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Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising
model in an oscillating field
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We study the two-dimensional kinetic Ising model below its equilibrium critical temperature, subject to a
square-wave oscillating external field. We focus on the multidroplet regime, where the metastable phase decays
through nucleation and growth ahany droplets of the stable phase. At a critical frequency, the system
undergoes a genuine nonequilibrium phase transition, in which the symmetry-broken phase corresponds to an
asymmetric stationary limit cycle for the time-dependent magnetization. We investigate the universal aspects
of this dynamic phase transition at various temperatures and field amplitudes via large-scale Monte Carlo
simulations, employing finite-size scaling techniques adopted from equilibrium critical phenomena. The criti-
cal exponents, the fixed-point value of the fourth-order cumulant, and the critical order-parameter distribution
all are consistent with the universality class of the two-dimensieqailibriumIsing model. We also study the
cross-over from the multidroplet regime to the strong-field regime, where the transition disappears.
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[. INTRODUCTION “polarization” and “electric field” for ferroelectric systems
[6,7], and “coverage” and “chemical potential” for adsorp-
Metastability and hysteresis are widespread phenomena kion problems8,9], are straightforward.

nature. Ferromagnets are common systems that exhibit these It is natural next to ask, “what is the response to an os-

behaviord 1-5], but there are also numerous other examplegillating external field?” The hysteretic behavior in ferro-

ranging from ferroelectric$6,7] to electrochemical adsor- Magnets has attracted significant experimental interest,

bate layerd8,9] to liquid crystals[10]. A simple model for ma_linly focusec_i on the characteristic behavior c_Jf the hyster-

many of these real systems is the kinetic Ising mogiel ~ ©SiS loop and its area. Its_depende_nce on the fleld_ amplitude

either the spin- or lattice-gas representatidfor example, it and frequency was intensively studied, and its scaling behav-

was shown to be appropriate for describing ma netizationjl‘.)r (power law Versus logarithmids stil under investiga-
pprop g 9 tion, both experimentally11-13 and theoretically19-27.

gmal:?:i;‘:’(ig} thr:ﬁ}hlfﬁn?glsfirlec single-domain nanopartlclesFor a kinetic Ising ferromagnet in two dimensions it was
' recently shown25-27 that the true behavior is in fact a

. T,r,'e. syst_em respanse to a single reversa_l .Of the eXtem"%rossover, approaching a logarithmic frequency dependence
field” is fairly well understood[15]. In sufficiently large only for extremely low frequencies

systems below the equilibrium critical temperattig, the An important aspect of hysteresis in bistable systems,
order parameter changes its value through the nucleation anghich is the focus of the present paper, is the dynamic com-
growth of manydroplets, inside which it has an equilibrium petition between the two time scales in the system: the half-

value consistent with the value of the applied field, as showrheriod of the external fielt, (proportional to the inverse of
in Fig. 1. This is the multidroplet regime of phase transfor-

mation [15,16. The well-known Avrami's law[17] de-

droplets coalesce and the stable phase becomes the majori s
phasg18]. The intrinsic time scale of the system is given by .~
the metastable lifetimér), which is defined as the average : .= 3.
first-passage time to zero magnetization. This is a measure ¢ '

the time it takes for the system to escape from the metastabl. (a)

region of the; free-energ){ Iandgcape. In this paper we W'_" USe kG, 1. Metastable decay in the multidroplet regime Tat
the magne'FIC Ianguage in Wh'Ch the o_rder parameter is the 0.8T, for anL =128 square-lattice kinetic Ising system evolving
maQ“‘?“Z&“O”“v and its _con]ugate _f|eld is the e>_<terna| Mag- ynder Glauber dynamics. The system is initialized with all spins
netic fieldH. Analogous interpretations, e.g., using the termssi:L and an applied fieltd=—0.3] is set att=0. Snapshots of
the spin configurations are given(@j t=30 Monte Carlo steps per
spin (MCSS, (b) t=60 MCSS, andc) t=74 MCSS. The meta-
*Permanent address: Department of Physics, Applied Physics, andable lifetime(the average first-passage time to zero magnetiza-
Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180-tion) at this temperature and field ig)=74.5 MCSS. Stables
3590. =—1 (metastables=+1) spins are represented by bla@khite).
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the magnetization of a ferromagnet in an oscillating field
[21,27). Since then, it was observed and studied in numerous
Monte Carlo (MC) simulations of kinetic Ising systems
[24,27-33, as well as in further mean-field studies
[23,29,31,32,3} It may also have been experimentally ob-
served in ultrathin films of Co on @001 [12]. The results

of these studies suggest that this symmetry breaking corre-
sponds to a genuine continuous nonequilibrium phase transi-
tion. For recent reviews, see Ref85,36. Associated with

the transition is a divergent time scaleritical slowing
down) [31] and, for spatially extended systems, a divergent
correlation length[27,28. Estimates for the critical expo-

H(t)/H, , m(t)

0 400 800 1200 1600 2000 nents and the universality class of the transition recently be-
t[MCSS] came availabl¢27,28,37 after the successful application of
, finite-size scaling techniques borrowed from equilibrium
1.0 L (b) ___ critical phenomen&38-41l.

The purpose of the present paper is to extend preliminary
results[37], and to provide more accurate estimates of the

N N~

SRR

| | |
N 057 :' E i }I i '; i i i exponents for two-dimensional kinetic Ising systems in a
¥ . o b ! square-wave oscillating field. The use of the square-wave
t; 00 | '} . l} b i b field tests the universality of the dynamic phase transition
2 b b L (DPT) [27,28, and it also significantly increases computa-
= | Lo Lo b tional speed, compared to the more commonly used sinu-
OSE | soidal field. We further explore the universal aspects of the
Lo Il ': bl ! transition by varying the temperature and field amplitude
40 - Loood Lo Lo within the multidroplet regime, and we study the crossover

to the strong-field regime where the transition disappears. In
obtaining our results, we rely on dynamic MC simulations.
Computational methods are always helpful, especially when
FIG. 2. Monte Carlo magnetization time seriglid line3 in theoretical ideas are largely missing. The.r'e are cases, how-
the presence of a square-wave external fidkaished lingsfor an ~ €Ver, when even the use of standard equilibrium techniques,
L=128 system af =0.8T, and field amplitudeH,=0.3). (T, is  such as finite-size scaling, requires some insight and building
the two-dimensional equilibrium Ising critical temperaturghe ~ Of analogies between equilibrium and nonequilibrium sys-
metastable lifetime at this temperature and field(i§=74.5 tems[27,28. This is the case for our present study. To our
MCSS. (a) Dynamically disordered phase at dimensionless half-knowledge, no effective “Hamiltonian” was known before
period ®=t,,,/{7)=2.7. (b) Dynamically ordered phase & the completion of this work for the dynamic order parameter
=0.27. (in the coarse-grained sens&om which the long-distance
behavior of the model could be derived. This is a typical

the driving frequency and the metastable lifetimer). For ~ difficulty when dealing with systems far from equilibrium
low frequencies, a complete decay of the metastable phasé?243. Recently, however, a coarse-grained Hamiltonian
almost always occurs in each half-period, just as it does aftai/as derived44] for the dynamic order parameter, support-

a single field reversal. Consequently, the time-dependerifld OUr results for the DPT. Similar to the previous work for
magnetization reaches a limit cycle which is symmetrics'nuso'da"y oscillating fieldg27,28, we perform large-scale

about zero[Fig. 2@]. For high frequencies, however, the simulat!ons and finite-size scaling to investigate the universal
system does not have enough time to switch during one halfroperties of the DPT. , ,
period, and the symmetry of the hysteresis loop is broken, 1he remainder of the paper is organized as follows. In
The magnetization then reaches an asymmetric limit Cydg‘ec._ll we deflne_ the model and the observables of interest.
[Fig. 2(b)]. Avrami’'s law [17,1§ is a good approximation Section _III contains the Monte Cz_irlo r_esults and analyses.
when the majority of the droplets do not overlap. Thus it canCOnclusions and an outlook are given in Sec. IV.
be employed to estimate the time-dependent magnetization
and the dynamic order parametgeriod-averaged magneti- Il. MODEL AND RELEVANT OBSERVABLES
zation in the low-frequency(see the Appendjxand high-
frequency[27] limits. However, it cannot describe the “criti-
cal regime” wheret,;;, becomes comparable tr), and
which is dominated by coalescing droplets.

This symmetry breaking between the symmetric an
asymmetric limit cycles has been the subject of intensive
research over the last decade. It was first observed during H= —JE s-s-—H(t)E s 1)
numerical integration of a mean-field equation of motion for i o

0 40 80 120 160 200
t [MCSS]

To model spatially extended bistable systems in two di-
mensions, we study a nearest-neighbor kinetic Ising ferro-
magnet on arL XL square lattice with periodic boundary
0conditions. The model is defined by the Hamiltonian

016120-2



DYNAMIC PHASE TRANSITION, UNIVERSALITY, AND. .. PHYSICAL REVIEW E63 016120

wheres;= ® 1 is the state of théth spin,J>0 is the ferro- 1.0 -

magnetic interactionX(ij) runs over all nearest-neighbor — ©=027

pairs,2; runs over allL? lattice sites, andH(t) is an oscil- —— =098 | ! i

lating, spatially uniform applied field. The magnetization per 05 %m """ e=27 l '\ Lw ik W#‘

site, ~ My "M ||"| L A |
= fv‘m . y' ! '&WII q ‘l | |7\ Il‘l h!
Ql L ’ .

0.0 *"”M’“‘W & M%WW“ ll[

1 Y
m(t)= - 21 si(1), 2 i

is the density conjugate td(t). The temperaturd is fixed
below its zero-field critical valug, [J/kgT.=In(1+2)/2
[45], wherekg is Boltzmann’s constaifitso that the magne-

-1.0

tization for H=0 has two degenerate spontaneous equilib- 500 1000 1500 2000

rium values, = mg(T). For nonzero fields the equilibrium J [periods]

magnetization has the same signkaswhile for H not too

strong, the opposite magnetization directionnigtastable FIG. 3. Time series of the order parame@at T=0.8T. and
and decays slowly towards equilibrium with time, as de-Ho=0.3] for L=128. Horizontal trace neaQ=+1: ©=0.27
scribed in Sec. 1. <0, [dynamically ordered phase, corresponding to Figh)2

The dynamic used in this study, as well as in RefS'Stroneg fluctuating trace® =0.98~0 (ngar the.DP]'. Horizon-
[27,28, is the Glauber single-spin-flip MC algorithm with (@ trace neaQ=0: ©=2.7>6 [dynamically disordered phase,
updates at randomly chosen sites. Note that the random sg2esponding to Fig.(@)].
guential update scheme corresponds to independent Poisson . )
arrivals for the update attemptsiscrete evenjsat each site. &t 2€ro[27,28. We shall refer to this as thdynamically
Thus the arrival pattern is strongly asynchronous. The timélisordered phaselt is illustrated by the evolution of the

unit is one MC step per spitMCSS. Each attempted spin Magnetization in Fig. @ and by theQ~0 time series in
flip from s; to —s; is accepted with probability Fig. 3. For rapidly oscillating fields the distribution &
becomes bimodal with two sharp peaks neang(T), cor-

exp(— BAE)) responding to the broken symmetry of the hysteresis loops
W(SiH—Si):m- (3  [27,28. We shall refer to this as thdynamically ordered
! phase It is illustrated in Fig. 2b) and by the Q~mg,

Here AEI is the energy Change resumng from acceptance:\’ O(l) time series in Flg 3. Near the DPT we use finite-size
and B=1/kgT. For the largest system studied£512) we  scaling analysis of MC data to estimate the critical exponents
used a scalable massively parallel implementation of the athat characterize the transition. We also keep track of the
gorithm for thisasynchronouslynamics46—49. The paral- normalized period-averaged internal energy units of J)

lel discrete-event scheme ensures that the underlying d)[31],

namic is not changedthat is, the update attempts are

identical, independent Poisson arrivals at each,sithile a 1

substantial amount of parallelism is exploited. The parallel E=—5 P > si(Hs;(hdt, (6)
implementatiorf47] was carried out on a Cray T3E, employ- vz /L7 )

ing up to 256 processing elements.

netization[21] Previous studies of the DPT used an applied field which

varies sinusoidally in time. While sinusoidal or linear saw-
tooth fields are the most common in experiments, and are
Q= 2, m(t)dt, (4 necessary to obtain a vanishing loop area in the low-

frequency limit[25-27), the wave form of the field should
wheret,,, is the half-period of the oscillating field, and the not affect universal aspects of the DPT. This should be so
beginning of the period is chosen at a time whii(t) because the transition essentially depends on the competition
changes sign. Although the phase of the field does not influPetween two time scales: the half-peribgh of the applied
ence the results reported in this paper, the choice made hefigld, and the average time it takes the system to leave the
is convenient in studies of the hysteresis loop-area distribumetastable region near one of its two degenerate zero-field
tions and consistent with Ref§25—2§. Analogously we equilibria when a field of magnitudd, and sign opposite to
also define the local order parameter the magnetization is applied. Thisetastable lifetime
(7(T,Hyg)), is estimated as the average first-passage time to
zero magnetization. In the present paper we usguare-
wave field of amplitudeH,. This has significant computa-
tional advantages over the sinusoidal field variation, since we
which is the period-averaged spin at sité=or slowly vary-  can use two look-up tables to determine the acceptance prob-
ing fields the probability distribution of is sharply peaked abilities: one forH=+H, and one forH = —Hj,.

Q.

=%, si(t)dt, ©)
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In terms of the dimensionless half-period,
O =1t1,/(7(T,Ho)), (7 it

the DPT should occur at a critical valé, of order unity.
Although® can be changed by varying eithtgy,, Hg, or T,
in a first approximation we expe€l. to depend only weakly
on Hg andT. This expectation will be confirmed in Sec. IV (a)
by simulations carried out at several valuedHyf and T for

different system sizes.

In many studies of the DPT the transition has been ap-
proached by changingl, or T [24,29,30,32 While this is FIG. 4. Configurations of the local order paramef€x} at T
correct in principle{ 7(T,H,)) depends strongly and nonlin- =0.8T; andHy=0.3) for L=128. The “snapshots” ofQ;} for
early on its argumen{d5]. We therefore prefer changitig, each regime are the set of local period-averaged spins during some
at constantH, and T [27,28, as this gives more precise representative period(a) ©=0.27<0. (dynamically ordered
control over the distance from the transition. phasg. (b) ©=0.98~0. (near the DPT. (c) ®=2.7>0. (dy-

We focus on systems which are not only larger than thd1amically disordered phajseOn the gray scale bladkvhite) corre-

critical droplet, but also significantly larger than the typical SPOnds =1 (+1).
droplet separatiori15]. In this regimemany supercritical
droplets form and contribute to the decay of the metastabl
phase the Kolmogorov—Johnson-Mehl-Avra(KidMA) or
Avrami theory for homogeneous nucleatidiv,18), as seen
in Fig. 1. This is the only regime where the DPT is expecte
to exist. For small systems one observes subtle finite-siz
effects, not related to the DPT but rather to gtechastic
single-droplet decay modé5,50. In the single-droplet re-
gime, subject to a periodic applied field, the system exhibit
stochastic resonand26.

|*

imes is characterized by large fluctuationsQnnear .
Fig. 3.

To illustrate the spatial aspects of the transition, we also
0show configurations of the local order paramét@r} in Fig.

. Below®. [Fig. 4(@)] the majority of spins spend most of
their time in the+ 1 state, i.e., in the metastable phase during
the first half-period, and in the stable equilibrium phase dur-
dng the second half-perio@except for equilibrium fluctua-
tions). Thus most of theQ,~ + 1. Droplets ofs;=—1 that
nucleate during the negative half-period and then decay back
to +1 during the positive half-period show up as roughly
circular gray spots in the figure. Since the spins near the
A. Signs of the dynamic phase transition center of such a droplet become negative first and revert to
positive last, these spots appear darkest in the middle. Also,
for not too large lattices, one occasionally observes a full

IIl. SIMULATION RESULTS

We performed extensive simulations and finite-size scal
ing analysis of the data on square lattices viithetween 64 reversal of an ordered configuratid@;}—{—Q,}, typical

and 512 aff = 0.8T; andH,=0.3). We also investigated the of finite, spatially extended systems undergoing symmetry

uni\_/ersa;_litzjof tr:jet DPT witthin tgel muiﬂdroplg}_gegime _ft(_)r Freaking. Aboved . [Fig. 4(c)], the system follows the field
various fields and temperatures below the equilibrium critical | every half-periodwith some phase lagndQ.~0 at all

temperature, using smaller systems wlitHfrom 64 to 128. sitesi. Near @, [Fi
' : ; . ¢ [Fig. 4(b)] there are large clusters of both
Typical runs near the DPT consist 0k2L0° full periods. For Q,~+1 andQ,~—1 separated by “interfaces” wher®,

example, alf =0.8T; andH,=0.3J, where the critical half- = ) . —
period of the field is about 70 MCSS, this corresponds to 0. These large-scale structures remain reasonably station

7 - . ary over several periods.

2.8x 1.0 MCSS. Away from the trgr)sumn pomt', an order O.f For finite systems in the dynamically ordered phase the
magnl_tude shorter runs were sufficient to obtain hlgh-qualltyprobability density 0fQ becomes bimodal. Thus, to capture
sta_tr|rs]tlcs. ¢ initialized with all spi d th symmetry breaking, one has to measure the average norm of

€ system was initializéd with afl spins up, and e oq e der parameter, i.élQ|) [39]. Figure Fa) shows
square-wave external field started with a half-period in whlcf}halt this order parameter is of order unity #r<®., and

— H H H (o)

H=—H,. After some relaxation the system magnetization, , nishes fol® >0 ., except for finite-size effects. To char-

would reach a limit cyclgFig. 2) (except for thermal fluc- . : ; L .
. . acterize and quantify this transition in terms of critical expo-
tuations. In other words,Q [Eq. (4)] (together with other nents, we employ the well-known technique of finite-size

period-averaged quantitiebecomes sstationary stochastic scaling[38—41]: The quantity analogous to the susceptibility

process(Fig. 3. We discarded the first 1000 periods of the is the scaled variance of the dynamic order parameter
time series to exclude transients from the stationary-state a\t-27 28;

erages.
For large half-periods @>0.) the magnetization XQ=L2((Q%), —(|Q))D). (8)

switches every half-perioffFig. 2(a)] and Q~0, while for

small half-periods @ <®.) the magnetization does not have Note that for our system the field conjugateQoand a cor-

time to switch during a single half-peridéFig. 2(b)], result-  responding fluctuation-dissipation theorem are not known;

ing in |Q|~mg,, as can be seen from the time series in Fig.hence we cannot measure the susceptibility directly. For fi-

3. The transition between the high- and low-frequency renite systemsX, has a characteristic peak ne@g, [see Fig.
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1.0
08 0.75
< 0.6 )
S O
V 04 0.25
0.2t
00050 -0.25 : : * *
0 2000 4000 6000 8000 10000
n [periods]
FIG. 6. Critical slowing down for the order parameter Tt
6000 r =0.8T, and H;=0.3) at ®=0., as shown by the normalized
autocorrelation functioni:?(n).
4000 | i i _ )2
) C(B(n):<Q(J)Q(J+n)> (Q(j)) ©
°$< (Q¥(1)—(Q(0))?
2000 ¢ provides further insights into the DPT as the system exhibits
critical slowing down(Fig. 6). This can be seen as increasing
correlation times with increasing system sizes. In Sec. IlID
) 75 we provide a quantitative analysis of the correlation times.
' We also measured the period-averaged internal energy
. [Eqg. (6)] and its fluctuation$31],
10
XE=L2(EL—(E)D), (10
3
10 as can be seen in Fig. 7. The peaks of these fluctuations
exhibit a slow increase with the system sigempared to the
102 order-parameter fluctuationss one may anticipate by anal-
i ogy with the equilibrium heat capacity.
1
10 B. Finite-size scaling
. Scaling laws and finite-size scaling for equilibrium sys-
10 tems with ana priori known Hamiltonian can be systemati-
cally derived using the concepts of the free energy and the

000 050 1.00 1'(30 200 280 300 renormalization group51]. The kinetic Ising model with the
explicitly time-dependent Hamiltonian Egl) is driven far
FIG. 5. Finite-size behavior of the order parameter Tat from equilibrium. Although the order-parameter distribution
=0.8T, andH,=0.3] for various system sizega) The order pa- P(Q) is stationary, the effective Hamiltonian controlling its
rameter(|Q[), . (b) The scaled variance of the order parameter,fixed-point behavior was not known until recentf4] (after
X2, as defined in Eq(8). (c) Same as ir(b) on a lin-log scale to  the completion of this study Motivated by the similarity of
provide an enhanced view of the peaks for smaller systems. the finite-size effects shown in Figs. 5—7 to those character-
istic of a typical continuous phase transition, we borrow the
corresponding scaling assumptions from equilibrium finite-

finite-size effects can be observed 8r<®, and@>@,,  Size scaling. For our model the quantity analogous to the
ir_educed temperature in equilibrium systefme., the dis-

This implies the existence of a divergent length scale, posst ¢ thenfinit ¢ itical pointi
bly the correlation length which governs the Iong—distanceance rom thanfinite-system critical pointis

5(b)] which increases in height with increasihg while no

behavior of the local order-parameter correlatigiyQ;). 0-0,

The location of the maximum X2 also shifts withL, which 0=—g (13)

gives further important information about the critical expo- ¢

nents. Finite-size scaling theory provides simple scaling relations
The normalized stationary time-displaced autocorrelatiorfor the observables for finite systems in the critical regime

function of the order parameter, [39,4Q,

016120-5



KORNISS, WHITE, RIKVOLD, AND NOVOTNY

PHYSICAL REVIEW E63 016120

-1.60 0.70
(a)
-1.65 0.50
Aﬂ
Y =) EaRat
-1.70 | I N ]
0.30 G----0 =64 SRS
- *ooo* L=90 : i N
- e----8 L=128 EX
175 040 | *-—--xL=I80 e e
o----0 L=256 L \%@:_ﬂm:
&----a L=512 — I§“>
78550 1.00 150 040 b 1
’ o ' " 0.20 040 060 080 1.00 1.20 1.40
e
0.67 . —
6.00 - (b) % )
0.65 [l T | 1
- \\‘:\S\:\\‘\ §\ I
> S
4.00 ¢ 063 I S 1
b"‘ BRECIAEN
061 F—————————————————= _i —————— 1
o G----0 L=64 =N,
2.00 _,—'j 059 | *----% L=90 : E
R \%\* e----a [=]28 Do
| e L=180 | E RN
000 | 0.57 om0 L2256 i -
70,50 1.00 1.50 Lo
o 0.55 : ‘ ‘ ‘
085 087 089 091 093 095

e

FIG. 7. Finite-size behavior of the period-averaged internal en-

ergy atT=0.8T, and Hy,=0.3J for various system sizega) The
period-averaged internal enerd) The scaled energy variana@
as defined in Eq(10).

FIG. 8. (a) The fourth-order cumulant as defined in Ef5) at
T=0.8T, and H,=0.3J for various system sizegb) The region
around the cumulant crossing (a) enlarged. The horizontal and
vertical dashed lines indicate the fixed-point valli€=0.611 and

Q) =L P"F. (oL, (12)  the scaled critical half-perio.=0.918, respectively.
X2=L""G. (L), (13)  period, based on the remaining five system sizes@js
=0.918+0.005, with a fixed-point valueU*=0.611
XE=cy In[LJ.(6LY7)], (14)  *0.003 for the cumularitFig 8(b)].

Then, at®, the scaling form$Eqgs.(12-14] yield

where 7., G., and J. are scaling functions, and the

+ (—) index refers to®>0, (0<0,). The logarithmic (|Q[y LA, (16)
scaling inXE is motivated by the very slow divergence of the
scaled period-averaged energy variariégg. 7(b)]. The XQe LY, 17
above formulation of scaling is explicity based on the
infinite-system critical point®., which can be estimated XEoccz+clln(L), (19

with far greater accuracy than the location of the maximum
of the order-parameter fluctuations for the individual finite which enable us to estimate the exponent raflos andy/ v,

system sizes. We use the fourth-order cumulant intersectioand to directly check the postulated logarithmic divergence

method[39,40 to estimate the value o, at which the
transition occurs in amfinite system. In order to do this, we
plot

in the period-averaged energy fluctuations. Plot{h@|)_
and X‘B at ®., and utilizing a weighted linear least-squares
fit to the logarithmic data, yieldg/v=0.126+0.005 [Fig.
9(a)] andy/v=1.74+0.05[Fig. 9Ab)]. Note that these values

_ <Q4>L are extremely closéwithin statistical errorsto the corre-
3<Q2>E sponding ratios for theequilibrium two-dimensional Ising

universality class,B/v=1/8=0.125 and y/v=7/4=1.75.
as a function o® for several system sizes, as shown in Fig.Further, the straight line in Fig.(§) indicates the slow loga-
8. For the largest systent £512) the statistical uncertainty rithmic divergence oX[ at the critical point. In addition to
in U_ was too large to use it to obtain estimates for thethe scaling at®., we also checked the divergences of the
crossing. Our estimate for the dimensionless critical halfpeaks of the fluctuationsx(?)peakand (XE)peak, since they

UL:]-

(19
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0.7 ‘ ' \ mm (Islopel)=Iv=1.1520.6
(@ X ———— (Islope|)=1/v=1.05
0.10 (Islope|)=1/v=1.0
0.8
E @IO —
v 2
0.5 <) (
m} <|Q|>Ldt @c R
—— (|slope|) Biv=0.12610.005 0.01 \:
0.4 : - 50 100 500
50 100 500 L
L
. FIG. 10. Exponent estimate far at T=0.8T. and Hy,=0.3],
10 o X2 té (b) iy based on Eq(19) (log-log plod. The dot-dashed line is a weighted
o &éj ¢ A least-squares fitexcluding the smallest and the largest sygtem
(leoZ;; Yv=1.74+0.05 // yielding the slope %/=1.15+0.6 (v=0.87+0.4). The dashed line
- (slope)y,\,=]:7810:05 e represents the “optimal” value for this exponent, using the best
%{‘ quality data collapse for the scaling functidgq. (12)] as discussed

in the text, yielding 1#=1.05 (v=0.95). The solid line represents
the two-dimensional equilibrium Ising exponemt 1.0.

From the finite-system shifting of the transition one can
estimate the correlation-length exponentoy tracking the
shift in the location of the maximum ib(?,

|©c(L)—OfxL ™, (19)

50 100 L 500
where®.(L) is the location of the peak for finite systems.

6 . . However, the precision of this method for our data is very
poor, due to limited resolution in finding the locations of the
maxima and consequently the large relative errors in
|®.(L)— 0. Excluding the smallestdue to strong correc-
tions to scaling and largest systenislue to very poor reso-
lution and extremely large statistical erromwe obtain v
=0.87+=0.4, but the large error estimate obviously implies a
rather poor accuracfFig. 10.

To obtain a more complete picture of how well the scaling
relations in Egs(12) and(13) hold, we plot(|Q|), L#"* [Fig.
11(a)] and X2L """ [Fig. 11(b)] vs 6L [41]. For the ex-
ponent ratios we used3/v=1/8=0.125 and y/v=7/4
3 . . =1.75, since our estimate for thoseithin small statistical

50 100 L 500 errorg implied that they take on the equilibrium two-
dimensional Ising universal values. Most importantly, we

FIG. 9. Critical exponent estimates &t=0.8T; andH,=0.3).  ysed various values of between 0.5 and 1.2 to find the best
Straight lines are the weighted least-square figg.Determining  data collapse as observed visually, since our estimate for this
B/ v through the finite-size effects of the order parameter, based OBxponent was far from reliable. The “optimal” value ob-
Eq. (16) (log-log plob. (b) Determiningy/v through the finite-size  t4ined this way(by showing scaling plots to group members
effects of the order-parameter fluctuations, based on(Ef.(log- who did not know the particular values ofused, and used
log plof). (c) Showing the logarithmic divergence of the period- in Figs. 11a) and 11b), is »=0.95+0.15. Full scaling plots
averaged energy fluctuations, based on &) (log-lin plot). using the exact Ising éxponents are also shown in Figs) 11

asymptotically should follow the same scaling laws, Eqs.and 11d), and they result in similarly good data collapse.

(17) and (18), respectively. The measured exponeyitv
=1.78+0.05 for (X‘B)peakand the logarithmic divergence for
(XE) peak @gree to within the statistical errors with the results  We devote this subsection to analyzing the universal char-
obtained a® ., as can be seen in Figgh® and 9c), respec- acteristics of the full order-parameter distributi®{Q) at
tively. the critical point. This distribution is bimodal for finite sys-

C. Order-parameter histograms at criticality
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FIG. 11. Finite-size scalinfull data collapsgat T=0.8T. andH,=0.3] using 8/v=1/8, y/v="7/4 (two-dimensional equilibrium Ising
values, and »=0.95 (which yields the best quality data collapsés) For the order parametéfQ|), (log-log ploy. (b) For the scaled
order-parameter varianOé;‘L2 (log-log ploy. Straight lines in both graphs represent the asymptotic large-argument behaviors of the scaling
functions /. andgG.. given in Eqs.(12) and(13), respectively(c) and(d) are the same a®) and(b), except that the exact Ising exponent
v=1.0 is used.

tems if observed for sufficiently long timéBkig. 12 [52]. It  with Glauber dynamics and system sizes ranging fiom

is more convenient to focus on the distribution @, avoid- =64 to 128, and also by comparing our scaled DPT order-
ing the effect of the insufficient number of switching eventsparameter histograms to the high-precision two-dimensional
between the two symmetry-broken phases for large systemegquilibrium Ising MC data of Ref[53] (Fig. 13. We had
which causes the skewness in Fig(d2Figure 13a) shows expected theshapesof the distributions to be identical for
the order-parameter distributioRs (|Q|) at the critical point  the DPT and the equilibrium Ising model, as a consequence
for various system sizes. Finite-size scaling argumentsf the identical values for the cumulant fixed-point valli.

[39,40 suggest that, &b, However, it is not obvious to us why the microscopic length
Blopy | iv scales in the DPT and the equilibrium Ising model also ap-
PL(IQ))=L”"P(LAY|Q]). (200 pear to be identical, as evidenced by the absence of the need

for an additional scalind.—L/a (a being the microscopic

Thus the scaled distributioris™ #*P_(|Q|) vs x=|Q|L#"*  |ength scale in the DPT
should fall on the same curv@(x) for different system
sizes. Again, we use@/v=1/8. The quality of the data col-
lapse is quite impressiVéig. 13b)], with deviations mainly D. Critical slowing down
observed for the smalledt and the largest values 40| Computing the stationary autocorrelation function given
[Fig. 13c)], possibly as a result of corrections to scaling. by Eq.(9), we already pointed out that @, the correlation

What we find somewhat surprising, is that the distributiontime increases quickly with system sigeig. 6). Correlation

appears to be identicdexcept for stronger corrections to times are typically extracted from an exponential decay as
scaling for the DPT to that of the equilibrium two-

dimensional Ising model on a square lattice with periodic C(L?(n)oce*”/TLQ, (22)
boundary conditions at criticalitywithout a need for any

additional scaling parameters. We checked this by perform-

ing standard equilibrium two-dimensional Ising simulationsand they are expected to be finite for finite systems. The

016120-8



DYNAMIC PHASE TRANSITION, UNIVERSALITY, AND. .. PHYSICAL REVIEW E63 016120

1 : 6
(a)

o L=64 % (a)

Py1Ql)

150000 175000 200000
Jj [periods]

P(Q)

0 . n L L L L ’ D
0 025 05 0.75 wv1 125 15 1.75
loIL
10’ ; .
C
FIG. 12. (a) Short segment of the order-parameter time series at 10° | _ ©
T=0.8T, and Hy=0.3] for an L=128 system ai®. [52]. (b)
Order-parameter histogram for the same parameters. R
Q o L=64
correlation timer® is also well defined in thé. —oo limit ;::’10_2 | *L=90
o o . & o L=128
awayfrom the transition. However, it diverges withat the e « L=180
transition point as 10° | oL=25
aL=512
roxl?, (22 10 S S
0 025 05 075 1 125 15 175
wherez is the dynamical critical exponent. For correlations |Q|LB/v

measured at intermediate time intervals, we had reasonable

statistics including the larger syste to L=256) to fit

the usual exponegntial decg@Eig.ylzl(z;%?Then, plott)ing the Ho=03 for \.'ariou.s' system Si.zes ﬁf" The thin solid lines rep-
correlation timesr vs L yields the dynamic exponert resent tvvo-dlme_n_smnabqunmrlum Ising order-parameter histo-
= N Lh . ) hat f grams at the critical point fot =64, 90, and 128 on all three
=1.91*0.15, as s own n Fig. I_b)' Note that from t,he graphs. (a) Order-parameter distributions(b) Scaled order-
local Glauber dynamic for the spins there does not directly, ameter distributions, according to E80), with 8/v=1/8. The
follow any dynamic which governs the evolution {®@i}. N bold solid line is the correspondiriylonte Carlg two-dimensional
this respect, it is somewhat surprising that our valuezfat  equilibrium Ising distribution without any additional scaling param-
the DPT is within two standard deviations of most eStimate,':‘eters[SS]. (c) Same as ir(b) on lin-log scales to enhance the view
for the dynamic exponent of the two-dimensional equilib-of the corrections to scaling for small systems at l3Qg

rium Ising model with local dynamicib4].

FIG. 13. Order-parameter histogramg(|Q|) at T=0.8T. and

_ _ _ ) many droplets contribute to the decay of the metastable
E. Universality for varloEs temper?tukrjes a_nd fields and phas¢ exhibit a DPT at a half-periot}, comparable to the
crossover to the strong-field regime metastable lifetimé(T,H;)). In other words, we expect the

The underlying ingredient for the spatially extendedcritical dimensionless half-period to be of order ®,
bistable systems exhibiting a DPT is the local metastability~O(1).
(and the corresponding characteristic time spent in the meta- To test this expectation, we performed simulationsT at
stable “free-energy well} in the presence of an external =0.8T for field amplitudes ranging from QJ3to infinity
field. This, in turn, provides a competition between timewith system size$ =64, 90, and 128[Hy= 0 corresponds
scales if the system is driven by a periodic field. Based orio the Glauber spin-flip probabilitid€q. (3)] being equal to
this, we expect that sufficiently large systertis which 0 (1) depending on whether the spin is parallhtiparalle)
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FIG. 14. Critical slowing down for the order parameterTat A\* o H=12], <>=1705
=0.8T, andHy=0.31 at ®=0.. (a) The normalized autocorrela- 0.60 B ::Zﬁg <f>=;<;~g7
. . . . . . . X F - -~V H=16J, <v>=T7. 1
tion function on a lin-log scale for intermediate times. The straight Ay ®x® Y “: 6---0 H=1.75], <t>=5.81
lines are fits to exponential decays according to &4). (b) De- % y LAy, S ESIA om0
termining the dynamic exponert, using a power-law fit to Eq. 040 1 % vy A’;‘ b=t H=2.2], <0320
(22) (log-log plob. LA T i o069
o .
020/ ®
o
to the external field, with no influence from the configuration

of the neighboring sping.We further performed runs ak 0.00 =
=0.9T., T=0.6T,, and T=0.5T, for various field ampli-
tudes with system sizds=64 and 90. The typical run length
was 2x 10* periods. The purpose of these runs was to ex- FIG. 15. DPT in the multidroplet regime and strong-field cross-
plore the universal nature of the DPT in the multidropletover for various temperatures and field amplitudes with 64.
regime, and the crossover to the strong-field regime wher@rder-parameter profiles with filled symbols exhibit a DPT. Corre-
the DPT should disappear. sponding lifetimes in units of MCSS are also indicated in the fig-

In the strong-field regime the droplet picture breaks downures.(@ T=0.8T;. (b) T=0.6T.. (c) T=0.5T.
since the individual spins are decoupled. Thus the metastable
phase no longer exists, and the decay of the phase having Fig. 15. For Hy>H(T) the underlying decay mecha-
opposite sign to the external field approaches a simple expatism belongs to the strong-field regime, and correspondingly
nential form(which becomes exact in thdy— o limit). In the DPT disappears, as expected.
the Appendix we show that under these conditions the sys- One can trace this crossover from the multidroplet to the
tem magnetization always relaxes to a symmetric limit cyclestrong-field regime by plottin@ . vs H,/J [Fig. 16a)] and
with Q=0 for all frequencies; thus no DPT can exist. vs (1) [Fig. 16b)] for fixed temperatures. Here again we

Figures 1%a), 15(b), and 1%c) show the order parameter employed the fourth-order cumulant intersection method us-
vs the dimensionless half-period far=64 and a range of ing L=64 and 90 to identify the infinite-system transition
field amplitudes af =0.8T., T=0.6T., andT=0.5T., re-  point ®.. The crossover to the strong-field regime is indi-
spectively. The typical order-parameter profile where thecated by the drop i for large fields(small lifetimes.
system exhibits the DPT prevails up to some temperature The DPT in the multidroplet regimgHo<H(T)] ap-
dependent crossover field amplituble (T) (filled symbols  pears to be universal, as can be seen from the scaled order-

016120-10



DYNAMIC PHASE TRANSITION, UNIVERSALITY, AND.. .. PHYSICAL REVIEW E63 016120

1.2
(a)
1t ."_i\:‘\“;\ 1 10° |
A
.\‘\ - \ -3
08 ‘.\\ \. ~‘ QL]
. ‘e A
@©06r &----4 T=0.5T, Q
o @8 T=06T, v,
04 | . Y, e---- T=08T,| 10
» ¢ T=09T,
.
02t
) o e
0 05 1 15 2 102 ‘
H/J 107 10° 10' 10° 10°
v
1.2 : : . oL
(] .
1.0 o
£ . (b)
e . 0
0.8 ‘l,/,’ X e - E 107 | o
- P - . ©
© 06 b
s &----a T=0.5T, 2
0.4 : - » T=0.6T, 9
° o----8T=08T, Vo slope=-7/8
o2l * ----¢ T=0.9T, 10
00 —= . :
o 20 40 80 80
<t>
107 : : :
107 10° 10' 10° 10°
1
6L

FIG. 17. Universality of the DPT in the multidroplet regime)
Finite-size scaling(full data collapsg for the order parameter
(|Q|) (log-log plob. The figure contains 28 DPT data sets: three
different temperatures, with four different field amplitudes for each,
and at least two different system sizds=(64,90, and 128 aT
=0.8T., andL=64 and 90 af =0.6T, andT=0.5T,) for all these
parameters. The temperature and field values were chosen such that
the system is in the multidropléMD) regime(filled circles in Fig.

o 16(c)]. We usedB/v=1/8, y/v="7/4 (two-dimensional equilibrium
Ising value$, and»=0.95, the optimal value, as described in Sec.
Il B. Straight lines represent the asymptotic large-argument behav-
iors of the scaling functiong—. given by Eq.(12). (b) is the same

as(a), except that the exact Ising exponent 1.0 is used.
FIG. 16. Scaled critical half-period in the multidroplet-DPT re-

gime (a) as a function of the external field amplitutlg, and(b) as ) ) )

a function of the lifetime(7). In (a) the corresponding empty sym- Parameter plot in Fig. 17. Note that both graphs contain 28
bols for each temperature on the horizontal axis represent the poinf8PT data sets: three different temperatures, with four differ-
which are the MC upper bounds for the crossover field amplitudeent field amplitudes for each, and at least two different sys-
H,(T), beyond which no DPT can be found for any nonzéroin ~ tem sizes [ =64,90, and 128 at=0.8T., andL=64 and

(b) the corresponding empty symbols are the lower bounds for th®0 at T=0.6T. and T=0.5T.) for all these parameters.
lifetime below which no DPT is observedc) Metastable phase While the slopes in the asymptotic scaling regime appear to
diagram for the kinetic Ising model, based on metastable decay ibe the same, the small parallel shift may be the result of the
static fields[15], with the location of our square-wave hysteresis nonuniversal critical amplitudes at different temperatures
simulations superimposed. The stars connected by a dashed ligghyd fields, or simply our inaccuracy in determining
give a numerical estimate for the dynamic spinodal for our smallesg (T,H,), due to the relatively short runs.

system,L =64, that separates the multidropl®D) regime from On the other hand, as expected, the system shows no sin-
the single-drople{SD) regime[15]. The solid line is an analytic L—oo

estimate for the “mean-field spinodal” which separates the MD gularity, and(|Q|) — 0 for any nonzero frequency in the
from the strong-field(SP regime[15]. The circles represent the Strong-field regimeHy>H(T) (see the Appendix Here
temperature and field amplitude values at which we ran our simuthe finite-size effects simply reflect the central-limit theorem,
lations. The filled circles indicate points where the system exhibitd.e., (Q?)~O(1/L?), or (|Q|)~O(1/L). Figures 18a) and

a DPT, and empty circles represent points where it does not. 18(b) illustrate this at T=0.8T,, Hy=15] and atT
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Due to the expected complications of a divergequilib-

6.0 T T T
o Ef?_)_EL_M . <IQl>L rium correlation length, we did not perform simulations at
012 1 7 T op 0T 11 T.. However, we conjecture that, (T) vanishes aT.. We
040 | &--eL=128 m% I expect this conjecture to be extremely difficult to prove or
pe o “ﬂnﬂ\ﬂ‘ disprove numerically, due to very large and possibly compli-
& 208 &y e L cated finite-size effects.
Vo006, Tq ) ]
o RN IV. CONCLUSIONS AND OUTLOOK
0.04 g, o w :
002 | \“\A\Z\\\Z\Ejg\m ] In this paper we have studied the hysteretic response of a
‘”‘A?X:§E}}}§E;;;;;§ spatially extended bistable system exhibiting a DPT. Our
0.00,% 1o 20 30 2.0 model system is the two-dimensional kinetic Ising ferromag-
) net below its equilibrium critical temperature, subject to a
. periodic square-wave applied field. The results indicate that
0014 | ) 08 'L ‘ : for field amplitudes ar_wd temperatures such tha_t the meta-
0012 | oeem-o 1ogs <I0k>. 1] stable phase decays via the multldroplet mechanlsm., the sys-
’ o8 100 o4 %&\ ] tem undergoes a continuous dynamic phase transition when
0.010 [ a----a L=128 : the half-period of the fieldt,,,, is comparable to the meta-
£ 0008 21 Rﬂ\ﬂ\aﬁw ] stable lifetime(7(T,H,)). Thus the critical valu® . of the
S 9, 00 s ‘ dimensionless half-period defined in K@) is of order unity.
v y \EL 0.0 5.0 10.0 15.0_ . .
0.008 F_ . e As 0O is increased beyon®., the order paramete{Q|)
0.004 %A\\‘&\ ] (the expec?ation v_alue of the norm of the pe_riod-averaged
A B EED magnetlzanoh v_anshes_[ﬁg. 5a)], dlsplay!ng singular be-
0.002 ¢ Celgne e e o havior at the critical point, as shown in Figgbband 5c).
0.000 R The characteristic finite-size effects in the order parameter
0.0 5.0 10.0 15.0 and its fluctuations indicate that there is a divergent correla-
e tion length associated with the transition. We used standard
0.18 , , finite-size scaling techniques adopted from the theory of
© 70 oL equilibrium phase transitions. We estimated and the criti-
o8 LG4 600 % ] cal exponent®, vy, andv from relatively high precision data
oo L=00 for system sizes betwedn=64 and 512 aflf =0.8T, and
013 | a---a L=128 500 B {1 H,=0.3]. Our best estimates arg/v=0.126+0.005, y/ v
A . =1.74+0.05, andr=0.95+ 0.15. These values agree within
% T 40—t T 150 statistical errors with those previously obtained with a sinu-
g © soidally oscillating field[27,28], providing strong evidence
0.08 . ‘ g | that the shape of the field oscillation does not affect the uni-
t e versal aspects of the DPT. Observing the stationary autocor-
Raa-o . relation function, we also saw that at the transition point the
0.03 . s system exhibits critical slowing down governed by the dy-
0.00 0.50 o 1.00 1.50 namic exponengz=1.91+0.15. Although the local Glauber

dynamic for the spins does not directly predict any specific
FIG. 18. Order-parametef{Q|), behavior outside the multi- dynamic for the period-averaged spiff;}, we note that
droplet regime.(a) Strong-field behavior aff=0.8T, and H, this is also very close to the corresponding exponent
=1.5J ({(7)=4.3 MCSS. (b) Strong-field behavior &f=0.8T.and =~ =2.145), measured in standard two-dimensional Ising
Ho=% ({(7)=In2 MCSS. (c) High-temperature behavior a&f  simulations with local dynamid$4]. Our best values for the
=1.1T. andHy=0.05 ((7)=81.8 MCSS. The insets in all three exponent ratiog3/v and y/v are given with relatively high
graphs show data collapse for the scaled order pararti@ér L.  confidence, while fow it is rather poor. In this sense track-
ing down the exponent and obtaining an accurate estimate
=0.8T., Hy=, respectively. One also expects that a simi-for it remains elusive. Note, however, that we could only rely
lar behavior prevails aT>T, for any field amplitude, i.e., on the standardsingle spin-flip MC algorithm, since we
H . (T) vanishes forT>T,.. We checked this fofl =1.1T, had to preserve the underlying dynamics. Using more sophis-
andH,=0.05], and the results confirm th@Q|)~O(1/L) ticated algorithms to avoid the critical slowing down as seen
scaling of the order parameter for all frequencies, showingn Figs. 6 and 14, would require an underlying “Hamil-
none of the characteristic finite-size effects of a DFly.  tonian” for the correspondindocal order parametefQ;},
18(c)]. This result is in distinct disagreement with older work which is not yet known. While in a coarse-grained and uni-
such as Refs[29,35, which reported observations of the versal sense &* Hamiltonian is supported by our data, it
DPT at temperatures considerably abovg. For smaller does not point to any one particular microscopic Hamiltonian
system sizes, however, one may observe nontrivial resonander the microscopic order parameté®;}. However, a¢*
phenomena for temperatures abdyg[55]. coarse-grained Hamiltonian fdiQ;} was recently derived,
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point value of the fourth-order cumulantJ* =0.611

+0.003, is also extremely close to that of the Ising model

U* =0.6106901(5)56]. These findings provide conclusive

evidence that the DPT indeed corresponds to a non-trivial

fixed point. We tested the full data collapse for the scaled For simplicity, in the following we assume that the mag-

order parameter and its variance, as shown in Fig. 11, and fetization decays frorm=+1 tom= — 1 after asinglefield

confirmed the existence of the universal scaling functionseversal H,— —H,). This is a good approximation below

given by Eqs(12) and(13). Also, at the critical frequency, the equilibrium critical temperaturem~1), and for any

the order-parameter distributions follow finite-size scalingtemperature whehl,— . Further, we assume that the vol-

predictions[Eq. (20)], as shown in Fig. 13. More surpris- ume fraction of metastable or unstable spins follows a simple

ingly, the critical DPT order-parameter distributions coincide 1 qtonic decaya(t).

with those of the two-dimensional equilibrium Ising model at | tarms of the volume fraction qositivespins,#(t), the

the critical temperaturéexcept for stronger corrections to magnetization can be written as RN

scaling, without any additional fitting of the underlying mi-

croscopic length scale. m(t)=2¢(t)—1. (A1)
While our finite-size scaling data clearly indicate the ex-

istence of a divergent length scale, we did not measure th8ubject to a square-wave field,

correlation length for théocal order parameter directly. Fu-

ture studies may include extracting the correlation lerigh —Hpy Ost<typ

from the (Q;Q;) correlations(or from the corresponding H(t)= +Hn ti.<t<2t (A2)

) ; o LS 125
structure factor This approach would also provide another

way to measure the exponentby plotting £ vs ¢ in the  in the first (secondl half-period the volume fraction of the

critical regime for large systems, and assuméag-¢ . positive (negative spins decays according te(t). Thus, in
We also studied the universal aspects of the DPT at othef, ., period(measuring timet from the beginning of the
temperatures and fields. Shorter runs B&0.8T., T period

=0.6T., and T=0.5T, for field amplitudesHqo<H . (T)
also confirmed scaling and the universality of the DIFiQ. (0)5(t) o<t<ty,
()~

2(BIv)+ ylv=1.99+0.05~d, (23)

" APPENDIX: LOW-FREQUENCY AND STRONG-FIELD
MEAN-FIELD APPROXIMATION

17). The condition for the field amplitude implies that the .

system only exhibits a DPT in the multidroplet regime. For 1-[1-p(ty)]e(t—typ), Tup=t=2typ.

Ho>H(T) strong-field behavior governs the decay of the (A3)

magnetization, and the DPT disappears, as indicated by Fi%.| . . N : . .

16 and Figs. 1&) and 18b). We also found that the high- sing this approximation, one directly obtains a linear map-

temperature phase is qualitatively similar to the strong-field®'"9

regime in that there is no sign of a DPT fdir>T, [Fig. ~ A

18(¢)]. Hn+1=1=[1= dno(ty)e(typ), (A4)
One may ask how general the phenomenon of a DPT is in _ . . .

spatially extended bistable systems, subject to a periodic ag\—'h.ere $n= ¢(2n_t1,2) Is the volumg fract_lon of the positive

plied “field” which drives the system between its metastable>P'NS at the beglnnmg of thﬁh p¢r|od,n—0,1,2 .+ The

and stable “wells.” It is possible that having up-down sym- stationary value of this quantity is

metry of the period-averaged “magnetization” is sufficient

for possessing a Hamiltonian at the coarse-grained level, ¢* = lim ¢p=———.

even if the system is driven far away from equilibrium and is n—soo 1+ @(tyy)

microscopically irreversiblg58]. Future research can ad-

dress this question by studying other systéms necessar- Consequently, the magnetization reaches a stationary limit

ily ferromagnets that exhibit hysteresis. cycle

(A5)
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p(t)—1 o<t<ty,

1+ ¢(ty))

1-———¢ typsSt<2ty.
1+ o(ty))

(t—typ)
(A6)
In this limit cycle the magnetization oscillates about zero,
1- ¢(typ)
1+ ¢(ty)

and the symmetry of the magnetization(t=t,,,) = —m(t),
implies

m(0)=—m(ty)= (A7)

= A8
2ty (A8)

Q é m(t)dt=0.

This corresponds to the symmetfitynamically disordered

PHYSICAL REVIEW E63 016120

phase. Note that this symmetric phase is always reached

when ¢(t) decreases monotonically from unity &0 to
zero ast—oo.

In the multidroplet regime, the volume fraction of the
metastable phase decays according to Avrami's|[lhaw18.

In the low-frequency limit,t,,>(7) (@>1), each half-
period almost always containscempletemetastable decay
[Fig. 2(a@)]. Avrami’s law for the metastable volume fraction
in each half-period can then be directly applied usis(d)

= pndt)~e N2 [17 18, This functional form for
omdt) breaks down when,,, becomes comparable {a)
(®=~1); thus this simple mean-field approximation cannot
predict any instability related to the DPT.

In the Hy— limit the individual spins become decou-
pled. Then one can obtaia(t)=e~("2%" which is exact
for all frequencies. Further, this exponential decay is a good
approximation everywhere in the strong-field regime; thus no
DPT can exist there.
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