frequency limit@25–27#, the wave form of the field should
not affect universal aspects of the DPT. This should be
because the transition essentially depends on the compe
between two time scales: the half-periodt1/2 of the applied
field, and the average time it takes the system to leave
metastable region near one of its two degenerate zero-
equilibria when a field of magnitudeH0 and sign opposite to
the magnetization is applied. Thismetastable lifetime,
^t(T,H0)&, is estimated as the average first-passage tim
zero magnetization. In the present paper we use asquare-
wave field of amplitudeH0. This has significant computa
tional advantages over the sinusoidal field variation, since
can use two look-up tables to determine the acceptance p
abilities: one forH51H0 and one forH52H0.

FIG. 3. Time series of the order parameterQ at T50.8Tc and
H050.3J for L5128. Horizontal trace nearQ511: Q50.27
,Qc @dynamically ordered phase, corresponding to Fig. 2~b!#.
Strongly fluctuating trace:Q50.98'Qc ~near the DPT!. Horizon-
tal trace nearQ50: Q52.7.Qc @dynamically disordered phase
corresponding to Fig. 2~a!#.
0-3
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KORNISS, WHITE, RIKVOLD, AND NOVOTNY PHYSICAL REVIEW E63 016120
In terms of the dimensionless half-period,

Q5t1/2/^t~T,H0!&, ~7!

the DPT should occur at a critical valueQc of order unity.
AlthoughQ can be changed by varying eithert1/2, H0, or T,
in a first approximation we expectQc to depend only weakly
on H0 andT. This expectation will be confirmed in Sec. I
by simulations carried out at several values ofH0 andT for
different system sizes.

In many studies of the DPT the transition has been
proached by changingH0 or T @24,29,30,32#. While this is
correct in principle,̂ t(T,H0)& depends strongly and nonlin
early on its arguments@15#. We therefore prefer changingt1/2
at constantH0 and T @27,28#, as this gives more precis
control over the distance from the transition.

We focus on systems which are not only larger than
critical droplet, but also significantly larger than the typic
droplet separation@15#. In this regimemany supercritical
droplets form and contribute to the decay of the metasta
phase the Kolmogorov–Johnson-Mehl–Avrami~KJMA! or
Avrami theory for homogeneous nucleation@17,18#!, as seen
in Fig. 1. This is the only regime where the DPT is expec
to exist. For small systems one observes subtle finite-
effects, not related to the DPT but rather to thestochastic
single-droplet decay mode@15,50#. In the single-droplet re-
gime, subject to a periodic applied field, the system exhi
stochastic resonance@26#.

III. SIMULATION RESULTS

A. Signs of the dynamic phase transition

We performed extensive simulations and finite-size sc
ing analysis of the data on square lattices withL between 64
and 512 atT50.8Tc andH050.3J. We also investigated the
universality of the DPT within the multidroplet regime fo
various fields and temperatures below the equilibrium criti
temperature, using smaller systems withL from 64 to 128.
Typical runs near the DPT consist of 23105 full periods. For
example, atT50.8Tc andH050.3J, where the critical half-
period of the field is about 70 MCSS, this corresponds
2.83107 MCSS. Away from the transition point, an order
magnitude shorter runs were sufficient to obtain high-qua
statistics.

The system was initialized with all spins up, and t
square-wave external field started with a half-period in wh
H52H0. After some relaxation the system magnetizati
would reach a limit cycle~Fig. 2! ~except for thermal fluc-
tuations!. In other words,Q @Eq. ~4!# ~together with other
period-averaged quantities! becomes astationarystochastic
process~Fig. 3!. We discarded the first 1000 periods of th
time series to exclude transients from the stationary-state
erages.

For large half-periods (Q@Qc) the magnetization
switches every half-period@Fig. 2~a!# and Q'0, while for
small half-periods (Q!Qc) the magnetization does not hav
time to switch during a single half-period@Fig. 2~b!#, result-
ing in uQu'msp, as can be seen from the time series in F
3. The transition between the high- and low-frequency
01612
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gimes is characterized by large fluctuations inQ near Qc
~Fig. 3!.

To illustrate the spatial aspects of the transition, we a
show configurations of the local order parameter$Qi% in Fig.
4. BelowQc @Fig. 4~a!# the majority of spins spend most o
their time in the11 state, i.e., in the metastable phase dur
the first half-period, and in the stable equilibrium phase d
ing the second half-period~except for equilibrium fluctua-
tions!. Thus most of theQi'11. Droplets ofsi521 that
nucleate during the negative half-period and then decay b
to 11 during the positive half-period show up as rough
circular gray spots in the figure. Since the spins near
center of such a droplet become negative first and rever
positive last, these spots appear darkest in the middle. A
for not too large lattices, one occasionally observes a
reversal of an ordered configuration$Qi%→$2Qi%, typical
of finite, spatially extended systems undergoing symme
breaking. AboveQc @Fig. 4~c!#, the system follows the field
in every half-period~with some phase lag! andQi'0 at all
sites i. Near Qc @Fig. 4~b!# there are large clusters of bot
Qi'11 andQi'21 separated by ‘‘interfaces’’ whereQi
'0. These large-scale structures remain reasonably sta
ary over several periods.

For finite systems in the dynamically ordered phase
probability density ofQ becomes bimodal. Thus, to captu
symmetry breaking, one has to measure the average nor
Q as the order parameter, i.e.,^uQu& @39#. Figure 5~a! shows
that this order parameter is of order unity forQ,Qc , and
vanishes forQ.Qc , except for finite-size effects. To cha
acterize and quantify this transition in terms of critical exp
nents, we employ the well-known technique of finite-si
scaling@38–41#: The quantity analogous to the susceptibili
is the scaled variance of the dynamic order parame
@27,28#:

XL
Q5L2~^Q2&L2^uQu&L

2!. ~8!

Note that for our system the field conjugate toQ and a cor-
responding fluctuation-dissipation theorem are not know
hence we cannot measure the susceptibility directly. Fo
nite systemsXL has a characteristic peak nearQc @see Fig.

FIG. 4. Configurations of the local order parameter$Qi% at T
50.8Tc and H050.3J for L5128. The ‘‘snapshots’’ of$Qi% for
each regime are the set of local period-averaged spins during s
representative period.~a! Q50.27,Qc ~dynamically ordered
phase!. ~b! Q50.98'Qc ~near the DPT!. ~c! Q52.7.Qc ~dy-
namically disordered phase!. On the gray scale black~white! corre-
sponds to21 (11).
0-4
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DYNAMIC PHASE TRANSITION, UNIVERSALITY, AND . . . PHYSICAL REVIEW E63 016120
5~b!# which increases in height with increasingL, while no
finite-size effects can be observed forQ!Qc and Q@Qc .
This implies the existence of a divergent length scale, po
bly the correlation length which governs the long-distan
behavior of the local order-parameter correlations^QiQj&.
The location of the maximum inXL

Q also shifts withL, which
gives further important information about the critical exp
nents.

The normalized stationary time-displaced autocorrelat
function of the order parameter,

FIG. 5. Finite-size behavior of the order parameter atT
50.8Tc and H050.3J for various system sizes.~a! The order pa-
rameter^uQu&L . ~b! The scaled variance of the order paramet
XL

Q , as defined in Eq.~8!. ~c! Same as in~b! on a lin-log scale to
provide an enhanced view of the peaks for smaller systems.
01612
i-
e
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CL
Q~n!5

^Q~ j !Q~ j 1n!&2^Q~ j !&2

^Q2~ j !&2^Q~ j !&2
, ~9!

provides further insights into the DPT as the system exhi
critical slowing down~Fig. 6!. This can be seen as increasin
correlation times with increasing system sizes. In Sec. II
we provide a quantitative analysis of the correlation time

We also measured the period-averaged internal ene
@Eq. ~6!# and its fluctuations@31#,

XL
E5L2~^E2&L2^E&L

2!, ~10!

as can be seen in Fig. 7. The peaks of these fluctuat
exhibit a slow increase with the system size~compared to the
order-parameter fluctuations!, as one may anticipate by ana
ogy with the equilibrium heat capacity.

B. Finite-size scaling

Scaling laws and finite-size scaling for equilibrium sy
tems with ana priori known Hamiltonian can be systemat
cally derived using the concepts of the free energy and
renormalization group@51#. The kinetic Ising model with the
explicitly time-dependent Hamiltonian Eq.~1! is driven far
from equilibrium. Although the order-parameter distributio
P(Q) is stationary, the effective Hamiltonian controlling i
fixed-point behavior was not known until recently@44# ~after
the completion of this study!. Motivated by the similarity of
the finite-size effects shown in Figs. 5–7 to those charac
istic of a typical continuous phase transition, we borrow t
corresponding scaling assumptions from equilibrium fini
size scaling. For our model the quantity analogous to
reduced temperature in equilibrium systems~i.e., the dis-
tance from theinfinite-system critical point! is

u5
uQ2Qcu

Qc
. ~11!

Finite-size scaling theory provides simple scaling relatio
for the observables for finite systems in the critical regim
@39,40#,

,

FIG. 6. Critical slowing down for the order parameter atT
50.8Tc and H050.3J at Q5Qc , as shown by the normalized
autocorrelation functionCL

Q(n).
0-5
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KORNISS, WHITE, RIKVOLD, AND NOVOTNY PHYSICAL REVIEW E63 016120
^uQu&L5L2b/nF6~uL1/n!, ~12!

XL
Q5Lg/nG6~uL1/n!, ~13!

XL
E5c1 ln@LJ6~uL1/n!#, ~14!

where F6 , G6 , and J6 are scaling functions, and th
1 (2) index refers toQ.Qc (Q,Qc). The logarithmic
scaling inXL

E is motivated by the very slow divergence of th
scaled period-averaged energy variance@Fig. 7~b!#. The
above formulation of scaling is explicitly based on t
infinite-system critical pointQc , which can be estimated
with far greater accuracy than the location of the maxim
of the order-parameter fluctuations for the individual fin
system sizes. We use the fourth-order cumulant intersec
method @39,40# to estimate the value ofQc at which the
transition occurs in aninfinite system. In order to do this, w
plot

UL512
^Q4&L

3^Q2&L
2

~15!

as a function ofQ for several system sizes, as shown in F
8. For the largest system (L5512) the statistical uncertaint
in UL was too large to use it to obtain estimates for t
crossing. Our estimate for the dimensionless critical h

FIG. 7. Finite-size behavior of the period-averaged internal
ergy atT50.8Tc and H050.3J for various system sizes.~a! The
period-averaged internal energy.~b! The scaled energy varianceXL

E

as defined in Eq.~10!.
01612
on
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period, based on the remaining five system sizes, isQc
50.91860.005, with a fixed-point valueU* 50.611
60.003 for the cumulant@Fig 8~b!#.

Then, atQc , the scaling forms@Eqs.~12–14!# yield

^uQu&L}L2b/n, ~16!

XL
Q}Lg/n, ~17!

XL
E}c21c1 ln~L !, ~18!

which enable us to estimate the exponent ratiosb/n andg/n,
and to directly check the postulated logarithmic divergen
in the period-averaged energy fluctuations. Plotting^uQu&L

andXL
Q at Qc , and utilizing a weighted linear least-squar

fit to the logarithmic data, yieldsb/n50.12660.005 @Fig.
9~a!# andg/n51.7460.05@Fig. 9~b!#. Note that these value
are extremely close~within statistical errors! to the corre-
sponding ratios for theequilibrium two-dimensional Ising
universality class,b/n51/850.125 and g/n57/451.75.
Further, the straight line in Fig. 9~c! indicates the slow loga-
rithmic divergence ofXL

E at the critical point. In addition to
the scaling atQc , we also checked the divergences of t
peaks of the fluctuations, (XL

Q)peak and (XL
E)peak, since they

-
FIG. 8. ~a! The fourth-order cumulant as defined in Eq.~15! at

T50.8Tc and H050.3J for various system sizes.~b! The region
around the cumulant crossing in~a! enlarged. The horizontal and
vertical dashed lines indicate the fixed-point valueU* 50.611 and
the scaled critical half-periodQc50.918, respectively.
0-6
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asymptotically should follow the same scaling laws, E
~17! and ~18!, respectively. The measured exponentg/n
51.7860.05 for (XL

Q)peakand the logarithmic divergence fo
(XL

E)peak agree to within the statistical errors with the resu
obtained atQc , as can be seen in Figs. 9~b! and 9~c!, respec-
tively.

FIG. 9. Critical exponent estimates atT50.8Tc andH050.3J.
Straight lines are the weighted least-square fits.~a! Determining
b/n through the finite-size effects of the order parameter, base
Eq. ~16! ~log-log plot!. ~b! Determiningg/n through the finite-size
effects of the order-parameter fluctuations, based on Eq.~17! ~log-
log plot!. ~c! Showing the logarithmic divergence of the perio
averaged energy fluctuations, based on Eq.~18! ~log-lin plot!.
01612
.

From the finite-system shifting of the transition one c
estimate the correlation-length exponentn by tracking the
shift in the location of the maximum inXL

Q ,

uQc~L !2Qcu}L21/n, ~19!

whereQc(L) is the location of the peak for finite system
However, the precision of this method for our data is ve
poor, due to limited resolution in finding the locations of th
maxima and consequently the large relative errors
uQc(L)2Qcu. Excluding the smallest~due to strong correc-
tions to scaling! and largest systems~due to very poor reso-
lution and extremely large statistical error!, we obtain n
50.8760.4, but the large error estimate obviously implies
rather poor accuracy~Fig. 10!.

To obtain a more complete picture of how well the scali
relations in Eqs.~12! and~13! hold, we plot^uQu&LLb/n @Fig.
11~a!# and XL

QL2g/n @Fig. 11~b!# vs uL1/n @41#. For the ex-
ponent ratios we usedb/n51/850.125 and g/n57/4
51.75, since our estimate for those~within small statistical
errors! implied that they take on the equilibrium two
dimensional Ising universal values. Most importantly, w
used various values ofn between 0.5 and 1.2 to find the be
data collapse as observed visually, since our estimate for
exponent was far from reliable. The ‘‘optimal’’ value ob
tained this way~by showing scaling plots to group membe
who did not know the particular values ofn used!, and used
in Figs. 11~a! and 11~b!, is n50.9560.15. Full scaling plots
using the exact Ising exponents are also shown in Figs. 1~c!
and 11~d!, and they result in similarly good data collapse.

C. Order-parameter histograms at criticality

We devote this subsection to analyzing the universal ch
acteristics of the full order-parameter distributionP(Q) at
the critical point. This distribution is bimodal for finite sys

n

FIG. 10. Exponent estimate forn at T50.8Tc and H050.3J,
based on Eq.~19! ~log-log plot!. The dot-dashed line is a weighte
least-squares fit~excluding the smallest and the largest system!,
yielding the slope 1/n51.1560.6 (n50.8760.4). The dashed line
represents the ‘‘optimal’’ value for this exponent, using the b
quality data collapse for the scaling function@Eq. ~12!# as discussed
in the text, yielding 1/n51.05 (n50.95). The solid line represent
the two-dimensional equilibrium Ising exponentn51.0.
0-7



scaling
nt

KORNISS, WHITE, RIKVOLD, AND NOVOTNY PHYSICAL REVIEW E63 016120
FIG. 11. Finite-size scaling~full data collapse! at T50.8Tc andH050.3J usingb/n51/8, g/n57/4 ~two-dimensional equilibrium Ising
values!, and n50.95 ~which yields the best quality data collapse!. ~a! For the order parameter^uQu&L ~log-log plot!. ~b! For the scaled
order-parameter varianceXL

Q ~log-log plot!. Straight lines in both graphs represent the asymptotic large-argument behaviors of the
functionsF6 andG6 given in Eqs.~12! and~13!, respectively.~c! and~d! are the same as~a! and~b!, except that the exact Ising expone
n51.0 is used.
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tems if observed for sufficiently long times~Fig. 12! @52#. It
is more convenient to focus on the distribution ofuQu, avoid-
ing the effect of the insufficient number of switching even
between the two symmetry-broken phases for large syste
which causes the skewness in Fig. 12~b!. Figure 13~a! shows
the order-parameter distributionsPL(uQu) at the critical point
for various system sizes. Finite-size scaling argume
@39,40# suggest that, atQc ,

PL~ uQu!5Lb/nP~Lb/nuQu!. ~20!

Thus the scaled distributionsL2b/nPL(uQu) vs x5uQuLb/n

should fall on the same curveP(x) for different system
sizes. Again, we usedb/n51/8. The quality of the data col
lapse is quite impressive@Fig. 13~b!#, with deviations mainly
observed for the smallestL and the largest values ofuQu
@Fig. 13~c!#, possibly as a result of corrections to scaling.

What we find somewhat surprising, is that the distributi
appears to be identical~except for stronger corrections t
scaling for the DPT! to that of the equilibrium two-
dimensional Ising model on a square lattice with perio
boundary conditions at criticality,without a need for any
additional scaling parameters. We checked this by perfo
ing standard equilibrium two-dimensional Ising simulatio
01612
s,

ts

c

-

with Glauber dynamics and system sizes ranging fromL
564 to 128, and also by comparing our scaled DPT ord
parameter histograms to the high-precision two-dimensio
equilibrium Ising MC data of Ref.@53# ~Fig. 13!. We had
expected theshapesof the distributions to be identical fo
the DPT and the equilibrium Ising model, as a conseque
of the identical values for the cumulant fixed-point valueU* .
However, it is not obvious to us why the microscopic leng
scales in the DPT and the equilibrium Ising model also
pear to be identical, as evidenced by the absence of the
for an additional scalingL→L/a (a being the microscopic
length scale in the DPT!.

D. Critical slowing down

Computing the stationary autocorrelation function giv
by Eq. ~9!, we already pointed out that atQc the correlation
time increases quickly with system size~Fig. 6!. Correlation
times are typically extracted from an exponential decay a

CL
Q~n!}e2n/tL

Q
, ~21!

and they are expected to be finite for finite systems. T
0-8
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correlation timetL
Q is also well defined in theL→` limit

away from the transition. However, it diverges withL at the
transition point as

tL
Q}Lz, ~22!

wherez is the dynamical critical exponent. For correlatio
measured at intermediate time intervals, we had reason
statistics including the larger systems~up to L5256) to fit
the usual exponential decay@Fig. 14~a!#. Then, plotting the
correlation timestL

Q vs L yields the dynamic exponentz
51.9160.15, as shown in Fig. 14~b!. Note that from the
local Glauber dynamic for the spins there does not dire
follow any dynamic which governs the evolution of$Qi%. In
this respect, it is somewhat surprising that our value forz at
the DPT is within two standard deviations of most estima
for the dynamic exponent of the two-dimensional equil
rium Ising model with local dynamics@54#.

E. Universality for various temperatures and fields and
crossover to the strong-field regime

The underlying ingredient for the spatially extend
bistable systems exhibiting a DPT is the local metastab
~and the corresponding characteristic time spent in the m
stable ‘‘free-energy well’’! in the presence of an extern
field. This, in turn, provides a competition between tim
scales if the system is driven by a periodic field. Based
this, we expect that sufficiently large systems~in which

FIG. 12. ~a! Short segment of the order-parameter time serie
T50.8Tc and H050.3J for an L5128 system atQc @52#. ~b!
Order-parameter histogram for the same parameters.
01612
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many droplets contribute to the decay of the metasta
phase! exhibit a DPT at a half-periodt1/2 comparable to the
metastable lifetimêt(T,H0)&. In other words, we expect th
critical dimensionless half-period to be of order 1,Qc
;O(1).

To test this expectation, we performed simulations aT
50.8Tc for field amplitudes ranging from 0.3J to infinity
with system sizesL564, 90, and 128.†H05` corresponds
to the Glauber spin-flip probabilities@Eq. ~3!# being equal to
0 ~1! depending on whether the spin is parallel~antiparallel!

at

FIG. 13. Order-parameter histogramsPL(uQu) at T50.8Tc and
H050.3J for various system sizes atQc . The thin solid lines rep-
resent two-dimensionalequilibrium Ising order-parameter histo
grams at the critical point forL564, 90, and 128 on all three
graphs. ~a! Order-parameter distributions.~b! Scaled order-
parameter distributions, according to Eq.~20!, with b/n51/8. The
bold solid line is the corresponding~Monte Carlo! two-dimensional
equilibrium Ising distribution without any additional scaling param
eters@53#. ~c! Same as in~b! on lin-log scales to enhance the vie
of the corrections to scaling for small systems at largeuQu.
0-9



on

h
ex
le
e

n
ab
v

xp

y
cl

r
f

th
tu

-
gly

the

e
us-
n
i-

rder-

-
gh

s-

re-
g-

KORNISS, WHITE, RIKVOLD, AND NOVOTNY PHYSICAL REVIEW E63 016120
to the external field, with no influence from the configurati
of the neighboring spins.‡ We further performed runs atT
50.9Tc , T50.6Tc , and T50.5Tc for various field ampli-
tudes with system sizesL564 and 90. The typical run lengt
was 23104 periods. The purpose of these runs was to
plore the universal nature of the DPT in the multidrop
regime, and the crossover to the strong-field regime wh
the DPT should disappear.

In the strong-field regime the droplet picture breaks dow
since the individual spins are decoupled. Thus the metast
phase no longer exists, and the decay of the phase ha
opposite sign to the external field approaches a simple e
nential form~which becomes exact in theH0→` limit !. In
the Appendix we show that under these conditions the s
tem magnetization always relaxes to a symmetric limit cy
with Q50 for all frequencies; thus no DPT can exist.

Figures 15~a!, 15~b!, and 15~c! show the order paramete
vs the dimensionless half-period forL564 and a range o
field amplitudes atT50.8Tc , T50.6Tc , andT50.5Tc , re-
spectively. The typical order-parameter profile where
system exhibits the DPT prevails up to some tempera
dependent crossover field amplitudeH3(T) ~filled symbols

FIG. 14. Critical slowing down for the order parameter atT
50.8Tc andH050.3J at Q5Qc . ~a! The normalized autocorrela
tion function on a lin-log scale for intermediate times. The strai
lines are fits to exponential decays according to Eq.~21!. ~b! De-
termining the dynamic exponent,z, using a power-law fit to Eq.
~22! ~log-log plot!.
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in Fig. 15!. For H0.H3(T) the underlying decay mecha
nism belongs to the strong-field regime, and correspondin
the DPT disappears, as expected.

One can trace this crossover from the multidroplet to
strong-field regime by plottingQc vs H0 /J @Fig. 16~a!# and
vs ^t& @Fig. 16~b!# for fixed temperatures. Here again w
employed the fourth-order cumulant intersection method
ing L564 and 90 to identify the infinite-system transitio
point Qc . The crossover to the strong-field regime is ind
cated by the drop inQc for large fields~small lifetimes!.

The DPT in the multidroplet regime@H0,H3(T)# ap-
pears to be universal, as can be seen from the scaled o

t

FIG. 15. DPT in the multidroplet regime and strong-field cros
over for various temperatures and field amplitudes withL564.
Order-parameter profiles with filled symbols exhibit a DPT. Cor
sponding lifetimes in units of MCSS are also indicated in the fi
ures.~a! T50.8Tc . ~b! T50.6Tc . ~c! T50.5Tc .
0-10
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FIG. 16. Scaled critical half-period in the multidroplet-DPT r
gime ~a! as a function of the external field amplitudeH0, and~b! as
a function of the lifetimê t&. In ~a! the corresponding empty sym
bols for each temperature on the horizontal axis represent the p
which are the MC upper bounds for the crossover field amplit
H3(T), beyond which no DPT can be found for any nonzeroQ. In
~b! the corresponding empty symbols are the lower bounds for
lifetime below which no DPT is observed.~c! Metastable phase
diagram for the kinetic Ising model, based on metastable deca
static fields@15#, with the location of our square-wave hysteres
simulations superimposed. The stars connected by a dashed
give a numerical estimate for the dynamic spinodal for our smal
system,L564, that separates the multidroplet~MD! regime from
the single-droplet~SD! regime @15#. The solid line is an analytic
estimate for the ‘‘mean-field spinodal’’ which separates the M
from the strong-field~SF! regime @15#. The circles represent th
temperature and field amplitude values at which we ran our si
lations. The filled circles indicate points where the system exhi
a DPT, and empty circles represent points where it does not.
01612
parameter plot in Fig. 17. Note that both graphs contain
DPT data sets: three different temperatures, with four diff
ent field amplitudes for each, and at least two different s
tem sizes (L564,90, and 128 atT50.8Tc , andL564 and
90 at T50.6Tc and T50.5Tc) for all these parameters
While the slopes in the asymptotic scaling regime appea
be the same, the small parallel shift may be the result of
nonuniversal critical amplitudes at different temperatu
and fields, or simply our inaccuracy in determinin
Qc(T,H0), due to the relatively short runs.

On the other hand, as expected, the system shows no

gularity, and^uQu& →
L→`

0 for any nonzero frequency in the
strong-field regime,H0.H3(T) ~see the Appendix!. Here
the finite-size effects simply reflect the central-limit theore
i.e., ^Q2&;O(1/L2), or ^uQu&;O(1/L). Figures 18~a! and
18~b! illustrate this at T50.8Tc , H051.5J and at T

nts
e

e

in

ine
st

u-
s

FIG. 17. Universality of the DPT in the multidroplet regime.~a!
Finite-size scaling~full data collapse! for the order paramete
^uQu&L ~log-log plot!. The figure contains 28 DPT data sets: thr
different temperatures, with four different field amplitudes for ea
and at least two different system sizes (L564,90, and 128 atT
50.8Tc , andL564 and 90 atT50.6Tc andT50.5Tc) for all these
parameters. The temperature and field values were chosen suc
the system is in the multidroplet~MD! regime@filled circles in Fig.
16~c!#. We usedb/n51/8, g/n57/4 ~two-dimensional equilibrium
Ising values!, andn50.95, the optimal value, as described in Se
III B. Straight lines represent the asymptotic large-argument beh
iors of the scaling functionsF6 given by Eq.~12!. ~b! is the same
as ~a!, except that the exact Ising exponentn51.0 is used.
0-11
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50.8Tc , H05`, respectively. One also expects that a sim
lar behavior prevails atT.Tc for any field amplitude, i.e.,
H3(T) vanishes forT.Tc . We checked this forT51.1Tc
and H050.05J, and the results confirm thêuQu&;O(1/L)
scaling of the order parameter for all frequencies, show
none of the characteristic finite-size effects of a DPT@Fig.
18~c!#. This result is in distinct disagreement with older wo
such as Refs.@29,35#, which reported observations of th
DPT at temperatures considerably aboveTc . For smaller
system sizes, however, one may observe nontrivial reson
phenomena for temperatures aboveTc @55#.

FIG. 18. Order-parameter̂uQu&L behavior outside the multi-
droplet regime.~a! Strong-field behavior atT50.8Tc and H0

51.5J (^t&54.3 MCSS!. ~b! Strong-field behavior atT50.8Tc and
H05` (^t&5 ln 2 MCSS!. ~c! High-temperature behavior atT
51.1Tc and H050.05 (̂ t&581.8 MCSS!. The insets in all three
graphs show data collapse for the scaled order parameter^uQu&LL.
01612
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Due to the expected complications of a divergentequilib-
rium correlation length, we did not perform simulations
Tc . However, we conjecture thatH3(T) vanishes atTc . We
expect this conjecture to be extremely difficult to prove
disprove numerically, due to very large and possibly comp
cated finite-size effects.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have studied the hysteretic response
spatially extended bistable system exhibiting a DPT. O
model system is the two-dimensional kinetic Ising ferroma
net below its equilibrium critical temperature, subject to
periodic square-wave applied field. The results indicate t
for field amplitudes and temperatures such that the m
stable phase decays via the multidroplet mechanism, the
tem undergoes a continuous dynamic phase transition w
the half-period of the field,t1/2, is comparable to the meta
stable lifetime,̂ t(T,H0)&. Thus the critical valueQc of the
dimensionless half-period defined in Eq.~7! is of order unity.
As Q is increased beyondQc , the order parameter̂uQu&
~the expectation value of the norm of the period-averag
magnetization! vanishes@Fig. 5~a!#, displaying singular be-
havior at the critical point, as shown in Figs. 5~b! and 5~c!.

The characteristic finite-size effects in the order parame
and its fluctuations indicate that there is a divergent corre
tion length associated with the transition. We used stand
finite-size scaling techniques adopted from the theory
equilibrium phase transitions. We estimatedQc and the criti-
cal exponentsb, g, andn from relatively high precision data
for system sizes betweenL564 and 512 atT50.8Tc and
H050.3J. Our best estimates areb/n50.12660.005, g/n
51.7460.05, andn50.9560.15. These values agree with
statistical errors with those previously obtained with a sin
soidally oscillating field@27,28#, providing strong evidence
that the shape of the field oscillation does not affect the u
versal aspects of the DPT. Observing the stationary auto
relation function, we also saw that at the transition point
system exhibits critical slowing down governed by the d
namic exponentz51.9160.15. Although the local Glaube
dynamic for the spins does not directly predict any spec
dynamic for the period-averaged spins,$Qi%, we note that
this is also very close to the corresponding exponenz
52.12(5), measured in standard two-dimensional Isi
simulations with local dynamics@54#. Our best values for the
exponent ratiosb/n and g/n are given with relatively high
confidence, while forn it is rather poor. In this sense track
ing down the exponentn and obtaining an accurate estima
for it remains elusive. Note, however, that we could only re
on the standard~single spin-flip! MC algorithm, since we
had to preserve the underlying dynamics. Using more sop
ticated algorithms to avoid the critical slowing down as se
in Figs. 6 and 14, would require an underlying ‘‘Hami
tonian’’ for the correspondinglocal order parameter$Qi%,
which is not yet known. While in a coarse-grained and u
versal sense af4 Hamiltonian is supported by our data,
does not point to any one particular microscopic Hamilton
for the microscopic order parameter$Qi%. However, af4

coarse-grained Hamiltonian for$Qi% was recently derived,
0-12
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starting from the time-dependent Ginzburg-Landau equa
for the magnetization@44#.

Of the known universality classes, our exponent estima
for the DPT are closest~and within the statistical errors! to
those of the the two-dimensional equilibrium Ising mod
b/n51/850.125,g/n57/451.75, andn51. Consequently,
our measured exponent ratios satisfy the hyperscaling r
tion

2~b/n!1g/n51.9960.05'd, ~23!

whered52 is the spatial dimension@57#. Further, the fixed-
point value of the fourth-order cumulant,U* 50.611
60.003, is also extremely close to that of the Ising mod
U* 50.6106901(5)@56#. These findings provide conclusiv
evidence that the DPT indeed corresponds to a non-tri
fixed point. We tested the full data collapse for the sca
order parameter and its variance, as shown in Fig. 11, an
confirmed the existence of the universal scaling functio
given by Eqs.~12! and ~13!. Also, at the critical frequency
the order-parameter distributions follow finite-size scali
predictions@Eq. ~20!#, as shown in Fig. 13. More surpris
ingly, the critical DPT order-parameter distributions coinci
with those of the two-dimensional equilibrium Ising model
the critical temperature~except for stronger corrections t
scaling!, without any additional fitting of the underlying mi
croscopic length scale.

While our finite-size scaling data clearly indicate the e
istence of a divergent length scale, we did not measure
correlation length for thelocal order parameter directly. Fu
ture studies may include extracting the correlation lengthjQ
from the ^QiQj& correlations~or from the corresponding
structure factor!. This approach would also provide anoth
way to measure the exponentn by plotting jQ vs u in the
critical regime for large systems, and assumingjQ;u2n.

We also studied the universal aspects of the DPT at o
temperatures and fields. Shorter runs atT50.8Tc , T
50.6Tc , and T50.5Tc for field amplitudesH0,H3(T)
also confirmed scaling and the universality of the DPT~Fig.
17!. The condition for the field amplitude implies that th
system only exhibits a DPT in the multidroplet regime. F
H0.H3(T) strong-field behavior governs the decay of t
magnetization, and the DPT disappears, as indicated by
16 and Figs. 18~a! and 18~b!. We also found that the high
temperature phase is qualitatively similar to the strong-fi
regime in that there is no sign of a DPT forT.Tc @Fig.
18~c!#.

One may ask how general the phenomenon of a DPT i
spatially extended bistable systems, subject to a periodic
plied ‘‘field’’ which drives the system between its metastab
and stable ‘‘wells.’’ It is possible that having up-down sym
metry of the period-averaged ‘‘magnetization’’ is sufficie
for possessing a Hamiltonian at the coarse-grained le
even if the system is driven far away from equilibrium and
microscopically irreversible@58#. Future research can ad
dress this question by studying other systems~not necessar-
ily ferromagnets! that exhibit hysteresis.
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APPENDIX: LOW-FREQUENCY AND STRONG-FIELD
MEAN-FIELD APPROXIMATION

For simplicity, in the following we assume that the ma
netization decays fromm511 to m521 after asinglefield
reversal (H0→2H0). This is a good approximation below
the equilibrium critical temperature (msp'1), and for any
temperature whenH0→`. Further, we assume that the vo
ume fraction of metastable or unstable spins follows a sim
monotonic decay,ŵ(t).

In terms of the volume fraction ofpositivespins,f(t), the
magnetization can be written as

m~ t !52f~ t !21. ~A1!

Subject to a square-wave field,

H~ t !5H 2H0 0<t,t1/2

1H0 t1/2<t,2t1/2,
~A2!

in the first ~second! half-period the volume fraction of the
positive ~negative! spins decays according toŵ(t). Thus, in
each period~measuring timet from the beginning of the
period!,

f~ t !'H f~0!ŵ~ t !, 0<t<t1/2

12@12f~ t1/2!#ŵ~ t2t1/2!, t1/2<t<2t1/2.
~A3!

Using this approximation, one directly obtains a linear ma
ping

fn11512@12fnŵ~ t1/2!#ŵ~ t1/2!, ~A4!

wherefn[f(2nt1/2) is the volume fraction of the positive
spins at the beginning of thenth period,n50,1,2, . . . . The
stationary value of this quantity is

f* 5 lim
n→`

fn5
1

11ŵ~ t1/2!
. ~A5!

Consequently, the magnetization reaches a stationary l
cycle
0-13
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m~ t !'5
2

11ŵ~ t1/2!
ŵ~ t !21 0<t<t1/2

12
2

11ŵ~ t1/2!
ŵ~ t2t1/2! t1/2<t<2t1/2.

~A6!

In this limit cycle the magnetization oscillates about zero

m~0!52m~ t1/2!5
12ŵ~ t1/2!

11ŵ~ t1/2!
, ~A7!

and the symmetry of the magnetization,m(t6t1/2)52m(t),
implies

Q5
1

2t1/2
R m~ t !dt50. ~A8!

This corresponds to the symmetric~dynamically disordered!
m

-

l.

e

ic

.

ys
.

01612
phase. Note that this symmetric phase is always reac

when ŵ(t) decreases monotonically from unity att50 to
zero ast→`.

In the multidroplet regime, the volume fraction of th
metastable phase decays according to Avrami’s law@17,18#.
In the low-frequency limit,t1/2@^t& (Q@1), each half-
period almost always contains acompletemetastable decay
@Fig. 2~a!#. Avrami’s law for the metastable volume fractio

in each half-period can then be directly applied usingŵ(t)

5wms(t)'e2(ln 2)t3/^t&3 @17,18#. This functional form for
wms(t) breaks down whent1/2 becomes comparable tôt&
(Q'1); thus this simple mean-field approximation cann
predict any instability related to the DPT.

In the H0→` limit the individual spins become decou
pled. Then one can obtainŵ(t)5e2(ln 2)t/^t& which is exact
for all frequencies. Further, this exponential decay is a go
approximation everywhere in the strong-field regime; thus
DPT can exist there.
.,
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